1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_acl.h" 15 #include "xfs_quota.h" 16 #include "xfs_attr.h" 17 #include "xfs_trans.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_symlink.h" 21 #include "xfs_dir2.h" 22 #include "xfs_iomap.h" 23 #include "xfs_error.h" 24 #include "xfs_ioctl.h" 25 26 #include <linux/posix_acl.h> 27 #include <linux/security.h> 28 #include <linux/iversion.h> 29 #include <linux/fiemap.h> 30 31 /* 32 * Directories have different lock order w.r.t. mmap_lock compared to regular 33 * files. This is due to readdir potentially triggering page faults on a user 34 * buffer inside filldir(), and this happens with the ilock on the directory 35 * held. For regular files, the lock order is the other way around - the 36 * mmap_lock is taken during the page fault, and then we lock the ilock to do 37 * block mapping. Hence we need a different class for the directory ilock so 38 * that lockdep can tell them apart. 39 */ 40 static struct lock_class_key xfs_nondir_ilock_class; 41 static struct lock_class_key xfs_dir_ilock_class; 42 43 static int 44 xfs_initxattrs( 45 struct inode *inode, 46 const struct xattr *xattr_array, 47 void *fs_info) 48 { 49 const struct xattr *xattr; 50 struct xfs_inode *ip = XFS_I(inode); 51 int error = 0; 52 53 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 54 struct xfs_da_args args = { 55 .dp = ip, 56 .attr_filter = XFS_ATTR_SECURE, 57 .name = xattr->name, 58 .namelen = strlen(xattr->name), 59 .value = xattr->value, 60 .valuelen = xattr->value_len, 61 }; 62 error = xfs_attr_set(&args); 63 if (error < 0) 64 break; 65 } 66 return error; 67 } 68 69 /* 70 * Hook in SELinux. This is not quite correct yet, what we really need 71 * here (as we do for default ACLs) is a mechanism by which creation of 72 * these attrs can be journalled at inode creation time (along with the 73 * inode, of course, such that log replay can't cause these to be lost). 74 */ 75 76 STATIC int 77 xfs_init_security( 78 struct inode *inode, 79 struct inode *dir, 80 const struct qstr *qstr) 81 { 82 return security_inode_init_security(inode, dir, qstr, 83 &xfs_initxattrs, NULL); 84 } 85 86 static void 87 xfs_dentry_to_name( 88 struct xfs_name *namep, 89 struct dentry *dentry) 90 { 91 namep->name = dentry->d_name.name; 92 namep->len = dentry->d_name.len; 93 namep->type = XFS_DIR3_FT_UNKNOWN; 94 } 95 96 static int 97 xfs_dentry_mode_to_name( 98 struct xfs_name *namep, 99 struct dentry *dentry, 100 int mode) 101 { 102 namep->name = dentry->d_name.name; 103 namep->len = dentry->d_name.len; 104 namep->type = xfs_mode_to_ftype(mode); 105 106 if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN)) 107 return -EFSCORRUPTED; 108 109 return 0; 110 } 111 112 STATIC void 113 xfs_cleanup_inode( 114 struct inode *dir, 115 struct inode *inode, 116 struct dentry *dentry) 117 { 118 struct xfs_name teardown; 119 120 /* Oh, the horror. 121 * If we can't add the ACL or we fail in 122 * xfs_init_security we must back out. 123 * ENOSPC can hit here, among other things. 124 */ 125 xfs_dentry_to_name(&teardown, dentry); 126 127 xfs_remove(XFS_I(dir), &teardown, XFS_I(inode)); 128 } 129 130 /* 131 * Check to see if we are likely to need an extended attribute to be added to 132 * the inode we are about to allocate. This allows the attribute fork to be 133 * created during the inode allocation, reducing the number of transactions we 134 * need to do in this fast path. 135 * 136 * The security checks are optimistic, but not guaranteed. The two LSMs that 137 * require xattrs to be added here (selinux and smack) are also the only two 138 * LSMs that add a sb->s_security structure to the superblock. Hence if security 139 * is enabled and sb->s_security is set, we have a pretty good idea that we are 140 * going to be asked to add a security xattr immediately after allocating the 141 * xfs inode and instantiating the VFS inode. 142 */ 143 static inline bool 144 xfs_create_need_xattr( 145 struct inode *dir, 146 struct posix_acl *default_acl, 147 struct posix_acl *acl) 148 { 149 if (acl) 150 return true; 151 if (default_acl) 152 return true; 153 #if IS_ENABLED(CONFIG_SECURITY) 154 if (dir->i_sb->s_security) 155 return true; 156 #endif 157 return false; 158 } 159 160 161 STATIC int 162 xfs_generic_create( 163 struct user_namespace *mnt_userns, 164 struct inode *dir, 165 struct dentry *dentry, 166 umode_t mode, 167 dev_t rdev, 168 bool tmpfile) /* unnamed file */ 169 { 170 struct inode *inode; 171 struct xfs_inode *ip = NULL; 172 struct posix_acl *default_acl, *acl; 173 struct xfs_name name; 174 int error; 175 176 /* 177 * Irix uses Missed'em'V split, but doesn't want to see 178 * the upper 5 bits of (14bit) major. 179 */ 180 if (S_ISCHR(mode) || S_ISBLK(mode)) { 181 if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff)) 182 return -EINVAL; 183 } else { 184 rdev = 0; 185 } 186 187 error = posix_acl_create(dir, &mode, &default_acl, &acl); 188 if (error) 189 return error; 190 191 /* Verify mode is valid also for tmpfile case */ 192 error = xfs_dentry_mode_to_name(&name, dentry, mode); 193 if (unlikely(error)) 194 goto out_free_acl; 195 196 if (!tmpfile) { 197 error = xfs_create(mnt_userns, XFS_I(dir), &name, mode, rdev, 198 xfs_create_need_xattr(dir, default_acl, acl), 199 &ip); 200 } else { 201 error = xfs_create_tmpfile(mnt_userns, XFS_I(dir), mode, &ip); 202 } 203 if (unlikely(error)) 204 goto out_free_acl; 205 206 inode = VFS_I(ip); 207 208 error = xfs_init_security(inode, dir, &dentry->d_name); 209 if (unlikely(error)) 210 goto out_cleanup_inode; 211 212 #ifdef CONFIG_XFS_POSIX_ACL 213 if (default_acl) { 214 error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT); 215 if (error) 216 goto out_cleanup_inode; 217 } 218 if (acl) { 219 error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS); 220 if (error) 221 goto out_cleanup_inode; 222 } 223 #endif 224 225 xfs_setup_iops(ip); 226 227 if (tmpfile) { 228 /* 229 * The VFS requires that any inode fed to d_tmpfile must have 230 * nlink == 1 so that it can decrement the nlink in d_tmpfile. 231 * However, we created the temp file with nlink == 0 because 232 * we're not allowed to put an inode with nlink > 0 on the 233 * unlinked list. Therefore we have to set nlink to 1 so that 234 * d_tmpfile can immediately set it back to zero. 235 */ 236 set_nlink(inode, 1); 237 d_tmpfile(dentry, inode); 238 } else 239 d_instantiate(dentry, inode); 240 241 xfs_finish_inode_setup(ip); 242 243 out_free_acl: 244 posix_acl_release(default_acl); 245 posix_acl_release(acl); 246 return error; 247 248 out_cleanup_inode: 249 xfs_finish_inode_setup(ip); 250 if (!tmpfile) 251 xfs_cleanup_inode(dir, inode, dentry); 252 xfs_irele(ip); 253 goto out_free_acl; 254 } 255 256 STATIC int 257 xfs_vn_mknod( 258 struct user_namespace *mnt_userns, 259 struct inode *dir, 260 struct dentry *dentry, 261 umode_t mode, 262 dev_t rdev) 263 { 264 return xfs_generic_create(mnt_userns, dir, dentry, mode, rdev, false); 265 } 266 267 STATIC int 268 xfs_vn_create( 269 struct user_namespace *mnt_userns, 270 struct inode *dir, 271 struct dentry *dentry, 272 umode_t mode, 273 bool flags) 274 { 275 return xfs_generic_create(mnt_userns, dir, dentry, mode, 0, false); 276 } 277 278 STATIC int 279 xfs_vn_mkdir( 280 struct user_namespace *mnt_userns, 281 struct inode *dir, 282 struct dentry *dentry, 283 umode_t mode) 284 { 285 return xfs_generic_create(mnt_userns, dir, dentry, mode | S_IFDIR, 0, 286 false); 287 } 288 289 STATIC struct dentry * 290 xfs_vn_lookup( 291 struct inode *dir, 292 struct dentry *dentry, 293 unsigned int flags) 294 { 295 struct inode *inode; 296 struct xfs_inode *cip; 297 struct xfs_name name; 298 int error; 299 300 if (dentry->d_name.len >= MAXNAMELEN) 301 return ERR_PTR(-ENAMETOOLONG); 302 303 xfs_dentry_to_name(&name, dentry); 304 error = xfs_lookup(XFS_I(dir), &name, &cip, NULL); 305 if (likely(!error)) 306 inode = VFS_I(cip); 307 else if (likely(error == -ENOENT)) 308 inode = NULL; 309 else 310 inode = ERR_PTR(error); 311 return d_splice_alias(inode, dentry); 312 } 313 314 STATIC struct dentry * 315 xfs_vn_ci_lookup( 316 struct inode *dir, 317 struct dentry *dentry, 318 unsigned int flags) 319 { 320 struct xfs_inode *ip; 321 struct xfs_name xname; 322 struct xfs_name ci_name; 323 struct qstr dname; 324 int error; 325 326 if (dentry->d_name.len >= MAXNAMELEN) 327 return ERR_PTR(-ENAMETOOLONG); 328 329 xfs_dentry_to_name(&xname, dentry); 330 error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name); 331 if (unlikely(error)) { 332 if (unlikely(error != -ENOENT)) 333 return ERR_PTR(error); 334 /* 335 * call d_add(dentry, NULL) here when d_drop_negative_children 336 * is called in xfs_vn_mknod (ie. allow negative dentries 337 * with CI filesystems). 338 */ 339 return NULL; 340 } 341 342 /* if exact match, just splice and exit */ 343 if (!ci_name.name) 344 return d_splice_alias(VFS_I(ip), dentry); 345 346 /* else case-insensitive match... */ 347 dname.name = ci_name.name; 348 dname.len = ci_name.len; 349 dentry = d_add_ci(dentry, VFS_I(ip), &dname); 350 kmem_free(ci_name.name); 351 return dentry; 352 } 353 354 STATIC int 355 xfs_vn_link( 356 struct dentry *old_dentry, 357 struct inode *dir, 358 struct dentry *dentry) 359 { 360 struct inode *inode = d_inode(old_dentry); 361 struct xfs_name name; 362 int error; 363 364 error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode); 365 if (unlikely(error)) 366 return error; 367 368 error = xfs_link(XFS_I(dir), XFS_I(inode), &name); 369 if (unlikely(error)) 370 return error; 371 372 ihold(inode); 373 d_instantiate(dentry, inode); 374 return 0; 375 } 376 377 STATIC int 378 xfs_vn_unlink( 379 struct inode *dir, 380 struct dentry *dentry) 381 { 382 struct xfs_name name; 383 int error; 384 385 xfs_dentry_to_name(&name, dentry); 386 387 error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry))); 388 if (error) 389 return error; 390 391 /* 392 * With unlink, the VFS makes the dentry "negative": no inode, 393 * but still hashed. This is incompatible with case-insensitive 394 * mode, so invalidate (unhash) the dentry in CI-mode. 395 */ 396 if (xfs_sb_version_hasasciici(&XFS_M(dir->i_sb)->m_sb)) 397 d_invalidate(dentry); 398 return 0; 399 } 400 401 STATIC int 402 xfs_vn_symlink( 403 struct user_namespace *mnt_userns, 404 struct inode *dir, 405 struct dentry *dentry, 406 const char *symname) 407 { 408 struct inode *inode; 409 struct xfs_inode *cip = NULL; 410 struct xfs_name name; 411 int error; 412 umode_t mode; 413 414 mode = S_IFLNK | 415 (irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO); 416 error = xfs_dentry_mode_to_name(&name, dentry, mode); 417 if (unlikely(error)) 418 goto out; 419 420 error = xfs_symlink(mnt_userns, XFS_I(dir), &name, symname, mode, &cip); 421 if (unlikely(error)) 422 goto out; 423 424 inode = VFS_I(cip); 425 426 error = xfs_init_security(inode, dir, &dentry->d_name); 427 if (unlikely(error)) 428 goto out_cleanup_inode; 429 430 xfs_setup_iops(cip); 431 432 d_instantiate(dentry, inode); 433 xfs_finish_inode_setup(cip); 434 return 0; 435 436 out_cleanup_inode: 437 xfs_finish_inode_setup(cip); 438 xfs_cleanup_inode(dir, inode, dentry); 439 xfs_irele(cip); 440 out: 441 return error; 442 } 443 444 STATIC int 445 xfs_vn_rename( 446 struct user_namespace *mnt_userns, 447 struct inode *odir, 448 struct dentry *odentry, 449 struct inode *ndir, 450 struct dentry *ndentry, 451 unsigned int flags) 452 { 453 struct inode *new_inode = d_inode(ndentry); 454 int omode = 0; 455 int error; 456 struct xfs_name oname; 457 struct xfs_name nname; 458 459 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 460 return -EINVAL; 461 462 /* if we are exchanging files, we need to set i_mode of both files */ 463 if (flags & RENAME_EXCHANGE) 464 omode = d_inode(ndentry)->i_mode; 465 466 error = xfs_dentry_mode_to_name(&oname, odentry, omode); 467 if (omode && unlikely(error)) 468 return error; 469 470 error = xfs_dentry_mode_to_name(&nname, ndentry, 471 d_inode(odentry)->i_mode); 472 if (unlikely(error)) 473 return error; 474 475 return xfs_rename(mnt_userns, XFS_I(odir), &oname, 476 XFS_I(d_inode(odentry)), XFS_I(ndir), &nname, 477 new_inode ? XFS_I(new_inode) : NULL, flags); 478 } 479 480 /* 481 * careful here - this function can get called recursively, so 482 * we need to be very careful about how much stack we use. 483 * uio is kmalloced for this reason... 484 */ 485 STATIC const char * 486 xfs_vn_get_link( 487 struct dentry *dentry, 488 struct inode *inode, 489 struct delayed_call *done) 490 { 491 char *link; 492 int error = -ENOMEM; 493 494 if (!dentry) 495 return ERR_PTR(-ECHILD); 496 497 link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL); 498 if (!link) 499 goto out_err; 500 501 error = xfs_readlink(XFS_I(d_inode(dentry)), link); 502 if (unlikely(error)) 503 goto out_kfree; 504 505 set_delayed_call(done, kfree_link, link); 506 return link; 507 508 out_kfree: 509 kfree(link); 510 out_err: 511 return ERR_PTR(error); 512 } 513 514 STATIC const char * 515 xfs_vn_get_link_inline( 516 struct dentry *dentry, 517 struct inode *inode, 518 struct delayed_call *done) 519 { 520 struct xfs_inode *ip = XFS_I(inode); 521 char *link; 522 523 ASSERT(ip->i_df.if_format == XFS_DINODE_FMT_LOCAL); 524 525 /* 526 * The VFS crashes on a NULL pointer, so return -EFSCORRUPTED if 527 * if_data is junk. 528 */ 529 link = ip->i_df.if_u1.if_data; 530 if (XFS_IS_CORRUPT(ip->i_mount, !link)) 531 return ERR_PTR(-EFSCORRUPTED); 532 return link; 533 } 534 535 static uint32_t 536 xfs_stat_blksize( 537 struct xfs_inode *ip) 538 { 539 struct xfs_mount *mp = ip->i_mount; 540 541 /* 542 * If the file blocks are being allocated from a realtime volume, then 543 * always return the realtime extent size. 544 */ 545 if (XFS_IS_REALTIME_INODE(ip)) 546 return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip)); 547 548 /* 549 * Allow large block sizes to be reported to userspace programs if the 550 * "largeio" mount option is used. 551 * 552 * If compatibility mode is specified, simply return the basic unit of 553 * caching so that we don't get inefficient read/modify/write I/O from 554 * user apps. Otherwise.... 555 * 556 * If the underlying volume is a stripe, then return the stripe width in 557 * bytes as the recommended I/O size. It is not a stripe and we've set a 558 * default buffered I/O size, return that, otherwise return the compat 559 * default. 560 */ 561 if (mp->m_flags & XFS_MOUNT_LARGEIO) { 562 if (mp->m_swidth) 563 return XFS_FSB_TO_B(mp, mp->m_swidth); 564 if (mp->m_flags & XFS_MOUNT_ALLOCSIZE) 565 return 1U << mp->m_allocsize_log; 566 } 567 568 return PAGE_SIZE; 569 } 570 571 STATIC int 572 xfs_vn_getattr( 573 struct user_namespace *mnt_userns, 574 const struct path *path, 575 struct kstat *stat, 576 u32 request_mask, 577 unsigned int query_flags) 578 { 579 struct inode *inode = d_inode(path->dentry); 580 struct xfs_inode *ip = XFS_I(inode); 581 struct xfs_mount *mp = ip->i_mount; 582 583 trace_xfs_getattr(ip); 584 585 if (XFS_FORCED_SHUTDOWN(mp)) 586 return -EIO; 587 588 stat->size = XFS_ISIZE(ip); 589 stat->dev = inode->i_sb->s_dev; 590 stat->mode = inode->i_mode; 591 stat->nlink = inode->i_nlink; 592 stat->uid = i_uid_into_mnt(mnt_userns, inode); 593 stat->gid = i_gid_into_mnt(mnt_userns, inode); 594 stat->ino = ip->i_ino; 595 stat->atime = inode->i_atime; 596 stat->mtime = inode->i_mtime; 597 stat->ctime = inode->i_ctime; 598 stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks); 599 600 if (xfs_sb_version_has_v3inode(&mp->m_sb)) { 601 if (request_mask & STATX_BTIME) { 602 stat->result_mask |= STATX_BTIME; 603 stat->btime = ip->i_crtime; 604 } 605 } 606 607 /* 608 * Note: If you add another clause to set an attribute flag, please 609 * update attributes_mask below. 610 */ 611 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 612 stat->attributes |= STATX_ATTR_IMMUTABLE; 613 if (ip->i_diflags & XFS_DIFLAG_APPEND) 614 stat->attributes |= STATX_ATTR_APPEND; 615 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 616 stat->attributes |= STATX_ATTR_NODUMP; 617 618 stat->attributes_mask |= (STATX_ATTR_IMMUTABLE | 619 STATX_ATTR_APPEND | 620 STATX_ATTR_NODUMP); 621 622 switch (inode->i_mode & S_IFMT) { 623 case S_IFBLK: 624 case S_IFCHR: 625 stat->blksize = BLKDEV_IOSIZE; 626 stat->rdev = inode->i_rdev; 627 break; 628 default: 629 stat->blksize = xfs_stat_blksize(ip); 630 stat->rdev = 0; 631 break; 632 } 633 634 return 0; 635 } 636 637 static void 638 xfs_setattr_mode( 639 struct xfs_inode *ip, 640 struct iattr *iattr) 641 { 642 struct inode *inode = VFS_I(ip); 643 umode_t mode = iattr->ia_mode; 644 645 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 646 647 inode->i_mode &= S_IFMT; 648 inode->i_mode |= mode & ~S_IFMT; 649 } 650 651 void 652 xfs_setattr_time( 653 struct xfs_inode *ip, 654 struct iattr *iattr) 655 { 656 struct inode *inode = VFS_I(ip); 657 658 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 659 660 if (iattr->ia_valid & ATTR_ATIME) 661 inode->i_atime = iattr->ia_atime; 662 if (iattr->ia_valid & ATTR_CTIME) 663 inode->i_ctime = iattr->ia_ctime; 664 if (iattr->ia_valid & ATTR_MTIME) 665 inode->i_mtime = iattr->ia_mtime; 666 } 667 668 static int 669 xfs_vn_change_ok( 670 struct user_namespace *mnt_userns, 671 struct dentry *dentry, 672 struct iattr *iattr) 673 { 674 struct xfs_mount *mp = XFS_I(d_inode(dentry))->i_mount; 675 676 if (mp->m_flags & XFS_MOUNT_RDONLY) 677 return -EROFS; 678 679 if (XFS_FORCED_SHUTDOWN(mp)) 680 return -EIO; 681 682 return setattr_prepare(mnt_userns, dentry, iattr); 683 } 684 685 /* 686 * Set non-size attributes of an inode. 687 * 688 * Caution: The caller of this function is responsible for calling 689 * setattr_prepare() or otherwise verifying the change is fine. 690 */ 691 static int 692 xfs_setattr_nonsize( 693 struct user_namespace *mnt_userns, 694 struct xfs_inode *ip, 695 struct iattr *iattr) 696 { 697 xfs_mount_t *mp = ip->i_mount; 698 struct inode *inode = VFS_I(ip); 699 int mask = iattr->ia_valid; 700 xfs_trans_t *tp; 701 int error; 702 kuid_t uid = GLOBAL_ROOT_UID, iuid = GLOBAL_ROOT_UID; 703 kgid_t gid = GLOBAL_ROOT_GID, igid = GLOBAL_ROOT_GID; 704 struct xfs_dquot *udqp = NULL, *gdqp = NULL; 705 struct xfs_dquot *olddquot1 = NULL, *olddquot2 = NULL; 706 707 ASSERT((mask & ATTR_SIZE) == 0); 708 709 /* 710 * If disk quotas is on, we make sure that the dquots do exist on disk, 711 * before we start any other transactions. Trying to do this later 712 * is messy. We don't care to take a readlock to look at the ids 713 * in inode here, because we can't hold it across the trans_reserve. 714 * If the IDs do change before we take the ilock, we're covered 715 * because the i_*dquot fields will get updated anyway. 716 */ 717 if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) { 718 uint qflags = 0; 719 720 if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) { 721 uid = iattr->ia_uid; 722 qflags |= XFS_QMOPT_UQUOTA; 723 } else { 724 uid = inode->i_uid; 725 } 726 if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) { 727 gid = iattr->ia_gid; 728 qflags |= XFS_QMOPT_GQUOTA; 729 } else { 730 gid = inode->i_gid; 731 } 732 733 /* 734 * We take a reference when we initialize udqp and gdqp, 735 * so it is important that we never blindly double trip on 736 * the same variable. See xfs_create() for an example. 737 */ 738 ASSERT(udqp == NULL); 739 ASSERT(gdqp == NULL); 740 error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid, 741 qflags, &udqp, &gdqp, NULL); 742 if (error) 743 return error; 744 } 745 746 error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL, 747 capable(CAP_FOWNER), &tp); 748 if (error) 749 goto out_dqrele; 750 751 /* 752 * Change file ownership. Must be the owner or privileged. 753 */ 754 if (mask & (ATTR_UID|ATTR_GID)) { 755 /* 756 * These IDs could have changed since we last looked at them. 757 * But, we're assured that if the ownership did change 758 * while we didn't have the inode locked, inode's dquot(s) 759 * would have changed also. 760 */ 761 iuid = inode->i_uid; 762 igid = inode->i_gid; 763 gid = (mask & ATTR_GID) ? iattr->ia_gid : igid; 764 uid = (mask & ATTR_UID) ? iattr->ia_uid : iuid; 765 766 /* 767 * CAP_FSETID overrides the following restrictions: 768 * 769 * The set-user-ID and set-group-ID bits of a file will be 770 * cleared upon successful return from chown() 771 */ 772 if ((inode->i_mode & (S_ISUID|S_ISGID)) && 773 !capable(CAP_FSETID)) 774 inode->i_mode &= ~(S_ISUID|S_ISGID); 775 776 /* 777 * Change the ownerships and register quota modifications 778 * in the transaction. 779 */ 780 if (!uid_eq(iuid, uid)) { 781 if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_UQUOTA_ON(mp)) { 782 ASSERT(mask & ATTR_UID); 783 ASSERT(udqp); 784 olddquot1 = xfs_qm_vop_chown(tp, ip, 785 &ip->i_udquot, udqp); 786 } 787 inode->i_uid = uid; 788 } 789 if (!gid_eq(igid, gid)) { 790 if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_GQUOTA_ON(mp)) { 791 ASSERT(xfs_sb_version_has_pquotino(&mp->m_sb) || 792 !XFS_IS_PQUOTA_ON(mp)); 793 ASSERT(mask & ATTR_GID); 794 ASSERT(gdqp); 795 olddquot2 = xfs_qm_vop_chown(tp, ip, 796 &ip->i_gdquot, gdqp); 797 } 798 inode->i_gid = gid; 799 } 800 } 801 802 if (mask & ATTR_MODE) 803 xfs_setattr_mode(ip, iattr); 804 if (mask & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME)) 805 xfs_setattr_time(ip, iattr); 806 807 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 808 809 XFS_STATS_INC(mp, xs_ig_attrchg); 810 811 if (mp->m_flags & XFS_MOUNT_WSYNC) 812 xfs_trans_set_sync(tp); 813 error = xfs_trans_commit(tp); 814 815 /* 816 * Release any dquot(s) the inode had kept before chown. 817 */ 818 xfs_qm_dqrele(olddquot1); 819 xfs_qm_dqrele(olddquot2); 820 xfs_qm_dqrele(udqp); 821 xfs_qm_dqrele(gdqp); 822 823 if (error) 824 return error; 825 826 /* 827 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode 828 * update. We could avoid this with linked transactions 829 * and passing down the transaction pointer all the way 830 * to attr_set. No previous user of the generic 831 * Posix ACL code seems to care about this issue either. 832 */ 833 if (mask & ATTR_MODE) { 834 error = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 835 if (error) 836 return error; 837 } 838 839 return 0; 840 841 out_dqrele: 842 xfs_qm_dqrele(udqp); 843 xfs_qm_dqrele(gdqp); 844 return error; 845 } 846 847 /* 848 * Truncate file. Must have write permission and not be a directory. 849 * 850 * Caution: The caller of this function is responsible for calling 851 * setattr_prepare() or otherwise verifying the change is fine. 852 */ 853 STATIC int 854 xfs_setattr_size( 855 struct user_namespace *mnt_userns, 856 struct xfs_inode *ip, 857 struct iattr *iattr) 858 { 859 struct xfs_mount *mp = ip->i_mount; 860 struct inode *inode = VFS_I(ip); 861 xfs_off_t oldsize, newsize; 862 struct xfs_trans *tp; 863 int error; 864 uint lock_flags = 0; 865 bool did_zeroing = false; 866 867 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 868 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL)); 869 ASSERT(S_ISREG(inode->i_mode)); 870 ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET| 871 ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0); 872 873 oldsize = inode->i_size; 874 newsize = iattr->ia_size; 875 876 /* 877 * Short circuit the truncate case for zero length files. 878 */ 879 if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) { 880 if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME))) 881 return 0; 882 883 /* 884 * Use the regular setattr path to update the timestamps. 885 */ 886 iattr->ia_valid &= ~ATTR_SIZE; 887 return xfs_setattr_nonsize(mnt_userns, ip, iattr); 888 } 889 890 /* 891 * Make sure that the dquots are attached to the inode. 892 */ 893 error = xfs_qm_dqattach(ip); 894 if (error) 895 return error; 896 897 /* 898 * Wait for all direct I/O to complete. 899 */ 900 inode_dio_wait(inode); 901 902 /* 903 * File data changes must be complete before we start the transaction to 904 * modify the inode. This needs to be done before joining the inode to 905 * the transaction because the inode cannot be unlocked once it is a 906 * part of the transaction. 907 * 908 * Start with zeroing any data beyond EOF that we may expose on file 909 * extension, or zeroing out the rest of the block on a downward 910 * truncate. 911 */ 912 if (newsize > oldsize) { 913 trace_xfs_zero_eof(ip, oldsize, newsize - oldsize); 914 error = iomap_zero_range(inode, oldsize, newsize - oldsize, 915 &did_zeroing, &xfs_buffered_write_iomap_ops); 916 } else { 917 /* 918 * iomap won't detect a dirty page over an unwritten block (or a 919 * cow block over a hole) and subsequently skips zeroing the 920 * newly post-EOF portion of the page. Flush the new EOF to 921 * convert the block before the pagecache truncate. 922 */ 923 error = filemap_write_and_wait_range(inode->i_mapping, newsize, 924 newsize); 925 if (error) 926 return error; 927 error = iomap_truncate_page(inode, newsize, &did_zeroing, 928 &xfs_buffered_write_iomap_ops); 929 } 930 931 if (error) 932 return error; 933 934 /* 935 * We've already locked out new page faults, so now we can safely remove 936 * pages from the page cache knowing they won't get refaulted until we 937 * drop the XFS_MMAP_EXCL lock after the extent manipulations are 938 * complete. The truncate_setsize() call also cleans partial EOF page 939 * PTEs on extending truncates and hence ensures sub-page block size 940 * filesystems are correctly handled, too. 941 * 942 * We have to do all the page cache truncate work outside the 943 * transaction context as the "lock" order is page lock->log space 944 * reservation as defined by extent allocation in the writeback path. 945 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but 946 * having already truncated the in-memory version of the file (i.e. made 947 * user visible changes). There's not much we can do about this, except 948 * to hope that the caller sees ENOMEM and retries the truncate 949 * operation. 950 * 951 * And we update in-core i_size and truncate page cache beyond newsize 952 * before writeback the [i_disk_size, newsize] range, so we're 953 * guaranteed not to write stale data past the new EOF on truncate down. 954 */ 955 truncate_setsize(inode, newsize); 956 957 /* 958 * We are going to log the inode size change in this transaction so 959 * any previous writes that are beyond the on disk EOF and the new 960 * EOF that have not been written out need to be written here. If we 961 * do not write the data out, we expose ourselves to the null files 962 * problem. Note that this includes any block zeroing we did above; 963 * otherwise those blocks may not be zeroed after a crash. 964 */ 965 if (did_zeroing || 966 (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) { 967 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 968 ip->i_disk_size, newsize - 1); 969 if (error) 970 return error; 971 } 972 973 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 974 if (error) 975 return error; 976 977 lock_flags |= XFS_ILOCK_EXCL; 978 xfs_ilock(ip, XFS_ILOCK_EXCL); 979 xfs_trans_ijoin(tp, ip, 0); 980 981 /* 982 * Only change the c/mtime if we are changing the size or we are 983 * explicitly asked to change it. This handles the semantic difference 984 * between truncate() and ftruncate() as implemented in the VFS. 985 * 986 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 987 * special case where we need to update the times despite not having 988 * these flags set. For all other operations the VFS set these flags 989 * explicitly if it wants a timestamp update. 990 */ 991 if (newsize != oldsize && 992 !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) { 993 iattr->ia_ctime = iattr->ia_mtime = 994 current_time(inode); 995 iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME; 996 } 997 998 /* 999 * The first thing we do is set the size to new_size permanently on 1000 * disk. This way we don't have to worry about anyone ever being able 1001 * to look at the data being freed even in the face of a crash. 1002 * What we're getting around here is the case where we free a block, it 1003 * is allocated to another file, it is written to, and then we crash. 1004 * If the new data gets written to the file but the log buffers 1005 * containing the free and reallocation don't, then we'd end up with 1006 * garbage in the blocks being freed. As long as we make the new size 1007 * permanent before actually freeing any blocks it doesn't matter if 1008 * they get written to. 1009 */ 1010 ip->i_disk_size = newsize; 1011 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1012 1013 if (newsize <= oldsize) { 1014 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize); 1015 if (error) 1016 goto out_trans_cancel; 1017 1018 /* 1019 * Truncated "down", so we're removing references to old data 1020 * here - if we delay flushing for a long time, we expose 1021 * ourselves unduly to the notorious NULL files problem. So, 1022 * we mark this inode and flush it when the file is closed, 1023 * and do not wait the usual (long) time for writeout. 1024 */ 1025 xfs_iflags_set(ip, XFS_ITRUNCATED); 1026 1027 /* A truncate down always removes post-EOF blocks. */ 1028 xfs_inode_clear_eofblocks_tag(ip); 1029 } 1030 1031 if (iattr->ia_valid & ATTR_MODE) 1032 xfs_setattr_mode(ip, iattr); 1033 if (iattr->ia_valid & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME)) 1034 xfs_setattr_time(ip, iattr); 1035 1036 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1037 1038 XFS_STATS_INC(mp, xs_ig_attrchg); 1039 1040 if (mp->m_flags & XFS_MOUNT_WSYNC) 1041 xfs_trans_set_sync(tp); 1042 1043 error = xfs_trans_commit(tp); 1044 out_unlock: 1045 if (lock_flags) 1046 xfs_iunlock(ip, lock_flags); 1047 return error; 1048 1049 out_trans_cancel: 1050 xfs_trans_cancel(tp); 1051 goto out_unlock; 1052 } 1053 1054 int 1055 xfs_vn_setattr_size( 1056 struct user_namespace *mnt_userns, 1057 struct dentry *dentry, 1058 struct iattr *iattr) 1059 { 1060 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 1061 int error; 1062 1063 trace_xfs_setattr(ip); 1064 1065 error = xfs_vn_change_ok(mnt_userns, dentry, iattr); 1066 if (error) 1067 return error; 1068 return xfs_setattr_size(mnt_userns, ip, iattr); 1069 } 1070 1071 STATIC int 1072 xfs_vn_setattr( 1073 struct user_namespace *mnt_userns, 1074 struct dentry *dentry, 1075 struct iattr *iattr) 1076 { 1077 struct inode *inode = d_inode(dentry); 1078 struct xfs_inode *ip = XFS_I(inode); 1079 int error; 1080 1081 if (iattr->ia_valid & ATTR_SIZE) { 1082 uint iolock; 1083 1084 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 1085 iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 1086 1087 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 1088 if (error) { 1089 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1090 return error; 1091 } 1092 1093 error = xfs_vn_setattr_size(mnt_userns, dentry, iattr); 1094 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1095 } else { 1096 trace_xfs_setattr(ip); 1097 1098 error = xfs_vn_change_ok(mnt_userns, dentry, iattr); 1099 if (!error) 1100 error = xfs_setattr_nonsize(mnt_userns, ip, iattr); 1101 } 1102 1103 return error; 1104 } 1105 1106 STATIC int 1107 xfs_vn_update_time( 1108 struct inode *inode, 1109 struct timespec64 *now, 1110 int flags) 1111 { 1112 struct xfs_inode *ip = XFS_I(inode); 1113 struct xfs_mount *mp = ip->i_mount; 1114 int log_flags = XFS_ILOG_TIMESTAMP; 1115 struct xfs_trans *tp; 1116 int error; 1117 1118 trace_xfs_update_time(ip); 1119 1120 if (inode->i_sb->s_flags & SB_LAZYTIME) { 1121 if (!((flags & S_VERSION) && 1122 inode_maybe_inc_iversion(inode, false))) 1123 return generic_update_time(inode, now, flags); 1124 1125 /* Capture the iversion update that just occurred */ 1126 log_flags |= XFS_ILOG_CORE; 1127 } 1128 1129 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 1130 if (error) 1131 return error; 1132 1133 xfs_ilock(ip, XFS_ILOCK_EXCL); 1134 if (flags & S_CTIME) 1135 inode->i_ctime = *now; 1136 if (flags & S_MTIME) 1137 inode->i_mtime = *now; 1138 if (flags & S_ATIME) 1139 inode->i_atime = *now; 1140 1141 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1142 xfs_trans_log_inode(tp, ip, log_flags); 1143 return xfs_trans_commit(tp); 1144 } 1145 1146 STATIC int 1147 xfs_vn_fiemap( 1148 struct inode *inode, 1149 struct fiemap_extent_info *fieinfo, 1150 u64 start, 1151 u64 length) 1152 { 1153 int error; 1154 1155 xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED); 1156 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1157 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR; 1158 error = iomap_fiemap(inode, fieinfo, start, length, 1159 &xfs_xattr_iomap_ops); 1160 } else { 1161 error = iomap_fiemap(inode, fieinfo, start, length, 1162 &xfs_read_iomap_ops); 1163 } 1164 xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED); 1165 1166 return error; 1167 } 1168 1169 STATIC int 1170 xfs_vn_tmpfile( 1171 struct user_namespace *mnt_userns, 1172 struct inode *dir, 1173 struct dentry *dentry, 1174 umode_t mode) 1175 { 1176 return xfs_generic_create(mnt_userns, dir, dentry, mode, 0, true); 1177 } 1178 1179 static const struct inode_operations xfs_inode_operations = { 1180 .get_acl = xfs_get_acl, 1181 .set_acl = xfs_set_acl, 1182 .getattr = xfs_vn_getattr, 1183 .setattr = xfs_vn_setattr, 1184 .listxattr = xfs_vn_listxattr, 1185 .fiemap = xfs_vn_fiemap, 1186 .update_time = xfs_vn_update_time, 1187 .fileattr_get = xfs_fileattr_get, 1188 .fileattr_set = xfs_fileattr_set, 1189 }; 1190 1191 static const struct inode_operations xfs_dir_inode_operations = { 1192 .create = xfs_vn_create, 1193 .lookup = xfs_vn_lookup, 1194 .link = xfs_vn_link, 1195 .unlink = xfs_vn_unlink, 1196 .symlink = xfs_vn_symlink, 1197 .mkdir = xfs_vn_mkdir, 1198 /* 1199 * Yes, XFS uses the same method for rmdir and unlink. 1200 * 1201 * There are some subtile differences deeper in the code, 1202 * but we use S_ISDIR to check for those. 1203 */ 1204 .rmdir = xfs_vn_unlink, 1205 .mknod = xfs_vn_mknod, 1206 .rename = xfs_vn_rename, 1207 .get_acl = xfs_get_acl, 1208 .set_acl = xfs_set_acl, 1209 .getattr = xfs_vn_getattr, 1210 .setattr = xfs_vn_setattr, 1211 .listxattr = xfs_vn_listxattr, 1212 .update_time = xfs_vn_update_time, 1213 .tmpfile = xfs_vn_tmpfile, 1214 .fileattr_get = xfs_fileattr_get, 1215 .fileattr_set = xfs_fileattr_set, 1216 }; 1217 1218 static const struct inode_operations xfs_dir_ci_inode_operations = { 1219 .create = xfs_vn_create, 1220 .lookup = xfs_vn_ci_lookup, 1221 .link = xfs_vn_link, 1222 .unlink = xfs_vn_unlink, 1223 .symlink = xfs_vn_symlink, 1224 .mkdir = xfs_vn_mkdir, 1225 /* 1226 * Yes, XFS uses the same method for rmdir and unlink. 1227 * 1228 * There are some subtile differences deeper in the code, 1229 * but we use S_ISDIR to check for those. 1230 */ 1231 .rmdir = xfs_vn_unlink, 1232 .mknod = xfs_vn_mknod, 1233 .rename = xfs_vn_rename, 1234 .get_acl = xfs_get_acl, 1235 .set_acl = xfs_set_acl, 1236 .getattr = xfs_vn_getattr, 1237 .setattr = xfs_vn_setattr, 1238 .listxattr = xfs_vn_listxattr, 1239 .update_time = xfs_vn_update_time, 1240 .tmpfile = xfs_vn_tmpfile, 1241 .fileattr_get = xfs_fileattr_get, 1242 .fileattr_set = xfs_fileattr_set, 1243 }; 1244 1245 static const struct inode_operations xfs_symlink_inode_operations = { 1246 .get_link = xfs_vn_get_link, 1247 .getattr = xfs_vn_getattr, 1248 .setattr = xfs_vn_setattr, 1249 .listxattr = xfs_vn_listxattr, 1250 .update_time = xfs_vn_update_time, 1251 }; 1252 1253 static const struct inode_operations xfs_inline_symlink_inode_operations = { 1254 .get_link = xfs_vn_get_link_inline, 1255 .getattr = xfs_vn_getattr, 1256 .setattr = xfs_vn_setattr, 1257 .listxattr = xfs_vn_listxattr, 1258 .update_time = xfs_vn_update_time, 1259 }; 1260 1261 /* Figure out if this file actually supports DAX. */ 1262 static bool 1263 xfs_inode_supports_dax( 1264 struct xfs_inode *ip) 1265 { 1266 struct xfs_mount *mp = ip->i_mount; 1267 1268 /* Only supported on regular files. */ 1269 if (!S_ISREG(VFS_I(ip)->i_mode)) 1270 return false; 1271 1272 /* Only supported on non-reflinked files. */ 1273 if (xfs_is_reflink_inode(ip)) 1274 return false; 1275 1276 /* Block size must match page size */ 1277 if (mp->m_sb.sb_blocksize != PAGE_SIZE) 1278 return false; 1279 1280 /* Device has to support DAX too. */ 1281 return xfs_inode_buftarg(ip)->bt_daxdev != NULL; 1282 } 1283 1284 static bool 1285 xfs_inode_should_enable_dax( 1286 struct xfs_inode *ip) 1287 { 1288 if (!IS_ENABLED(CONFIG_FS_DAX)) 1289 return false; 1290 if (ip->i_mount->m_flags & XFS_MOUNT_DAX_NEVER) 1291 return false; 1292 if (!xfs_inode_supports_dax(ip)) 1293 return false; 1294 if (ip->i_mount->m_flags & XFS_MOUNT_DAX_ALWAYS) 1295 return true; 1296 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 1297 return true; 1298 return false; 1299 } 1300 1301 void 1302 xfs_diflags_to_iflags( 1303 struct xfs_inode *ip, 1304 bool init) 1305 { 1306 struct inode *inode = VFS_I(ip); 1307 unsigned int xflags = xfs_ip2xflags(ip); 1308 unsigned int flags = 0; 1309 1310 ASSERT(!(IS_DAX(inode) && init)); 1311 1312 if (xflags & FS_XFLAG_IMMUTABLE) 1313 flags |= S_IMMUTABLE; 1314 if (xflags & FS_XFLAG_APPEND) 1315 flags |= S_APPEND; 1316 if (xflags & FS_XFLAG_SYNC) 1317 flags |= S_SYNC; 1318 if (xflags & FS_XFLAG_NOATIME) 1319 flags |= S_NOATIME; 1320 if (init && xfs_inode_should_enable_dax(ip)) 1321 flags |= S_DAX; 1322 1323 /* 1324 * S_DAX can only be set during inode initialization and is never set by 1325 * the VFS, so we cannot mask off S_DAX in i_flags. 1326 */ 1327 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME); 1328 inode->i_flags |= flags; 1329 } 1330 1331 /* 1332 * Initialize the Linux inode. 1333 * 1334 * When reading existing inodes from disk this is called directly from xfs_iget, 1335 * when creating a new inode it is called from xfs_ialloc after setting up the 1336 * inode. These callers have different criteria for clearing XFS_INEW, so leave 1337 * it up to the caller to deal with unlocking the inode appropriately. 1338 */ 1339 void 1340 xfs_setup_inode( 1341 struct xfs_inode *ip) 1342 { 1343 struct inode *inode = &ip->i_vnode; 1344 gfp_t gfp_mask; 1345 1346 inode->i_ino = ip->i_ino; 1347 inode->i_state = I_NEW; 1348 1349 inode_sb_list_add(inode); 1350 /* make the inode look hashed for the writeback code */ 1351 inode_fake_hash(inode); 1352 1353 i_size_write(inode, ip->i_disk_size); 1354 xfs_diflags_to_iflags(ip, true); 1355 1356 if (S_ISDIR(inode->i_mode)) { 1357 /* 1358 * We set the i_rwsem class here to avoid potential races with 1359 * lockdep_annotate_inode_mutex_key() reinitialising the lock 1360 * after a filehandle lookup has already found the inode in 1361 * cache before it has been unlocked via unlock_new_inode(). 1362 */ 1363 lockdep_set_class(&inode->i_rwsem, 1364 &inode->i_sb->s_type->i_mutex_dir_key); 1365 lockdep_set_class(&ip->i_lock.mr_lock, &xfs_dir_ilock_class); 1366 } else { 1367 lockdep_set_class(&ip->i_lock.mr_lock, &xfs_nondir_ilock_class); 1368 } 1369 1370 /* 1371 * Ensure all page cache allocations are done from GFP_NOFS context to 1372 * prevent direct reclaim recursion back into the filesystem and blowing 1373 * stacks or deadlocking. 1374 */ 1375 gfp_mask = mapping_gfp_mask(inode->i_mapping); 1376 mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS))); 1377 1378 /* 1379 * If there is no attribute fork no ACL can exist on this inode, 1380 * and it can't have any file capabilities attached to it either. 1381 */ 1382 if (!XFS_IFORK_Q(ip)) { 1383 inode_has_no_xattr(inode); 1384 cache_no_acl(inode); 1385 } 1386 } 1387 1388 void 1389 xfs_setup_iops( 1390 struct xfs_inode *ip) 1391 { 1392 struct inode *inode = &ip->i_vnode; 1393 1394 switch (inode->i_mode & S_IFMT) { 1395 case S_IFREG: 1396 inode->i_op = &xfs_inode_operations; 1397 inode->i_fop = &xfs_file_operations; 1398 if (IS_DAX(inode)) 1399 inode->i_mapping->a_ops = &xfs_dax_aops; 1400 else 1401 inode->i_mapping->a_ops = &xfs_address_space_operations; 1402 break; 1403 case S_IFDIR: 1404 if (xfs_sb_version_hasasciici(&XFS_M(inode->i_sb)->m_sb)) 1405 inode->i_op = &xfs_dir_ci_inode_operations; 1406 else 1407 inode->i_op = &xfs_dir_inode_operations; 1408 inode->i_fop = &xfs_dir_file_operations; 1409 break; 1410 case S_IFLNK: 1411 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) 1412 inode->i_op = &xfs_inline_symlink_inode_operations; 1413 else 1414 inode->i_op = &xfs_symlink_inode_operations; 1415 break; 1416 default: 1417 inode->i_op = &xfs_inode_operations; 1418 init_special_inode(inode, inode->i_mode, inode->i_rdev); 1419 break; 1420 } 1421 } 1422