xref: /linux/fs/xfs/xfs_iops.c (revision dec1c62e91ba268ab2a6e339d4d7a59287d5eba1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_acl.h"
15 #include "xfs_quota.h"
16 #include "xfs_da_format.h"
17 #include "xfs_da_btree.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans.h"
20 #include "xfs_trace.h"
21 #include "xfs_icache.h"
22 #include "xfs_symlink.h"
23 #include "xfs_dir2.h"
24 #include "xfs_iomap.h"
25 #include "xfs_error.h"
26 #include "xfs_ioctl.h"
27 #include "xfs_xattr.h"
28 
29 #include <linux/posix_acl.h>
30 #include <linux/security.h>
31 #include <linux/iversion.h>
32 #include <linux/fiemap.h>
33 
34 /*
35  * Directories have different lock order w.r.t. mmap_lock compared to regular
36  * files. This is due to readdir potentially triggering page faults on a user
37  * buffer inside filldir(), and this happens with the ilock on the directory
38  * held. For regular files, the lock order is the other way around - the
39  * mmap_lock is taken during the page fault, and then we lock the ilock to do
40  * block mapping. Hence we need a different class for the directory ilock so
41  * that lockdep can tell them apart.
42  */
43 static struct lock_class_key xfs_nondir_ilock_class;
44 static struct lock_class_key xfs_dir_ilock_class;
45 
46 static int
47 xfs_initxattrs(
48 	struct inode		*inode,
49 	const struct xattr	*xattr_array,
50 	void			*fs_info)
51 {
52 	const struct xattr	*xattr;
53 	struct xfs_inode	*ip = XFS_I(inode);
54 	int			error = 0;
55 
56 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
57 		struct xfs_da_args	args = {
58 			.dp		= ip,
59 			.attr_filter	= XFS_ATTR_SECURE,
60 			.name		= xattr->name,
61 			.namelen	= strlen(xattr->name),
62 			.value		= xattr->value,
63 			.valuelen	= xattr->value_len,
64 		};
65 		error = xfs_attr_change(&args);
66 		if (error < 0)
67 			break;
68 	}
69 	return error;
70 }
71 
72 /*
73  * Hook in SELinux.  This is not quite correct yet, what we really need
74  * here (as we do for default ACLs) is a mechanism by which creation of
75  * these attrs can be journalled at inode creation time (along with the
76  * inode, of course, such that log replay can't cause these to be lost).
77  */
78 
79 STATIC int
80 xfs_init_security(
81 	struct inode	*inode,
82 	struct inode	*dir,
83 	const struct qstr *qstr)
84 {
85 	return security_inode_init_security(inode, dir, qstr,
86 					     &xfs_initxattrs, NULL);
87 }
88 
89 static void
90 xfs_dentry_to_name(
91 	struct xfs_name	*namep,
92 	struct dentry	*dentry)
93 {
94 	namep->name = dentry->d_name.name;
95 	namep->len = dentry->d_name.len;
96 	namep->type = XFS_DIR3_FT_UNKNOWN;
97 }
98 
99 static int
100 xfs_dentry_mode_to_name(
101 	struct xfs_name	*namep,
102 	struct dentry	*dentry,
103 	int		mode)
104 {
105 	namep->name = dentry->d_name.name;
106 	namep->len = dentry->d_name.len;
107 	namep->type = xfs_mode_to_ftype(mode);
108 
109 	if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN))
110 		return -EFSCORRUPTED;
111 
112 	return 0;
113 }
114 
115 STATIC void
116 xfs_cleanup_inode(
117 	struct inode	*dir,
118 	struct inode	*inode,
119 	struct dentry	*dentry)
120 {
121 	struct xfs_name	teardown;
122 
123 	/* Oh, the horror.
124 	 * If we can't add the ACL or we fail in
125 	 * xfs_init_security we must back out.
126 	 * ENOSPC can hit here, among other things.
127 	 */
128 	xfs_dentry_to_name(&teardown, dentry);
129 
130 	xfs_remove(XFS_I(dir), &teardown, XFS_I(inode));
131 }
132 
133 /*
134  * Check to see if we are likely to need an extended attribute to be added to
135  * the inode we are about to allocate. This allows the attribute fork to be
136  * created during the inode allocation, reducing the number of transactions we
137  * need to do in this fast path.
138  *
139  * The security checks are optimistic, but not guaranteed. The two LSMs that
140  * require xattrs to be added here (selinux and smack) are also the only two
141  * LSMs that add a sb->s_security structure to the superblock. Hence if security
142  * is enabled and sb->s_security is set, we have a pretty good idea that we are
143  * going to be asked to add a security xattr immediately after allocating the
144  * xfs inode and instantiating the VFS inode.
145  */
146 static inline bool
147 xfs_create_need_xattr(
148 	struct inode	*dir,
149 	struct posix_acl *default_acl,
150 	struct posix_acl *acl)
151 {
152 	if (acl)
153 		return true;
154 	if (default_acl)
155 		return true;
156 #if IS_ENABLED(CONFIG_SECURITY)
157 	if (dir->i_sb->s_security)
158 		return true;
159 #endif
160 	return false;
161 }
162 
163 
164 STATIC int
165 xfs_generic_create(
166 	struct user_namespace	*mnt_userns,
167 	struct inode	*dir,
168 	struct dentry	*dentry,
169 	umode_t		mode,
170 	dev_t		rdev,
171 	bool		tmpfile)	/* unnamed file */
172 {
173 	struct inode	*inode;
174 	struct xfs_inode *ip = NULL;
175 	struct posix_acl *default_acl, *acl;
176 	struct xfs_name	name;
177 	int		error;
178 
179 	/*
180 	 * Irix uses Missed'em'V split, but doesn't want to see
181 	 * the upper 5 bits of (14bit) major.
182 	 */
183 	if (S_ISCHR(mode) || S_ISBLK(mode)) {
184 		if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff))
185 			return -EINVAL;
186 	} else {
187 		rdev = 0;
188 	}
189 
190 	error = posix_acl_create(dir, &mode, &default_acl, &acl);
191 	if (error)
192 		return error;
193 
194 	/* Verify mode is valid also for tmpfile case */
195 	error = xfs_dentry_mode_to_name(&name, dentry, mode);
196 	if (unlikely(error))
197 		goto out_free_acl;
198 
199 	if (!tmpfile) {
200 		error = xfs_create(mnt_userns, XFS_I(dir), &name, mode, rdev,
201 				xfs_create_need_xattr(dir, default_acl, acl),
202 				&ip);
203 	} else {
204 		error = xfs_create_tmpfile(mnt_userns, XFS_I(dir), mode, &ip);
205 	}
206 	if (unlikely(error))
207 		goto out_free_acl;
208 
209 	inode = VFS_I(ip);
210 
211 	error = xfs_init_security(inode, dir, &dentry->d_name);
212 	if (unlikely(error))
213 		goto out_cleanup_inode;
214 
215 	if (default_acl) {
216 		error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
217 		if (error)
218 			goto out_cleanup_inode;
219 	}
220 	if (acl) {
221 		error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS);
222 		if (error)
223 			goto out_cleanup_inode;
224 	}
225 
226 	xfs_setup_iops(ip);
227 
228 	if (tmpfile) {
229 		/*
230 		 * The VFS requires that any inode fed to d_tmpfile must have
231 		 * nlink == 1 so that it can decrement the nlink in d_tmpfile.
232 		 * However, we created the temp file with nlink == 0 because
233 		 * we're not allowed to put an inode with nlink > 0 on the
234 		 * unlinked list.  Therefore we have to set nlink to 1 so that
235 		 * d_tmpfile can immediately set it back to zero.
236 		 */
237 		set_nlink(inode, 1);
238 		d_tmpfile(dentry, inode);
239 	} else
240 		d_instantiate(dentry, inode);
241 
242 	xfs_finish_inode_setup(ip);
243 
244  out_free_acl:
245 	posix_acl_release(default_acl);
246 	posix_acl_release(acl);
247 	return error;
248 
249  out_cleanup_inode:
250 	xfs_finish_inode_setup(ip);
251 	if (!tmpfile)
252 		xfs_cleanup_inode(dir, inode, dentry);
253 	xfs_irele(ip);
254 	goto out_free_acl;
255 }
256 
257 STATIC int
258 xfs_vn_mknod(
259 	struct user_namespace	*mnt_userns,
260 	struct inode		*dir,
261 	struct dentry		*dentry,
262 	umode_t			mode,
263 	dev_t			rdev)
264 {
265 	return xfs_generic_create(mnt_userns, dir, dentry, mode, rdev, false);
266 }
267 
268 STATIC int
269 xfs_vn_create(
270 	struct user_namespace	*mnt_userns,
271 	struct inode		*dir,
272 	struct dentry		*dentry,
273 	umode_t			mode,
274 	bool			flags)
275 {
276 	return xfs_generic_create(mnt_userns, dir, dentry, mode, 0, false);
277 }
278 
279 STATIC int
280 xfs_vn_mkdir(
281 	struct user_namespace	*mnt_userns,
282 	struct inode		*dir,
283 	struct dentry		*dentry,
284 	umode_t			mode)
285 {
286 	return xfs_generic_create(mnt_userns, dir, dentry, mode | S_IFDIR, 0,
287 				  false);
288 }
289 
290 STATIC struct dentry *
291 xfs_vn_lookup(
292 	struct inode	*dir,
293 	struct dentry	*dentry,
294 	unsigned int flags)
295 {
296 	struct inode *inode;
297 	struct xfs_inode *cip;
298 	struct xfs_name	name;
299 	int		error;
300 
301 	if (dentry->d_name.len >= MAXNAMELEN)
302 		return ERR_PTR(-ENAMETOOLONG);
303 
304 	xfs_dentry_to_name(&name, dentry);
305 	error = xfs_lookup(XFS_I(dir), &name, &cip, NULL);
306 	if (likely(!error))
307 		inode = VFS_I(cip);
308 	else if (likely(error == -ENOENT))
309 		inode = NULL;
310 	else
311 		inode = ERR_PTR(error);
312 	return d_splice_alias(inode, dentry);
313 }
314 
315 STATIC struct dentry *
316 xfs_vn_ci_lookup(
317 	struct inode	*dir,
318 	struct dentry	*dentry,
319 	unsigned int flags)
320 {
321 	struct xfs_inode *ip;
322 	struct xfs_name	xname;
323 	struct xfs_name ci_name;
324 	struct qstr	dname;
325 	int		error;
326 
327 	if (dentry->d_name.len >= MAXNAMELEN)
328 		return ERR_PTR(-ENAMETOOLONG);
329 
330 	xfs_dentry_to_name(&xname, dentry);
331 	error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name);
332 	if (unlikely(error)) {
333 		if (unlikely(error != -ENOENT))
334 			return ERR_PTR(error);
335 		/*
336 		 * call d_add(dentry, NULL) here when d_drop_negative_children
337 		 * is called in xfs_vn_mknod (ie. allow negative dentries
338 		 * with CI filesystems).
339 		 */
340 		return NULL;
341 	}
342 
343 	/* if exact match, just splice and exit */
344 	if (!ci_name.name)
345 		return d_splice_alias(VFS_I(ip), dentry);
346 
347 	/* else case-insensitive match... */
348 	dname.name = ci_name.name;
349 	dname.len = ci_name.len;
350 	dentry = d_add_ci(dentry, VFS_I(ip), &dname);
351 	kmem_free(ci_name.name);
352 	return dentry;
353 }
354 
355 STATIC int
356 xfs_vn_link(
357 	struct dentry	*old_dentry,
358 	struct inode	*dir,
359 	struct dentry	*dentry)
360 {
361 	struct inode	*inode = d_inode(old_dentry);
362 	struct xfs_name	name;
363 	int		error;
364 
365 	error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode);
366 	if (unlikely(error))
367 		return error;
368 
369 	error = xfs_link(XFS_I(dir), XFS_I(inode), &name);
370 	if (unlikely(error))
371 		return error;
372 
373 	ihold(inode);
374 	d_instantiate(dentry, inode);
375 	return 0;
376 }
377 
378 STATIC int
379 xfs_vn_unlink(
380 	struct inode	*dir,
381 	struct dentry	*dentry)
382 {
383 	struct xfs_name	name;
384 	int		error;
385 
386 	xfs_dentry_to_name(&name, dentry);
387 
388 	error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry)));
389 	if (error)
390 		return error;
391 
392 	/*
393 	 * With unlink, the VFS makes the dentry "negative": no inode,
394 	 * but still hashed. This is incompatible with case-insensitive
395 	 * mode, so invalidate (unhash) the dentry in CI-mode.
396 	 */
397 	if (xfs_has_asciici(XFS_M(dir->i_sb)))
398 		d_invalidate(dentry);
399 	return 0;
400 }
401 
402 STATIC int
403 xfs_vn_symlink(
404 	struct user_namespace	*mnt_userns,
405 	struct inode		*dir,
406 	struct dentry		*dentry,
407 	const char		*symname)
408 {
409 	struct inode	*inode;
410 	struct xfs_inode *cip = NULL;
411 	struct xfs_name	name;
412 	int		error;
413 	umode_t		mode;
414 
415 	mode = S_IFLNK |
416 		(irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO);
417 	error = xfs_dentry_mode_to_name(&name, dentry, mode);
418 	if (unlikely(error))
419 		goto out;
420 
421 	error = xfs_symlink(mnt_userns, XFS_I(dir), &name, symname, mode, &cip);
422 	if (unlikely(error))
423 		goto out;
424 
425 	inode = VFS_I(cip);
426 
427 	error = xfs_init_security(inode, dir, &dentry->d_name);
428 	if (unlikely(error))
429 		goto out_cleanup_inode;
430 
431 	xfs_setup_iops(cip);
432 
433 	d_instantiate(dentry, inode);
434 	xfs_finish_inode_setup(cip);
435 	return 0;
436 
437  out_cleanup_inode:
438 	xfs_finish_inode_setup(cip);
439 	xfs_cleanup_inode(dir, inode, dentry);
440 	xfs_irele(cip);
441  out:
442 	return error;
443 }
444 
445 STATIC int
446 xfs_vn_rename(
447 	struct user_namespace	*mnt_userns,
448 	struct inode		*odir,
449 	struct dentry		*odentry,
450 	struct inode		*ndir,
451 	struct dentry		*ndentry,
452 	unsigned int		flags)
453 {
454 	struct inode	*new_inode = d_inode(ndentry);
455 	int		omode = 0;
456 	int		error;
457 	struct xfs_name	oname;
458 	struct xfs_name	nname;
459 
460 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
461 		return -EINVAL;
462 
463 	/* if we are exchanging files, we need to set i_mode of both files */
464 	if (flags & RENAME_EXCHANGE)
465 		omode = d_inode(ndentry)->i_mode;
466 
467 	error = xfs_dentry_mode_to_name(&oname, odentry, omode);
468 	if (omode && unlikely(error))
469 		return error;
470 
471 	error = xfs_dentry_mode_to_name(&nname, ndentry,
472 					d_inode(odentry)->i_mode);
473 	if (unlikely(error))
474 		return error;
475 
476 	return xfs_rename(mnt_userns, XFS_I(odir), &oname,
477 			  XFS_I(d_inode(odentry)), XFS_I(ndir), &nname,
478 			  new_inode ? XFS_I(new_inode) : NULL, flags);
479 }
480 
481 /*
482  * careful here - this function can get called recursively, so
483  * we need to be very careful about how much stack we use.
484  * uio is kmalloced for this reason...
485  */
486 STATIC const char *
487 xfs_vn_get_link(
488 	struct dentry		*dentry,
489 	struct inode		*inode,
490 	struct delayed_call	*done)
491 {
492 	char			*link;
493 	int			error = -ENOMEM;
494 
495 	if (!dentry)
496 		return ERR_PTR(-ECHILD);
497 
498 	link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL);
499 	if (!link)
500 		goto out_err;
501 
502 	error = xfs_readlink(XFS_I(d_inode(dentry)), link);
503 	if (unlikely(error))
504 		goto out_kfree;
505 
506 	set_delayed_call(done, kfree_link, link);
507 	return link;
508 
509  out_kfree:
510 	kfree(link);
511  out_err:
512 	return ERR_PTR(error);
513 }
514 
515 static uint32_t
516 xfs_stat_blksize(
517 	struct xfs_inode	*ip)
518 {
519 	struct xfs_mount	*mp = ip->i_mount;
520 
521 	/*
522 	 * If the file blocks are being allocated from a realtime volume, then
523 	 * always return the realtime extent size.
524 	 */
525 	if (XFS_IS_REALTIME_INODE(ip))
526 		return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip));
527 
528 	/*
529 	 * Allow large block sizes to be reported to userspace programs if the
530 	 * "largeio" mount option is used.
531 	 *
532 	 * If compatibility mode is specified, simply return the basic unit of
533 	 * caching so that we don't get inefficient read/modify/write I/O from
534 	 * user apps. Otherwise....
535 	 *
536 	 * If the underlying volume is a stripe, then return the stripe width in
537 	 * bytes as the recommended I/O size. It is not a stripe and we've set a
538 	 * default buffered I/O size, return that, otherwise return the compat
539 	 * default.
540 	 */
541 	if (xfs_has_large_iosize(mp)) {
542 		if (mp->m_swidth)
543 			return XFS_FSB_TO_B(mp, mp->m_swidth);
544 		if (xfs_has_allocsize(mp))
545 			return 1U << mp->m_allocsize_log;
546 	}
547 
548 	return PAGE_SIZE;
549 }
550 
551 STATIC int
552 xfs_vn_getattr(
553 	struct user_namespace	*mnt_userns,
554 	const struct path	*path,
555 	struct kstat		*stat,
556 	u32			request_mask,
557 	unsigned int		query_flags)
558 {
559 	struct inode		*inode = d_inode(path->dentry);
560 	struct xfs_inode	*ip = XFS_I(inode);
561 	struct xfs_mount	*mp = ip->i_mount;
562 
563 	trace_xfs_getattr(ip);
564 
565 	if (xfs_is_shutdown(mp))
566 		return -EIO;
567 
568 	stat->size = XFS_ISIZE(ip);
569 	stat->dev = inode->i_sb->s_dev;
570 	stat->mode = inode->i_mode;
571 	stat->nlink = inode->i_nlink;
572 	stat->uid = i_uid_into_mnt(mnt_userns, inode);
573 	stat->gid = i_gid_into_mnt(mnt_userns, inode);
574 	stat->ino = ip->i_ino;
575 	stat->atime = inode->i_atime;
576 	stat->mtime = inode->i_mtime;
577 	stat->ctime = inode->i_ctime;
578 	stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks);
579 
580 	if (xfs_has_v3inodes(mp)) {
581 		if (request_mask & STATX_BTIME) {
582 			stat->result_mask |= STATX_BTIME;
583 			stat->btime = ip->i_crtime;
584 		}
585 	}
586 
587 	/*
588 	 * Note: If you add another clause to set an attribute flag, please
589 	 * update attributes_mask below.
590 	 */
591 	if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
592 		stat->attributes |= STATX_ATTR_IMMUTABLE;
593 	if (ip->i_diflags & XFS_DIFLAG_APPEND)
594 		stat->attributes |= STATX_ATTR_APPEND;
595 	if (ip->i_diflags & XFS_DIFLAG_NODUMP)
596 		stat->attributes |= STATX_ATTR_NODUMP;
597 
598 	stat->attributes_mask |= (STATX_ATTR_IMMUTABLE |
599 				  STATX_ATTR_APPEND |
600 				  STATX_ATTR_NODUMP);
601 
602 	switch (inode->i_mode & S_IFMT) {
603 	case S_IFBLK:
604 	case S_IFCHR:
605 		stat->blksize = BLKDEV_IOSIZE;
606 		stat->rdev = inode->i_rdev;
607 		break;
608 	default:
609 		stat->blksize = xfs_stat_blksize(ip);
610 		stat->rdev = 0;
611 		break;
612 	}
613 
614 	return 0;
615 }
616 
617 static int
618 xfs_vn_change_ok(
619 	struct user_namespace	*mnt_userns,
620 	struct dentry		*dentry,
621 	struct iattr		*iattr)
622 {
623 	struct xfs_mount	*mp = XFS_I(d_inode(dentry))->i_mount;
624 
625 	if (xfs_is_readonly(mp))
626 		return -EROFS;
627 
628 	if (xfs_is_shutdown(mp))
629 		return -EIO;
630 
631 	return setattr_prepare(mnt_userns, dentry, iattr);
632 }
633 
634 /*
635  * Set non-size attributes of an inode.
636  *
637  * Caution: The caller of this function is responsible for calling
638  * setattr_prepare() or otherwise verifying the change is fine.
639  */
640 static int
641 xfs_setattr_nonsize(
642 	struct user_namespace	*mnt_userns,
643 	struct xfs_inode	*ip,
644 	struct iattr		*iattr)
645 {
646 	xfs_mount_t		*mp = ip->i_mount;
647 	struct inode		*inode = VFS_I(ip);
648 	int			mask = iattr->ia_valid;
649 	xfs_trans_t		*tp;
650 	int			error;
651 	kuid_t			uid = GLOBAL_ROOT_UID;
652 	kgid_t			gid = GLOBAL_ROOT_GID;
653 	struct xfs_dquot	*udqp = NULL, *gdqp = NULL;
654 	struct xfs_dquot	*old_udqp = NULL, *old_gdqp = NULL;
655 
656 	ASSERT((mask & ATTR_SIZE) == 0);
657 
658 	/*
659 	 * If disk quotas is on, we make sure that the dquots do exist on disk,
660 	 * before we start any other transactions. Trying to do this later
661 	 * is messy. We don't care to take a readlock to look at the ids
662 	 * in inode here, because we can't hold it across the trans_reserve.
663 	 * If the IDs do change before we take the ilock, we're covered
664 	 * because the i_*dquot fields will get updated anyway.
665 	 */
666 	if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
667 		uint	qflags = 0;
668 
669 		if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
670 			uid = iattr->ia_uid;
671 			qflags |= XFS_QMOPT_UQUOTA;
672 		} else {
673 			uid = inode->i_uid;
674 		}
675 		if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
676 			gid = iattr->ia_gid;
677 			qflags |= XFS_QMOPT_GQUOTA;
678 		}  else {
679 			gid = inode->i_gid;
680 		}
681 
682 		/*
683 		 * We take a reference when we initialize udqp and gdqp,
684 		 * so it is important that we never blindly double trip on
685 		 * the same variable. See xfs_create() for an example.
686 		 */
687 		ASSERT(udqp == NULL);
688 		ASSERT(gdqp == NULL);
689 		error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid,
690 					   qflags, &udqp, &gdqp, NULL);
691 		if (error)
692 			return error;
693 	}
694 
695 	error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL,
696 			has_capability_noaudit(current, CAP_FOWNER), &tp);
697 	if (error)
698 		goto out_dqrele;
699 
700 	/*
701 	 * Register quota modifications in the transaction.  Must be the owner
702 	 * or privileged.  These IDs could have changed since we last looked at
703 	 * them.  But, we're assured that if the ownership did change while we
704 	 * didn't have the inode locked, inode's dquot(s) would have changed
705 	 * also.
706 	 */
707 	if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp) &&
708 	    !uid_eq(inode->i_uid, iattr->ia_uid)) {
709 		ASSERT(udqp);
710 		old_udqp = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp);
711 	}
712 	if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp) &&
713 	    !gid_eq(inode->i_gid, iattr->ia_gid)) {
714 		ASSERT(xfs_has_pquotino(mp) || !XFS_IS_PQUOTA_ON(mp));
715 		ASSERT(gdqp);
716 		old_gdqp = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp);
717 	}
718 
719 	setattr_copy(mnt_userns, inode, iattr);
720 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
721 
722 	XFS_STATS_INC(mp, xs_ig_attrchg);
723 
724 	if (xfs_has_wsync(mp))
725 		xfs_trans_set_sync(tp);
726 	error = xfs_trans_commit(tp);
727 
728 	/*
729 	 * Release any dquot(s) the inode had kept before chown.
730 	 */
731 	xfs_qm_dqrele(old_udqp);
732 	xfs_qm_dqrele(old_gdqp);
733 	xfs_qm_dqrele(udqp);
734 	xfs_qm_dqrele(gdqp);
735 
736 	if (error)
737 		return error;
738 
739 	/*
740 	 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode
741 	 * 	     update.  We could avoid this with linked transactions
742 	 * 	     and passing down the transaction pointer all the way
743 	 *	     to attr_set.  No previous user of the generic
744 	 * 	     Posix ACL code seems to care about this issue either.
745 	 */
746 	if (mask & ATTR_MODE) {
747 		error = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
748 		if (error)
749 			return error;
750 	}
751 
752 	return 0;
753 
754 out_dqrele:
755 	xfs_qm_dqrele(udqp);
756 	xfs_qm_dqrele(gdqp);
757 	return error;
758 }
759 
760 /*
761  * Truncate file.  Must have write permission and not be a directory.
762  *
763  * Caution: The caller of this function is responsible for calling
764  * setattr_prepare() or otherwise verifying the change is fine.
765  */
766 STATIC int
767 xfs_setattr_size(
768 	struct user_namespace	*mnt_userns,
769 	struct xfs_inode	*ip,
770 	struct iattr		*iattr)
771 {
772 	struct xfs_mount	*mp = ip->i_mount;
773 	struct inode		*inode = VFS_I(ip);
774 	xfs_off_t		oldsize, newsize;
775 	struct xfs_trans	*tp;
776 	int			error;
777 	uint			lock_flags = 0;
778 	bool			did_zeroing = false;
779 
780 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
781 	ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
782 	ASSERT(S_ISREG(inode->i_mode));
783 	ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET|
784 		ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0);
785 
786 	oldsize = inode->i_size;
787 	newsize = iattr->ia_size;
788 
789 	/*
790 	 * Short circuit the truncate case for zero length files.
791 	 */
792 	if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) {
793 		if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME)))
794 			return 0;
795 
796 		/*
797 		 * Use the regular setattr path to update the timestamps.
798 		 */
799 		iattr->ia_valid &= ~ATTR_SIZE;
800 		return xfs_setattr_nonsize(mnt_userns, ip, iattr);
801 	}
802 
803 	/*
804 	 * Make sure that the dquots are attached to the inode.
805 	 */
806 	error = xfs_qm_dqattach(ip);
807 	if (error)
808 		return error;
809 
810 	/*
811 	 * Wait for all direct I/O to complete.
812 	 */
813 	inode_dio_wait(inode);
814 
815 	/*
816 	 * File data changes must be complete before we start the transaction to
817 	 * modify the inode.  This needs to be done before joining the inode to
818 	 * the transaction because the inode cannot be unlocked once it is a
819 	 * part of the transaction.
820 	 *
821 	 * Start with zeroing any data beyond EOF that we may expose on file
822 	 * extension, or zeroing out the rest of the block on a downward
823 	 * truncate.
824 	 */
825 	if (newsize > oldsize) {
826 		trace_xfs_zero_eof(ip, oldsize, newsize - oldsize);
827 		error = xfs_zero_range(ip, oldsize, newsize - oldsize,
828 				&did_zeroing);
829 	} else {
830 		/*
831 		 * iomap won't detect a dirty page over an unwritten block (or a
832 		 * cow block over a hole) and subsequently skips zeroing the
833 		 * newly post-EOF portion of the page. Flush the new EOF to
834 		 * convert the block before the pagecache truncate.
835 		 */
836 		error = filemap_write_and_wait_range(inode->i_mapping, newsize,
837 						     newsize);
838 		if (error)
839 			return error;
840 		error = xfs_truncate_page(ip, newsize, &did_zeroing);
841 	}
842 
843 	if (error)
844 		return error;
845 
846 	/*
847 	 * We've already locked out new page faults, so now we can safely remove
848 	 * pages from the page cache knowing they won't get refaulted until we
849 	 * drop the XFS_MMAP_EXCL lock after the extent manipulations are
850 	 * complete. The truncate_setsize() call also cleans partial EOF page
851 	 * PTEs on extending truncates and hence ensures sub-page block size
852 	 * filesystems are correctly handled, too.
853 	 *
854 	 * We have to do all the page cache truncate work outside the
855 	 * transaction context as the "lock" order is page lock->log space
856 	 * reservation as defined by extent allocation in the writeback path.
857 	 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but
858 	 * having already truncated the in-memory version of the file (i.e. made
859 	 * user visible changes). There's not much we can do about this, except
860 	 * to hope that the caller sees ENOMEM and retries the truncate
861 	 * operation.
862 	 *
863 	 * And we update in-core i_size and truncate page cache beyond newsize
864 	 * before writeback the [i_disk_size, newsize] range, so we're
865 	 * guaranteed not to write stale data past the new EOF on truncate down.
866 	 */
867 	truncate_setsize(inode, newsize);
868 
869 	/*
870 	 * We are going to log the inode size change in this transaction so
871 	 * any previous writes that are beyond the on disk EOF and the new
872 	 * EOF that have not been written out need to be written here.  If we
873 	 * do not write the data out, we expose ourselves to the null files
874 	 * problem. Note that this includes any block zeroing we did above;
875 	 * otherwise those blocks may not be zeroed after a crash.
876 	 */
877 	if (did_zeroing ||
878 	    (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) {
879 		error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
880 						ip->i_disk_size, newsize - 1);
881 		if (error)
882 			return error;
883 	}
884 
885 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
886 	if (error)
887 		return error;
888 
889 	lock_flags |= XFS_ILOCK_EXCL;
890 	xfs_ilock(ip, XFS_ILOCK_EXCL);
891 	xfs_trans_ijoin(tp, ip, 0);
892 
893 	/*
894 	 * Only change the c/mtime if we are changing the size or we are
895 	 * explicitly asked to change it.  This handles the semantic difference
896 	 * between truncate() and ftruncate() as implemented in the VFS.
897 	 *
898 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
899 	 * special case where we need to update the times despite not having
900 	 * these flags set.  For all other operations the VFS set these flags
901 	 * explicitly if it wants a timestamp update.
902 	 */
903 	if (newsize != oldsize &&
904 	    !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) {
905 		iattr->ia_ctime = iattr->ia_mtime =
906 			current_time(inode);
907 		iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME;
908 	}
909 
910 	/*
911 	 * The first thing we do is set the size to new_size permanently on
912 	 * disk.  This way we don't have to worry about anyone ever being able
913 	 * to look at the data being freed even in the face of a crash.
914 	 * What we're getting around here is the case where we free a block, it
915 	 * is allocated to another file, it is written to, and then we crash.
916 	 * If the new data gets written to the file but the log buffers
917 	 * containing the free and reallocation don't, then we'd end up with
918 	 * garbage in the blocks being freed.  As long as we make the new size
919 	 * permanent before actually freeing any blocks it doesn't matter if
920 	 * they get written to.
921 	 */
922 	ip->i_disk_size = newsize;
923 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
924 
925 	if (newsize <= oldsize) {
926 		error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize);
927 		if (error)
928 			goto out_trans_cancel;
929 
930 		/*
931 		 * Truncated "down", so we're removing references to old data
932 		 * here - if we delay flushing for a long time, we expose
933 		 * ourselves unduly to the notorious NULL files problem.  So,
934 		 * we mark this inode and flush it when the file is closed,
935 		 * and do not wait the usual (long) time for writeout.
936 		 */
937 		xfs_iflags_set(ip, XFS_ITRUNCATED);
938 
939 		/* A truncate down always removes post-EOF blocks. */
940 		xfs_inode_clear_eofblocks_tag(ip);
941 	}
942 
943 	ASSERT(!(iattr->ia_valid & (ATTR_UID | ATTR_GID)));
944 	setattr_copy(mnt_userns, inode, iattr);
945 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
946 
947 	XFS_STATS_INC(mp, xs_ig_attrchg);
948 
949 	if (xfs_has_wsync(mp))
950 		xfs_trans_set_sync(tp);
951 
952 	error = xfs_trans_commit(tp);
953 out_unlock:
954 	if (lock_flags)
955 		xfs_iunlock(ip, lock_flags);
956 	return error;
957 
958 out_trans_cancel:
959 	xfs_trans_cancel(tp);
960 	goto out_unlock;
961 }
962 
963 int
964 xfs_vn_setattr_size(
965 	struct user_namespace	*mnt_userns,
966 	struct dentry		*dentry,
967 	struct iattr		*iattr)
968 {
969 	struct xfs_inode	*ip = XFS_I(d_inode(dentry));
970 	int error;
971 
972 	trace_xfs_setattr(ip);
973 
974 	error = xfs_vn_change_ok(mnt_userns, dentry, iattr);
975 	if (error)
976 		return error;
977 	return xfs_setattr_size(mnt_userns, ip, iattr);
978 }
979 
980 STATIC int
981 xfs_vn_setattr(
982 	struct user_namespace	*mnt_userns,
983 	struct dentry		*dentry,
984 	struct iattr		*iattr)
985 {
986 	struct inode		*inode = d_inode(dentry);
987 	struct xfs_inode	*ip = XFS_I(inode);
988 	int			error;
989 
990 	if (iattr->ia_valid & ATTR_SIZE) {
991 		uint			iolock;
992 
993 		xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
994 		iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
995 
996 		error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
997 		if (error) {
998 			xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
999 			return error;
1000 		}
1001 
1002 		error = xfs_vn_setattr_size(mnt_userns, dentry, iattr);
1003 		xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1004 	} else {
1005 		trace_xfs_setattr(ip);
1006 
1007 		error = xfs_vn_change_ok(mnt_userns, dentry, iattr);
1008 		if (!error)
1009 			error = xfs_setattr_nonsize(mnt_userns, ip, iattr);
1010 	}
1011 
1012 	return error;
1013 }
1014 
1015 STATIC int
1016 xfs_vn_update_time(
1017 	struct inode		*inode,
1018 	struct timespec64	*now,
1019 	int			flags)
1020 {
1021 	struct xfs_inode	*ip = XFS_I(inode);
1022 	struct xfs_mount	*mp = ip->i_mount;
1023 	int			log_flags = XFS_ILOG_TIMESTAMP;
1024 	struct xfs_trans	*tp;
1025 	int			error;
1026 
1027 	trace_xfs_update_time(ip);
1028 
1029 	if (inode->i_sb->s_flags & SB_LAZYTIME) {
1030 		if (!((flags & S_VERSION) &&
1031 		      inode_maybe_inc_iversion(inode, false)))
1032 			return generic_update_time(inode, now, flags);
1033 
1034 		/* Capture the iversion update that just occurred */
1035 		log_flags |= XFS_ILOG_CORE;
1036 	}
1037 
1038 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
1039 	if (error)
1040 		return error;
1041 
1042 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1043 	if (flags & S_CTIME)
1044 		inode->i_ctime = *now;
1045 	if (flags & S_MTIME)
1046 		inode->i_mtime = *now;
1047 	if (flags & S_ATIME)
1048 		inode->i_atime = *now;
1049 
1050 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1051 	xfs_trans_log_inode(tp, ip, log_flags);
1052 	return xfs_trans_commit(tp);
1053 }
1054 
1055 STATIC int
1056 xfs_vn_fiemap(
1057 	struct inode		*inode,
1058 	struct fiemap_extent_info *fieinfo,
1059 	u64			start,
1060 	u64			length)
1061 {
1062 	int			error;
1063 
1064 	xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED);
1065 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1066 		fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
1067 		error = iomap_fiemap(inode, fieinfo, start, length,
1068 				&xfs_xattr_iomap_ops);
1069 	} else {
1070 		error = iomap_fiemap(inode, fieinfo, start, length,
1071 				&xfs_read_iomap_ops);
1072 	}
1073 	xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED);
1074 
1075 	return error;
1076 }
1077 
1078 STATIC int
1079 xfs_vn_tmpfile(
1080 	struct user_namespace	*mnt_userns,
1081 	struct inode		*dir,
1082 	struct dentry		*dentry,
1083 	umode_t			mode)
1084 {
1085 	return xfs_generic_create(mnt_userns, dir, dentry, mode, 0, true);
1086 }
1087 
1088 static const struct inode_operations xfs_inode_operations = {
1089 	.get_acl		= xfs_get_acl,
1090 	.set_acl		= xfs_set_acl,
1091 	.getattr		= xfs_vn_getattr,
1092 	.setattr		= xfs_vn_setattr,
1093 	.listxattr		= xfs_vn_listxattr,
1094 	.fiemap			= xfs_vn_fiemap,
1095 	.update_time		= xfs_vn_update_time,
1096 	.fileattr_get		= xfs_fileattr_get,
1097 	.fileattr_set		= xfs_fileattr_set,
1098 };
1099 
1100 static const struct inode_operations xfs_dir_inode_operations = {
1101 	.create			= xfs_vn_create,
1102 	.lookup			= xfs_vn_lookup,
1103 	.link			= xfs_vn_link,
1104 	.unlink			= xfs_vn_unlink,
1105 	.symlink		= xfs_vn_symlink,
1106 	.mkdir			= xfs_vn_mkdir,
1107 	/*
1108 	 * Yes, XFS uses the same method for rmdir and unlink.
1109 	 *
1110 	 * There are some subtile differences deeper in the code,
1111 	 * but we use S_ISDIR to check for those.
1112 	 */
1113 	.rmdir			= xfs_vn_unlink,
1114 	.mknod			= xfs_vn_mknod,
1115 	.rename			= xfs_vn_rename,
1116 	.get_acl		= xfs_get_acl,
1117 	.set_acl		= xfs_set_acl,
1118 	.getattr		= xfs_vn_getattr,
1119 	.setattr		= xfs_vn_setattr,
1120 	.listxattr		= xfs_vn_listxattr,
1121 	.update_time		= xfs_vn_update_time,
1122 	.tmpfile		= xfs_vn_tmpfile,
1123 	.fileattr_get		= xfs_fileattr_get,
1124 	.fileattr_set		= xfs_fileattr_set,
1125 };
1126 
1127 static const struct inode_operations xfs_dir_ci_inode_operations = {
1128 	.create			= xfs_vn_create,
1129 	.lookup			= xfs_vn_ci_lookup,
1130 	.link			= xfs_vn_link,
1131 	.unlink			= xfs_vn_unlink,
1132 	.symlink		= xfs_vn_symlink,
1133 	.mkdir			= xfs_vn_mkdir,
1134 	/*
1135 	 * Yes, XFS uses the same method for rmdir and unlink.
1136 	 *
1137 	 * There are some subtile differences deeper in the code,
1138 	 * but we use S_ISDIR to check for those.
1139 	 */
1140 	.rmdir			= xfs_vn_unlink,
1141 	.mknod			= xfs_vn_mknod,
1142 	.rename			= xfs_vn_rename,
1143 	.get_acl		= xfs_get_acl,
1144 	.set_acl		= xfs_set_acl,
1145 	.getattr		= xfs_vn_getattr,
1146 	.setattr		= xfs_vn_setattr,
1147 	.listxattr		= xfs_vn_listxattr,
1148 	.update_time		= xfs_vn_update_time,
1149 	.tmpfile		= xfs_vn_tmpfile,
1150 	.fileattr_get		= xfs_fileattr_get,
1151 	.fileattr_set		= xfs_fileattr_set,
1152 };
1153 
1154 static const struct inode_operations xfs_symlink_inode_operations = {
1155 	.get_link		= xfs_vn_get_link,
1156 	.getattr		= xfs_vn_getattr,
1157 	.setattr		= xfs_vn_setattr,
1158 	.listxattr		= xfs_vn_listxattr,
1159 	.update_time		= xfs_vn_update_time,
1160 };
1161 
1162 /* Figure out if this file actually supports DAX. */
1163 static bool
1164 xfs_inode_supports_dax(
1165 	struct xfs_inode	*ip)
1166 {
1167 	struct xfs_mount	*mp = ip->i_mount;
1168 
1169 	/* Only supported on regular files. */
1170 	if (!S_ISREG(VFS_I(ip)->i_mode))
1171 		return false;
1172 
1173 	/* Only supported on non-reflinked files. */
1174 	if (xfs_is_reflink_inode(ip))
1175 		return false;
1176 
1177 	/* Block size must match page size */
1178 	if (mp->m_sb.sb_blocksize != PAGE_SIZE)
1179 		return false;
1180 
1181 	/* Device has to support DAX too. */
1182 	return xfs_inode_buftarg(ip)->bt_daxdev != NULL;
1183 }
1184 
1185 static bool
1186 xfs_inode_should_enable_dax(
1187 	struct xfs_inode *ip)
1188 {
1189 	if (!IS_ENABLED(CONFIG_FS_DAX))
1190 		return false;
1191 	if (xfs_has_dax_never(ip->i_mount))
1192 		return false;
1193 	if (!xfs_inode_supports_dax(ip))
1194 		return false;
1195 	if (xfs_has_dax_always(ip->i_mount))
1196 		return true;
1197 	if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
1198 		return true;
1199 	return false;
1200 }
1201 
1202 void
1203 xfs_diflags_to_iflags(
1204 	struct xfs_inode	*ip,
1205 	bool init)
1206 {
1207 	struct inode            *inode = VFS_I(ip);
1208 	unsigned int            xflags = xfs_ip2xflags(ip);
1209 	unsigned int            flags = 0;
1210 
1211 	ASSERT(!(IS_DAX(inode) && init));
1212 
1213 	if (xflags & FS_XFLAG_IMMUTABLE)
1214 		flags |= S_IMMUTABLE;
1215 	if (xflags & FS_XFLAG_APPEND)
1216 		flags |= S_APPEND;
1217 	if (xflags & FS_XFLAG_SYNC)
1218 		flags |= S_SYNC;
1219 	if (xflags & FS_XFLAG_NOATIME)
1220 		flags |= S_NOATIME;
1221 	if (init && xfs_inode_should_enable_dax(ip))
1222 		flags |= S_DAX;
1223 
1224 	/*
1225 	 * S_DAX can only be set during inode initialization and is never set by
1226 	 * the VFS, so we cannot mask off S_DAX in i_flags.
1227 	 */
1228 	inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME);
1229 	inode->i_flags |= flags;
1230 }
1231 
1232 /*
1233  * Initialize the Linux inode.
1234  *
1235  * When reading existing inodes from disk this is called directly from xfs_iget,
1236  * when creating a new inode it is called from xfs_init_new_inode after setting
1237  * up the inode. These callers have different criteria for clearing XFS_INEW, so
1238  * leave it up to the caller to deal with unlocking the inode appropriately.
1239  */
1240 void
1241 xfs_setup_inode(
1242 	struct xfs_inode	*ip)
1243 {
1244 	struct inode		*inode = &ip->i_vnode;
1245 	gfp_t			gfp_mask;
1246 
1247 	inode->i_ino = ip->i_ino;
1248 	inode->i_state |= I_NEW;
1249 
1250 	inode_sb_list_add(inode);
1251 	/* make the inode look hashed for the writeback code */
1252 	inode_fake_hash(inode);
1253 
1254 	i_size_write(inode, ip->i_disk_size);
1255 	xfs_diflags_to_iflags(ip, true);
1256 
1257 	if (S_ISDIR(inode->i_mode)) {
1258 		/*
1259 		 * We set the i_rwsem class here to avoid potential races with
1260 		 * lockdep_annotate_inode_mutex_key() reinitialising the lock
1261 		 * after a filehandle lookup has already found the inode in
1262 		 * cache before it has been unlocked via unlock_new_inode().
1263 		 */
1264 		lockdep_set_class(&inode->i_rwsem,
1265 				  &inode->i_sb->s_type->i_mutex_dir_key);
1266 		lockdep_set_class(&ip->i_lock.mr_lock, &xfs_dir_ilock_class);
1267 	} else {
1268 		lockdep_set_class(&ip->i_lock.mr_lock, &xfs_nondir_ilock_class);
1269 	}
1270 
1271 	/*
1272 	 * Ensure all page cache allocations are done from GFP_NOFS context to
1273 	 * prevent direct reclaim recursion back into the filesystem and blowing
1274 	 * stacks or deadlocking.
1275 	 */
1276 	gfp_mask = mapping_gfp_mask(inode->i_mapping);
1277 	mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS)));
1278 
1279 	/*
1280 	 * If there is no attribute fork no ACL can exist on this inode,
1281 	 * and it can't have any file capabilities attached to it either.
1282 	 */
1283 	if (!XFS_IFORK_Q(ip)) {
1284 		inode_has_no_xattr(inode);
1285 		cache_no_acl(inode);
1286 	}
1287 }
1288 
1289 void
1290 xfs_setup_iops(
1291 	struct xfs_inode	*ip)
1292 {
1293 	struct inode		*inode = &ip->i_vnode;
1294 
1295 	switch (inode->i_mode & S_IFMT) {
1296 	case S_IFREG:
1297 		inode->i_op = &xfs_inode_operations;
1298 		inode->i_fop = &xfs_file_operations;
1299 		if (IS_DAX(inode))
1300 			inode->i_mapping->a_ops = &xfs_dax_aops;
1301 		else
1302 			inode->i_mapping->a_ops = &xfs_address_space_operations;
1303 		break;
1304 	case S_IFDIR:
1305 		if (xfs_has_asciici(XFS_M(inode->i_sb)))
1306 			inode->i_op = &xfs_dir_ci_inode_operations;
1307 		else
1308 			inode->i_op = &xfs_dir_inode_operations;
1309 		inode->i_fop = &xfs_dir_file_operations;
1310 		break;
1311 	case S_IFLNK:
1312 		inode->i_op = &xfs_symlink_inode_operations;
1313 		break;
1314 	default:
1315 		inode->i_op = &xfs_inode_operations;
1316 		init_special_inode(inode, inode->i_mode, inode->i_rdev);
1317 		break;
1318 	}
1319 }
1320