xref: /linux/fs/xfs/xfs_iops.c (revision 6a35ddc5445a8291ced6247a67977e110275acde)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_acl.h"
15 #include "xfs_quota.h"
16 #include "xfs_attr.h"
17 #include "xfs_trans.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_symlink.h"
21 #include "xfs_dir2.h"
22 #include "xfs_iomap.h"
23 #include "xfs_error.h"
24 
25 #include <linux/xattr.h>
26 #include <linux/posix_acl.h>
27 #include <linux/security.h>
28 #include <linux/iversion.h>
29 
30 /*
31  * Directories have different lock order w.r.t. mmap_sem compared to regular
32  * files. This is due to readdir potentially triggering page faults on a user
33  * buffer inside filldir(), and this happens with the ilock on the directory
34  * held. For regular files, the lock order is the other way around - the
35  * mmap_sem is taken during the page fault, and then we lock the ilock to do
36  * block mapping. Hence we need a different class for the directory ilock so
37  * that lockdep can tell them apart.
38  */
39 static struct lock_class_key xfs_nondir_ilock_class;
40 static struct lock_class_key xfs_dir_ilock_class;
41 
42 static int
43 xfs_initxattrs(
44 	struct inode		*inode,
45 	const struct xattr	*xattr_array,
46 	void			*fs_info)
47 {
48 	const struct xattr	*xattr;
49 	struct xfs_inode	*ip = XFS_I(inode);
50 	int			error = 0;
51 
52 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
53 		error = xfs_attr_set(ip, xattr->name, xattr->value,
54 				      xattr->value_len, ATTR_SECURE);
55 		if (error < 0)
56 			break;
57 	}
58 	return error;
59 }
60 
61 /*
62  * Hook in SELinux.  This is not quite correct yet, what we really need
63  * here (as we do for default ACLs) is a mechanism by which creation of
64  * these attrs can be journalled at inode creation time (along with the
65  * inode, of course, such that log replay can't cause these to be lost).
66  */
67 
68 STATIC int
69 xfs_init_security(
70 	struct inode	*inode,
71 	struct inode	*dir,
72 	const struct qstr *qstr)
73 {
74 	return security_inode_init_security(inode, dir, qstr,
75 					     &xfs_initxattrs, NULL);
76 }
77 
78 static void
79 xfs_dentry_to_name(
80 	struct xfs_name	*namep,
81 	struct dentry	*dentry)
82 {
83 	namep->name = dentry->d_name.name;
84 	namep->len = dentry->d_name.len;
85 	namep->type = XFS_DIR3_FT_UNKNOWN;
86 }
87 
88 static int
89 xfs_dentry_mode_to_name(
90 	struct xfs_name	*namep,
91 	struct dentry	*dentry,
92 	int		mode)
93 {
94 	namep->name = dentry->d_name.name;
95 	namep->len = dentry->d_name.len;
96 	namep->type = xfs_mode_to_ftype(mode);
97 
98 	if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN))
99 		return -EFSCORRUPTED;
100 
101 	return 0;
102 }
103 
104 STATIC void
105 xfs_cleanup_inode(
106 	struct inode	*dir,
107 	struct inode	*inode,
108 	struct dentry	*dentry)
109 {
110 	struct xfs_name	teardown;
111 
112 	/* Oh, the horror.
113 	 * If we can't add the ACL or we fail in
114 	 * xfs_init_security we must back out.
115 	 * ENOSPC can hit here, among other things.
116 	 */
117 	xfs_dentry_to_name(&teardown, dentry);
118 
119 	xfs_remove(XFS_I(dir), &teardown, XFS_I(inode));
120 }
121 
122 STATIC int
123 xfs_generic_create(
124 	struct inode	*dir,
125 	struct dentry	*dentry,
126 	umode_t		mode,
127 	dev_t		rdev,
128 	bool		tmpfile)	/* unnamed file */
129 {
130 	struct inode	*inode;
131 	struct xfs_inode *ip = NULL;
132 	struct posix_acl *default_acl, *acl;
133 	struct xfs_name	name;
134 	int		error;
135 
136 	/*
137 	 * Irix uses Missed'em'V split, but doesn't want to see
138 	 * the upper 5 bits of (14bit) major.
139 	 */
140 	if (S_ISCHR(mode) || S_ISBLK(mode)) {
141 		if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff))
142 			return -EINVAL;
143 	} else {
144 		rdev = 0;
145 	}
146 
147 	error = posix_acl_create(dir, &mode, &default_acl, &acl);
148 	if (error)
149 		return error;
150 
151 	/* Verify mode is valid also for tmpfile case */
152 	error = xfs_dentry_mode_to_name(&name, dentry, mode);
153 	if (unlikely(error))
154 		goto out_free_acl;
155 
156 	if (!tmpfile) {
157 		error = xfs_create(XFS_I(dir), &name, mode, rdev, &ip);
158 	} else {
159 		error = xfs_create_tmpfile(XFS_I(dir), mode, &ip);
160 	}
161 	if (unlikely(error))
162 		goto out_free_acl;
163 
164 	inode = VFS_I(ip);
165 
166 	error = xfs_init_security(inode, dir, &dentry->d_name);
167 	if (unlikely(error))
168 		goto out_cleanup_inode;
169 
170 #ifdef CONFIG_XFS_POSIX_ACL
171 	if (default_acl) {
172 		error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
173 		if (error)
174 			goto out_cleanup_inode;
175 	}
176 	if (acl) {
177 		error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS);
178 		if (error)
179 			goto out_cleanup_inode;
180 	}
181 #endif
182 
183 	xfs_setup_iops(ip);
184 
185 	if (tmpfile) {
186 		/*
187 		 * The VFS requires that any inode fed to d_tmpfile must have
188 		 * nlink == 1 so that it can decrement the nlink in d_tmpfile.
189 		 * However, we created the temp file with nlink == 0 because
190 		 * we're not allowed to put an inode with nlink > 0 on the
191 		 * unlinked list.  Therefore we have to set nlink to 1 so that
192 		 * d_tmpfile can immediately set it back to zero.
193 		 */
194 		set_nlink(inode, 1);
195 		d_tmpfile(dentry, inode);
196 	} else
197 		d_instantiate(dentry, inode);
198 
199 	xfs_finish_inode_setup(ip);
200 
201  out_free_acl:
202 	if (default_acl)
203 		posix_acl_release(default_acl);
204 	if (acl)
205 		posix_acl_release(acl);
206 	return error;
207 
208  out_cleanup_inode:
209 	xfs_finish_inode_setup(ip);
210 	if (!tmpfile)
211 		xfs_cleanup_inode(dir, inode, dentry);
212 	xfs_irele(ip);
213 	goto out_free_acl;
214 }
215 
216 STATIC int
217 xfs_vn_mknod(
218 	struct inode	*dir,
219 	struct dentry	*dentry,
220 	umode_t		mode,
221 	dev_t		rdev)
222 {
223 	return xfs_generic_create(dir, dentry, mode, rdev, false);
224 }
225 
226 STATIC int
227 xfs_vn_create(
228 	struct inode	*dir,
229 	struct dentry	*dentry,
230 	umode_t		mode,
231 	bool		flags)
232 {
233 	return xfs_vn_mknod(dir, dentry, mode, 0);
234 }
235 
236 STATIC int
237 xfs_vn_mkdir(
238 	struct inode	*dir,
239 	struct dentry	*dentry,
240 	umode_t		mode)
241 {
242 	return xfs_vn_mknod(dir, dentry, mode|S_IFDIR, 0);
243 }
244 
245 STATIC struct dentry *
246 xfs_vn_lookup(
247 	struct inode	*dir,
248 	struct dentry	*dentry,
249 	unsigned int flags)
250 {
251 	struct inode *inode;
252 	struct xfs_inode *cip;
253 	struct xfs_name	name;
254 	int		error;
255 
256 	if (dentry->d_name.len >= MAXNAMELEN)
257 		return ERR_PTR(-ENAMETOOLONG);
258 
259 	xfs_dentry_to_name(&name, dentry);
260 	error = xfs_lookup(XFS_I(dir), &name, &cip, NULL);
261 	if (likely(!error))
262 		inode = VFS_I(cip);
263 	else if (likely(error == -ENOENT))
264 		inode = NULL;
265 	else
266 		inode = ERR_PTR(error);
267 	return d_splice_alias(inode, dentry);
268 }
269 
270 STATIC struct dentry *
271 xfs_vn_ci_lookup(
272 	struct inode	*dir,
273 	struct dentry	*dentry,
274 	unsigned int flags)
275 {
276 	struct xfs_inode *ip;
277 	struct xfs_name	xname;
278 	struct xfs_name ci_name;
279 	struct qstr	dname;
280 	int		error;
281 
282 	if (dentry->d_name.len >= MAXNAMELEN)
283 		return ERR_PTR(-ENAMETOOLONG);
284 
285 	xfs_dentry_to_name(&xname, dentry);
286 	error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name);
287 	if (unlikely(error)) {
288 		if (unlikely(error != -ENOENT))
289 			return ERR_PTR(error);
290 		/*
291 		 * call d_add(dentry, NULL) here when d_drop_negative_children
292 		 * is called in xfs_vn_mknod (ie. allow negative dentries
293 		 * with CI filesystems).
294 		 */
295 		return NULL;
296 	}
297 
298 	/* if exact match, just splice and exit */
299 	if (!ci_name.name)
300 		return d_splice_alias(VFS_I(ip), dentry);
301 
302 	/* else case-insensitive match... */
303 	dname.name = ci_name.name;
304 	dname.len = ci_name.len;
305 	dentry = d_add_ci(dentry, VFS_I(ip), &dname);
306 	kmem_free(ci_name.name);
307 	return dentry;
308 }
309 
310 STATIC int
311 xfs_vn_link(
312 	struct dentry	*old_dentry,
313 	struct inode	*dir,
314 	struct dentry	*dentry)
315 {
316 	struct inode	*inode = d_inode(old_dentry);
317 	struct xfs_name	name;
318 	int		error;
319 
320 	error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode);
321 	if (unlikely(error))
322 		return error;
323 
324 	error = xfs_link(XFS_I(dir), XFS_I(inode), &name);
325 	if (unlikely(error))
326 		return error;
327 
328 	ihold(inode);
329 	d_instantiate(dentry, inode);
330 	return 0;
331 }
332 
333 STATIC int
334 xfs_vn_unlink(
335 	struct inode	*dir,
336 	struct dentry	*dentry)
337 {
338 	struct xfs_name	name;
339 	int		error;
340 
341 	xfs_dentry_to_name(&name, dentry);
342 
343 	error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry)));
344 	if (error)
345 		return error;
346 
347 	/*
348 	 * With unlink, the VFS makes the dentry "negative": no inode,
349 	 * but still hashed. This is incompatible with case-insensitive
350 	 * mode, so invalidate (unhash) the dentry in CI-mode.
351 	 */
352 	if (xfs_sb_version_hasasciici(&XFS_M(dir->i_sb)->m_sb))
353 		d_invalidate(dentry);
354 	return 0;
355 }
356 
357 STATIC int
358 xfs_vn_symlink(
359 	struct inode	*dir,
360 	struct dentry	*dentry,
361 	const char	*symname)
362 {
363 	struct inode	*inode;
364 	struct xfs_inode *cip = NULL;
365 	struct xfs_name	name;
366 	int		error;
367 	umode_t		mode;
368 
369 	mode = S_IFLNK |
370 		(irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO);
371 	error = xfs_dentry_mode_to_name(&name, dentry, mode);
372 	if (unlikely(error))
373 		goto out;
374 
375 	error = xfs_symlink(XFS_I(dir), &name, symname, mode, &cip);
376 	if (unlikely(error))
377 		goto out;
378 
379 	inode = VFS_I(cip);
380 
381 	error = xfs_init_security(inode, dir, &dentry->d_name);
382 	if (unlikely(error))
383 		goto out_cleanup_inode;
384 
385 	xfs_setup_iops(cip);
386 
387 	d_instantiate(dentry, inode);
388 	xfs_finish_inode_setup(cip);
389 	return 0;
390 
391  out_cleanup_inode:
392 	xfs_finish_inode_setup(cip);
393 	xfs_cleanup_inode(dir, inode, dentry);
394 	xfs_irele(cip);
395  out:
396 	return error;
397 }
398 
399 STATIC int
400 xfs_vn_rename(
401 	struct inode	*odir,
402 	struct dentry	*odentry,
403 	struct inode	*ndir,
404 	struct dentry	*ndentry,
405 	unsigned int	flags)
406 {
407 	struct inode	*new_inode = d_inode(ndentry);
408 	int		omode = 0;
409 	int		error;
410 	struct xfs_name	oname;
411 	struct xfs_name	nname;
412 
413 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
414 		return -EINVAL;
415 
416 	/* if we are exchanging files, we need to set i_mode of both files */
417 	if (flags & RENAME_EXCHANGE)
418 		omode = d_inode(ndentry)->i_mode;
419 
420 	error = xfs_dentry_mode_to_name(&oname, odentry, omode);
421 	if (omode && unlikely(error))
422 		return error;
423 
424 	error = xfs_dentry_mode_to_name(&nname, ndentry,
425 					d_inode(odentry)->i_mode);
426 	if (unlikely(error))
427 		return error;
428 
429 	return xfs_rename(XFS_I(odir), &oname, XFS_I(d_inode(odentry)),
430 			  XFS_I(ndir), &nname,
431 			  new_inode ? XFS_I(new_inode) : NULL, flags);
432 }
433 
434 /*
435  * careful here - this function can get called recursively, so
436  * we need to be very careful about how much stack we use.
437  * uio is kmalloced for this reason...
438  */
439 STATIC const char *
440 xfs_vn_get_link(
441 	struct dentry		*dentry,
442 	struct inode		*inode,
443 	struct delayed_call	*done)
444 {
445 	char			*link;
446 	int			error = -ENOMEM;
447 
448 	if (!dentry)
449 		return ERR_PTR(-ECHILD);
450 
451 	link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL);
452 	if (!link)
453 		goto out_err;
454 
455 	error = xfs_readlink(XFS_I(d_inode(dentry)), link);
456 	if (unlikely(error))
457 		goto out_kfree;
458 
459 	set_delayed_call(done, kfree_link, link);
460 	return link;
461 
462  out_kfree:
463 	kfree(link);
464  out_err:
465 	return ERR_PTR(error);
466 }
467 
468 STATIC const char *
469 xfs_vn_get_link_inline(
470 	struct dentry		*dentry,
471 	struct inode		*inode,
472 	struct delayed_call	*done)
473 {
474 	struct xfs_inode	*ip = XFS_I(inode);
475 	char			*link;
476 
477 	ASSERT(ip->i_df.if_flags & XFS_IFINLINE);
478 
479 	/*
480 	 * The VFS crashes on a NULL pointer, so return -EFSCORRUPTED if
481 	 * if_data is junk.
482 	 */
483 	link = ip->i_df.if_u1.if_data;
484 	if (XFS_IS_CORRUPT(ip->i_mount, !link))
485 		return ERR_PTR(-EFSCORRUPTED);
486 	return link;
487 }
488 
489 static uint32_t
490 xfs_stat_blksize(
491 	struct xfs_inode	*ip)
492 {
493 	struct xfs_mount	*mp = ip->i_mount;
494 
495 	/*
496 	 * If the file blocks are being allocated from a realtime volume, then
497 	 * always return the realtime extent size.
498 	 */
499 	if (XFS_IS_REALTIME_INODE(ip))
500 		return xfs_get_extsz_hint(ip) << mp->m_sb.sb_blocklog;
501 
502 	/*
503 	 * Allow large block sizes to be reported to userspace programs if the
504 	 * "largeio" mount option is used.
505 	 *
506 	 * If compatibility mode is specified, simply return the basic unit of
507 	 * caching so that we don't get inefficient read/modify/write I/O from
508 	 * user apps. Otherwise....
509 	 *
510 	 * If the underlying volume is a stripe, then return the stripe width in
511 	 * bytes as the recommended I/O size. It is not a stripe and we've set a
512 	 * default buffered I/O size, return that, otherwise return the compat
513 	 * default.
514 	 */
515 	if (mp->m_flags & XFS_MOUNT_LARGEIO) {
516 		if (mp->m_swidth)
517 			return mp->m_swidth << mp->m_sb.sb_blocklog;
518 		if (mp->m_flags & XFS_MOUNT_ALLOCSIZE)
519 			return 1U << mp->m_allocsize_log;
520 	}
521 
522 	return PAGE_SIZE;
523 }
524 
525 STATIC int
526 xfs_vn_getattr(
527 	const struct path	*path,
528 	struct kstat		*stat,
529 	u32			request_mask,
530 	unsigned int		query_flags)
531 {
532 	struct inode		*inode = d_inode(path->dentry);
533 	struct xfs_inode	*ip = XFS_I(inode);
534 	struct xfs_mount	*mp = ip->i_mount;
535 
536 	trace_xfs_getattr(ip);
537 
538 	if (XFS_FORCED_SHUTDOWN(mp))
539 		return -EIO;
540 
541 	stat->size = XFS_ISIZE(ip);
542 	stat->dev = inode->i_sb->s_dev;
543 	stat->mode = inode->i_mode;
544 	stat->nlink = inode->i_nlink;
545 	stat->uid = inode->i_uid;
546 	stat->gid = inode->i_gid;
547 	stat->ino = ip->i_ino;
548 	stat->atime = inode->i_atime;
549 	stat->mtime = inode->i_mtime;
550 	stat->ctime = inode->i_ctime;
551 	stat->blocks =
552 		XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
553 
554 	if (ip->i_d.di_version == 3) {
555 		if (request_mask & STATX_BTIME) {
556 			stat->result_mask |= STATX_BTIME;
557 			stat->btime = ip->i_d.di_crtime;
558 		}
559 	}
560 
561 	/*
562 	 * Note: If you add another clause to set an attribute flag, please
563 	 * update attributes_mask below.
564 	 */
565 	if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
566 		stat->attributes |= STATX_ATTR_IMMUTABLE;
567 	if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
568 		stat->attributes |= STATX_ATTR_APPEND;
569 	if (ip->i_d.di_flags & XFS_DIFLAG_NODUMP)
570 		stat->attributes |= STATX_ATTR_NODUMP;
571 
572 	stat->attributes_mask |= (STATX_ATTR_IMMUTABLE |
573 				  STATX_ATTR_APPEND |
574 				  STATX_ATTR_NODUMP);
575 
576 	switch (inode->i_mode & S_IFMT) {
577 	case S_IFBLK:
578 	case S_IFCHR:
579 		stat->blksize = BLKDEV_IOSIZE;
580 		stat->rdev = inode->i_rdev;
581 		break;
582 	default:
583 		stat->blksize = xfs_stat_blksize(ip);
584 		stat->rdev = 0;
585 		break;
586 	}
587 
588 	return 0;
589 }
590 
591 static void
592 xfs_setattr_mode(
593 	struct xfs_inode	*ip,
594 	struct iattr		*iattr)
595 {
596 	struct inode		*inode = VFS_I(ip);
597 	umode_t			mode = iattr->ia_mode;
598 
599 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
600 
601 	inode->i_mode &= S_IFMT;
602 	inode->i_mode |= mode & ~S_IFMT;
603 }
604 
605 void
606 xfs_setattr_time(
607 	struct xfs_inode	*ip,
608 	struct iattr		*iattr)
609 {
610 	struct inode		*inode = VFS_I(ip);
611 
612 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
613 
614 	if (iattr->ia_valid & ATTR_ATIME)
615 		inode->i_atime = iattr->ia_atime;
616 	if (iattr->ia_valid & ATTR_CTIME)
617 		inode->i_ctime = iattr->ia_ctime;
618 	if (iattr->ia_valid & ATTR_MTIME)
619 		inode->i_mtime = iattr->ia_mtime;
620 }
621 
622 static int
623 xfs_vn_change_ok(
624 	struct dentry	*dentry,
625 	struct iattr	*iattr)
626 {
627 	struct xfs_mount	*mp = XFS_I(d_inode(dentry))->i_mount;
628 
629 	if (mp->m_flags & XFS_MOUNT_RDONLY)
630 		return -EROFS;
631 
632 	if (XFS_FORCED_SHUTDOWN(mp))
633 		return -EIO;
634 
635 	return setattr_prepare(dentry, iattr);
636 }
637 
638 /*
639  * Set non-size attributes of an inode.
640  *
641  * Caution: The caller of this function is responsible for calling
642  * setattr_prepare() or otherwise verifying the change is fine.
643  */
644 int
645 xfs_setattr_nonsize(
646 	struct xfs_inode	*ip,
647 	struct iattr		*iattr,
648 	int			flags)
649 {
650 	xfs_mount_t		*mp = ip->i_mount;
651 	struct inode		*inode = VFS_I(ip);
652 	int			mask = iattr->ia_valid;
653 	xfs_trans_t		*tp;
654 	int			error;
655 	kuid_t			uid = GLOBAL_ROOT_UID, iuid = GLOBAL_ROOT_UID;
656 	kgid_t			gid = GLOBAL_ROOT_GID, igid = GLOBAL_ROOT_GID;
657 	struct xfs_dquot	*udqp = NULL, *gdqp = NULL;
658 	struct xfs_dquot	*olddquot1 = NULL, *olddquot2 = NULL;
659 
660 	ASSERT((mask & ATTR_SIZE) == 0);
661 
662 	/*
663 	 * If disk quotas is on, we make sure that the dquots do exist on disk,
664 	 * before we start any other transactions. Trying to do this later
665 	 * is messy. We don't care to take a readlock to look at the ids
666 	 * in inode here, because we can't hold it across the trans_reserve.
667 	 * If the IDs do change before we take the ilock, we're covered
668 	 * because the i_*dquot fields will get updated anyway.
669 	 */
670 	if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
671 		uint	qflags = 0;
672 
673 		if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
674 			uid = iattr->ia_uid;
675 			qflags |= XFS_QMOPT_UQUOTA;
676 		} else {
677 			uid = inode->i_uid;
678 		}
679 		if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
680 			gid = iattr->ia_gid;
681 			qflags |= XFS_QMOPT_GQUOTA;
682 		}  else {
683 			gid = inode->i_gid;
684 		}
685 
686 		/*
687 		 * We take a reference when we initialize udqp and gdqp,
688 		 * so it is important that we never blindly double trip on
689 		 * the same variable. See xfs_create() for an example.
690 		 */
691 		ASSERT(udqp == NULL);
692 		ASSERT(gdqp == NULL);
693 		error = xfs_qm_vop_dqalloc(ip, xfs_kuid_to_uid(uid),
694 					   xfs_kgid_to_gid(gid),
695 					   ip->i_d.di_projid,
696 					   qflags, &udqp, &gdqp, NULL);
697 		if (error)
698 			return error;
699 	}
700 
701 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
702 	if (error)
703 		goto out_dqrele;
704 
705 	xfs_ilock(ip, XFS_ILOCK_EXCL);
706 	xfs_trans_ijoin(tp, ip, 0);
707 
708 	/*
709 	 * Change file ownership.  Must be the owner or privileged.
710 	 */
711 	if (mask & (ATTR_UID|ATTR_GID)) {
712 		/*
713 		 * These IDs could have changed since we last looked at them.
714 		 * But, we're assured that if the ownership did change
715 		 * while we didn't have the inode locked, inode's dquot(s)
716 		 * would have changed also.
717 		 */
718 		iuid = inode->i_uid;
719 		igid = inode->i_gid;
720 		gid = (mask & ATTR_GID) ? iattr->ia_gid : igid;
721 		uid = (mask & ATTR_UID) ? iattr->ia_uid : iuid;
722 
723 		/*
724 		 * Do a quota reservation only if uid/gid is actually
725 		 * going to change.
726 		 */
727 		if (XFS_IS_QUOTA_RUNNING(mp) &&
728 		    ((XFS_IS_UQUOTA_ON(mp) && !uid_eq(iuid, uid)) ||
729 		     (XFS_IS_GQUOTA_ON(mp) && !gid_eq(igid, gid)))) {
730 			ASSERT(tp);
731 			error = xfs_qm_vop_chown_reserve(tp, ip, udqp, gdqp,
732 						NULL, capable(CAP_FOWNER) ?
733 						XFS_QMOPT_FORCE_RES : 0);
734 			if (error)	/* out of quota */
735 				goto out_cancel;
736 		}
737 	}
738 
739 	/*
740 	 * Change file ownership.  Must be the owner or privileged.
741 	 */
742 	if (mask & (ATTR_UID|ATTR_GID)) {
743 		/*
744 		 * CAP_FSETID overrides the following restrictions:
745 		 *
746 		 * The set-user-ID and set-group-ID bits of a file will be
747 		 * cleared upon successful return from chown()
748 		 */
749 		if ((inode->i_mode & (S_ISUID|S_ISGID)) &&
750 		    !capable(CAP_FSETID))
751 			inode->i_mode &= ~(S_ISUID|S_ISGID);
752 
753 		/*
754 		 * Change the ownerships and register quota modifications
755 		 * in the transaction.
756 		 */
757 		if (!uid_eq(iuid, uid)) {
758 			if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_UQUOTA_ON(mp)) {
759 				ASSERT(mask & ATTR_UID);
760 				ASSERT(udqp);
761 				olddquot1 = xfs_qm_vop_chown(tp, ip,
762 							&ip->i_udquot, udqp);
763 			}
764 			ip->i_d.di_uid = xfs_kuid_to_uid(uid);
765 			inode->i_uid = uid;
766 		}
767 		if (!gid_eq(igid, gid)) {
768 			if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_GQUOTA_ON(mp)) {
769 				ASSERT(xfs_sb_version_has_pquotino(&mp->m_sb) ||
770 				       !XFS_IS_PQUOTA_ON(mp));
771 				ASSERT(mask & ATTR_GID);
772 				ASSERT(gdqp);
773 				olddquot2 = xfs_qm_vop_chown(tp, ip,
774 							&ip->i_gdquot, gdqp);
775 			}
776 			ip->i_d.di_gid = xfs_kgid_to_gid(gid);
777 			inode->i_gid = gid;
778 		}
779 	}
780 
781 	if (mask & ATTR_MODE)
782 		xfs_setattr_mode(ip, iattr);
783 	if (mask & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME))
784 		xfs_setattr_time(ip, iattr);
785 
786 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
787 
788 	XFS_STATS_INC(mp, xs_ig_attrchg);
789 
790 	if (mp->m_flags & XFS_MOUNT_WSYNC)
791 		xfs_trans_set_sync(tp);
792 	error = xfs_trans_commit(tp);
793 
794 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
795 
796 	/*
797 	 * Release any dquot(s) the inode had kept before chown.
798 	 */
799 	xfs_qm_dqrele(olddquot1);
800 	xfs_qm_dqrele(olddquot2);
801 	xfs_qm_dqrele(udqp);
802 	xfs_qm_dqrele(gdqp);
803 
804 	if (error)
805 		return error;
806 
807 	/*
808 	 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode
809 	 * 	     update.  We could avoid this with linked transactions
810 	 * 	     and passing down the transaction pointer all the way
811 	 *	     to attr_set.  No previous user of the generic
812 	 * 	     Posix ACL code seems to care about this issue either.
813 	 */
814 	if ((mask & ATTR_MODE) && !(flags & XFS_ATTR_NOACL)) {
815 		error = posix_acl_chmod(inode, inode->i_mode);
816 		if (error)
817 			return error;
818 	}
819 
820 	return 0;
821 
822 out_cancel:
823 	xfs_trans_cancel(tp);
824 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
825 out_dqrele:
826 	xfs_qm_dqrele(udqp);
827 	xfs_qm_dqrele(gdqp);
828 	return error;
829 }
830 
831 int
832 xfs_vn_setattr_nonsize(
833 	struct dentry		*dentry,
834 	struct iattr		*iattr)
835 {
836 	struct xfs_inode	*ip = XFS_I(d_inode(dentry));
837 	int error;
838 
839 	trace_xfs_setattr(ip);
840 
841 	error = xfs_vn_change_ok(dentry, iattr);
842 	if (error)
843 		return error;
844 	return xfs_setattr_nonsize(ip, iattr, 0);
845 }
846 
847 /*
848  * Truncate file.  Must have write permission and not be a directory.
849  *
850  * Caution: The caller of this function is responsible for calling
851  * setattr_prepare() or otherwise verifying the change is fine.
852  */
853 STATIC int
854 xfs_setattr_size(
855 	struct xfs_inode	*ip,
856 	struct iattr		*iattr)
857 {
858 	struct xfs_mount	*mp = ip->i_mount;
859 	struct inode		*inode = VFS_I(ip);
860 	xfs_off_t		oldsize, newsize;
861 	struct xfs_trans	*tp;
862 	int			error;
863 	uint			lock_flags = 0;
864 	bool			did_zeroing = false;
865 
866 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
867 	ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
868 	ASSERT(S_ISREG(inode->i_mode));
869 	ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET|
870 		ATTR_MTIME_SET|ATTR_KILL_PRIV|ATTR_TIMES_SET)) == 0);
871 
872 	oldsize = inode->i_size;
873 	newsize = iattr->ia_size;
874 
875 	/*
876 	 * Short circuit the truncate case for zero length files.
877 	 */
878 	if (newsize == 0 && oldsize == 0 && ip->i_d.di_nextents == 0) {
879 		if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME)))
880 			return 0;
881 
882 		/*
883 		 * Use the regular setattr path to update the timestamps.
884 		 */
885 		iattr->ia_valid &= ~ATTR_SIZE;
886 		return xfs_setattr_nonsize(ip, iattr, 0);
887 	}
888 
889 	/*
890 	 * Make sure that the dquots are attached to the inode.
891 	 */
892 	error = xfs_qm_dqattach(ip);
893 	if (error)
894 		return error;
895 
896 	/*
897 	 * Wait for all direct I/O to complete.
898 	 */
899 	inode_dio_wait(inode);
900 
901 	/*
902 	 * File data changes must be complete before we start the transaction to
903 	 * modify the inode.  This needs to be done before joining the inode to
904 	 * the transaction because the inode cannot be unlocked once it is a
905 	 * part of the transaction.
906 	 *
907 	 * Start with zeroing any data beyond EOF that we may expose on file
908 	 * extension, or zeroing out the rest of the block on a downward
909 	 * truncate.
910 	 */
911 	if (newsize > oldsize) {
912 		trace_xfs_zero_eof(ip, oldsize, newsize - oldsize);
913 		error = iomap_zero_range(inode, oldsize, newsize - oldsize,
914 				&did_zeroing, &xfs_buffered_write_iomap_ops);
915 	} else {
916 		error = iomap_truncate_page(inode, newsize, &did_zeroing,
917 				&xfs_buffered_write_iomap_ops);
918 	}
919 
920 	if (error)
921 		return error;
922 
923 	/*
924 	 * We've already locked out new page faults, so now we can safely remove
925 	 * pages from the page cache knowing they won't get refaulted until we
926 	 * drop the XFS_MMAP_EXCL lock after the extent manipulations are
927 	 * complete. The truncate_setsize() call also cleans partial EOF page
928 	 * PTEs on extending truncates and hence ensures sub-page block size
929 	 * filesystems are correctly handled, too.
930 	 *
931 	 * We have to do all the page cache truncate work outside the
932 	 * transaction context as the "lock" order is page lock->log space
933 	 * reservation as defined by extent allocation in the writeback path.
934 	 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but
935 	 * having already truncated the in-memory version of the file (i.e. made
936 	 * user visible changes). There's not much we can do about this, except
937 	 * to hope that the caller sees ENOMEM and retries the truncate
938 	 * operation.
939 	 *
940 	 * And we update in-core i_size and truncate page cache beyond newsize
941 	 * before writeback the [di_size, newsize] range, so we're guaranteed
942 	 * not to write stale data past the new EOF on truncate down.
943 	 */
944 	truncate_setsize(inode, newsize);
945 
946 	/*
947 	 * We are going to log the inode size change in this transaction so
948 	 * any previous writes that are beyond the on disk EOF and the new
949 	 * EOF that have not been written out need to be written here.  If we
950 	 * do not write the data out, we expose ourselves to the null files
951 	 * problem. Note that this includes any block zeroing we did above;
952 	 * otherwise those blocks may not be zeroed after a crash.
953 	 */
954 	if (did_zeroing ||
955 	    (newsize > ip->i_d.di_size && oldsize != ip->i_d.di_size)) {
956 		error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
957 						ip->i_d.di_size, newsize - 1);
958 		if (error)
959 			return error;
960 	}
961 
962 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
963 	if (error)
964 		return error;
965 
966 	lock_flags |= XFS_ILOCK_EXCL;
967 	xfs_ilock(ip, XFS_ILOCK_EXCL);
968 	xfs_trans_ijoin(tp, ip, 0);
969 
970 	/*
971 	 * Only change the c/mtime if we are changing the size or we are
972 	 * explicitly asked to change it.  This handles the semantic difference
973 	 * between truncate() and ftruncate() as implemented in the VFS.
974 	 *
975 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
976 	 * special case where we need to update the times despite not having
977 	 * these flags set.  For all other operations the VFS set these flags
978 	 * explicitly if it wants a timestamp update.
979 	 */
980 	if (newsize != oldsize &&
981 	    !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) {
982 		iattr->ia_ctime = iattr->ia_mtime =
983 			current_time(inode);
984 		iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME;
985 	}
986 
987 	/*
988 	 * The first thing we do is set the size to new_size permanently on
989 	 * disk.  This way we don't have to worry about anyone ever being able
990 	 * to look at the data being freed even in the face of a crash.
991 	 * What we're getting around here is the case where we free a block, it
992 	 * is allocated to another file, it is written to, and then we crash.
993 	 * If the new data gets written to the file but the log buffers
994 	 * containing the free and reallocation don't, then we'd end up with
995 	 * garbage in the blocks being freed.  As long as we make the new size
996 	 * permanent before actually freeing any blocks it doesn't matter if
997 	 * they get written to.
998 	 */
999 	ip->i_d.di_size = newsize;
1000 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1001 
1002 	if (newsize <= oldsize) {
1003 		error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize);
1004 		if (error)
1005 			goto out_trans_cancel;
1006 
1007 		/*
1008 		 * Truncated "down", so we're removing references to old data
1009 		 * here - if we delay flushing for a long time, we expose
1010 		 * ourselves unduly to the notorious NULL files problem.  So,
1011 		 * we mark this inode and flush it when the file is closed,
1012 		 * and do not wait the usual (long) time for writeout.
1013 		 */
1014 		xfs_iflags_set(ip, XFS_ITRUNCATED);
1015 
1016 		/* A truncate down always removes post-EOF blocks. */
1017 		xfs_inode_clear_eofblocks_tag(ip);
1018 	}
1019 
1020 	if (iattr->ia_valid & ATTR_MODE)
1021 		xfs_setattr_mode(ip, iattr);
1022 	if (iattr->ia_valid & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME))
1023 		xfs_setattr_time(ip, iattr);
1024 
1025 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1026 
1027 	XFS_STATS_INC(mp, xs_ig_attrchg);
1028 
1029 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1030 		xfs_trans_set_sync(tp);
1031 
1032 	error = xfs_trans_commit(tp);
1033 out_unlock:
1034 	if (lock_flags)
1035 		xfs_iunlock(ip, lock_flags);
1036 	return error;
1037 
1038 out_trans_cancel:
1039 	xfs_trans_cancel(tp);
1040 	goto out_unlock;
1041 }
1042 
1043 int
1044 xfs_vn_setattr_size(
1045 	struct dentry		*dentry,
1046 	struct iattr		*iattr)
1047 {
1048 	struct xfs_inode	*ip = XFS_I(d_inode(dentry));
1049 	int error;
1050 
1051 	trace_xfs_setattr(ip);
1052 
1053 	error = xfs_vn_change_ok(dentry, iattr);
1054 	if (error)
1055 		return error;
1056 	return xfs_setattr_size(ip, iattr);
1057 }
1058 
1059 STATIC int
1060 xfs_vn_setattr(
1061 	struct dentry		*dentry,
1062 	struct iattr		*iattr)
1063 {
1064 	int			error;
1065 
1066 	if (iattr->ia_valid & ATTR_SIZE) {
1067 		struct inode		*inode = d_inode(dentry);
1068 		struct xfs_inode	*ip = XFS_I(inode);
1069 		uint			iolock;
1070 
1071 		xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1072 		iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1073 
1074 		error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1075 		if (error) {
1076 			xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1077 			return error;
1078 		}
1079 
1080 		error = xfs_vn_setattr_size(dentry, iattr);
1081 		xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1082 	} else {
1083 		error = xfs_vn_setattr_nonsize(dentry, iattr);
1084 	}
1085 
1086 	return error;
1087 }
1088 
1089 STATIC int
1090 xfs_vn_update_time(
1091 	struct inode		*inode,
1092 	struct timespec64	*now,
1093 	int			flags)
1094 {
1095 	struct xfs_inode	*ip = XFS_I(inode);
1096 	struct xfs_mount	*mp = ip->i_mount;
1097 	int			log_flags = XFS_ILOG_TIMESTAMP;
1098 	struct xfs_trans	*tp;
1099 	int			error;
1100 
1101 	trace_xfs_update_time(ip);
1102 
1103 	if (inode->i_sb->s_flags & SB_LAZYTIME) {
1104 		if (!((flags & S_VERSION) &&
1105 		      inode_maybe_inc_iversion(inode, false)))
1106 			return generic_update_time(inode, now, flags);
1107 
1108 		/* Capture the iversion update that just occurred */
1109 		log_flags |= XFS_ILOG_CORE;
1110 	}
1111 
1112 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
1113 	if (error)
1114 		return error;
1115 
1116 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1117 	if (flags & S_CTIME)
1118 		inode->i_ctime = *now;
1119 	if (flags & S_MTIME)
1120 		inode->i_mtime = *now;
1121 	if (flags & S_ATIME)
1122 		inode->i_atime = *now;
1123 
1124 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1125 	xfs_trans_log_inode(tp, ip, log_flags);
1126 	return xfs_trans_commit(tp);
1127 }
1128 
1129 STATIC int
1130 xfs_vn_fiemap(
1131 	struct inode		*inode,
1132 	struct fiemap_extent_info *fieinfo,
1133 	u64			start,
1134 	u64			length)
1135 {
1136 	int			error;
1137 
1138 	xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED);
1139 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1140 		fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
1141 		error = iomap_fiemap(inode, fieinfo, start, length,
1142 				&xfs_xattr_iomap_ops);
1143 	} else {
1144 		error = iomap_fiemap(inode, fieinfo, start, length,
1145 				&xfs_read_iomap_ops);
1146 	}
1147 	xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED);
1148 
1149 	return error;
1150 }
1151 
1152 STATIC int
1153 xfs_vn_tmpfile(
1154 	struct inode	*dir,
1155 	struct dentry	*dentry,
1156 	umode_t		mode)
1157 {
1158 	return xfs_generic_create(dir, dentry, mode, 0, true);
1159 }
1160 
1161 static const struct inode_operations xfs_inode_operations = {
1162 	.get_acl		= xfs_get_acl,
1163 	.set_acl		= xfs_set_acl,
1164 	.getattr		= xfs_vn_getattr,
1165 	.setattr		= xfs_vn_setattr,
1166 	.listxattr		= xfs_vn_listxattr,
1167 	.fiemap			= xfs_vn_fiemap,
1168 	.update_time		= xfs_vn_update_time,
1169 };
1170 
1171 static const struct inode_operations xfs_dir_inode_operations = {
1172 	.create			= xfs_vn_create,
1173 	.lookup			= xfs_vn_lookup,
1174 	.link			= xfs_vn_link,
1175 	.unlink			= xfs_vn_unlink,
1176 	.symlink		= xfs_vn_symlink,
1177 	.mkdir			= xfs_vn_mkdir,
1178 	/*
1179 	 * Yes, XFS uses the same method for rmdir and unlink.
1180 	 *
1181 	 * There are some subtile differences deeper in the code,
1182 	 * but we use S_ISDIR to check for those.
1183 	 */
1184 	.rmdir			= xfs_vn_unlink,
1185 	.mknod			= xfs_vn_mknod,
1186 	.rename			= xfs_vn_rename,
1187 	.get_acl		= xfs_get_acl,
1188 	.set_acl		= xfs_set_acl,
1189 	.getattr		= xfs_vn_getattr,
1190 	.setattr		= xfs_vn_setattr,
1191 	.listxattr		= xfs_vn_listxattr,
1192 	.update_time		= xfs_vn_update_time,
1193 	.tmpfile		= xfs_vn_tmpfile,
1194 };
1195 
1196 static const struct inode_operations xfs_dir_ci_inode_operations = {
1197 	.create			= xfs_vn_create,
1198 	.lookup			= xfs_vn_ci_lookup,
1199 	.link			= xfs_vn_link,
1200 	.unlink			= xfs_vn_unlink,
1201 	.symlink		= xfs_vn_symlink,
1202 	.mkdir			= xfs_vn_mkdir,
1203 	/*
1204 	 * Yes, XFS uses the same method for rmdir and unlink.
1205 	 *
1206 	 * There are some subtile differences deeper in the code,
1207 	 * but we use S_ISDIR to check for those.
1208 	 */
1209 	.rmdir			= xfs_vn_unlink,
1210 	.mknod			= xfs_vn_mknod,
1211 	.rename			= xfs_vn_rename,
1212 	.get_acl		= xfs_get_acl,
1213 	.set_acl		= xfs_set_acl,
1214 	.getattr		= xfs_vn_getattr,
1215 	.setattr		= xfs_vn_setattr,
1216 	.listxattr		= xfs_vn_listxattr,
1217 	.update_time		= xfs_vn_update_time,
1218 	.tmpfile		= xfs_vn_tmpfile,
1219 };
1220 
1221 static const struct inode_operations xfs_symlink_inode_operations = {
1222 	.get_link		= xfs_vn_get_link,
1223 	.getattr		= xfs_vn_getattr,
1224 	.setattr		= xfs_vn_setattr,
1225 	.listxattr		= xfs_vn_listxattr,
1226 	.update_time		= xfs_vn_update_time,
1227 };
1228 
1229 static const struct inode_operations xfs_inline_symlink_inode_operations = {
1230 	.get_link		= xfs_vn_get_link_inline,
1231 	.getattr		= xfs_vn_getattr,
1232 	.setattr		= xfs_vn_setattr,
1233 	.listxattr		= xfs_vn_listxattr,
1234 	.update_time		= xfs_vn_update_time,
1235 };
1236 
1237 /* Figure out if this file actually supports DAX. */
1238 static bool
1239 xfs_inode_supports_dax(
1240 	struct xfs_inode	*ip)
1241 {
1242 	struct xfs_mount	*mp = ip->i_mount;
1243 
1244 	/* Only supported on non-reflinked files. */
1245 	if (!S_ISREG(VFS_I(ip)->i_mode) || xfs_is_reflink_inode(ip))
1246 		return false;
1247 
1248 	/* DAX mount option or DAX iflag must be set. */
1249 	if (!(mp->m_flags & XFS_MOUNT_DAX) &&
1250 	    !(ip->i_d.di_flags2 & XFS_DIFLAG2_DAX))
1251 		return false;
1252 
1253 	/* Block size must match page size */
1254 	if (mp->m_sb.sb_blocksize != PAGE_SIZE)
1255 		return false;
1256 
1257 	/* Device has to support DAX too. */
1258 	return xfs_inode_buftarg(ip)->bt_daxdev != NULL;
1259 }
1260 
1261 STATIC void
1262 xfs_diflags_to_iflags(
1263 	struct inode		*inode,
1264 	struct xfs_inode	*ip)
1265 {
1266 	uint16_t		flags = ip->i_d.di_flags;
1267 
1268 	inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC |
1269 			    S_NOATIME | S_DAX);
1270 
1271 	if (flags & XFS_DIFLAG_IMMUTABLE)
1272 		inode->i_flags |= S_IMMUTABLE;
1273 	if (flags & XFS_DIFLAG_APPEND)
1274 		inode->i_flags |= S_APPEND;
1275 	if (flags & XFS_DIFLAG_SYNC)
1276 		inode->i_flags |= S_SYNC;
1277 	if (flags & XFS_DIFLAG_NOATIME)
1278 		inode->i_flags |= S_NOATIME;
1279 	if (xfs_inode_supports_dax(ip))
1280 		inode->i_flags |= S_DAX;
1281 }
1282 
1283 /*
1284  * Initialize the Linux inode.
1285  *
1286  * When reading existing inodes from disk this is called directly from xfs_iget,
1287  * when creating a new inode it is called from xfs_ialloc after setting up the
1288  * inode. These callers have different criteria for clearing XFS_INEW, so leave
1289  * it up to the caller to deal with unlocking the inode appropriately.
1290  */
1291 void
1292 xfs_setup_inode(
1293 	struct xfs_inode	*ip)
1294 {
1295 	struct inode		*inode = &ip->i_vnode;
1296 	gfp_t			gfp_mask;
1297 
1298 	inode->i_ino = ip->i_ino;
1299 	inode->i_state = I_NEW;
1300 
1301 	inode_sb_list_add(inode);
1302 	/* make the inode look hashed for the writeback code */
1303 	inode_fake_hash(inode);
1304 
1305 	inode->i_uid    = xfs_uid_to_kuid(ip->i_d.di_uid);
1306 	inode->i_gid    = xfs_gid_to_kgid(ip->i_d.di_gid);
1307 
1308 	i_size_write(inode, ip->i_d.di_size);
1309 	xfs_diflags_to_iflags(inode, ip);
1310 
1311 	if (S_ISDIR(inode->i_mode)) {
1312 		/*
1313 		 * We set the i_rwsem class here to avoid potential races with
1314 		 * lockdep_annotate_inode_mutex_key() reinitialising the lock
1315 		 * after a filehandle lookup has already found the inode in
1316 		 * cache before it has been unlocked via unlock_new_inode().
1317 		 */
1318 		lockdep_set_class(&inode->i_rwsem,
1319 				  &inode->i_sb->s_type->i_mutex_dir_key);
1320 		lockdep_set_class(&ip->i_lock.mr_lock, &xfs_dir_ilock_class);
1321 	} else {
1322 		lockdep_set_class(&ip->i_lock.mr_lock, &xfs_nondir_ilock_class);
1323 	}
1324 
1325 	/*
1326 	 * Ensure all page cache allocations are done from GFP_NOFS context to
1327 	 * prevent direct reclaim recursion back into the filesystem and blowing
1328 	 * stacks or deadlocking.
1329 	 */
1330 	gfp_mask = mapping_gfp_mask(inode->i_mapping);
1331 	mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS)));
1332 
1333 	/*
1334 	 * If there is no attribute fork no ACL can exist on this inode,
1335 	 * and it can't have any file capabilities attached to it either.
1336 	 */
1337 	if (!XFS_IFORK_Q(ip)) {
1338 		inode_has_no_xattr(inode);
1339 		cache_no_acl(inode);
1340 	}
1341 }
1342 
1343 void
1344 xfs_setup_iops(
1345 	struct xfs_inode	*ip)
1346 {
1347 	struct inode		*inode = &ip->i_vnode;
1348 
1349 	switch (inode->i_mode & S_IFMT) {
1350 	case S_IFREG:
1351 		inode->i_op = &xfs_inode_operations;
1352 		inode->i_fop = &xfs_file_operations;
1353 		if (IS_DAX(inode))
1354 			inode->i_mapping->a_ops = &xfs_dax_aops;
1355 		else
1356 			inode->i_mapping->a_ops = &xfs_address_space_operations;
1357 		break;
1358 	case S_IFDIR:
1359 		if (xfs_sb_version_hasasciici(&XFS_M(inode->i_sb)->m_sb))
1360 			inode->i_op = &xfs_dir_ci_inode_operations;
1361 		else
1362 			inode->i_op = &xfs_dir_inode_operations;
1363 		inode->i_fop = &xfs_dir_file_operations;
1364 		break;
1365 	case S_IFLNK:
1366 		if (ip->i_df.if_flags & XFS_IFINLINE)
1367 			inode->i_op = &xfs_inline_symlink_inode_operations;
1368 		else
1369 			inode->i_op = &xfs_symlink_inode_operations;
1370 		break;
1371 	default:
1372 		inode->i_op = &xfs_inode_operations;
1373 		init_special_inode(inode, inode->i_mode, inode->i_rdev);
1374 		break;
1375 	}
1376 }
1377