xref: /linux/fs/xfs/xfs_iops.c (revision 57985788158a5a6b77612e531b9d89bcad06e47c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_acl.h"
15 #include "xfs_quota.h"
16 #include "xfs_attr.h"
17 #include "xfs_trans.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_symlink.h"
21 #include "xfs_dir2.h"
22 #include "xfs_iomap.h"
23 #include "xfs_error.h"
24 
25 #include <linux/posix_acl.h>
26 #include <linux/security.h>
27 #include <linux/iversion.h>
28 #include <linux/fiemap.h>
29 
30 /*
31  * Directories have different lock order w.r.t. mmap_lock compared to regular
32  * files. This is due to readdir potentially triggering page faults on a user
33  * buffer inside filldir(), and this happens with the ilock on the directory
34  * held. For regular files, the lock order is the other way around - the
35  * mmap_lock is taken during the page fault, and then we lock the ilock to do
36  * block mapping. Hence we need a different class for the directory ilock so
37  * that lockdep can tell them apart.
38  */
39 static struct lock_class_key xfs_nondir_ilock_class;
40 static struct lock_class_key xfs_dir_ilock_class;
41 
42 static int
43 xfs_initxattrs(
44 	struct inode		*inode,
45 	const struct xattr	*xattr_array,
46 	void			*fs_info)
47 {
48 	const struct xattr	*xattr;
49 	struct xfs_inode	*ip = XFS_I(inode);
50 	int			error = 0;
51 
52 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
53 		struct xfs_da_args	args = {
54 			.dp		= ip,
55 			.attr_filter	= XFS_ATTR_SECURE,
56 			.name		= xattr->name,
57 			.namelen	= strlen(xattr->name),
58 			.value		= xattr->value,
59 			.valuelen	= xattr->value_len,
60 		};
61 		error = xfs_attr_set(&args);
62 		if (error < 0)
63 			break;
64 	}
65 	return error;
66 }
67 
68 /*
69  * Hook in SELinux.  This is not quite correct yet, what we really need
70  * here (as we do for default ACLs) is a mechanism by which creation of
71  * these attrs can be journalled at inode creation time (along with the
72  * inode, of course, such that log replay can't cause these to be lost).
73  */
74 
75 STATIC int
76 xfs_init_security(
77 	struct inode	*inode,
78 	struct inode	*dir,
79 	const struct qstr *qstr)
80 {
81 	return security_inode_init_security(inode, dir, qstr,
82 					     &xfs_initxattrs, NULL);
83 }
84 
85 static void
86 xfs_dentry_to_name(
87 	struct xfs_name	*namep,
88 	struct dentry	*dentry)
89 {
90 	namep->name = dentry->d_name.name;
91 	namep->len = dentry->d_name.len;
92 	namep->type = XFS_DIR3_FT_UNKNOWN;
93 }
94 
95 static int
96 xfs_dentry_mode_to_name(
97 	struct xfs_name	*namep,
98 	struct dentry	*dentry,
99 	int		mode)
100 {
101 	namep->name = dentry->d_name.name;
102 	namep->len = dentry->d_name.len;
103 	namep->type = xfs_mode_to_ftype(mode);
104 
105 	if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN))
106 		return -EFSCORRUPTED;
107 
108 	return 0;
109 }
110 
111 STATIC void
112 xfs_cleanup_inode(
113 	struct inode	*dir,
114 	struct inode	*inode,
115 	struct dentry	*dentry)
116 {
117 	struct xfs_name	teardown;
118 
119 	/* Oh, the horror.
120 	 * If we can't add the ACL or we fail in
121 	 * xfs_init_security we must back out.
122 	 * ENOSPC can hit here, among other things.
123 	 */
124 	xfs_dentry_to_name(&teardown, dentry);
125 
126 	xfs_remove(XFS_I(dir), &teardown, XFS_I(inode));
127 }
128 
129 STATIC int
130 xfs_generic_create(
131 	struct inode	*dir,
132 	struct dentry	*dentry,
133 	umode_t		mode,
134 	dev_t		rdev,
135 	bool		tmpfile)	/* unnamed file */
136 {
137 	struct inode	*inode;
138 	struct xfs_inode *ip = NULL;
139 	struct posix_acl *default_acl, *acl;
140 	struct xfs_name	name;
141 	int		error;
142 
143 	/*
144 	 * Irix uses Missed'em'V split, but doesn't want to see
145 	 * the upper 5 bits of (14bit) major.
146 	 */
147 	if (S_ISCHR(mode) || S_ISBLK(mode)) {
148 		if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff))
149 			return -EINVAL;
150 	} else {
151 		rdev = 0;
152 	}
153 
154 	error = posix_acl_create(dir, &mode, &default_acl, &acl);
155 	if (error)
156 		return error;
157 
158 	/* Verify mode is valid also for tmpfile case */
159 	error = xfs_dentry_mode_to_name(&name, dentry, mode);
160 	if (unlikely(error))
161 		goto out_free_acl;
162 
163 	if (!tmpfile) {
164 		error = xfs_create(XFS_I(dir), &name, mode, rdev, &ip);
165 	} else {
166 		error = xfs_create_tmpfile(XFS_I(dir), mode, &ip);
167 	}
168 	if (unlikely(error))
169 		goto out_free_acl;
170 
171 	inode = VFS_I(ip);
172 
173 	error = xfs_init_security(inode, dir, &dentry->d_name);
174 	if (unlikely(error))
175 		goto out_cleanup_inode;
176 
177 #ifdef CONFIG_XFS_POSIX_ACL
178 	if (default_acl) {
179 		error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
180 		if (error)
181 			goto out_cleanup_inode;
182 	}
183 	if (acl) {
184 		error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS);
185 		if (error)
186 			goto out_cleanup_inode;
187 	}
188 #endif
189 
190 	xfs_setup_iops(ip);
191 
192 	if (tmpfile) {
193 		/*
194 		 * The VFS requires that any inode fed to d_tmpfile must have
195 		 * nlink == 1 so that it can decrement the nlink in d_tmpfile.
196 		 * However, we created the temp file with nlink == 0 because
197 		 * we're not allowed to put an inode with nlink > 0 on the
198 		 * unlinked list.  Therefore we have to set nlink to 1 so that
199 		 * d_tmpfile can immediately set it back to zero.
200 		 */
201 		set_nlink(inode, 1);
202 		d_tmpfile(dentry, inode);
203 	} else
204 		d_instantiate(dentry, inode);
205 
206 	xfs_finish_inode_setup(ip);
207 
208  out_free_acl:
209 	posix_acl_release(default_acl);
210 	posix_acl_release(acl);
211 	return error;
212 
213  out_cleanup_inode:
214 	xfs_finish_inode_setup(ip);
215 	if (!tmpfile)
216 		xfs_cleanup_inode(dir, inode, dentry);
217 	xfs_irele(ip);
218 	goto out_free_acl;
219 }
220 
221 STATIC int
222 xfs_vn_mknod(
223 	struct inode	*dir,
224 	struct dentry	*dentry,
225 	umode_t		mode,
226 	dev_t		rdev)
227 {
228 	return xfs_generic_create(dir, dentry, mode, rdev, false);
229 }
230 
231 STATIC int
232 xfs_vn_create(
233 	struct inode	*dir,
234 	struct dentry	*dentry,
235 	umode_t		mode,
236 	bool		flags)
237 {
238 	return xfs_generic_create(dir, dentry, mode, 0, false);
239 }
240 
241 STATIC int
242 xfs_vn_mkdir(
243 	struct inode	*dir,
244 	struct dentry	*dentry,
245 	umode_t		mode)
246 {
247 	return xfs_generic_create(dir, dentry, mode | S_IFDIR, 0, false);
248 }
249 
250 STATIC struct dentry *
251 xfs_vn_lookup(
252 	struct inode	*dir,
253 	struct dentry	*dentry,
254 	unsigned int flags)
255 {
256 	struct inode *inode;
257 	struct xfs_inode *cip;
258 	struct xfs_name	name;
259 	int		error;
260 
261 	if (dentry->d_name.len >= MAXNAMELEN)
262 		return ERR_PTR(-ENAMETOOLONG);
263 
264 	xfs_dentry_to_name(&name, dentry);
265 	error = xfs_lookup(XFS_I(dir), &name, &cip, NULL);
266 	if (likely(!error))
267 		inode = VFS_I(cip);
268 	else if (likely(error == -ENOENT))
269 		inode = NULL;
270 	else
271 		inode = ERR_PTR(error);
272 	return d_splice_alias(inode, dentry);
273 }
274 
275 STATIC struct dentry *
276 xfs_vn_ci_lookup(
277 	struct inode	*dir,
278 	struct dentry	*dentry,
279 	unsigned int flags)
280 {
281 	struct xfs_inode *ip;
282 	struct xfs_name	xname;
283 	struct xfs_name ci_name;
284 	struct qstr	dname;
285 	int		error;
286 
287 	if (dentry->d_name.len >= MAXNAMELEN)
288 		return ERR_PTR(-ENAMETOOLONG);
289 
290 	xfs_dentry_to_name(&xname, dentry);
291 	error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name);
292 	if (unlikely(error)) {
293 		if (unlikely(error != -ENOENT))
294 			return ERR_PTR(error);
295 		/*
296 		 * call d_add(dentry, NULL) here when d_drop_negative_children
297 		 * is called in xfs_vn_mknod (ie. allow negative dentries
298 		 * with CI filesystems).
299 		 */
300 		return NULL;
301 	}
302 
303 	/* if exact match, just splice and exit */
304 	if (!ci_name.name)
305 		return d_splice_alias(VFS_I(ip), dentry);
306 
307 	/* else case-insensitive match... */
308 	dname.name = ci_name.name;
309 	dname.len = ci_name.len;
310 	dentry = d_add_ci(dentry, VFS_I(ip), &dname);
311 	kmem_free(ci_name.name);
312 	return dentry;
313 }
314 
315 STATIC int
316 xfs_vn_link(
317 	struct dentry	*old_dentry,
318 	struct inode	*dir,
319 	struct dentry	*dentry)
320 {
321 	struct inode	*inode = d_inode(old_dentry);
322 	struct xfs_name	name;
323 	int		error;
324 
325 	error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode);
326 	if (unlikely(error))
327 		return error;
328 
329 	error = xfs_link(XFS_I(dir), XFS_I(inode), &name);
330 	if (unlikely(error))
331 		return error;
332 
333 	ihold(inode);
334 	d_instantiate(dentry, inode);
335 	return 0;
336 }
337 
338 STATIC int
339 xfs_vn_unlink(
340 	struct inode	*dir,
341 	struct dentry	*dentry)
342 {
343 	struct xfs_name	name;
344 	int		error;
345 
346 	xfs_dentry_to_name(&name, dentry);
347 
348 	error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry)));
349 	if (error)
350 		return error;
351 
352 	/*
353 	 * With unlink, the VFS makes the dentry "negative": no inode,
354 	 * but still hashed. This is incompatible with case-insensitive
355 	 * mode, so invalidate (unhash) the dentry in CI-mode.
356 	 */
357 	if (xfs_sb_version_hasasciici(&XFS_M(dir->i_sb)->m_sb))
358 		d_invalidate(dentry);
359 	return 0;
360 }
361 
362 STATIC int
363 xfs_vn_symlink(
364 	struct inode	*dir,
365 	struct dentry	*dentry,
366 	const char	*symname)
367 {
368 	struct inode	*inode;
369 	struct xfs_inode *cip = NULL;
370 	struct xfs_name	name;
371 	int		error;
372 	umode_t		mode;
373 
374 	mode = S_IFLNK |
375 		(irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO);
376 	error = xfs_dentry_mode_to_name(&name, dentry, mode);
377 	if (unlikely(error))
378 		goto out;
379 
380 	error = xfs_symlink(XFS_I(dir), &name, symname, mode, &cip);
381 	if (unlikely(error))
382 		goto out;
383 
384 	inode = VFS_I(cip);
385 
386 	error = xfs_init_security(inode, dir, &dentry->d_name);
387 	if (unlikely(error))
388 		goto out_cleanup_inode;
389 
390 	xfs_setup_iops(cip);
391 
392 	d_instantiate(dentry, inode);
393 	xfs_finish_inode_setup(cip);
394 	return 0;
395 
396  out_cleanup_inode:
397 	xfs_finish_inode_setup(cip);
398 	xfs_cleanup_inode(dir, inode, dentry);
399 	xfs_irele(cip);
400  out:
401 	return error;
402 }
403 
404 STATIC int
405 xfs_vn_rename(
406 	struct inode	*odir,
407 	struct dentry	*odentry,
408 	struct inode	*ndir,
409 	struct dentry	*ndentry,
410 	unsigned int	flags)
411 {
412 	struct inode	*new_inode = d_inode(ndentry);
413 	int		omode = 0;
414 	int		error;
415 	struct xfs_name	oname;
416 	struct xfs_name	nname;
417 
418 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
419 		return -EINVAL;
420 
421 	/* if we are exchanging files, we need to set i_mode of both files */
422 	if (flags & RENAME_EXCHANGE)
423 		omode = d_inode(ndentry)->i_mode;
424 
425 	error = xfs_dentry_mode_to_name(&oname, odentry, omode);
426 	if (omode && unlikely(error))
427 		return error;
428 
429 	error = xfs_dentry_mode_to_name(&nname, ndentry,
430 					d_inode(odentry)->i_mode);
431 	if (unlikely(error))
432 		return error;
433 
434 	return xfs_rename(XFS_I(odir), &oname, XFS_I(d_inode(odentry)),
435 			  XFS_I(ndir), &nname,
436 			  new_inode ? XFS_I(new_inode) : NULL, flags);
437 }
438 
439 /*
440  * careful here - this function can get called recursively, so
441  * we need to be very careful about how much stack we use.
442  * uio is kmalloced for this reason...
443  */
444 STATIC const char *
445 xfs_vn_get_link(
446 	struct dentry		*dentry,
447 	struct inode		*inode,
448 	struct delayed_call	*done)
449 {
450 	char			*link;
451 	int			error = -ENOMEM;
452 
453 	if (!dentry)
454 		return ERR_PTR(-ECHILD);
455 
456 	link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL);
457 	if (!link)
458 		goto out_err;
459 
460 	error = xfs_readlink(XFS_I(d_inode(dentry)), link);
461 	if (unlikely(error))
462 		goto out_kfree;
463 
464 	set_delayed_call(done, kfree_link, link);
465 	return link;
466 
467  out_kfree:
468 	kfree(link);
469  out_err:
470 	return ERR_PTR(error);
471 }
472 
473 STATIC const char *
474 xfs_vn_get_link_inline(
475 	struct dentry		*dentry,
476 	struct inode		*inode,
477 	struct delayed_call	*done)
478 {
479 	struct xfs_inode	*ip = XFS_I(inode);
480 	char			*link;
481 
482 	ASSERT(ip->i_df.if_flags & XFS_IFINLINE);
483 
484 	/*
485 	 * The VFS crashes on a NULL pointer, so return -EFSCORRUPTED if
486 	 * if_data is junk.
487 	 */
488 	link = ip->i_df.if_u1.if_data;
489 	if (XFS_IS_CORRUPT(ip->i_mount, !link))
490 		return ERR_PTR(-EFSCORRUPTED);
491 	return link;
492 }
493 
494 static uint32_t
495 xfs_stat_blksize(
496 	struct xfs_inode	*ip)
497 {
498 	struct xfs_mount	*mp = ip->i_mount;
499 
500 	/*
501 	 * If the file blocks are being allocated from a realtime volume, then
502 	 * always return the realtime extent size.
503 	 */
504 	if (XFS_IS_REALTIME_INODE(ip))
505 		return xfs_get_extsz_hint(ip) << mp->m_sb.sb_blocklog;
506 
507 	/*
508 	 * Allow large block sizes to be reported to userspace programs if the
509 	 * "largeio" mount option is used.
510 	 *
511 	 * If compatibility mode is specified, simply return the basic unit of
512 	 * caching so that we don't get inefficient read/modify/write I/O from
513 	 * user apps. Otherwise....
514 	 *
515 	 * If the underlying volume is a stripe, then return the stripe width in
516 	 * bytes as the recommended I/O size. It is not a stripe and we've set a
517 	 * default buffered I/O size, return that, otherwise return the compat
518 	 * default.
519 	 */
520 	if (mp->m_flags & XFS_MOUNT_LARGEIO) {
521 		if (mp->m_swidth)
522 			return mp->m_swidth << mp->m_sb.sb_blocklog;
523 		if (mp->m_flags & XFS_MOUNT_ALLOCSIZE)
524 			return 1U << mp->m_allocsize_log;
525 	}
526 
527 	return PAGE_SIZE;
528 }
529 
530 STATIC int
531 xfs_vn_getattr(
532 	const struct path	*path,
533 	struct kstat		*stat,
534 	u32			request_mask,
535 	unsigned int		query_flags)
536 {
537 	struct inode		*inode = d_inode(path->dentry);
538 	struct xfs_inode	*ip = XFS_I(inode);
539 	struct xfs_mount	*mp = ip->i_mount;
540 
541 	trace_xfs_getattr(ip);
542 
543 	if (XFS_FORCED_SHUTDOWN(mp))
544 		return -EIO;
545 
546 	stat->size = XFS_ISIZE(ip);
547 	stat->dev = inode->i_sb->s_dev;
548 	stat->mode = inode->i_mode;
549 	stat->nlink = inode->i_nlink;
550 	stat->uid = inode->i_uid;
551 	stat->gid = inode->i_gid;
552 	stat->ino = ip->i_ino;
553 	stat->atime = inode->i_atime;
554 	stat->mtime = inode->i_mtime;
555 	stat->ctime = inode->i_ctime;
556 	stat->blocks =
557 		XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
558 
559 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
560 		if (request_mask & STATX_BTIME) {
561 			stat->result_mask |= STATX_BTIME;
562 			stat->btime = ip->i_d.di_crtime;
563 		}
564 	}
565 
566 	/*
567 	 * Note: If you add another clause to set an attribute flag, please
568 	 * update attributes_mask below.
569 	 */
570 	if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
571 		stat->attributes |= STATX_ATTR_IMMUTABLE;
572 	if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
573 		stat->attributes |= STATX_ATTR_APPEND;
574 	if (ip->i_d.di_flags & XFS_DIFLAG_NODUMP)
575 		stat->attributes |= STATX_ATTR_NODUMP;
576 
577 	stat->attributes_mask |= (STATX_ATTR_IMMUTABLE |
578 				  STATX_ATTR_APPEND |
579 				  STATX_ATTR_NODUMP);
580 
581 	switch (inode->i_mode & S_IFMT) {
582 	case S_IFBLK:
583 	case S_IFCHR:
584 		stat->blksize = BLKDEV_IOSIZE;
585 		stat->rdev = inode->i_rdev;
586 		break;
587 	default:
588 		stat->blksize = xfs_stat_blksize(ip);
589 		stat->rdev = 0;
590 		break;
591 	}
592 
593 	return 0;
594 }
595 
596 static void
597 xfs_setattr_mode(
598 	struct xfs_inode	*ip,
599 	struct iattr		*iattr)
600 {
601 	struct inode		*inode = VFS_I(ip);
602 	umode_t			mode = iattr->ia_mode;
603 
604 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
605 
606 	inode->i_mode &= S_IFMT;
607 	inode->i_mode |= mode & ~S_IFMT;
608 }
609 
610 void
611 xfs_setattr_time(
612 	struct xfs_inode	*ip,
613 	struct iattr		*iattr)
614 {
615 	struct inode		*inode = VFS_I(ip);
616 
617 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
618 
619 	if (iattr->ia_valid & ATTR_ATIME)
620 		inode->i_atime = iattr->ia_atime;
621 	if (iattr->ia_valid & ATTR_CTIME)
622 		inode->i_ctime = iattr->ia_ctime;
623 	if (iattr->ia_valid & ATTR_MTIME)
624 		inode->i_mtime = iattr->ia_mtime;
625 }
626 
627 static int
628 xfs_vn_change_ok(
629 	struct dentry	*dentry,
630 	struct iattr	*iattr)
631 {
632 	struct xfs_mount	*mp = XFS_I(d_inode(dentry))->i_mount;
633 
634 	if (mp->m_flags & XFS_MOUNT_RDONLY)
635 		return -EROFS;
636 
637 	if (XFS_FORCED_SHUTDOWN(mp))
638 		return -EIO;
639 
640 	return setattr_prepare(dentry, iattr);
641 }
642 
643 /*
644  * Set non-size attributes of an inode.
645  *
646  * Caution: The caller of this function is responsible for calling
647  * setattr_prepare() or otherwise verifying the change is fine.
648  */
649 static int
650 xfs_setattr_nonsize(
651 	struct xfs_inode	*ip,
652 	struct iattr		*iattr)
653 {
654 	xfs_mount_t		*mp = ip->i_mount;
655 	struct inode		*inode = VFS_I(ip);
656 	int			mask = iattr->ia_valid;
657 	xfs_trans_t		*tp;
658 	int			error;
659 	kuid_t			uid = GLOBAL_ROOT_UID, iuid = GLOBAL_ROOT_UID;
660 	kgid_t			gid = GLOBAL_ROOT_GID, igid = GLOBAL_ROOT_GID;
661 	struct xfs_dquot	*udqp = NULL, *gdqp = NULL;
662 	struct xfs_dquot	*olddquot1 = NULL, *olddquot2 = NULL;
663 
664 	ASSERT((mask & ATTR_SIZE) == 0);
665 
666 	/*
667 	 * If disk quotas is on, we make sure that the dquots do exist on disk,
668 	 * before we start any other transactions. Trying to do this later
669 	 * is messy. We don't care to take a readlock to look at the ids
670 	 * in inode here, because we can't hold it across the trans_reserve.
671 	 * If the IDs do change before we take the ilock, we're covered
672 	 * because the i_*dquot fields will get updated anyway.
673 	 */
674 	if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
675 		uint	qflags = 0;
676 
677 		if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
678 			uid = iattr->ia_uid;
679 			qflags |= XFS_QMOPT_UQUOTA;
680 		} else {
681 			uid = inode->i_uid;
682 		}
683 		if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
684 			gid = iattr->ia_gid;
685 			qflags |= XFS_QMOPT_GQUOTA;
686 		}  else {
687 			gid = inode->i_gid;
688 		}
689 
690 		/*
691 		 * We take a reference when we initialize udqp and gdqp,
692 		 * so it is important that we never blindly double trip on
693 		 * the same variable. See xfs_create() for an example.
694 		 */
695 		ASSERT(udqp == NULL);
696 		ASSERT(gdqp == NULL);
697 		error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_d.di_projid,
698 					   qflags, &udqp, &gdqp, NULL);
699 		if (error)
700 			return error;
701 	}
702 
703 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
704 	if (error)
705 		goto out_dqrele;
706 
707 	xfs_ilock(ip, XFS_ILOCK_EXCL);
708 	xfs_trans_ijoin(tp, ip, 0);
709 
710 	/*
711 	 * Change file ownership.  Must be the owner or privileged.
712 	 */
713 	if (mask & (ATTR_UID|ATTR_GID)) {
714 		/*
715 		 * These IDs could have changed since we last looked at them.
716 		 * But, we're assured that if the ownership did change
717 		 * while we didn't have the inode locked, inode's dquot(s)
718 		 * would have changed also.
719 		 */
720 		iuid = inode->i_uid;
721 		igid = inode->i_gid;
722 		gid = (mask & ATTR_GID) ? iattr->ia_gid : igid;
723 		uid = (mask & ATTR_UID) ? iattr->ia_uid : iuid;
724 
725 		/*
726 		 * Do a quota reservation only if uid/gid is actually
727 		 * going to change.
728 		 */
729 		if (XFS_IS_QUOTA_RUNNING(mp) &&
730 		    ((XFS_IS_UQUOTA_ON(mp) && !uid_eq(iuid, uid)) ||
731 		     (XFS_IS_GQUOTA_ON(mp) && !gid_eq(igid, gid)))) {
732 			ASSERT(tp);
733 			error = xfs_qm_vop_chown_reserve(tp, ip, udqp, gdqp,
734 						NULL, capable(CAP_FOWNER) ?
735 						XFS_QMOPT_FORCE_RES : 0);
736 			if (error)	/* out of quota */
737 				goto out_cancel;
738 		}
739 
740 		/*
741 		 * CAP_FSETID overrides the following restrictions:
742 		 *
743 		 * The set-user-ID and set-group-ID bits of a file will be
744 		 * cleared upon successful return from chown()
745 		 */
746 		if ((inode->i_mode & (S_ISUID|S_ISGID)) &&
747 		    !capable(CAP_FSETID))
748 			inode->i_mode &= ~(S_ISUID|S_ISGID);
749 
750 		/*
751 		 * Change the ownerships and register quota modifications
752 		 * in the transaction.
753 		 */
754 		if (!uid_eq(iuid, uid)) {
755 			if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_UQUOTA_ON(mp)) {
756 				ASSERT(mask & ATTR_UID);
757 				ASSERT(udqp);
758 				olddquot1 = xfs_qm_vop_chown(tp, ip,
759 							&ip->i_udquot, udqp);
760 			}
761 			inode->i_uid = uid;
762 		}
763 		if (!gid_eq(igid, gid)) {
764 			if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_GQUOTA_ON(mp)) {
765 				ASSERT(xfs_sb_version_has_pquotino(&mp->m_sb) ||
766 				       !XFS_IS_PQUOTA_ON(mp));
767 				ASSERT(mask & ATTR_GID);
768 				ASSERT(gdqp);
769 				olddquot2 = xfs_qm_vop_chown(tp, ip,
770 							&ip->i_gdquot, gdqp);
771 			}
772 			inode->i_gid = gid;
773 		}
774 	}
775 
776 	if (mask & ATTR_MODE)
777 		xfs_setattr_mode(ip, iattr);
778 	if (mask & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME))
779 		xfs_setattr_time(ip, iattr);
780 
781 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
782 
783 	XFS_STATS_INC(mp, xs_ig_attrchg);
784 
785 	if (mp->m_flags & XFS_MOUNT_WSYNC)
786 		xfs_trans_set_sync(tp);
787 	error = xfs_trans_commit(tp);
788 
789 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
790 
791 	/*
792 	 * Release any dquot(s) the inode had kept before chown.
793 	 */
794 	xfs_qm_dqrele(olddquot1);
795 	xfs_qm_dqrele(olddquot2);
796 	xfs_qm_dqrele(udqp);
797 	xfs_qm_dqrele(gdqp);
798 
799 	if (error)
800 		return error;
801 
802 	/*
803 	 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode
804 	 * 	     update.  We could avoid this with linked transactions
805 	 * 	     and passing down the transaction pointer all the way
806 	 *	     to attr_set.  No previous user of the generic
807 	 * 	     Posix ACL code seems to care about this issue either.
808 	 */
809 	if (mask & ATTR_MODE) {
810 		error = posix_acl_chmod(inode, inode->i_mode);
811 		if (error)
812 			return error;
813 	}
814 
815 	return 0;
816 
817 out_cancel:
818 	xfs_trans_cancel(tp);
819 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
820 out_dqrele:
821 	xfs_qm_dqrele(udqp);
822 	xfs_qm_dqrele(gdqp);
823 	return error;
824 }
825 
826 /*
827  * Truncate file.  Must have write permission and not be a directory.
828  *
829  * Caution: The caller of this function is responsible for calling
830  * setattr_prepare() or otherwise verifying the change is fine.
831  */
832 STATIC int
833 xfs_setattr_size(
834 	struct xfs_inode	*ip,
835 	struct iattr		*iattr)
836 {
837 	struct xfs_mount	*mp = ip->i_mount;
838 	struct inode		*inode = VFS_I(ip);
839 	xfs_off_t		oldsize, newsize;
840 	struct xfs_trans	*tp;
841 	int			error;
842 	uint			lock_flags = 0;
843 	bool			did_zeroing = false;
844 
845 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
846 	ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
847 	ASSERT(S_ISREG(inode->i_mode));
848 	ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET|
849 		ATTR_MTIME_SET|ATTR_KILL_PRIV|ATTR_TIMES_SET)) == 0);
850 
851 	oldsize = inode->i_size;
852 	newsize = iattr->ia_size;
853 
854 	/*
855 	 * Short circuit the truncate case for zero length files.
856 	 */
857 	if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) {
858 		if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME)))
859 			return 0;
860 
861 		/*
862 		 * Use the regular setattr path to update the timestamps.
863 		 */
864 		iattr->ia_valid &= ~ATTR_SIZE;
865 		return xfs_setattr_nonsize(ip, iattr);
866 	}
867 
868 	/*
869 	 * Make sure that the dquots are attached to the inode.
870 	 */
871 	error = xfs_qm_dqattach(ip);
872 	if (error)
873 		return error;
874 
875 	/*
876 	 * Wait for all direct I/O to complete.
877 	 */
878 	inode_dio_wait(inode);
879 
880 	/*
881 	 * File data changes must be complete before we start the transaction to
882 	 * modify the inode.  This needs to be done before joining the inode to
883 	 * the transaction because the inode cannot be unlocked once it is a
884 	 * part of the transaction.
885 	 *
886 	 * Start with zeroing any data beyond EOF that we may expose on file
887 	 * extension, or zeroing out the rest of the block on a downward
888 	 * truncate.
889 	 */
890 	if (newsize > oldsize) {
891 		trace_xfs_zero_eof(ip, oldsize, newsize - oldsize);
892 		error = iomap_zero_range(inode, oldsize, newsize - oldsize,
893 				&did_zeroing, &xfs_buffered_write_iomap_ops);
894 	} else {
895 		/*
896 		 * iomap won't detect a dirty page over an unwritten block (or a
897 		 * cow block over a hole) and subsequently skips zeroing the
898 		 * newly post-EOF portion of the page. Flush the new EOF to
899 		 * convert the block before the pagecache truncate.
900 		 */
901 		error = filemap_write_and_wait_range(inode->i_mapping, newsize,
902 						     newsize);
903 		if (error)
904 			return error;
905 		error = iomap_truncate_page(inode, newsize, &did_zeroing,
906 				&xfs_buffered_write_iomap_ops);
907 	}
908 
909 	if (error)
910 		return error;
911 
912 	/*
913 	 * We've already locked out new page faults, so now we can safely remove
914 	 * pages from the page cache knowing they won't get refaulted until we
915 	 * drop the XFS_MMAP_EXCL lock after the extent manipulations are
916 	 * complete. The truncate_setsize() call also cleans partial EOF page
917 	 * PTEs on extending truncates and hence ensures sub-page block size
918 	 * filesystems are correctly handled, too.
919 	 *
920 	 * We have to do all the page cache truncate work outside the
921 	 * transaction context as the "lock" order is page lock->log space
922 	 * reservation as defined by extent allocation in the writeback path.
923 	 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but
924 	 * having already truncated the in-memory version of the file (i.e. made
925 	 * user visible changes). There's not much we can do about this, except
926 	 * to hope that the caller sees ENOMEM and retries the truncate
927 	 * operation.
928 	 *
929 	 * And we update in-core i_size and truncate page cache beyond newsize
930 	 * before writeback the [di_size, newsize] range, so we're guaranteed
931 	 * not to write stale data past the new EOF on truncate down.
932 	 */
933 	truncate_setsize(inode, newsize);
934 
935 	/*
936 	 * We are going to log the inode size change in this transaction so
937 	 * any previous writes that are beyond the on disk EOF and the new
938 	 * EOF that have not been written out need to be written here.  If we
939 	 * do not write the data out, we expose ourselves to the null files
940 	 * problem. Note that this includes any block zeroing we did above;
941 	 * otherwise those blocks may not be zeroed after a crash.
942 	 */
943 	if (did_zeroing ||
944 	    (newsize > ip->i_d.di_size && oldsize != ip->i_d.di_size)) {
945 		error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
946 						ip->i_d.di_size, newsize - 1);
947 		if (error)
948 			return error;
949 	}
950 
951 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
952 	if (error)
953 		return error;
954 
955 	lock_flags |= XFS_ILOCK_EXCL;
956 	xfs_ilock(ip, XFS_ILOCK_EXCL);
957 	xfs_trans_ijoin(tp, ip, 0);
958 
959 	/*
960 	 * Only change the c/mtime if we are changing the size or we are
961 	 * explicitly asked to change it.  This handles the semantic difference
962 	 * between truncate() and ftruncate() as implemented in the VFS.
963 	 *
964 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
965 	 * special case where we need to update the times despite not having
966 	 * these flags set.  For all other operations the VFS set these flags
967 	 * explicitly if it wants a timestamp update.
968 	 */
969 	if (newsize != oldsize &&
970 	    !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) {
971 		iattr->ia_ctime = iattr->ia_mtime =
972 			current_time(inode);
973 		iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME;
974 	}
975 
976 	/*
977 	 * The first thing we do is set the size to new_size permanently on
978 	 * disk.  This way we don't have to worry about anyone ever being able
979 	 * to look at the data being freed even in the face of a crash.
980 	 * What we're getting around here is the case where we free a block, it
981 	 * is allocated to another file, it is written to, and then we crash.
982 	 * If the new data gets written to the file but the log buffers
983 	 * containing the free and reallocation don't, then we'd end up with
984 	 * garbage in the blocks being freed.  As long as we make the new size
985 	 * permanent before actually freeing any blocks it doesn't matter if
986 	 * they get written to.
987 	 */
988 	ip->i_d.di_size = newsize;
989 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
990 
991 	if (newsize <= oldsize) {
992 		error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize);
993 		if (error)
994 			goto out_trans_cancel;
995 
996 		/*
997 		 * Truncated "down", so we're removing references to old data
998 		 * here - if we delay flushing for a long time, we expose
999 		 * ourselves unduly to the notorious NULL files problem.  So,
1000 		 * we mark this inode and flush it when the file is closed,
1001 		 * and do not wait the usual (long) time for writeout.
1002 		 */
1003 		xfs_iflags_set(ip, XFS_ITRUNCATED);
1004 
1005 		/* A truncate down always removes post-EOF blocks. */
1006 		xfs_inode_clear_eofblocks_tag(ip);
1007 	}
1008 
1009 	if (iattr->ia_valid & ATTR_MODE)
1010 		xfs_setattr_mode(ip, iattr);
1011 	if (iattr->ia_valid & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME))
1012 		xfs_setattr_time(ip, iattr);
1013 
1014 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1015 
1016 	XFS_STATS_INC(mp, xs_ig_attrchg);
1017 
1018 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1019 		xfs_trans_set_sync(tp);
1020 
1021 	error = xfs_trans_commit(tp);
1022 out_unlock:
1023 	if (lock_flags)
1024 		xfs_iunlock(ip, lock_flags);
1025 	return error;
1026 
1027 out_trans_cancel:
1028 	xfs_trans_cancel(tp);
1029 	goto out_unlock;
1030 }
1031 
1032 int
1033 xfs_vn_setattr_size(
1034 	struct dentry		*dentry,
1035 	struct iattr		*iattr)
1036 {
1037 	struct xfs_inode	*ip = XFS_I(d_inode(dentry));
1038 	int error;
1039 
1040 	trace_xfs_setattr(ip);
1041 
1042 	error = xfs_vn_change_ok(dentry, iattr);
1043 	if (error)
1044 		return error;
1045 	return xfs_setattr_size(ip, iattr);
1046 }
1047 
1048 STATIC int
1049 xfs_vn_setattr(
1050 	struct dentry		*dentry,
1051 	struct iattr		*iattr)
1052 {
1053 	struct inode		*inode = d_inode(dentry);
1054 	struct xfs_inode	*ip = XFS_I(inode);
1055 	int			error;
1056 
1057 	if (iattr->ia_valid & ATTR_SIZE) {
1058 		uint			iolock;
1059 
1060 		xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1061 		iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1062 
1063 		error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1064 		if (error) {
1065 			xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1066 			return error;
1067 		}
1068 
1069 		error = xfs_vn_setattr_size(dentry, iattr);
1070 		xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1071 	} else {
1072 		trace_xfs_setattr(ip);
1073 
1074 		error = xfs_vn_change_ok(dentry, iattr);
1075 		if (!error)
1076 			error = xfs_setattr_nonsize(ip, iattr);
1077 	}
1078 
1079 	return error;
1080 }
1081 
1082 STATIC int
1083 xfs_vn_update_time(
1084 	struct inode		*inode,
1085 	struct timespec64	*now,
1086 	int			flags)
1087 {
1088 	struct xfs_inode	*ip = XFS_I(inode);
1089 	struct xfs_mount	*mp = ip->i_mount;
1090 	int			log_flags = XFS_ILOG_TIMESTAMP;
1091 	struct xfs_trans	*tp;
1092 	int			error;
1093 
1094 	trace_xfs_update_time(ip);
1095 
1096 	if (inode->i_sb->s_flags & SB_LAZYTIME) {
1097 		if (!((flags & S_VERSION) &&
1098 		      inode_maybe_inc_iversion(inode, false)))
1099 			return generic_update_time(inode, now, flags);
1100 
1101 		/* Capture the iversion update that just occurred */
1102 		log_flags |= XFS_ILOG_CORE;
1103 	}
1104 
1105 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
1106 	if (error)
1107 		return error;
1108 
1109 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1110 	if (flags & S_CTIME)
1111 		inode->i_ctime = *now;
1112 	if (flags & S_MTIME)
1113 		inode->i_mtime = *now;
1114 	if (flags & S_ATIME)
1115 		inode->i_atime = *now;
1116 
1117 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1118 	xfs_trans_log_inode(tp, ip, log_flags);
1119 	return xfs_trans_commit(tp);
1120 }
1121 
1122 STATIC int
1123 xfs_vn_fiemap(
1124 	struct inode		*inode,
1125 	struct fiemap_extent_info *fieinfo,
1126 	u64			start,
1127 	u64			length)
1128 {
1129 	int			error;
1130 
1131 	xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED);
1132 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1133 		fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
1134 		error = iomap_fiemap(inode, fieinfo, start, length,
1135 				&xfs_xattr_iomap_ops);
1136 	} else {
1137 		error = iomap_fiemap(inode, fieinfo, start, length,
1138 				&xfs_read_iomap_ops);
1139 	}
1140 	xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED);
1141 
1142 	return error;
1143 }
1144 
1145 STATIC int
1146 xfs_vn_tmpfile(
1147 	struct inode	*dir,
1148 	struct dentry	*dentry,
1149 	umode_t		mode)
1150 {
1151 	return xfs_generic_create(dir, dentry, mode, 0, true);
1152 }
1153 
1154 static const struct inode_operations xfs_inode_operations = {
1155 	.get_acl		= xfs_get_acl,
1156 	.set_acl		= xfs_set_acl,
1157 	.getattr		= xfs_vn_getattr,
1158 	.setattr		= xfs_vn_setattr,
1159 	.listxattr		= xfs_vn_listxattr,
1160 	.fiemap			= xfs_vn_fiemap,
1161 	.update_time		= xfs_vn_update_time,
1162 };
1163 
1164 static const struct inode_operations xfs_dir_inode_operations = {
1165 	.create			= xfs_vn_create,
1166 	.lookup			= xfs_vn_lookup,
1167 	.link			= xfs_vn_link,
1168 	.unlink			= xfs_vn_unlink,
1169 	.symlink		= xfs_vn_symlink,
1170 	.mkdir			= xfs_vn_mkdir,
1171 	/*
1172 	 * Yes, XFS uses the same method for rmdir and unlink.
1173 	 *
1174 	 * There are some subtile differences deeper in the code,
1175 	 * but we use S_ISDIR to check for those.
1176 	 */
1177 	.rmdir			= xfs_vn_unlink,
1178 	.mknod			= xfs_vn_mknod,
1179 	.rename			= xfs_vn_rename,
1180 	.get_acl		= xfs_get_acl,
1181 	.set_acl		= xfs_set_acl,
1182 	.getattr		= xfs_vn_getattr,
1183 	.setattr		= xfs_vn_setattr,
1184 	.listxattr		= xfs_vn_listxattr,
1185 	.update_time		= xfs_vn_update_time,
1186 	.tmpfile		= xfs_vn_tmpfile,
1187 };
1188 
1189 static const struct inode_operations xfs_dir_ci_inode_operations = {
1190 	.create			= xfs_vn_create,
1191 	.lookup			= xfs_vn_ci_lookup,
1192 	.link			= xfs_vn_link,
1193 	.unlink			= xfs_vn_unlink,
1194 	.symlink		= xfs_vn_symlink,
1195 	.mkdir			= xfs_vn_mkdir,
1196 	/*
1197 	 * Yes, XFS uses the same method for rmdir and unlink.
1198 	 *
1199 	 * There are some subtile differences deeper in the code,
1200 	 * but we use S_ISDIR to check for those.
1201 	 */
1202 	.rmdir			= xfs_vn_unlink,
1203 	.mknod			= xfs_vn_mknod,
1204 	.rename			= xfs_vn_rename,
1205 	.get_acl		= xfs_get_acl,
1206 	.set_acl		= xfs_set_acl,
1207 	.getattr		= xfs_vn_getattr,
1208 	.setattr		= xfs_vn_setattr,
1209 	.listxattr		= xfs_vn_listxattr,
1210 	.update_time		= xfs_vn_update_time,
1211 	.tmpfile		= xfs_vn_tmpfile,
1212 };
1213 
1214 static const struct inode_operations xfs_symlink_inode_operations = {
1215 	.get_link		= xfs_vn_get_link,
1216 	.getattr		= xfs_vn_getattr,
1217 	.setattr		= xfs_vn_setattr,
1218 	.listxattr		= xfs_vn_listxattr,
1219 	.update_time		= xfs_vn_update_time,
1220 };
1221 
1222 static const struct inode_operations xfs_inline_symlink_inode_operations = {
1223 	.get_link		= xfs_vn_get_link_inline,
1224 	.getattr		= xfs_vn_getattr,
1225 	.setattr		= xfs_vn_setattr,
1226 	.listxattr		= xfs_vn_listxattr,
1227 	.update_time		= xfs_vn_update_time,
1228 };
1229 
1230 /* Figure out if this file actually supports DAX. */
1231 static bool
1232 xfs_inode_supports_dax(
1233 	struct xfs_inode	*ip)
1234 {
1235 	struct xfs_mount	*mp = ip->i_mount;
1236 
1237 	/* Only supported on regular files. */
1238 	if (!S_ISREG(VFS_I(ip)->i_mode))
1239 		return false;
1240 
1241 	/* Only supported on non-reflinked files. */
1242 	if (xfs_is_reflink_inode(ip))
1243 		return false;
1244 
1245 	/* Block size must match page size */
1246 	if (mp->m_sb.sb_blocksize != PAGE_SIZE)
1247 		return false;
1248 
1249 	/* Device has to support DAX too. */
1250 	return xfs_inode_buftarg(ip)->bt_daxdev != NULL;
1251 }
1252 
1253 static bool
1254 xfs_inode_should_enable_dax(
1255 	struct xfs_inode *ip)
1256 {
1257 	if (!IS_ENABLED(CONFIG_FS_DAX))
1258 		return false;
1259 	if (ip->i_mount->m_flags & XFS_MOUNT_DAX_NEVER)
1260 		return false;
1261 	if (!xfs_inode_supports_dax(ip))
1262 		return false;
1263 	if (ip->i_mount->m_flags & XFS_MOUNT_DAX_ALWAYS)
1264 		return true;
1265 	if (ip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
1266 		return true;
1267 	return false;
1268 }
1269 
1270 void
1271 xfs_diflags_to_iflags(
1272 	struct xfs_inode	*ip,
1273 	bool init)
1274 {
1275 	struct inode            *inode = VFS_I(ip);
1276 	unsigned int            xflags = xfs_ip2xflags(ip);
1277 	unsigned int            flags = 0;
1278 
1279 	ASSERT(!(IS_DAX(inode) && init));
1280 
1281 	if (xflags & FS_XFLAG_IMMUTABLE)
1282 		flags |= S_IMMUTABLE;
1283 	if (xflags & FS_XFLAG_APPEND)
1284 		flags |= S_APPEND;
1285 	if (xflags & FS_XFLAG_SYNC)
1286 		flags |= S_SYNC;
1287 	if (xflags & FS_XFLAG_NOATIME)
1288 		flags |= S_NOATIME;
1289 	if (init && xfs_inode_should_enable_dax(ip))
1290 		flags |= S_DAX;
1291 
1292 	/*
1293 	 * S_DAX can only be set during inode initialization and is never set by
1294 	 * the VFS, so we cannot mask off S_DAX in i_flags.
1295 	 */
1296 	inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME);
1297 	inode->i_flags |= flags;
1298 }
1299 
1300 /*
1301  * Initialize the Linux inode.
1302  *
1303  * When reading existing inodes from disk this is called directly from xfs_iget,
1304  * when creating a new inode it is called from xfs_ialloc after setting up the
1305  * inode. These callers have different criteria for clearing XFS_INEW, so leave
1306  * it up to the caller to deal with unlocking the inode appropriately.
1307  */
1308 void
1309 xfs_setup_inode(
1310 	struct xfs_inode	*ip)
1311 {
1312 	struct inode		*inode = &ip->i_vnode;
1313 	gfp_t			gfp_mask;
1314 
1315 	inode->i_ino = ip->i_ino;
1316 	inode->i_state = I_NEW;
1317 
1318 	inode_sb_list_add(inode);
1319 	/* make the inode look hashed for the writeback code */
1320 	inode_fake_hash(inode);
1321 
1322 	i_size_write(inode, ip->i_d.di_size);
1323 	xfs_diflags_to_iflags(ip, true);
1324 
1325 	if (S_ISDIR(inode->i_mode)) {
1326 		/*
1327 		 * We set the i_rwsem class here to avoid potential races with
1328 		 * lockdep_annotate_inode_mutex_key() reinitialising the lock
1329 		 * after a filehandle lookup has already found the inode in
1330 		 * cache before it has been unlocked via unlock_new_inode().
1331 		 */
1332 		lockdep_set_class(&inode->i_rwsem,
1333 				  &inode->i_sb->s_type->i_mutex_dir_key);
1334 		lockdep_set_class(&ip->i_lock.mr_lock, &xfs_dir_ilock_class);
1335 	} else {
1336 		lockdep_set_class(&ip->i_lock.mr_lock, &xfs_nondir_ilock_class);
1337 	}
1338 
1339 	/*
1340 	 * Ensure all page cache allocations are done from GFP_NOFS context to
1341 	 * prevent direct reclaim recursion back into the filesystem and blowing
1342 	 * stacks or deadlocking.
1343 	 */
1344 	gfp_mask = mapping_gfp_mask(inode->i_mapping);
1345 	mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS)));
1346 
1347 	/*
1348 	 * If there is no attribute fork no ACL can exist on this inode,
1349 	 * and it can't have any file capabilities attached to it either.
1350 	 */
1351 	if (!XFS_IFORK_Q(ip)) {
1352 		inode_has_no_xattr(inode);
1353 		cache_no_acl(inode);
1354 	}
1355 }
1356 
1357 void
1358 xfs_setup_iops(
1359 	struct xfs_inode	*ip)
1360 {
1361 	struct inode		*inode = &ip->i_vnode;
1362 
1363 	switch (inode->i_mode & S_IFMT) {
1364 	case S_IFREG:
1365 		inode->i_op = &xfs_inode_operations;
1366 		inode->i_fop = &xfs_file_operations;
1367 		if (IS_DAX(inode))
1368 			inode->i_mapping->a_ops = &xfs_dax_aops;
1369 		else
1370 			inode->i_mapping->a_ops = &xfs_address_space_operations;
1371 		break;
1372 	case S_IFDIR:
1373 		if (xfs_sb_version_hasasciici(&XFS_M(inode->i_sb)->m_sb))
1374 			inode->i_op = &xfs_dir_ci_inode_operations;
1375 		else
1376 			inode->i_op = &xfs_dir_inode_operations;
1377 		inode->i_fop = &xfs_dir_file_operations;
1378 		break;
1379 	case S_IFLNK:
1380 		if (ip->i_df.if_flags & XFS_IFINLINE)
1381 			inode->i_op = &xfs_inline_symlink_inode_operations;
1382 		else
1383 			inode->i_op = &xfs_symlink_inode_operations;
1384 		break;
1385 	default:
1386 		inode->i_op = &xfs_inode_operations;
1387 		init_special_inode(inode, inode->i_mode, inode->i_rdev);
1388 		break;
1389 	}
1390 }
1391