1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_acl.h" 15 #include "xfs_quota.h" 16 #include "xfs_da_format.h" 17 #include "xfs_da_btree.h" 18 #include "xfs_attr.h" 19 #include "xfs_trans.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_bmap_btree.h" 22 #include "xfs_trace.h" 23 #include "xfs_icache.h" 24 #include "xfs_symlink.h" 25 #include "xfs_dir2.h" 26 #include "xfs_iomap.h" 27 #include "xfs_error.h" 28 #include "xfs_ioctl.h" 29 #include "xfs_xattr.h" 30 #include "xfs_file.h" 31 #include "xfs_bmap.h" 32 33 #include <linux/posix_acl.h> 34 #include <linux/security.h> 35 #include <linux/iversion.h> 36 #include <linux/fiemap.h> 37 38 /* 39 * Directories have different lock order w.r.t. mmap_lock compared to regular 40 * files. This is due to readdir potentially triggering page faults on a user 41 * buffer inside filldir(), and this happens with the ilock on the directory 42 * held. For regular files, the lock order is the other way around - the 43 * mmap_lock is taken during the page fault, and then we lock the ilock to do 44 * block mapping. Hence we need a different class for the directory ilock so 45 * that lockdep can tell them apart. Directories in the metadata directory 46 * tree get a separate class so that lockdep reports will warn us if someone 47 * ever tries to lock regular directories after locking metadata directories. 48 */ 49 static struct lock_class_key xfs_nondir_ilock_class; 50 static struct lock_class_key xfs_dir_ilock_class; 51 52 static int 53 xfs_initxattrs( 54 struct inode *inode, 55 const struct xattr *xattr_array, 56 void *fs_info) 57 { 58 const struct xattr *xattr; 59 struct xfs_inode *ip = XFS_I(inode); 60 int error = 0; 61 62 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 63 struct xfs_da_args args = { 64 .dp = ip, 65 .attr_filter = XFS_ATTR_SECURE, 66 .name = xattr->name, 67 .namelen = strlen(xattr->name), 68 .value = xattr->value, 69 .valuelen = xattr->value_len, 70 }; 71 error = xfs_attr_change(&args, XFS_ATTRUPDATE_UPSERT); 72 if (error < 0) 73 break; 74 } 75 return error; 76 } 77 78 /* 79 * Hook in SELinux. This is not quite correct yet, what we really need 80 * here (as we do for default ACLs) is a mechanism by which creation of 81 * these attrs can be journalled at inode creation time (along with the 82 * inode, of course, such that log replay can't cause these to be lost). 83 */ 84 int 85 xfs_inode_init_security( 86 struct inode *inode, 87 struct inode *dir, 88 const struct qstr *qstr) 89 { 90 return security_inode_init_security(inode, dir, qstr, 91 &xfs_initxattrs, NULL); 92 } 93 94 static void 95 xfs_dentry_to_name( 96 struct xfs_name *namep, 97 struct dentry *dentry) 98 { 99 namep->name = dentry->d_name.name; 100 namep->len = dentry->d_name.len; 101 namep->type = XFS_DIR3_FT_UNKNOWN; 102 } 103 104 static int 105 xfs_dentry_mode_to_name( 106 struct xfs_name *namep, 107 struct dentry *dentry, 108 int mode) 109 { 110 namep->name = dentry->d_name.name; 111 namep->len = dentry->d_name.len; 112 namep->type = xfs_mode_to_ftype(mode); 113 114 if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN)) 115 return -EFSCORRUPTED; 116 117 return 0; 118 } 119 120 STATIC void 121 xfs_cleanup_inode( 122 struct inode *dir, 123 struct inode *inode, 124 struct dentry *dentry) 125 { 126 struct xfs_name teardown; 127 128 /* Oh, the horror. 129 * If we can't add the ACL or we fail in 130 * xfs_inode_init_security we must back out. 131 * ENOSPC can hit here, among other things. 132 */ 133 xfs_dentry_to_name(&teardown, dentry); 134 135 xfs_remove(XFS_I(dir), &teardown, XFS_I(inode)); 136 } 137 138 /* 139 * Check to see if we are likely to need an extended attribute to be added to 140 * the inode we are about to allocate. This allows the attribute fork to be 141 * created during the inode allocation, reducing the number of transactions we 142 * need to do in this fast path. 143 * 144 * The security checks are optimistic, but not guaranteed. The two LSMs that 145 * require xattrs to be added here (selinux and smack) are also the only two 146 * LSMs that add a sb->s_security structure to the superblock. Hence if security 147 * is enabled and sb->s_security is set, we have a pretty good idea that we are 148 * going to be asked to add a security xattr immediately after allocating the 149 * xfs inode and instantiating the VFS inode. 150 */ 151 static inline bool 152 xfs_create_need_xattr( 153 struct inode *dir, 154 struct posix_acl *default_acl, 155 struct posix_acl *acl) 156 { 157 if (acl) 158 return true; 159 if (default_acl) 160 return true; 161 #if IS_ENABLED(CONFIG_SECURITY) 162 if (dir->i_sb->s_security) 163 return true; 164 #endif 165 return false; 166 } 167 168 169 STATIC int 170 xfs_generic_create( 171 struct mnt_idmap *idmap, 172 struct inode *dir, 173 struct dentry *dentry, 174 umode_t mode, 175 dev_t rdev, 176 struct file *tmpfile) /* unnamed file */ 177 { 178 struct xfs_icreate_args args = { 179 .idmap = idmap, 180 .pip = XFS_I(dir), 181 .rdev = rdev, 182 .mode = mode, 183 }; 184 struct inode *inode; 185 struct xfs_inode *ip = NULL; 186 struct posix_acl *default_acl, *acl; 187 struct xfs_name name; 188 int error; 189 190 /* 191 * Irix uses Missed'em'V split, but doesn't want to see 192 * the upper 5 bits of (14bit) major. 193 */ 194 if (S_ISCHR(args.mode) || S_ISBLK(args.mode)) { 195 if (unlikely(!sysv_valid_dev(args.rdev) || 196 MAJOR(args.rdev) & ~0x1ff)) 197 return -EINVAL; 198 } else { 199 args.rdev = 0; 200 } 201 202 error = posix_acl_create(dir, &args.mode, &default_acl, &acl); 203 if (error) 204 return error; 205 206 /* Verify mode is valid also for tmpfile case */ 207 error = xfs_dentry_mode_to_name(&name, dentry, args.mode); 208 if (unlikely(error)) 209 goto out_free_acl; 210 211 if (!tmpfile) { 212 if (xfs_create_need_xattr(dir, default_acl, acl)) 213 args.flags |= XFS_ICREATE_INIT_XATTRS; 214 215 error = xfs_create(&args, &name, &ip); 216 } else { 217 args.flags |= XFS_ICREATE_TMPFILE; 218 219 /* 220 * If this temporary file will not be linkable, don't bother 221 * creating an attr fork to receive a parent pointer. 222 */ 223 if (tmpfile->f_flags & O_EXCL) 224 args.flags |= XFS_ICREATE_UNLINKABLE; 225 226 error = xfs_create_tmpfile(&args, &ip); 227 } 228 if (unlikely(error)) 229 goto out_free_acl; 230 231 inode = VFS_I(ip); 232 233 error = xfs_inode_init_security(inode, dir, &dentry->d_name); 234 if (unlikely(error)) 235 goto out_cleanup_inode; 236 237 if (default_acl) { 238 error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT); 239 if (error) 240 goto out_cleanup_inode; 241 } 242 if (acl) { 243 error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS); 244 if (error) 245 goto out_cleanup_inode; 246 } 247 248 xfs_setup_iops(ip); 249 250 if (tmpfile) { 251 /* 252 * The VFS requires that any inode fed to d_tmpfile must have 253 * nlink == 1 so that it can decrement the nlink in d_tmpfile. 254 * However, we created the temp file with nlink == 0 because 255 * we're not allowed to put an inode with nlink > 0 on the 256 * unlinked list. Therefore we have to set nlink to 1 so that 257 * d_tmpfile can immediately set it back to zero. 258 */ 259 set_nlink(inode, 1); 260 d_tmpfile(tmpfile, inode); 261 } else 262 d_instantiate(dentry, inode); 263 264 xfs_finish_inode_setup(ip); 265 266 out_free_acl: 267 posix_acl_release(default_acl); 268 posix_acl_release(acl); 269 return error; 270 271 out_cleanup_inode: 272 xfs_finish_inode_setup(ip); 273 if (!tmpfile) 274 xfs_cleanup_inode(dir, inode, dentry); 275 xfs_irele(ip); 276 goto out_free_acl; 277 } 278 279 STATIC int 280 xfs_vn_mknod( 281 struct mnt_idmap *idmap, 282 struct inode *dir, 283 struct dentry *dentry, 284 umode_t mode, 285 dev_t rdev) 286 { 287 return xfs_generic_create(idmap, dir, dentry, mode, rdev, NULL); 288 } 289 290 STATIC int 291 xfs_vn_create( 292 struct mnt_idmap *idmap, 293 struct inode *dir, 294 struct dentry *dentry, 295 umode_t mode, 296 bool flags) 297 { 298 return xfs_generic_create(idmap, dir, dentry, mode, 0, NULL); 299 } 300 301 STATIC int 302 xfs_vn_mkdir( 303 struct mnt_idmap *idmap, 304 struct inode *dir, 305 struct dentry *dentry, 306 umode_t mode) 307 { 308 return xfs_generic_create(idmap, dir, dentry, mode | S_IFDIR, 0, NULL); 309 } 310 311 STATIC struct dentry * 312 xfs_vn_lookup( 313 struct inode *dir, 314 struct dentry *dentry, 315 unsigned int flags) 316 { 317 struct inode *inode; 318 struct xfs_inode *cip; 319 struct xfs_name name; 320 int error; 321 322 if (dentry->d_name.len >= MAXNAMELEN) 323 return ERR_PTR(-ENAMETOOLONG); 324 325 xfs_dentry_to_name(&name, dentry); 326 error = xfs_lookup(XFS_I(dir), &name, &cip, NULL); 327 if (likely(!error)) 328 inode = VFS_I(cip); 329 else if (likely(error == -ENOENT)) 330 inode = NULL; 331 else 332 inode = ERR_PTR(error); 333 return d_splice_alias(inode, dentry); 334 } 335 336 STATIC struct dentry * 337 xfs_vn_ci_lookup( 338 struct inode *dir, 339 struct dentry *dentry, 340 unsigned int flags) 341 { 342 struct xfs_inode *ip; 343 struct xfs_name xname; 344 struct xfs_name ci_name; 345 struct qstr dname; 346 int error; 347 348 if (dentry->d_name.len >= MAXNAMELEN) 349 return ERR_PTR(-ENAMETOOLONG); 350 351 xfs_dentry_to_name(&xname, dentry); 352 error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name); 353 if (unlikely(error)) { 354 if (unlikely(error != -ENOENT)) 355 return ERR_PTR(error); 356 /* 357 * call d_add(dentry, NULL) here when d_drop_negative_children 358 * is called in xfs_vn_mknod (ie. allow negative dentries 359 * with CI filesystems). 360 */ 361 return NULL; 362 } 363 364 /* if exact match, just splice and exit */ 365 if (!ci_name.name) 366 return d_splice_alias(VFS_I(ip), dentry); 367 368 /* else case-insensitive match... */ 369 dname.name = ci_name.name; 370 dname.len = ci_name.len; 371 dentry = d_add_ci(dentry, VFS_I(ip), &dname); 372 kfree(ci_name.name); 373 return dentry; 374 } 375 376 STATIC int 377 xfs_vn_link( 378 struct dentry *old_dentry, 379 struct inode *dir, 380 struct dentry *dentry) 381 { 382 struct inode *inode = d_inode(old_dentry); 383 struct xfs_name name; 384 int error; 385 386 error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode); 387 if (unlikely(error)) 388 return error; 389 390 if (IS_PRIVATE(inode)) 391 return -EPERM; 392 393 error = xfs_link(XFS_I(dir), XFS_I(inode), &name); 394 if (unlikely(error)) 395 return error; 396 397 ihold(inode); 398 d_instantiate(dentry, inode); 399 return 0; 400 } 401 402 STATIC int 403 xfs_vn_unlink( 404 struct inode *dir, 405 struct dentry *dentry) 406 { 407 struct xfs_name name; 408 int error; 409 410 xfs_dentry_to_name(&name, dentry); 411 412 error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry))); 413 if (error) 414 return error; 415 416 /* 417 * With unlink, the VFS makes the dentry "negative": no inode, 418 * but still hashed. This is incompatible with case-insensitive 419 * mode, so invalidate (unhash) the dentry in CI-mode. 420 */ 421 if (xfs_has_asciici(XFS_M(dir->i_sb))) 422 d_invalidate(dentry); 423 return 0; 424 } 425 426 STATIC int 427 xfs_vn_symlink( 428 struct mnt_idmap *idmap, 429 struct inode *dir, 430 struct dentry *dentry, 431 const char *symname) 432 { 433 struct inode *inode; 434 struct xfs_inode *cip = NULL; 435 struct xfs_name name; 436 int error; 437 umode_t mode; 438 439 mode = S_IFLNK | 440 (irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO); 441 error = xfs_dentry_mode_to_name(&name, dentry, mode); 442 if (unlikely(error)) 443 goto out; 444 445 error = xfs_symlink(idmap, XFS_I(dir), &name, symname, mode, &cip); 446 if (unlikely(error)) 447 goto out; 448 449 inode = VFS_I(cip); 450 451 error = xfs_inode_init_security(inode, dir, &dentry->d_name); 452 if (unlikely(error)) 453 goto out_cleanup_inode; 454 455 xfs_setup_iops(cip); 456 457 d_instantiate(dentry, inode); 458 xfs_finish_inode_setup(cip); 459 return 0; 460 461 out_cleanup_inode: 462 xfs_finish_inode_setup(cip); 463 xfs_cleanup_inode(dir, inode, dentry); 464 xfs_irele(cip); 465 out: 466 return error; 467 } 468 469 STATIC int 470 xfs_vn_rename( 471 struct mnt_idmap *idmap, 472 struct inode *odir, 473 struct dentry *odentry, 474 struct inode *ndir, 475 struct dentry *ndentry, 476 unsigned int flags) 477 { 478 struct inode *new_inode = d_inode(ndentry); 479 int omode = 0; 480 int error; 481 struct xfs_name oname; 482 struct xfs_name nname; 483 484 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 485 return -EINVAL; 486 487 /* if we are exchanging files, we need to set i_mode of both files */ 488 if (flags & RENAME_EXCHANGE) 489 omode = d_inode(ndentry)->i_mode; 490 491 error = xfs_dentry_mode_to_name(&oname, odentry, omode); 492 if (omode && unlikely(error)) 493 return error; 494 495 error = xfs_dentry_mode_to_name(&nname, ndentry, 496 d_inode(odentry)->i_mode); 497 if (unlikely(error)) 498 return error; 499 500 return xfs_rename(idmap, XFS_I(odir), &oname, 501 XFS_I(d_inode(odentry)), XFS_I(ndir), &nname, 502 new_inode ? XFS_I(new_inode) : NULL, flags); 503 } 504 505 /* 506 * careful here - this function can get called recursively, so 507 * we need to be very careful about how much stack we use. 508 * uio is kmalloced for this reason... 509 */ 510 STATIC const char * 511 xfs_vn_get_link( 512 struct dentry *dentry, 513 struct inode *inode, 514 struct delayed_call *done) 515 { 516 char *link; 517 int error = -ENOMEM; 518 519 if (!dentry) 520 return ERR_PTR(-ECHILD); 521 522 link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL); 523 if (!link) 524 goto out_err; 525 526 error = xfs_readlink(XFS_I(d_inode(dentry)), link); 527 if (unlikely(error)) 528 goto out_kfree; 529 530 set_delayed_call(done, kfree_link, link); 531 return link; 532 533 out_kfree: 534 kfree(link); 535 out_err: 536 return ERR_PTR(error); 537 } 538 539 static uint32_t 540 xfs_stat_blksize( 541 struct xfs_inode *ip) 542 { 543 struct xfs_mount *mp = ip->i_mount; 544 545 /* 546 * If the file blocks are being allocated from a realtime volume, then 547 * always return the realtime extent size. 548 */ 549 if (XFS_IS_REALTIME_INODE(ip)) 550 return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip) ? : 1); 551 552 /* 553 * Allow large block sizes to be reported to userspace programs if the 554 * "largeio" mount option is used. 555 * 556 * If compatibility mode is specified, simply return the basic unit of 557 * caching so that we don't get inefficient read/modify/write I/O from 558 * user apps. Otherwise.... 559 * 560 * If the underlying volume is a stripe, then return the stripe width in 561 * bytes as the recommended I/O size. It is not a stripe and we've set a 562 * default buffered I/O size, return that, otherwise return the compat 563 * default. 564 */ 565 if (xfs_has_large_iosize(mp)) { 566 if (mp->m_swidth) 567 return XFS_FSB_TO_B(mp, mp->m_swidth); 568 if (xfs_has_allocsize(mp)) 569 return 1U << mp->m_allocsize_log; 570 } 571 572 return max_t(uint32_t, PAGE_SIZE, mp->m_sb.sb_blocksize); 573 } 574 575 static void 576 xfs_get_atomic_write_attr( 577 struct xfs_inode *ip, 578 unsigned int *unit_min, 579 unsigned int *unit_max) 580 { 581 if (!xfs_inode_can_atomicwrite(ip)) { 582 *unit_min = *unit_max = 0; 583 return; 584 } 585 586 *unit_min = *unit_max = ip->i_mount->m_sb.sb_blocksize; 587 } 588 589 STATIC int 590 xfs_vn_getattr( 591 struct mnt_idmap *idmap, 592 const struct path *path, 593 struct kstat *stat, 594 u32 request_mask, 595 unsigned int query_flags) 596 { 597 struct inode *inode = d_inode(path->dentry); 598 struct xfs_inode *ip = XFS_I(inode); 599 struct xfs_mount *mp = ip->i_mount; 600 vfsuid_t vfsuid = i_uid_into_vfsuid(idmap, inode); 601 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 602 603 trace_xfs_getattr(ip); 604 605 if (xfs_is_shutdown(mp)) 606 return -EIO; 607 608 stat->size = XFS_ISIZE(ip); 609 stat->dev = inode->i_sb->s_dev; 610 stat->mode = inode->i_mode; 611 stat->nlink = inode->i_nlink; 612 stat->uid = vfsuid_into_kuid(vfsuid); 613 stat->gid = vfsgid_into_kgid(vfsgid); 614 stat->ino = ip->i_ino; 615 stat->atime = inode_get_atime(inode); 616 617 fill_mg_cmtime(stat, request_mask, inode); 618 619 stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks); 620 621 if (xfs_has_v3inodes(mp)) { 622 if (request_mask & STATX_BTIME) { 623 stat->result_mask |= STATX_BTIME; 624 stat->btime = ip->i_crtime; 625 } 626 } 627 628 /* 629 * Note: If you add another clause to set an attribute flag, please 630 * update attributes_mask below. 631 */ 632 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 633 stat->attributes |= STATX_ATTR_IMMUTABLE; 634 if (ip->i_diflags & XFS_DIFLAG_APPEND) 635 stat->attributes |= STATX_ATTR_APPEND; 636 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 637 stat->attributes |= STATX_ATTR_NODUMP; 638 639 stat->attributes_mask |= (STATX_ATTR_IMMUTABLE | 640 STATX_ATTR_APPEND | 641 STATX_ATTR_NODUMP); 642 643 switch (inode->i_mode & S_IFMT) { 644 case S_IFBLK: 645 case S_IFCHR: 646 stat->blksize = BLKDEV_IOSIZE; 647 stat->rdev = inode->i_rdev; 648 break; 649 case S_IFREG: 650 if (request_mask & STATX_DIOALIGN) { 651 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 652 struct block_device *bdev = target->bt_bdev; 653 654 stat->result_mask |= STATX_DIOALIGN; 655 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 656 stat->dio_offset_align = bdev_logical_block_size(bdev); 657 } 658 if (request_mask & STATX_WRITE_ATOMIC) { 659 unsigned int unit_min, unit_max; 660 661 xfs_get_atomic_write_attr(ip, &unit_min, 662 &unit_max); 663 generic_fill_statx_atomic_writes(stat, 664 unit_min, unit_max); 665 } 666 fallthrough; 667 default: 668 stat->blksize = xfs_stat_blksize(ip); 669 stat->rdev = 0; 670 break; 671 } 672 673 return 0; 674 } 675 676 static int 677 xfs_vn_change_ok( 678 struct mnt_idmap *idmap, 679 struct dentry *dentry, 680 struct iattr *iattr) 681 { 682 struct xfs_mount *mp = XFS_I(d_inode(dentry))->i_mount; 683 684 if (xfs_is_readonly(mp)) 685 return -EROFS; 686 687 if (xfs_is_shutdown(mp)) 688 return -EIO; 689 690 return setattr_prepare(idmap, dentry, iattr); 691 } 692 693 /* 694 * Set non-size attributes of an inode. 695 * 696 * Caution: The caller of this function is responsible for calling 697 * setattr_prepare() or otherwise verifying the change is fine. 698 */ 699 static int 700 xfs_setattr_nonsize( 701 struct mnt_idmap *idmap, 702 struct dentry *dentry, 703 struct xfs_inode *ip, 704 struct iattr *iattr) 705 { 706 xfs_mount_t *mp = ip->i_mount; 707 struct inode *inode = VFS_I(ip); 708 int mask = iattr->ia_valid; 709 xfs_trans_t *tp; 710 int error; 711 kuid_t uid = GLOBAL_ROOT_UID; 712 kgid_t gid = GLOBAL_ROOT_GID; 713 struct xfs_dquot *udqp = NULL, *gdqp = NULL; 714 struct xfs_dquot *old_udqp = NULL, *old_gdqp = NULL; 715 716 ASSERT((mask & ATTR_SIZE) == 0); 717 718 /* 719 * If disk quotas is on, we make sure that the dquots do exist on disk, 720 * before we start any other transactions. Trying to do this later 721 * is messy. We don't care to take a readlock to look at the ids 722 * in inode here, because we can't hold it across the trans_reserve. 723 * If the IDs do change before we take the ilock, we're covered 724 * because the i_*dquot fields will get updated anyway. 725 */ 726 if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) { 727 uint qflags = 0; 728 729 if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) { 730 uid = from_vfsuid(idmap, i_user_ns(inode), 731 iattr->ia_vfsuid); 732 qflags |= XFS_QMOPT_UQUOTA; 733 } else { 734 uid = inode->i_uid; 735 } 736 if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) { 737 gid = from_vfsgid(idmap, i_user_ns(inode), 738 iattr->ia_vfsgid); 739 qflags |= XFS_QMOPT_GQUOTA; 740 } else { 741 gid = inode->i_gid; 742 } 743 744 /* 745 * We take a reference when we initialize udqp and gdqp, 746 * so it is important that we never blindly double trip on 747 * the same variable. See xfs_create() for an example. 748 */ 749 ASSERT(udqp == NULL); 750 ASSERT(gdqp == NULL); 751 error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid, 752 qflags, &udqp, &gdqp, NULL); 753 if (error) 754 return error; 755 } 756 757 error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL, 758 has_capability_noaudit(current, CAP_FOWNER), &tp); 759 if (error) 760 goto out_dqrele; 761 762 /* 763 * Register quota modifications in the transaction. Must be the owner 764 * or privileged. These IDs could have changed since we last looked at 765 * them. But, we're assured that if the ownership did change while we 766 * didn't have the inode locked, inode's dquot(s) would have changed 767 * also. 768 */ 769 if (XFS_IS_UQUOTA_ON(mp) && 770 i_uid_needs_update(idmap, iattr, inode)) { 771 ASSERT(udqp); 772 old_udqp = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp); 773 } 774 if (XFS_IS_GQUOTA_ON(mp) && 775 i_gid_needs_update(idmap, iattr, inode)) { 776 ASSERT(xfs_has_pquotino(mp) || !XFS_IS_PQUOTA_ON(mp)); 777 ASSERT(gdqp); 778 old_gdqp = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp); 779 } 780 781 setattr_copy(idmap, inode, iattr); 782 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 783 784 XFS_STATS_INC(mp, xs_ig_attrchg); 785 786 if (xfs_has_wsync(mp)) 787 xfs_trans_set_sync(tp); 788 error = xfs_trans_commit(tp); 789 790 /* 791 * Release any dquot(s) the inode had kept before chown. 792 */ 793 xfs_qm_dqrele(old_udqp); 794 xfs_qm_dqrele(old_gdqp); 795 xfs_qm_dqrele(udqp); 796 xfs_qm_dqrele(gdqp); 797 798 if (error) 799 return error; 800 801 /* 802 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode 803 * update. We could avoid this with linked transactions 804 * and passing down the transaction pointer all the way 805 * to attr_set. No previous user of the generic 806 * Posix ACL code seems to care about this issue either. 807 */ 808 if (mask & ATTR_MODE) { 809 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 810 if (error) 811 return error; 812 } 813 814 return 0; 815 816 out_dqrele: 817 xfs_qm_dqrele(udqp); 818 xfs_qm_dqrele(gdqp); 819 return error; 820 } 821 822 /* 823 * Truncate file. Must have write permission and not be a directory. 824 * 825 * Caution: The caller of this function is responsible for calling 826 * setattr_prepare() or otherwise verifying the change is fine. 827 */ 828 STATIC int 829 xfs_setattr_size( 830 struct mnt_idmap *idmap, 831 struct dentry *dentry, 832 struct xfs_inode *ip, 833 struct iattr *iattr) 834 { 835 struct xfs_mount *mp = ip->i_mount; 836 struct inode *inode = VFS_I(ip); 837 xfs_off_t oldsize, newsize; 838 struct xfs_trans *tp; 839 int error; 840 uint lock_flags = 0; 841 uint resblks = 0; 842 bool did_zeroing = false; 843 844 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL); 845 ASSERT(S_ISREG(inode->i_mode)); 846 ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET| 847 ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0); 848 849 oldsize = inode->i_size; 850 newsize = iattr->ia_size; 851 852 /* 853 * Short circuit the truncate case for zero length files. 854 */ 855 if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) { 856 if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME))) 857 return 0; 858 859 /* 860 * Use the regular setattr path to update the timestamps. 861 */ 862 iattr->ia_valid &= ~ATTR_SIZE; 863 return xfs_setattr_nonsize(idmap, dentry, ip, iattr); 864 } 865 866 /* 867 * Make sure that the dquots are attached to the inode. 868 */ 869 error = xfs_qm_dqattach(ip); 870 if (error) 871 return error; 872 873 /* 874 * Wait for all direct I/O to complete. 875 */ 876 inode_dio_wait(inode); 877 878 /* 879 * File data changes must be complete before we start the transaction to 880 * modify the inode. This needs to be done before joining the inode to 881 * the transaction because the inode cannot be unlocked once it is a 882 * part of the transaction. 883 * 884 * Start with zeroing any data beyond EOF that we may expose on file 885 * extension, or zeroing out the rest of the block on a downward 886 * truncate. 887 */ 888 if (newsize > oldsize) { 889 trace_xfs_zero_eof(ip, oldsize, newsize - oldsize); 890 error = xfs_zero_range(ip, oldsize, newsize - oldsize, 891 &did_zeroing); 892 } else { 893 error = xfs_truncate_page(ip, newsize, &did_zeroing); 894 } 895 896 if (error) 897 return error; 898 899 /* 900 * We've already locked out new page faults, so now we can safely remove 901 * pages from the page cache knowing they won't get refaulted until we 902 * drop the XFS_MMAP_EXCL lock after the extent manipulations are 903 * complete. The truncate_setsize() call also cleans partial EOF page 904 * PTEs on extending truncates and hence ensures sub-page block size 905 * filesystems are correctly handled, too. 906 * 907 * We have to do all the page cache truncate work outside the 908 * transaction context as the "lock" order is page lock->log space 909 * reservation as defined by extent allocation in the writeback path. 910 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but 911 * having already truncated the in-memory version of the file (i.e. made 912 * user visible changes). There's not much we can do about this, except 913 * to hope that the caller sees ENOMEM and retries the truncate 914 * operation. 915 * 916 * And we update in-core i_size and truncate page cache beyond newsize 917 * before writeback the [i_disk_size, newsize] range, so we're 918 * guaranteed not to write stale data past the new EOF on truncate down. 919 */ 920 truncate_setsize(inode, newsize); 921 922 /* 923 * We are going to log the inode size change in this transaction so 924 * any previous writes that are beyond the on disk EOF and the new 925 * EOF that have not been written out need to be written here. If we 926 * do not write the data out, we expose ourselves to the null files 927 * problem. Note that this includes any block zeroing we did above; 928 * otherwise those blocks may not be zeroed after a crash. 929 */ 930 if (did_zeroing || 931 (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) { 932 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 933 ip->i_disk_size, newsize - 1); 934 if (error) 935 return error; 936 } 937 938 /* 939 * For realtime inode with more than one block rtextsize, we need the 940 * block reservation for bmap btree block allocations/splits that can 941 * happen since it could split the tail written extent and convert the 942 * right beyond EOF one to unwritten. 943 */ 944 if (xfs_inode_has_bigrtalloc(ip)) 945 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 946 947 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks, 948 0, 0, &tp); 949 if (error) 950 return error; 951 952 lock_flags |= XFS_ILOCK_EXCL; 953 xfs_ilock(ip, XFS_ILOCK_EXCL); 954 xfs_trans_ijoin(tp, ip, 0); 955 956 /* 957 * Only change the c/mtime if we are changing the size or we are 958 * explicitly asked to change it. This handles the semantic difference 959 * between truncate() and ftruncate() as implemented in the VFS. 960 * 961 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 962 * special case where we need to update the times despite not having 963 * these flags set. For all other operations the VFS set these flags 964 * explicitly if it wants a timestamp update. 965 */ 966 if (newsize != oldsize && 967 !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) { 968 iattr->ia_ctime = iattr->ia_mtime = 969 current_time(inode); 970 iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME; 971 } 972 973 /* 974 * The first thing we do is set the size to new_size permanently on 975 * disk. This way we don't have to worry about anyone ever being able 976 * to look at the data being freed even in the face of a crash. 977 * What we're getting around here is the case where we free a block, it 978 * is allocated to another file, it is written to, and then we crash. 979 * If the new data gets written to the file but the log buffers 980 * containing the free and reallocation don't, then we'd end up with 981 * garbage in the blocks being freed. As long as we make the new size 982 * permanent before actually freeing any blocks it doesn't matter if 983 * they get written to. 984 */ 985 ip->i_disk_size = newsize; 986 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 987 988 if (newsize <= oldsize) { 989 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize); 990 if (error) 991 goto out_trans_cancel; 992 993 /* 994 * Truncated "down", so we're removing references to old data 995 * here - if we delay flushing for a long time, we expose 996 * ourselves unduly to the notorious NULL files problem. So, 997 * we mark this inode and flush it when the file is closed, 998 * and do not wait the usual (long) time for writeout. 999 */ 1000 xfs_iflags_set(ip, XFS_ITRUNCATED); 1001 1002 /* A truncate down always removes post-EOF blocks. */ 1003 xfs_inode_clear_eofblocks_tag(ip); 1004 } 1005 1006 ASSERT(!(iattr->ia_valid & (ATTR_UID | ATTR_GID))); 1007 setattr_copy(idmap, inode, iattr); 1008 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1009 1010 XFS_STATS_INC(mp, xs_ig_attrchg); 1011 1012 if (xfs_has_wsync(mp)) 1013 xfs_trans_set_sync(tp); 1014 1015 error = xfs_trans_commit(tp); 1016 out_unlock: 1017 if (lock_flags) 1018 xfs_iunlock(ip, lock_flags); 1019 return error; 1020 1021 out_trans_cancel: 1022 xfs_trans_cancel(tp); 1023 goto out_unlock; 1024 } 1025 1026 int 1027 xfs_vn_setattr_size( 1028 struct mnt_idmap *idmap, 1029 struct dentry *dentry, 1030 struct iattr *iattr) 1031 { 1032 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 1033 int error; 1034 1035 trace_xfs_setattr(ip); 1036 1037 error = xfs_vn_change_ok(idmap, dentry, iattr); 1038 if (error) 1039 return error; 1040 return xfs_setattr_size(idmap, dentry, ip, iattr); 1041 } 1042 1043 STATIC int 1044 xfs_vn_setattr( 1045 struct mnt_idmap *idmap, 1046 struct dentry *dentry, 1047 struct iattr *iattr) 1048 { 1049 struct inode *inode = d_inode(dentry); 1050 struct xfs_inode *ip = XFS_I(inode); 1051 int error; 1052 1053 if (iattr->ia_valid & ATTR_SIZE) { 1054 uint iolock; 1055 1056 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 1057 iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 1058 1059 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 1060 if (error) { 1061 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1062 return error; 1063 } 1064 1065 error = xfs_vn_setattr_size(idmap, dentry, iattr); 1066 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1067 } else { 1068 trace_xfs_setattr(ip); 1069 1070 error = xfs_vn_change_ok(idmap, dentry, iattr); 1071 if (!error) 1072 error = xfs_setattr_nonsize(idmap, dentry, ip, iattr); 1073 } 1074 1075 return error; 1076 } 1077 1078 STATIC int 1079 xfs_vn_update_time( 1080 struct inode *inode, 1081 int flags) 1082 { 1083 struct xfs_inode *ip = XFS_I(inode); 1084 struct xfs_mount *mp = ip->i_mount; 1085 int log_flags = XFS_ILOG_TIMESTAMP; 1086 struct xfs_trans *tp; 1087 int error; 1088 struct timespec64 now; 1089 1090 trace_xfs_update_time(ip); 1091 1092 if (inode->i_sb->s_flags & SB_LAZYTIME) { 1093 if (!((flags & S_VERSION) && 1094 inode_maybe_inc_iversion(inode, false))) { 1095 generic_update_time(inode, flags); 1096 return 0; 1097 } 1098 1099 /* Capture the iversion update that just occurred */ 1100 log_flags |= XFS_ILOG_CORE; 1101 } 1102 1103 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 1104 if (error) 1105 return error; 1106 1107 xfs_ilock(ip, XFS_ILOCK_EXCL); 1108 if (flags & (S_CTIME|S_MTIME)) 1109 now = inode_set_ctime_current(inode); 1110 else 1111 now = current_time(inode); 1112 1113 if (flags & S_MTIME) 1114 inode_set_mtime_to_ts(inode, now); 1115 if (flags & S_ATIME) 1116 inode_set_atime_to_ts(inode, now); 1117 1118 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1119 xfs_trans_log_inode(tp, ip, log_flags); 1120 return xfs_trans_commit(tp); 1121 } 1122 1123 STATIC int 1124 xfs_vn_fiemap( 1125 struct inode *inode, 1126 struct fiemap_extent_info *fieinfo, 1127 u64 start, 1128 u64 length) 1129 { 1130 int error; 1131 1132 xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED); 1133 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1134 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR; 1135 error = iomap_fiemap(inode, fieinfo, start, length, 1136 &xfs_xattr_iomap_ops); 1137 } else { 1138 error = iomap_fiemap(inode, fieinfo, start, length, 1139 &xfs_read_iomap_ops); 1140 } 1141 xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED); 1142 1143 return error; 1144 } 1145 1146 STATIC int 1147 xfs_vn_tmpfile( 1148 struct mnt_idmap *idmap, 1149 struct inode *dir, 1150 struct file *file, 1151 umode_t mode) 1152 { 1153 int err = xfs_generic_create(idmap, dir, file->f_path.dentry, mode, 0, file); 1154 1155 return finish_open_simple(file, err); 1156 } 1157 1158 static const struct inode_operations xfs_inode_operations = { 1159 .get_inode_acl = xfs_get_acl, 1160 .set_acl = xfs_set_acl, 1161 .getattr = xfs_vn_getattr, 1162 .setattr = xfs_vn_setattr, 1163 .listxattr = xfs_vn_listxattr, 1164 .fiemap = xfs_vn_fiemap, 1165 .update_time = xfs_vn_update_time, 1166 .fileattr_get = xfs_fileattr_get, 1167 .fileattr_set = xfs_fileattr_set, 1168 }; 1169 1170 static const struct inode_operations xfs_dir_inode_operations = { 1171 .create = xfs_vn_create, 1172 .lookup = xfs_vn_lookup, 1173 .link = xfs_vn_link, 1174 .unlink = xfs_vn_unlink, 1175 .symlink = xfs_vn_symlink, 1176 .mkdir = xfs_vn_mkdir, 1177 /* 1178 * Yes, XFS uses the same method for rmdir and unlink. 1179 * 1180 * There are some subtile differences deeper in the code, 1181 * but we use S_ISDIR to check for those. 1182 */ 1183 .rmdir = xfs_vn_unlink, 1184 .mknod = xfs_vn_mknod, 1185 .rename = xfs_vn_rename, 1186 .get_inode_acl = xfs_get_acl, 1187 .set_acl = xfs_set_acl, 1188 .getattr = xfs_vn_getattr, 1189 .setattr = xfs_vn_setattr, 1190 .listxattr = xfs_vn_listxattr, 1191 .update_time = xfs_vn_update_time, 1192 .tmpfile = xfs_vn_tmpfile, 1193 .fileattr_get = xfs_fileattr_get, 1194 .fileattr_set = xfs_fileattr_set, 1195 }; 1196 1197 static const struct inode_operations xfs_dir_ci_inode_operations = { 1198 .create = xfs_vn_create, 1199 .lookup = xfs_vn_ci_lookup, 1200 .link = xfs_vn_link, 1201 .unlink = xfs_vn_unlink, 1202 .symlink = xfs_vn_symlink, 1203 .mkdir = xfs_vn_mkdir, 1204 /* 1205 * Yes, XFS uses the same method for rmdir and unlink. 1206 * 1207 * There are some subtile differences deeper in the code, 1208 * but we use S_ISDIR to check for those. 1209 */ 1210 .rmdir = xfs_vn_unlink, 1211 .mknod = xfs_vn_mknod, 1212 .rename = xfs_vn_rename, 1213 .get_inode_acl = xfs_get_acl, 1214 .set_acl = xfs_set_acl, 1215 .getattr = xfs_vn_getattr, 1216 .setattr = xfs_vn_setattr, 1217 .listxattr = xfs_vn_listxattr, 1218 .update_time = xfs_vn_update_time, 1219 .tmpfile = xfs_vn_tmpfile, 1220 .fileattr_get = xfs_fileattr_get, 1221 .fileattr_set = xfs_fileattr_set, 1222 }; 1223 1224 static const struct inode_operations xfs_symlink_inode_operations = { 1225 .get_link = xfs_vn_get_link, 1226 .getattr = xfs_vn_getattr, 1227 .setattr = xfs_vn_setattr, 1228 .listxattr = xfs_vn_listxattr, 1229 .update_time = xfs_vn_update_time, 1230 }; 1231 1232 /* Figure out if this file actually supports DAX. */ 1233 static bool 1234 xfs_inode_supports_dax( 1235 struct xfs_inode *ip) 1236 { 1237 struct xfs_mount *mp = ip->i_mount; 1238 1239 /* Only supported on regular files. */ 1240 if (!S_ISREG(VFS_I(ip)->i_mode)) 1241 return false; 1242 1243 /* Block size must match page size */ 1244 if (mp->m_sb.sb_blocksize != PAGE_SIZE) 1245 return false; 1246 1247 /* Device has to support DAX too. */ 1248 return xfs_inode_buftarg(ip)->bt_daxdev != NULL; 1249 } 1250 1251 static bool 1252 xfs_inode_should_enable_dax( 1253 struct xfs_inode *ip) 1254 { 1255 if (!IS_ENABLED(CONFIG_FS_DAX)) 1256 return false; 1257 if (xfs_has_dax_never(ip->i_mount)) 1258 return false; 1259 if (!xfs_inode_supports_dax(ip)) 1260 return false; 1261 if (xfs_has_dax_always(ip->i_mount)) 1262 return true; 1263 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 1264 return true; 1265 return false; 1266 } 1267 1268 void 1269 xfs_diflags_to_iflags( 1270 struct xfs_inode *ip, 1271 bool init) 1272 { 1273 struct inode *inode = VFS_I(ip); 1274 unsigned int xflags = xfs_ip2xflags(ip); 1275 unsigned int flags = 0; 1276 1277 ASSERT(!(IS_DAX(inode) && init)); 1278 1279 if (xflags & FS_XFLAG_IMMUTABLE) 1280 flags |= S_IMMUTABLE; 1281 if (xflags & FS_XFLAG_APPEND) 1282 flags |= S_APPEND; 1283 if (xflags & FS_XFLAG_SYNC) 1284 flags |= S_SYNC; 1285 if (xflags & FS_XFLAG_NOATIME) 1286 flags |= S_NOATIME; 1287 if (init && xfs_inode_should_enable_dax(ip)) 1288 flags |= S_DAX; 1289 1290 /* 1291 * S_DAX can only be set during inode initialization and is never set by 1292 * the VFS, so we cannot mask off S_DAX in i_flags. 1293 */ 1294 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME); 1295 inode->i_flags |= flags; 1296 } 1297 1298 /* 1299 * Initialize the Linux inode. 1300 * 1301 * When reading existing inodes from disk this is called directly from xfs_iget, 1302 * when creating a new inode it is called from xfs_init_new_inode after setting 1303 * up the inode. These callers have different criteria for clearing XFS_INEW, so 1304 * leave it up to the caller to deal with unlocking the inode appropriately. 1305 */ 1306 void 1307 xfs_setup_inode( 1308 struct xfs_inode *ip) 1309 { 1310 struct inode *inode = &ip->i_vnode; 1311 gfp_t gfp_mask; 1312 bool is_meta = xfs_is_internal_inode(ip); 1313 1314 inode->i_ino = ip->i_ino; 1315 inode->i_state |= I_NEW; 1316 1317 inode_sb_list_add(inode); 1318 /* make the inode look hashed for the writeback code */ 1319 inode_fake_hash(inode); 1320 1321 i_size_write(inode, ip->i_disk_size); 1322 xfs_diflags_to_iflags(ip, true); 1323 1324 /* 1325 * Mark our metadata files as private so that LSMs and the ACL code 1326 * don't try to add their own metadata or reason about these files, 1327 * and users cannot ever obtain file handles to them. 1328 */ 1329 if (is_meta) { 1330 inode->i_flags |= S_PRIVATE; 1331 inode->i_opflags &= ~IOP_XATTR; 1332 } 1333 1334 if (S_ISDIR(inode->i_mode)) { 1335 /* 1336 * We set the i_rwsem class here to avoid potential races with 1337 * lockdep_annotate_inode_mutex_key() reinitialising the lock 1338 * after a filehandle lookup has already found the inode in 1339 * cache before it has been unlocked via unlock_new_inode(). 1340 */ 1341 lockdep_set_class(&inode->i_rwsem, 1342 &inode->i_sb->s_type->i_mutex_dir_key); 1343 lockdep_set_class(&ip->i_lock, &xfs_dir_ilock_class); 1344 } else { 1345 lockdep_set_class(&ip->i_lock, &xfs_nondir_ilock_class); 1346 } 1347 1348 /* 1349 * Ensure all page cache allocations are done from GFP_NOFS context to 1350 * prevent direct reclaim recursion back into the filesystem and blowing 1351 * stacks or deadlocking. 1352 */ 1353 gfp_mask = mapping_gfp_mask(inode->i_mapping); 1354 mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS))); 1355 1356 /* 1357 * For real-time inodes update the stable write flags to that of the RT 1358 * device instead of the data device. 1359 */ 1360 if (S_ISREG(inode->i_mode) && XFS_IS_REALTIME_INODE(ip)) 1361 xfs_update_stable_writes(ip); 1362 1363 /* 1364 * If there is no attribute fork no ACL can exist on this inode, 1365 * and it can't have any file capabilities attached to it either. 1366 */ 1367 if (!xfs_inode_has_attr_fork(ip)) { 1368 inode_has_no_xattr(inode); 1369 cache_no_acl(inode); 1370 } 1371 } 1372 1373 void 1374 xfs_setup_iops( 1375 struct xfs_inode *ip) 1376 { 1377 struct inode *inode = &ip->i_vnode; 1378 1379 switch (inode->i_mode & S_IFMT) { 1380 case S_IFREG: 1381 inode->i_op = &xfs_inode_operations; 1382 inode->i_fop = &xfs_file_operations; 1383 if (IS_DAX(inode)) 1384 inode->i_mapping->a_ops = &xfs_dax_aops; 1385 else 1386 inode->i_mapping->a_ops = &xfs_address_space_operations; 1387 break; 1388 case S_IFDIR: 1389 if (xfs_has_asciici(XFS_M(inode->i_sb))) 1390 inode->i_op = &xfs_dir_ci_inode_operations; 1391 else 1392 inode->i_op = &xfs_dir_inode_operations; 1393 inode->i_fop = &xfs_dir_file_operations; 1394 break; 1395 case S_IFLNK: 1396 inode->i_op = &xfs_symlink_inode_operations; 1397 break; 1398 default: 1399 inode->i_op = &xfs_inode_operations; 1400 init_special_inode(inode, inode->i_mode, inode->i_rdev); 1401 break; 1402 } 1403 } 1404