xref: /linux/fs/xfs/xfs_iops.c (revision 5f60d5f6bbc12e782fac78110b0ee62698f3b576)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_acl.h"
15 #include "xfs_quota.h"
16 #include "xfs_da_format.h"
17 #include "xfs_da_btree.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_bmap_btree.h"
22 #include "xfs_trace.h"
23 #include "xfs_icache.h"
24 #include "xfs_symlink.h"
25 #include "xfs_dir2.h"
26 #include "xfs_iomap.h"
27 #include "xfs_error.h"
28 #include "xfs_ioctl.h"
29 #include "xfs_xattr.h"
30 #include "xfs_file.h"
31 #include "xfs_bmap.h"
32 
33 #include <linux/posix_acl.h>
34 #include <linux/security.h>
35 #include <linux/iversion.h>
36 #include <linux/fiemap.h>
37 
38 /*
39  * Directories have different lock order w.r.t. mmap_lock compared to regular
40  * files. This is due to readdir potentially triggering page faults on a user
41  * buffer inside filldir(), and this happens with the ilock on the directory
42  * held. For regular files, the lock order is the other way around - the
43  * mmap_lock is taken during the page fault, and then we lock the ilock to do
44  * block mapping. Hence we need a different class for the directory ilock so
45  * that lockdep can tell them apart.
46  */
47 static struct lock_class_key xfs_nondir_ilock_class;
48 static struct lock_class_key xfs_dir_ilock_class;
49 
50 static int
51 xfs_initxattrs(
52 	struct inode		*inode,
53 	const struct xattr	*xattr_array,
54 	void			*fs_info)
55 {
56 	const struct xattr	*xattr;
57 	struct xfs_inode	*ip = XFS_I(inode);
58 	int			error = 0;
59 
60 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
61 		struct xfs_da_args	args = {
62 			.dp		= ip,
63 			.attr_filter	= XFS_ATTR_SECURE,
64 			.name		= xattr->name,
65 			.namelen	= strlen(xattr->name),
66 			.value		= xattr->value,
67 			.valuelen	= xattr->value_len,
68 		};
69 		error = xfs_attr_change(&args, XFS_ATTRUPDATE_UPSERT);
70 		if (error < 0)
71 			break;
72 	}
73 	return error;
74 }
75 
76 /*
77  * Hook in SELinux.  This is not quite correct yet, what we really need
78  * here (as we do for default ACLs) is a mechanism by which creation of
79  * these attrs can be journalled at inode creation time (along with the
80  * inode, of course, such that log replay can't cause these to be lost).
81  */
82 int
83 xfs_inode_init_security(
84 	struct inode	*inode,
85 	struct inode	*dir,
86 	const struct qstr *qstr)
87 {
88 	return security_inode_init_security(inode, dir, qstr,
89 					     &xfs_initxattrs, NULL);
90 }
91 
92 static void
93 xfs_dentry_to_name(
94 	struct xfs_name	*namep,
95 	struct dentry	*dentry)
96 {
97 	namep->name = dentry->d_name.name;
98 	namep->len = dentry->d_name.len;
99 	namep->type = XFS_DIR3_FT_UNKNOWN;
100 }
101 
102 static int
103 xfs_dentry_mode_to_name(
104 	struct xfs_name	*namep,
105 	struct dentry	*dentry,
106 	int		mode)
107 {
108 	namep->name = dentry->d_name.name;
109 	namep->len = dentry->d_name.len;
110 	namep->type = xfs_mode_to_ftype(mode);
111 
112 	if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN))
113 		return -EFSCORRUPTED;
114 
115 	return 0;
116 }
117 
118 STATIC void
119 xfs_cleanup_inode(
120 	struct inode	*dir,
121 	struct inode	*inode,
122 	struct dentry	*dentry)
123 {
124 	struct xfs_name	teardown;
125 
126 	/* Oh, the horror.
127 	 * If we can't add the ACL or we fail in
128 	 * xfs_inode_init_security we must back out.
129 	 * ENOSPC can hit here, among other things.
130 	 */
131 	xfs_dentry_to_name(&teardown, dentry);
132 
133 	xfs_remove(XFS_I(dir), &teardown, XFS_I(inode));
134 }
135 
136 /*
137  * Check to see if we are likely to need an extended attribute to be added to
138  * the inode we are about to allocate. This allows the attribute fork to be
139  * created during the inode allocation, reducing the number of transactions we
140  * need to do in this fast path.
141  *
142  * The security checks are optimistic, but not guaranteed. The two LSMs that
143  * require xattrs to be added here (selinux and smack) are also the only two
144  * LSMs that add a sb->s_security structure to the superblock. Hence if security
145  * is enabled and sb->s_security is set, we have a pretty good idea that we are
146  * going to be asked to add a security xattr immediately after allocating the
147  * xfs inode and instantiating the VFS inode.
148  */
149 static inline bool
150 xfs_create_need_xattr(
151 	struct inode	*dir,
152 	struct posix_acl *default_acl,
153 	struct posix_acl *acl)
154 {
155 	if (acl)
156 		return true;
157 	if (default_acl)
158 		return true;
159 #if IS_ENABLED(CONFIG_SECURITY)
160 	if (dir->i_sb->s_security)
161 		return true;
162 #endif
163 	return false;
164 }
165 
166 
167 STATIC int
168 xfs_generic_create(
169 	struct mnt_idmap	*idmap,
170 	struct inode		*dir,
171 	struct dentry		*dentry,
172 	umode_t			mode,
173 	dev_t			rdev,
174 	struct file		*tmpfile)	/* unnamed file */
175 {
176 	struct xfs_icreate_args	args = {
177 		.idmap		= idmap,
178 		.pip		= XFS_I(dir),
179 		.rdev		= rdev,
180 		.mode		= mode,
181 	};
182 	struct inode		*inode;
183 	struct xfs_inode	*ip = NULL;
184 	struct posix_acl	*default_acl, *acl;
185 	struct xfs_name		name;
186 	int			error;
187 
188 	/*
189 	 * Irix uses Missed'em'V split, but doesn't want to see
190 	 * the upper 5 bits of (14bit) major.
191 	 */
192 	if (S_ISCHR(args.mode) || S_ISBLK(args.mode)) {
193 		if (unlikely(!sysv_valid_dev(args.rdev) ||
194 			     MAJOR(args.rdev) & ~0x1ff))
195 			return -EINVAL;
196 	} else {
197 		args.rdev = 0;
198 	}
199 
200 	error = posix_acl_create(dir, &args.mode, &default_acl, &acl);
201 	if (error)
202 		return error;
203 
204 	/* Verify mode is valid also for tmpfile case */
205 	error = xfs_dentry_mode_to_name(&name, dentry, args.mode);
206 	if (unlikely(error))
207 		goto out_free_acl;
208 
209 	if (!tmpfile) {
210 		if (xfs_create_need_xattr(dir, default_acl, acl))
211 			args.flags |= XFS_ICREATE_INIT_XATTRS;
212 
213 		error = xfs_create(&args, &name, &ip);
214 	} else {
215 		args.flags |= XFS_ICREATE_TMPFILE;
216 
217 		/*
218 		 * If this temporary file will not be linkable, don't bother
219 		 * creating an attr fork to receive a parent pointer.
220 		 */
221 		if (tmpfile->f_flags & O_EXCL)
222 			args.flags |= XFS_ICREATE_UNLINKABLE;
223 
224 		error = xfs_create_tmpfile(&args, &ip);
225 	}
226 	if (unlikely(error))
227 		goto out_free_acl;
228 
229 	inode = VFS_I(ip);
230 
231 	error = xfs_inode_init_security(inode, dir, &dentry->d_name);
232 	if (unlikely(error))
233 		goto out_cleanup_inode;
234 
235 	if (default_acl) {
236 		error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
237 		if (error)
238 			goto out_cleanup_inode;
239 	}
240 	if (acl) {
241 		error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS);
242 		if (error)
243 			goto out_cleanup_inode;
244 	}
245 
246 	xfs_setup_iops(ip);
247 
248 	if (tmpfile) {
249 		/*
250 		 * The VFS requires that any inode fed to d_tmpfile must have
251 		 * nlink == 1 so that it can decrement the nlink in d_tmpfile.
252 		 * However, we created the temp file with nlink == 0 because
253 		 * we're not allowed to put an inode with nlink > 0 on the
254 		 * unlinked list.  Therefore we have to set nlink to 1 so that
255 		 * d_tmpfile can immediately set it back to zero.
256 		 */
257 		set_nlink(inode, 1);
258 		d_tmpfile(tmpfile, inode);
259 	} else
260 		d_instantiate(dentry, inode);
261 
262 	xfs_finish_inode_setup(ip);
263 
264  out_free_acl:
265 	posix_acl_release(default_acl);
266 	posix_acl_release(acl);
267 	return error;
268 
269  out_cleanup_inode:
270 	xfs_finish_inode_setup(ip);
271 	if (!tmpfile)
272 		xfs_cleanup_inode(dir, inode, dentry);
273 	xfs_irele(ip);
274 	goto out_free_acl;
275 }
276 
277 STATIC int
278 xfs_vn_mknod(
279 	struct mnt_idmap	*idmap,
280 	struct inode		*dir,
281 	struct dentry		*dentry,
282 	umode_t			mode,
283 	dev_t			rdev)
284 {
285 	return xfs_generic_create(idmap, dir, dentry, mode, rdev, NULL);
286 }
287 
288 STATIC int
289 xfs_vn_create(
290 	struct mnt_idmap	*idmap,
291 	struct inode		*dir,
292 	struct dentry		*dentry,
293 	umode_t			mode,
294 	bool			flags)
295 {
296 	return xfs_generic_create(idmap, dir, dentry, mode, 0, NULL);
297 }
298 
299 STATIC int
300 xfs_vn_mkdir(
301 	struct mnt_idmap	*idmap,
302 	struct inode		*dir,
303 	struct dentry		*dentry,
304 	umode_t			mode)
305 {
306 	return xfs_generic_create(idmap, dir, dentry, mode | S_IFDIR, 0, NULL);
307 }
308 
309 STATIC struct dentry *
310 xfs_vn_lookup(
311 	struct inode	*dir,
312 	struct dentry	*dentry,
313 	unsigned int flags)
314 {
315 	struct inode *inode;
316 	struct xfs_inode *cip;
317 	struct xfs_name	name;
318 	int		error;
319 
320 	if (dentry->d_name.len >= MAXNAMELEN)
321 		return ERR_PTR(-ENAMETOOLONG);
322 
323 	xfs_dentry_to_name(&name, dentry);
324 	error = xfs_lookup(XFS_I(dir), &name, &cip, NULL);
325 	if (likely(!error))
326 		inode = VFS_I(cip);
327 	else if (likely(error == -ENOENT))
328 		inode = NULL;
329 	else
330 		inode = ERR_PTR(error);
331 	return d_splice_alias(inode, dentry);
332 }
333 
334 STATIC struct dentry *
335 xfs_vn_ci_lookup(
336 	struct inode	*dir,
337 	struct dentry	*dentry,
338 	unsigned int flags)
339 {
340 	struct xfs_inode *ip;
341 	struct xfs_name	xname;
342 	struct xfs_name ci_name;
343 	struct qstr	dname;
344 	int		error;
345 
346 	if (dentry->d_name.len >= MAXNAMELEN)
347 		return ERR_PTR(-ENAMETOOLONG);
348 
349 	xfs_dentry_to_name(&xname, dentry);
350 	error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name);
351 	if (unlikely(error)) {
352 		if (unlikely(error != -ENOENT))
353 			return ERR_PTR(error);
354 		/*
355 		 * call d_add(dentry, NULL) here when d_drop_negative_children
356 		 * is called in xfs_vn_mknod (ie. allow negative dentries
357 		 * with CI filesystems).
358 		 */
359 		return NULL;
360 	}
361 
362 	/* if exact match, just splice and exit */
363 	if (!ci_name.name)
364 		return d_splice_alias(VFS_I(ip), dentry);
365 
366 	/* else case-insensitive match... */
367 	dname.name = ci_name.name;
368 	dname.len = ci_name.len;
369 	dentry = d_add_ci(dentry, VFS_I(ip), &dname);
370 	kfree(ci_name.name);
371 	return dentry;
372 }
373 
374 STATIC int
375 xfs_vn_link(
376 	struct dentry	*old_dentry,
377 	struct inode	*dir,
378 	struct dentry	*dentry)
379 {
380 	struct inode	*inode = d_inode(old_dentry);
381 	struct xfs_name	name;
382 	int		error;
383 
384 	error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode);
385 	if (unlikely(error))
386 		return error;
387 
388 	if (IS_PRIVATE(inode))
389 		return -EPERM;
390 
391 	error = xfs_link(XFS_I(dir), XFS_I(inode), &name);
392 	if (unlikely(error))
393 		return error;
394 
395 	ihold(inode);
396 	d_instantiate(dentry, inode);
397 	return 0;
398 }
399 
400 STATIC int
401 xfs_vn_unlink(
402 	struct inode	*dir,
403 	struct dentry	*dentry)
404 {
405 	struct xfs_name	name;
406 	int		error;
407 
408 	xfs_dentry_to_name(&name, dentry);
409 
410 	error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry)));
411 	if (error)
412 		return error;
413 
414 	/*
415 	 * With unlink, the VFS makes the dentry "negative": no inode,
416 	 * but still hashed. This is incompatible with case-insensitive
417 	 * mode, so invalidate (unhash) the dentry in CI-mode.
418 	 */
419 	if (xfs_has_asciici(XFS_M(dir->i_sb)))
420 		d_invalidate(dentry);
421 	return 0;
422 }
423 
424 STATIC int
425 xfs_vn_symlink(
426 	struct mnt_idmap	*idmap,
427 	struct inode		*dir,
428 	struct dentry		*dentry,
429 	const char		*symname)
430 {
431 	struct inode	*inode;
432 	struct xfs_inode *cip = NULL;
433 	struct xfs_name	name;
434 	int		error;
435 	umode_t		mode;
436 
437 	mode = S_IFLNK |
438 		(irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO);
439 	error = xfs_dentry_mode_to_name(&name, dentry, mode);
440 	if (unlikely(error))
441 		goto out;
442 
443 	error = xfs_symlink(idmap, XFS_I(dir), &name, symname, mode, &cip);
444 	if (unlikely(error))
445 		goto out;
446 
447 	inode = VFS_I(cip);
448 
449 	error = xfs_inode_init_security(inode, dir, &dentry->d_name);
450 	if (unlikely(error))
451 		goto out_cleanup_inode;
452 
453 	xfs_setup_iops(cip);
454 
455 	d_instantiate(dentry, inode);
456 	xfs_finish_inode_setup(cip);
457 	return 0;
458 
459  out_cleanup_inode:
460 	xfs_finish_inode_setup(cip);
461 	xfs_cleanup_inode(dir, inode, dentry);
462 	xfs_irele(cip);
463  out:
464 	return error;
465 }
466 
467 STATIC int
468 xfs_vn_rename(
469 	struct mnt_idmap	*idmap,
470 	struct inode		*odir,
471 	struct dentry		*odentry,
472 	struct inode		*ndir,
473 	struct dentry		*ndentry,
474 	unsigned int		flags)
475 {
476 	struct inode	*new_inode = d_inode(ndentry);
477 	int		omode = 0;
478 	int		error;
479 	struct xfs_name	oname;
480 	struct xfs_name	nname;
481 
482 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
483 		return -EINVAL;
484 
485 	/* if we are exchanging files, we need to set i_mode of both files */
486 	if (flags & RENAME_EXCHANGE)
487 		omode = d_inode(ndentry)->i_mode;
488 
489 	error = xfs_dentry_mode_to_name(&oname, odentry, omode);
490 	if (omode && unlikely(error))
491 		return error;
492 
493 	error = xfs_dentry_mode_to_name(&nname, ndentry,
494 					d_inode(odentry)->i_mode);
495 	if (unlikely(error))
496 		return error;
497 
498 	return xfs_rename(idmap, XFS_I(odir), &oname,
499 			  XFS_I(d_inode(odentry)), XFS_I(ndir), &nname,
500 			  new_inode ? XFS_I(new_inode) : NULL, flags);
501 }
502 
503 /*
504  * careful here - this function can get called recursively, so
505  * we need to be very careful about how much stack we use.
506  * uio is kmalloced for this reason...
507  */
508 STATIC const char *
509 xfs_vn_get_link(
510 	struct dentry		*dentry,
511 	struct inode		*inode,
512 	struct delayed_call	*done)
513 {
514 	char			*link;
515 	int			error = -ENOMEM;
516 
517 	if (!dentry)
518 		return ERR_PTR(-ECHILD);
519 
520 	link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL);
521 	if (!link)
522 		goto out_err;
523 
524 	error = xfs_readlink(XFS_I(d_inode(dentry)), link);
525 	if (unlikely(error))
526 		goto out_kfree;
527 
528 	set_delayed_call(done, kfree_link, link);
529 	return link;
530 
531  out_kfree:
532 	kfree(link);
533  out_err:
534 	return ERR_PTR(error);
535 }
536 
537 static uint32_t
538 xfs_stat_blksize(
539 	struct xfs_inode	*ip)
540 {
541 	struct xfs_mount	*mp = ip->i_mount;
542 
543 	/*
544 	 * If the file blocks are being allocated from a realtime volume, then
545 	 * always return the realtime extent size.
546 	 */
547 	if (XFS_IS_REALTIME_INODE(ip))
548 		return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip) ? : 1);
549 
550 	/*
551 	 * Allow large block sizes to be reported to userspace programs if the
552 	 * "largeio" mount option is used.
553 	 *
554 	 * If compatibility mode is specified, simply return the basic unit of
555 	 * caching so that we don't get inefficient read/modify/write I/O from
556 	 * user apps. Otherwise....
557 	 *
558 	 * If the underlying volume is a stripe, then return the stripe width in
559 	 * bytes as the recommended I/O size. It is not a stripe and we've set a
560 	 * default buffered I/O size, return that, otherwise return the compat
561 	 * default.
562 	 */
563 	if (xfs_has_large_iosize(mp)) {
564 		if (mp->m_swidth)
565 			return XFS_FSB_TO_B(mp, mp->m_swidth);
566 		if (xfs_has_allocsize(mp))
567 			return 1U << mp->m_allocsize_log;
568 	}
569 
570 	return max_t(uint32_t, PAGE_SIZE, mp->m_sb.sb_blocksize);
571 }
572 
573 STATIC int
574 xfs_vn_getattr(
575 	struct mnt_idmap	*idmap,
576 	const struct path	*path,
577 	struct kstat		*stat,
578 	u32			request_mask,
579 	unsigned int		query_flags)
580 {
581 	struct inode		*inode = d_inode(path->dentry);
582 	struct xfs_inode	*ip = XFS_I(inode);
583 	struct xfs_mount	*mp = ip->i_mount;
584 	vfsuid_t		vfsuid = i_uid_into_vfsuid(idmap, inode);
585 	vfsgid_t		vfsgid = i_gid_into_vfsgid(idmap, inode);
586 
587 	trace_xfs_getattr(ip);
588 
589 	if (xfs_is_shutdown(mp))
590 		return -EIO;
591 
592 	stat->size = XFS_ISIZE(ip);
593 	stat->dev = inode->i_sb->s_dev;
594 	stat->mode = inode->i_mode;
595 	stat->nlink = inode->i_nlink;
596 	stat->uid = vfsuid_into_kuid(vfsuid);
597 	stat->gid = vfsgid_into_kgid(vfsgid);
598 	stat->ino = ip->i_ino;
599 	stat->atime = inode_get_atime(inode);
600 	stat->mtime = inode_get_mtime(inode);
601 	stat->ctime = inode_get_ctime(inode);
602 	stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks);
603 
604 	if (xfs_has_v3inodes(mp)) {
605 		if (request_mask & STATX_BTIME) {
606 			stat->result_mask |= STATX_BTIME;
607 			stat->btime = ip->i_crtime;
608 		}
609 	}
610 
611 	if ((request_mask & STATX_CHANGE_COOKIE) && IS_I_VERSION(inode)) {
612 		stat->change_cookie = inode_query_iversion(inode);
613 		stat->result_mask |= STATX_CHANGE_COOKIE;
614 	}
615 
616 	/*
617 	 * Note: If you add another clause to set an attribute flag, please
618 	 * update attributes_mask below.
619 	 */
620 	if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
621 		stat->attributes |= STATX_ATTR_IMMUTABLE;
622 	if (ip->i_diflags & XFS_DIFLAG_APPEND)
623 		stat->attributes |= STATX_ATTR_APPEND;
624 	if (ip->i_diflags & XFS_DIFLAG_NODUMP)
625 		stat->attributes |= STATX_ATTR_NODUMP;
626 
627 	stat->attributes_mask |= (STATX_ATTR_IMMUTABLE |
628 				  STATX_ATTR_APPEND |
629 				  STATX_ATTR_NODUMP);
630 
631 	switch (inode->i_mode & S_IFMT) {
632 	case S_IFBLK:
633 	case S_IFCHR:
634 		stat->blksize = BLKDEV_IOSIZE;
635 		stat->rdev = inode->i_rdev;
636 		break;
637 	case S_IFREG:
638 		if (request_mask & STATX_DIOALIGN) {
639 			struct xfs_buftarg	*target = xfs_inode_buftarg(ip);
640 			struct block_device	*bdev = target->bt_bdev;
641 
642 			stat->result_mask |= STATX_DIOALIGN;
643 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
644 			stat->dio_offset_align = bdev_logical_block_size(bdev);
645 		}
646 		fallthrough;
647 	default:
648 		stat->blksize = xfs_stat_blksize(ip);
649 		stat->rdev = 0;
650 		break;
651 	}
652 
653 	return 0;
654 }
655 
656 static int
657 xfs_vn_change_ok(
658 	struct mnt_idmap	*idmap,
659 	struct dentry		*dentry,
660 	struct iattr		*iattr)
661 {
662 	struct xfs_mount	*mp = XFS_I(d_inode(dentry))->i_mount;
663 
664 	if (xfs_is_readonly(mp))
665 		return -EROFS;
666 
667 	if (xfs_is_shutdown(mp))
668 		return -EIO;
669 
670 	return setattr_prepare(idmap, dentry, iattr);
671 }
672 
673 /*
674  * Set non-size attributes of an inode.
675  *
676  * Caution: The caller of this function is responsible for calling
677  * setattr_prepare() or otherwise verifying the change is fine.
678  */
679 static int
680 xfs_setattr_nonsize(
681 	struct mnt_idmap	*idmap,
682 	struct dentry		*dentry,
683 	struct xfs_inode	*ip,
684 	struct iattr		*iattr)
685 {
686 	xfs_mount_t		*mp = ip->i_mount;
687 	struct inode		*inode = VFS_I(ip);
688 	int			mask = iattr->ia_valid;
689 	xfs_trans_t		*tp;
690 	int			error;
691 	kuid_t			uid = GLOBAL_ROOT_UID;
692 	kgid_t			gid = GLOBAL_ROOT_GID;
693 	struct xfs_dquot	*udqp = NULL, *gdqp = NULL;
694 	struct xfs_dquot	*old_udqp = NULL, *old_gdqp = NULL;
695 
696 	ASSERT((mask & ATTR_SIZE) == 0);
697 
698 	/*
699 	 * If disk quotas is on, we make sure that the dquots do exist on disk,
700 	 * before we start any other transactions. Trying to do this later
701 	 * is messy. We don't care to take a readlock to look at the ids
702 	 * in inode here, because we can't hold it across the trans_reserve.
703 	 * If the IDs do change before we take the ilock, we're covered
704 	 * because the i_*dquot fields will get updated anyway.
705 	 */
706 	if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
707 		uint	qflags = 0;
708 
709 		if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
710 			uid = from_vfsuid(idmap, i_user_ns(inode),
711 					  iattr->ia_vfsuid);
712 			qflags |= XFS_QMOPT_UQUOTA;
713 		} else {
714 			uid = inode->i_uid;
715 		}
716 		if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
717 			gid = from_vfsgid(idmap, i_user_ns(inode),
718 					  iattr->ia_vfsgid);
719 			qflags |= XFS_QMOPT_GQUOTA;
720 		}  else {
721 			gid = inode->i_gid;
722 		}
723 
724 		/*
725 		 * We take a reference when we initialize udqp and gdqp,
726 		 * so it is important that we never blindly double trip on
727 		 * the same variable. See xfs_create() for an example.
728 		 */
729 		ASSERT(udqp == NULL);
730 		ASSERT(gdqp == NULL);
731 		error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid,
732 					   qflags, &udqp, &gdqp, NULL);
733 		if (error)
734 			return error;
735 	}
736 
737 	error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL,
738 			has_capability_noaudit(current, CAP_FOWNER), &tp);
739 	if (error)
740 		goto out_dqrele;
741 
742 	/*
743 	 * Register quota modifications in the transaction.  Must be the owner
744 	 * or privileged.  These IDs could have changed since we last looked at
745 	 * them.  But, we're assured that if the ownership did change while we
746 	 * didn't have the inode locked, inode's dquot(s) would have changed
747 	 * also.
748 	 */
749 	if (XFS_IS_UQUOTA_ON(mp) &&
750 	    i_uid_needs_update(idmap, iattr, inode)) {
751 		ASSERT(udqp);
752 		old_udqp = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp);
753 	}
754 	if (XFS_IS_GQUOTA_ON(mp) &&
755 	    i_gid_needs_update(idmap, iattr, inode)) {
756 		ASSERT(xfs_has_pquotino(mp) || !XFS_IS_PQUOTA_ON(mp));
757 		ASSERT(gdqp);
758 		old_gdqp = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp);
759 	}
760 
761 	setattr_copy(idmap, inode, iattr);
762 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
763 
764 	XFS_STATS_INC(mp, xs_ig_attrchg);
765 
766 	if (xfs_has_wsync(mp))
767 		xfs_trans_set_sync(tp);
768 	error = xfs_trans_commit(tp);
769 
770 	/*
771 	 * Release any dquot(s) the inode had kept before chown.
772 	 */
773 	xfs_qm_dqrele(old_udqp);
774 	xfs_qm_dqrele(old_gdqp);
775 	xfs_qm_dqrele(udqp);
776 	xfs_qm_dqrele(gdqp);
777 
778 	if (error)
779 		return error;
780 
781 	/*
782 	 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode
783 	 * 	     update.  We could avoid this with linked transactions
784 	 * 	     and passing down the transaction pointer all the way
785 	 *	     to attr_set.  No previous user of the generic
786 	 * 	     Posix ACL code seems to care about this issue either.
787 	 */
788 	if (mask & ATTR_MODE) {
789 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
790 		if (error)
791 			return error;
792 	}
793 
794 	return 0;
795 
796 out_dqrele:
797 	xfs_qm_dqrele(udqp);
798 	xfs_qm_dqrele(gdqp);
799 	return error;
800 }
801 
802 /*
803  * Truncate file.  Must have write permission and not be a directory.
804  *
805  * Caution: The caller of this function is responsible for calling
806  * setattr_prepare() or otherwise verifying the change is fine.
807  */
808 STATIC int
809 xfs_setattr_size(
810 	struct mnt_idmap	*idmap,
811 	struct dentry		*dentry,
812 	struct xfs_inode	*ip,
813 	struct iattr		*iattr)
814 {
815 	struct xfs_mount	*mp = ip->i_mount;
816 	struct inode		*inode = VFS_I(ip);
817 	xfs_off_t		oldsize, newsize;
818 	struct xfs_trans	*tp;
819 	int			error;
820 	uint			lock_flags = 0;
821 	uint			resblks = 0;
822 	bool			did_zeroing = false;
823 
824 	xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
825 	ASSERT(S_ISREG(inode->i_mode));
826 	ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET|
827 		ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0);
828 
829 	oldsize = inode->i_size;
830 	newsize = iattr->ia_size;
831 
832 	/*
833 	 * Short circuit the truncate case for zero length files.
834 	 */
835 	if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) {
836 		if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME)))
837 			return 0;
838 
839 		/*
840 		 * Use the regular setattr path to update the timestamps.
841 		 */
842 		iattr->ia_valid &= ~ATTR_SIZE;
843 		return xfs_setattr_nonsize(idmap, dentry, ip, iattr);
844 	}
845 
846 	/*
847 	 * Make sure that the dquots are attached to the inode.
848 	 */
849 	error = xfs_qm_dqattach(ip);
850 	if (error)
851 		return error;
852 
853 	/*
854 	 * Wait for all direct I/O to complete.
855 	 */
856 	inode_dio_wait(inode);
857 
858 	/*
859 	 * File data changes must be complete before we start the transaction to
860 	 * modify the inode.  This needs to be done before joining the inode to
861 	 * the transaction because the inode cannot be unlocked once it is a
862 	 * part of the transaction.
863 	 *
864 	 * Start with zeroing any data beyond EOF that we may expose on file
865 	 * extension, or zeroing out the rest of the block on a downward
866 	 * truncate.
867 	 */
868 	if (newsize > oldsize) {
869 		trace_xfs_zero_eof(ip, oldsize, newsize - oldsize);
870 		error = xfs_zero_range(ip, oldsize, newsize - oldsize,
871 				&did_zeroing);
872 	} else {
873 		error = xfs_truncate_page(ip, newsize, &did_zeroing);
874 	}
875 
876 	if (error)
877 		return error;
878 
879 	/*
880 	 * We've already locked out new page faults, so now we can safely remove
881 	 * pages from the page cache knowing they won't get refaulted until we
882 	 * drop the XFS_MMAP_EXCL lock after the extent manipulations are
883 	 * complete. The truncate_setsize() call also cleans partial EOF page
884 	 * PTEs on extending truncates and hence ensures sub-page block size
885 	 * filesystems are correctly handled, too.
886 	 *
887 	 * We have to do all the page cache truncate work outside the
888 	 * transaction context as the "lock" order is page lock->log space
889 	 * reservation as defined by extent allocation in the writeback path.
890 	 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but
891 	 * having already truncated the in-memory version of the file (i.e. made
892 	 * user visible changes). There's not much we can do about this, except
893 	 * to hope that the caller sees ENOMEM and retries the truncate
894 	 * operation.
895 	 *
896 	 * And we update in-core i_size and truncate page cache beyond newsize
897 	 * before writeback the [i_disk_size, newsize] range, so we're
898 	 * guaranteed not to write stale data past the new EOF on truncate down.
899 	 */
900 	truncate_setsize(inode, newsize);
901 
902 	/*
903 	 * We are going to log the inode size change in this transaction so
904 	 * any previous writes that are beyond the on disk EOF and the new
905 	 * EOF that have not been written out need to be written here.  If we
906 	 * do not write the data out, we expose ourselves to the null files
907 	 * problem. Note that this includes any block zeroing we did above;
908 	 * otherwise those blocks may not be zeroed after a crash.
909 	 */
910 	if (did_zeroing ||
911 	    (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) {
912 		error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
913 						ip->i_disk_size, newsize - 1);
914 		if (error)
915 			return error;
916 	}
917 
918 	/*
919 	 * For realtime inode with more than one block rtextsize, we need the
920 	 * block reservation for bmap btree block allocations/splits that can
921 	 * happen since it could split the tail written extent and convert the
922 	 * right beyond EOF one to unwritten.
923 	 */
924 	if (xfs_inode_has_bigrtalloc(ip))
925 		resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
926 
927 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
928 				0, 0, &tp);
929 	if (error)
930 		return error;
931 
932 	lock_flags |= XFS_ILOCK_EXCL;
933 	xfs_ilock(ip, XFS_ILOCK_EXCL);
934 	xfs_trans_ijoin(tp, ip, 0);
935 
936 	/*
937 	 * Only change the c/mtime if we are changing the size or we are
938 	 * explicitly asked to change it.  This handles the semantic difference
939 	 * between truncate() and ftruncate() as implemented in the VFS.
940 	 *
941 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
942 	 * special case where we need to update the times despite not having
943 	 * these flags set.  For all other operations the VFS set these flags
944 	 * explicitly if it wants a timestamp update.
945 	 */
946 	if (newsize != oldsize &&
947 	    !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) {
948 		iattr->ia_ctime = iattr->ia_mtime =
949 			current_time(inode);
950 		iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME;
951 	}
952 
953 	/*
954 	 * The first thing we do is set the size to new_size permanently on
955 	 * disk.  This way we don't have to worry about anyone ever being able
956 	 * to look at the data being freed even in the face of a crash.
957 	 * What we're getting around here is the case where we free a block, it
958 	 * is allocated to another file, it is written to, and then we crash.
959 	 * If the new data gets written to the file but the log buffers
960 	 * containing the free and reallocation don't, then we'd end up with
961 	 * garbage in the blocks being freed.  As long as we make the new size
962 	 * permanent before actually freeing any blocks it doesn't matter if
963 	 * they get written to.
964 	 */
965 	ip->i_disk_size = newsize;
966 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
967 
968 	if (newsize <= oldsize) {
969 		error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize);
970 		if (error)
971 			goto out_trans_cancel;
972 
973 		/*
974 		 * Truncated "down", so we're removing references to old data
975 		 * here - if we delay flushing for a long time, we expose
976 		 * ourselves unduly to the notorious NULL files problem.  So,
977 		 * we mark this inode and flush it when the file is closed,
978 		 * and do not wait the usual (long) time for writeout.
979 		 */
980 		xfs_iflags_set(ip, XFS_ITRUNCATED);
981 
982 		/* A truncate down always removes post-EOF blocks. */
983 		xfs_inode_clear_eofblocks_tag(ip);
984 	}
985 
986 	ASSERT(!(iattr->ia_valid & (ATTR_UID | ATTR_GID)));
987 	setattr_copy(idmap, inode, iattr);
988 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
989 
990 	XFS_STATS_INC(mp, xs_ig_attrchg);
991 
992 	if (xfs_has_wsync(mp))
993 		xfs_trans_set_sync(tp);
994 
995 	error = xfs_trans_commit(tp);
996 out_unlock:
997 	if (lock_flags)
998 		xfs_iunlock(ip, lock_flags);
999 	return error;
1000 
1001 out_trans_cancel:
1002 	xfs_trans_cancel(tp);
1003 	goto out_unlock;
1004 }
1005 
1006 int
1007 xfs_vn_setattr_size(
1008 	struct mnt_idmap	*idmap,
1009 	struct dentry		*dentry,
1010 	struct iattr		*iattr)
1011 {
1012 	struct xfs_inode	*ip = XFS_I(d_inode(dentry));
1013 	int error;
1014 
1015 	trace_xfs_setattr(ip);
1016 
1017 	error = xfs_vn_change_ok(idmap, dentry, iattr);
1018 	if (error)
1019 		return error;
1020 	return xfs_setattr_size(idmap, dentry, ip, iattr);
1021 }
1022 
1023 STATIC int
1024 xfs_vn_setattr(
1025 	struct mnt_idmap	*idmap,
1026 	struct dentry		*dentry,
1027 	struct iattr		*iattr)
1028 {
1029 	struct inode		*inode = d_inode(dentry);
1030 	struct xfs_inode	*ip = XFS_I(inode);
1031 	int			error;
1032 
1033 	if (iattr->ia_valid & ATTR_SIZE) {
1034 		uint			iolock;
1035 
1036 		xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1037 		iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1038 
1039 		error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1040 		if (error) {
1041 			xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1042 			return error;
1043 		}
1044 
1045 		error = xfs_vn_setattr_size(idmap, dentry, iattr);
1046 		xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1047 	} else {
1048 		trace_xfs_setattr(ip);
1049 
1050 		error = xfs_vn_change_ok(idmap, dentry, iattr);
1051 		if (!error)
1052 			error = xfs_setattr_nonsize(idmap, dentry, ip, iattr);
1053 	}
1054 
1055 	return error;
1056 }
1057 
1058 STATIC int
1059 xfs_vn_update_time(
1060 	struct inode		*inode,
1061 	int			flags)
1062 {
1063 	struct xfs_inode	*ip = XFS_I(inode);
1064 	struct xfs_mount	*mp = ip->i_mount;
1065 	int			log_flags = XFS_ILOG_TIMESTAMP;
1066 	struct xfs_trans	*tp;
1067 	int			error;
1068 	struct timespec64	now;
1069 
1070 	trace_xfs_update_time(ip);
1071 
1072 	if (inode->i_sb->s_flags & SB_LAZYTIME) {
1073 		if (!((flags & S_VERSION) &&
1074 		      inode_maybe_inc_iversion(inode, false))) {
1075 			generic_update_time(inode, flags);
1076 			return 0;
1077 		}
1078 
1079 		/* Capture the iversion update that just occurred */
1080 		log_flags |= XFS_ILOG_CORE;
1081 	}
1082 
1083 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
1084 	if (error)
1085 		return error;
1086 
1087 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1088 	if (flags & (S_CTIME|S_MTIME))
1089 		now = inode_set_ctime_current(inode);
1090 	else
1091 		now = current_time(inode);
1092 
1093 	if (flags & S_MTIME)
1094 		inode_set_mtime_to_ts(inode, now);
1095 	if (flags & S_ATIME)
1096 		inode_set_atime_to_ts(inode, now);
1097 
1098 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1099 	xfs_trans_log_inode(tp, ip, log_flags);
1100 	return xfs_trans_commit(tp);
1101 }
1102 
1103 STATIC int
1104 xfs_vn_fiemap(
1105 	struct inode		*inode,
1106 	struct fiemap_extent_info *fieinfo,
1107 	u64			start,
1108 	u64			length)
1109 {
1110 	int			error;
1111 
1112 	xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED);
1113 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1114 		fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
1115 		error = iomap_fiemap(inode, fieinfo, start, length,
1116 				&xfs_xattr_iomap_ops);
1117 	} else {
1118 		error = iomap_fiemap(inode, fieinfo, start, length,
1119 				&xfs_read_iomap_ops);
1120 	}
1121 	xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED);
1122 
1123 	return error;
1124 }
1125 
1126 STATIC int
1127 xfs_vn_tmpfile(
1128 	struct mnt_idmap	*idmap,
1129 	struct inode		*dir,
1130 	struct file		*file,
1131 	umode_t			mode)
1132 {
1133 	int err = xfs_generic_create(idmap, dir, file->f_path.dentry, mode, 0, file);
1134 
1135 	return finish_open_simple(file, err);
1136 }
1137 
1138 static const struct inode_operations xfs_inode_operations = {
1139 	.get_inode_acl		= xfs_get_acl,
1140 	.set_acl		= xfs_set_acl,
1141 	.getattr		= xfs_vn_getattr,
1142 	.setattr		= xfs_vn_setattr,
1143 	.listxattr		= xfs_vn_listxattr,
1144 	.fiemap			= xfs_vn_fiemap,
1145 	.update_time		= xfs_vn_update_time,
1146 	.fileattr_get		= xfs_fileattr_get,
1147 	.fileattr_set		= xfs_fileattr_set,
1148 };
1149 
1150 static const struct inode_operations xfs_dir_inode_operations = {
1151 	.create			= xfs_vn_create,
1152 	.lookup			= xfs_vn_lookup,
1153 	.link			= xfs_vn_link,
1154 	.unlink			= xfs_vn_unlink,
1155 	.symlink		= xfs_vn_symlink,
1156 	.mkdir			= xfs_vn_mkdir,
1157 	/*
1158 	 * Yes, XFS uses the same method for rmdir and unlink.
1159 	 *
1160 	 * There are some subtile differences deeper in the code,
1161 	 * but we use S_ISDIR to check for those.
1162 	 */
1163 	.rmdir			= xfs_vn_unlink,
1164 	.mknod			= xfs_vn_mknod,
1165 	.rename			= xfs_vn_rename,
1166 	.get_inode_acl		= xfs_get_acl,
1167 	.set_acl		= xfs_set_acl,
1168 	.getattr		= xfs_vn_getattr,
1169 	.setattr		= xfs_vn_setattr,
1170 	.listxattr		= xfs_vn_listxattr,
1171 	.update_time		= xfs_vn_update_time,
1172 	.tmpfile		= xfs_vn_tmpfile,
1173 	.fileattr_get		= xfs_fileattr_get,
1174 	.fileattr_set		= xfs_fileattr_set,
1175 };
1176 
1177 static const struct inode_operations xfs_dir_ci_inode_operations = {
1178 	.create			= xfs_vn_create,
1179 	.lookup			= xfs_vn_ci_lookup,
1180 	.link			= xfs_vn_link,
1181 	.unlink			= xfs_vn_unlink,
1182 	.symlink		= xfs_vn_symlink,
1183 	.mkdir			= xfs_vn_mkdir,
1184 	/*
1185 	 * Yes, XFS uses the same method for rmdir and unlink.
1186 	 *
1187 	 * There are some subtile differences deeper in the code,
1188 	 * but we use S_ISDIR to check for those.
1189 	 */
1190 	.rmdir			= xfs_vn_unlink,
1191 	.mknod			= xfs_vn_mknod,
1192 	.rename			= xfs_vn_rename,
1193 	.get_inode_acl		= xfs_get_acl,
1194 	.set_acl		= xfs_set_acl,
1195 	.getattr		= xfs_vn_getattr,
1196 	.setattr		= xfs_vn_setattr,
1197 	.listxattr		= xfs_vn_listxattr,
1198 	.update_time		= xfs_vn_update_time,
1199 	.tmpfile		= xfs_vn_tmpfile,
1200 	.fileattr_get		= xfs_fileattr_get,
1201 	.fileattr_set		= xfs_fileattr_set,
1202 };
1203 
1204 static const struct inode_operations xfs_symlink_inode_operations = {
1205 	.get_link		= xfs_vn_get_link,
1206 	.getattr		= xfs_vn_getattr,
1207 	.setattr		= xfs_vn_setattr,
1208 	.listxattr		= xfs_vn_listxattr,
1209 	.update_time		= xfs_vn_update_time,
1210 };
1211 
1212 /* Figure out if this file actually supports DAX. */
1213 static bool
1214 xfs_inode_supports_dax(
1215 	struct xfs_inode	*ip)
1216 {
1217 	struct xfs_mount	*mp = ip->i_mount;
1218 
1219 	/* Only supported on regular files. */
1220 	if (!S_ISREG(VFS_I(ip)->i_mode))
1221 		return false;
1222 
1223 	/* Block size must match page size */
1224 	if (mp->m_sb.sb_blocksize != PAGE_SIZE)
1225 		return false;
1226 
1227 	/* Device has to support DAX too. */
1228 	return xfs_inode_buftarg(ip)->bt_daxdev != NULL;
1229 }
1230 
1231 static bool
1232 xfs_inode_should_enable_dax(
1233 	struct xfs_inode *ip)
1234 {
1235 	if (!IS_ENABLED(CONFIG_FS_DAX))
1236 		return false;
1237 	if (xfs_has_dax_never(ip->i_mount))
1238 		return false;
1239 	if (!xfs_inode_supports_dax(ip))
1240 		return false;
1241 	if (xfs_has_dax_always(ip->i_mount))
1242 		return true;
1243 	if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
1244 		return true;
1245 	return false;
1246 }
1247 
1248 void
1249 xfs_diflags_to_iflags(
1250 	struct xfs_inode	*ip,
1251 	bool init)
1252 {
1253 	struct inode            *inode = VFS_I(ip);
1254 	unsigned int            xflags = xfs_ip2xflags(ip);
1255 	unsigned int            flags = 0;
1256 
1257 	ASSERT(!(IS_DAX(inode) && init));
1258 
1259 	if (xflags & FS_XFLAG_IMMUTABLE)
1260 		flags |= S_IMMUTABLE;
1261 	if (xflags & FS_XFLAG_APPEND)
1262 		flags |= S_APPEND;
1263 	if (xflags & FS_XFLAG_SYNC)
1264 		flags |= S_SYNC;
1265 	if (xflags & FS_XFLAG_NOATIME)
1266 		flags |= S_NOATIME;
1267 	if (init && xfs_inode_should_enable_dax(ip))
1268 		flags |= S_DAX;
1269 
1270 	/*
1271 	 * S_DAX can only be set during inode initialization and is never set by
1272 	 * the VFS, so we cannot mask off S_DAX in i_flags.
1273 	 */
1274 	inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME);
1275 	inode->i_flags |= flags;
1276 }
1277 
1278 /*
1279  * Initialize the Linux inode.
1280  *
1281  * When reading existing inodes from disk this is called directly from xfs_iget,
1282  * when creating a new inode it is called from xfs_init_new_inode after setting
1283  * up the inode. These callers have different criteria for clearing XFS_INEW, so
1284  * leave it up to the caller to deal with unlocking the inode appropriately.
1285  */
1286 void
1287 xfs_setup_inode(
1288 	struct xfs_inode	*ip)
1289 {
1290 	struct inode		*inode = &ip->i_vnode;
1291 	gfp_t			gfp_mask;
1292 
1293 	inode->i_ino = ip->i_ino;
1294 	inode->i_state |= I_NEW;
1295 
1296 	inode_sb_list_add(inode);
1297 	/* make the inode look hashed for the writeback code */
1298 	inode_fake_hash(inode);
1299 
1300 	i_size_write(inode, ip->i_disk_size);
1301 	xfs_diflags_to_iflags(ip, true);
1302 
1303 	if (S_ISDIR(inode->i_mode)) {
1304 		/*
1305 		 * We set the i_rwsem class here to avoid potential races with
1306 		 * lockdep_annotate_inode_mutex_key() reinitialising the lock
1307 		 * after a filehandle lookup has already found the inode in
1308 		 * cache before it has been unlocked via unlock_new_inode().
1309 		 */
1310 		lockdep_set_class(&inode->i_rwsem,
1311 				  &inode->i_sb->s_type->i_mutex_dir_key);
1312 		lockdep_set_class(&ip->i_lock, &xfs_dir_ilock_class);
1313 	} else {
1314 		lockdep_set_class(&ip->i_lock, &xfs_nondir_ilock_class);
1315 	}
1316 
1317 	/*
1318 	 * Ensure all page cache allocations are done from GFP_NOFS context to
1319 	 * prevent direct reclaim recursion back into the filesystem and blowing
1320 	 * stacks or deadlocking.
1321 	 */
1322 	gfp_mask = mapping_gfp_mask(inode->i_mapping);
1323 	mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS)));
1324 
1325 	/*
1326 	 * For real-time inodes update the stable write flags to that of the RT
1327 	 * device instead of the data device.
1328 	 */
1329 	if (S_ISREG(inode->i_mode) && XFS_IS_REALTIME_INODE(ip))
1330 		xfs_update_stable_writes(ip);
1331 
1332 	/*
1333 	 * If there is no attribute fork no ACL can exist on this inode,
1334 	 * and it can't have any file capabilities attached to it either.
1335 	 */
1336 	if (!xfs_inode_has_attr_fork(ip)) {
1337 		inode_has_no_xattr(inode);
1338 		cache_no_acl(inode);
1339 	}
1340 }
1341 
1342 void
1343 xfs_setup_iops(
1344 	struct xfs_inode	*ip)
1345 {
1346 	struct inode		*inode = &ip->i_vnode;
1347 
1348 	switch (inode->i_mode & S_IFMT) {
1349 	case S_IFREG:
1350 		inode->i_op = &xfs_inode_operations;
1351 		inode->i_fop = &xfs_file_operations;
1352 		if (IS_DAX(inode))
1353 			inode->i_mapping->a_ops = &xfs_dax_aops;
1354 		else
1355 			inode->i_mapping->a_ops = &xfs_address_space_operations;
1356 		break;
1357 	case S_IFDIR:
1358 		if (xfs_has_asciici(XFS_M(inode->i_sb)))
1359 			inode->i_op = &xfs_dir_ci_inode_operations;
1360 		else
1361 			inode->i_op = &xfs_dir_inode_operations;
1362 		inode->i_fop = &xfs_dir_file_operations;
1363 		break;
1364 	case S_IFLNK:
1365 		inode->i_op = &xfs_symlink_inode_operations;
1366 		break;
1367 	default:
1368 		inode->i_op = &xfs_inode_operations;
1369 		init_special_inode(inode, inode->i_mode, inode->i_rdev);
1370 		break;
1371 	}
1372 }
1373