1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_acl.h" 15 #include "xfs_quota.h" 16 #include "xfs_da_format.h" 17 #include "xfs_da_btree.h" 18 #include "xfs_attr.h" 19 #include "xfs_trans.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_bmap_btree.h" 22 #include "xfs_trace.h" 23 #include "xfs_icache.h" 24 #include "xfs_symlink.h" 25 #include "xfs_dir2.h" 26 #include "xfs_iomap.h" 27 #include "xfs_error.h" 28 #include "xfs_ioctl.h" 29 #include "xfs_xattr.h" 30 #include "xfs_file.h" 31 #include "xfs_bmap.h" 32 33 #include <linux/posix_acl.h> 34 #include <linux/security.h> 35 #include <linux/iversion.h> 36 #include <linux/fiemap.h> 37 38 /* 39 * Directories have different lock order w.r.t. mmap_lock compared to regular 40 * files. This is due to readdir potentially triggering page faults on a user 41 * buffer inside filldir(), and this happens with the ilock on the directory 42 * held. For regular files, the lock order is the other way around - the 43 * mmap_lock is taken during the page fault, and then we lock the ilock to do 44 * block mapping. Hence we need a different class for the directory ilock so 45 * that lockdep can tell them apart. 46 */ 47 static struct lock_class_key xfs_nondir_ilock_class; 48 static struct lock_class_key xfs_dir_ilock_class; 49 50 static int 51 xfs_initxattrs( 52 struct inode *inode, 53 const struct xattr *xattr_array, 54 void *fs_info) 55 { 56 const struct xattr *xattr; 57 struct xfs_inode *ip = XFS_I(inode); 58 int error = 0; 59 60 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 61 struct xfs_da_args args = { 62 .dp = ip, 63 .attr_filter = XFS_ATTR_SECURE, 64 .name = xattr->name, 65 .namelen = strlen(xattr->name), 66 .value = xattr->value, 67 .valuelen = xattr->value_len, 68 }; 69 error = xfs_attr_change(&args, XFS_ATTRUPDATE_UPSERT); 70 if (error < 0) 71 break; 72 } 73 return error; 74 } 75 76 /* 77 * Hook in SELinux. This is not quite correct yet, what we really need 78 * here (as we do for default ACLs) is a mechanism by which creation of 79 * these attrs can be journalled at inode creation time (along with the 80 * inode, of course, such that log replay can't cause these to be lost). 81 */ 82 int 83 xfs_inode_init_security( 84 struct inode *inode, 85 struct inode *dir, 86 const struct qstr *qstr) 87 { 88 return security_inode_init_security(inode, dir, qstr, 89 &xfs_initxattrs, NULL); 90 } 91 92 static void 93 xfs_dentry_to_name( 94 struct xfs_name *namep, 95 struct dentry *dentry) 96 { 97 namep->name = dentry->d_name.name; 98 namep->len = dentry->d_name.len; 99 namep->type = XFS_DIR3_FT_UNKNOWN; 100 } 101 102 static int 103 xfs_dentry_mode_to_name( 104 struct xfs_name *namep, 105 struct dentry *dentry, 106 int mode) 107 { 108 namep->name = dentry->d_name.name; 109 namep->len = dentry->d_name.len; 110 namep->type = xfs_mode_to_ftype(mode); 111 112 if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN)) 113 return -EFSCORRUPTED; 114 115 return 0; 116 } 117 118 STATIC void 119 xfs_cleanup_inode( 120 struct inode *dir, 121 struct inode *inode, 122 struct dentry *dentry) 123 { 124 struct xfs_name teardown; 125 126 /* Oh, the horror. 127 * If we can't add the ACL or we fail in 128 * xfs_inode_init_security we must back out. 129 * ENOSPC can hit here, among other things. 130 */ 131 xfs_dentry_to_name(&teardown, dentry); 132 133 xfs_remove(XFS_I(dir), &teardown, XFS_I(inode)); 134 } 135 136 /* 137 * Check to see if we are likely to need an extended attribute to be added to 138 * the inode we are about to allocate. This allows the attribute fork to be 139 * created during the inode allocation, reducing the number of transactions we 140 * need to do in this fast path. 141 * 142 * The security checks are optimistic, but not guaranteed. The two LSMs that 143 * require xattrs to be added here (selinux and smack) are also the only two 144 * LSMs that add a sb->s_security structure to the superblock. Hence if security 145 * is enabled and sb->s_security is set, we have a pretty good idea that we are 146 * going to be asked to add a security xattr immediately after allocating the 147 * xfs inode and instantiating the VFS inode. 148 */ 149 static inline bool 150 xfs_create_need_xattr( 151 struct inode *dir, 152 struct posix_acl *default_acl, 153 struct posix_acl *acl) 154 { 155 if (acl) 156 return true; 157 if (default_acl) 158 return true; 159 #if IS_ENABLED(CONFIG_SECURITY) 160 if (dir->i_sb->s_security) 161 return true; 162 #endif 163 return false; 164 } 165 166 167 STATIC int 168 xfs_generic_create( 169 struct mnt_idmap *idmap, 170 struct inode *dir, 171 struct dentry *dentry, 172 umode_t mode, 173 dev_t rdev, 174 struct file *tmpfile) /* unnamed file */ 175 { 176 struct xfs_icreate_args args = { 177 .idmap = idmap, 178 .pip = XFS_I(dir), 179 .rdev = rdev, 180 .mode = mode, 181 }; 182 struct inode *inode; 183 struct xfs_inode *ip = NULL; 184 struct posix_acl *default_acl, *acl; 185 struct xfs_name name; 186 int error; 187 188 /* 189 * Irix uses Missed'em'V split, but doesn't want to see 190 * the upper 5 bits of (14bit) major. 191 */ 192 if (S_ISCHR(args.mode) || S_ISBLK(args.mode)) { 193 if (unlikely(!sysv_valid_dev(args.rdev) || 194 MAJOR(args.rdev) & ~0x1ff)) 195 return -EINVAL; 196 } else { 197 args.rdev = 0; 198 } 199 200 error = posix_acl_create(dir, &args.mode, &default_acl, &acl); 201 if (error) 202 return error; 203 204 /* Verify mode is valid also for tmpfile case */ 205 error = xfs_dentry_mode_to_name(&name, dentry, args.mode); 206 if (unlikely(error)) 207 goto out_free_acl; 208 209 if (!tmpfile) { 210 if (xfs_create_need_xattr(dir, default_acl, acl)) 211 args.flags |= XFS_ICREATE_INIT_XATTRS; 212 213 error = xfs_create(&args, &name, &ip); 214 } else { 215 args.flags |= XFS_ICREATE_TMPFILE; 216 217 /* 218 * If this temporary file will not be linkable, don't bother 219 * creating an attr fork to receive a parent pointer. 220 */ 221 if (tmpfile->f_flags & O_EXCL) 222 args.flags |= XFS_ICREATE_UNLINKABLE; 223 224 error = xfs_create_tmpfile(&args, &ip); 225 } 226 if (unlikely(error)) 227 goto out_free_acl; 228 229 inode = VFS_I(ip); 230 231 error = xfs_inode_init_security(inode, dir, &dentry->d_name); 232 if (unlikely(error)) 233 goto out_cleanup_inode; 234 235 if (default_acl) { 236 error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT); 237 if (error) 238 goto out_cleanup_inode; 239 } 240 if (acl) { 241 error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS); 242 if (error) 243 goto out_cleanup_inode; 244 } 245 246 xfs_setup_iops(ip); 247 248 if (tmpfile) { 249 /* 250 * The VFS requires that any inode fed to d_tmpfile must have 251 * nlink == 1 so that it can decrement the nlink in d_tmpfile. 252 * However, we created the temp file with nlink == 0 because 253 * we're not allowed to put an inode with nlink > 0 on the 254 * unlinked list. Therefore we have to set nlink to 1 so that 255 * d_tmpfile can immediately set it back to zero. 256 */ 257 set_nlink(inode, 1); 258 d_tmpfile(tmpfile, inode); 259 } else 260 d_instantiate(dentry, inode); 261 262 xfs_finish_inode_setup(ip); 263 264 out_free_acl: 265 posix_acl_release(default_acl); 266 posix_acl_release(acl); 267 return error; 268 269 out_cleanup_inode: 270 xfs_finish_inode_setup(ip); 271 if (!tmpfile) 272 xfs_cleanup_inode(dir, inode, dentry); 273 xfs_irele(ip); 274 goto out_free_acl; 275 } 276 277 STATIC int 278 xfs_vn_mknod( 279 struct mnt_idmap *idmap, 280 struct inode *dir, 281 struct dentry *dentry, 282 umode_t mode, 283 dev_t rdev) 284 { 285 return xfs_generic_create(idmap, dir, dentry, mode, rdev, NULL); 286 } 287 288 STATIC int 289 xfs_vn_create( 290 struct mnt_idmap *idmap, 291 struct inode *dir, 292 struct dentry *dentry, 293 umode_t mode, 294 bool flags) 295 { 296 return xfs_generic_create(idmap, dir, dentry, mode, 0, NULL); 297 } 298 299 STATIC int 300 xfs_vn_mkdir( 301 struct mnt_idmap *idmap, 302 struct inode *dir, 303 struct dentry *dentry, 304 umode_t mode) 305 { 306 return xfs_generic_create(idmap, dir, dentry, mode | S_IFDIR, 0, NULL); 307 } 308 309 STATIC struct dentry * 310 xfs_vn_lookup( 311 struct inode *dir, 312 struct dentry *dentry, 313 unsigned int flags) 314 { 315 struct inode *inode; 316 struct xfs_inode *cip; 317 struct xfs_name name; 318 int error; 319 320 if (dentry->d_name.len >= MAXNAMELEN) 321 return ERR_PTR(-ENAMETOOLONG); 322 323 xfs_dentry_to_name(&name, dentry); 324 error = xfs_lookup(XFS_I(dir), &name, &cip, NULL); 325 if (likely(!error)) 326 inode = VFS_I(cip); 327 else if (likely(error == -ENOENT)) 328 inode = NULL; 329 else 330 inode = ERR_PTR(error); 331 return d_splice_alias(inode, dentry); 332 } 333 334 STATIC struct dentry * 335 xfs_vn_ci_lookup( 336 struct inode *dir, 337 struct dentry *dentry, 338 unsigned int flags) 339 { 340 struct xfs_inode *ip; 341 struct xfs_name xname; 342 struct xfs_name ci_name; 343 struct qstr dname; 344 int error; 345 346 if (dentry->d_name.len >= MAXNAMELEN) 347 return ERR_PTR(-ENAMETOOLONG); 348 349 xfs_dentry_to_name(&xname, dentry); 350 error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name); 351 if (unlikely(error)) { 352 if (unlikely(error != -ENOENT)) 353 return ERR_PTR(error); 354 /* 355 * call d_add(dentry, NULL) here when d_drop_negative_children 356 * is called in xfs_vn_mknod (ie. allow negative dentries 357 * with CI filesystems). 358 */ 359 return NULL; 360 } 361 362 /* if exact match, just splice and exit */ 363 if (!ci_name.name) 364 return d_splice_alias(VFS_I(ip), dentry); 365 366 /* else case-insensitive match... */ 367 dname.name = ci_name.name; 368 dname.len = ci_name.len; 369 dentry = d_add_ci(dentry, VFS_I(ip), &dname); 370 kfree(ci_name.name); 371 return dentry; 372 } 373 374 STATIC int 375 xfs_vn_link( 376 struct dentry *old_dentry, 377 struct inode *dir, 378 struct dentry *dentry) 379 { 380 struct inode *inode = d_inode(old_dentry); 381 struct xfs_name name; 382 int error; 383 384 error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode); 385 if (unlikely(error)) 386 return error; 387 388 if (IS_PRIVATE(inode)) 389 return -EPERM; 390 391 error = xfs_link(XFS_I(dir), XFS_I(inode), &name); 392 if (unlikely(error)) 393 return error; 394 395 ihold(inode); 396 d_instantiate(dentry, inode); 397 return 0; 398 } 399 400 STATIC int 401 xfs_vn_unlink( 402 struct inode *dir, 403 struct dentry *dentry) 404 { 405 struct xfs_name name; 406 int error; 407 408 xfs_dentry_to_name(&name, dentry); 409 410 error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry))); 411 if (error) 412 return error; 413 414 /* 415 * With unlink, the VFS makes the dentry "negative": no inode, 416 * but still hashed. This is incompatible with case-insensitive 417 * mode, so invalidate (unhash) the dentry in CI-mode. 418 */ 419 if (xfs_has_asciici(XFS_M(dir->i_sb))) 420 d_invalidate(dentry); 421 return 0; 422 } 423 424 STATIC int 425 xfs_vn_symlink( 426 struct mnt_idmap *idmap, 427 struct inode *dir, 428 struct dentry *dentry, 429 const char *symname) 430 { 431 struct inode *inode; 432 struct xfs_inode *cip = NULL; 433 struct xfs_name name; 434 int error; 435 umode_t mode; 436 437 mode = S_IFLNK | 438 (irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO); 439 error = xfs_dentry_mode_to_name(&name, dentry, mode); 440 if (unlikely(error)) 441 goto out; 442 443 error = xfs_symlink(idmap, XFS_I(dir), &name, symname, mode, &cip); 444 if (unlikely(error)) 445 goto out; 446 447 inode = VFS_I(cip); 448 449 error = xfs_inode_init_security(inode, dir, &dentry->d_name); 450 if (unlikely(error)) 451 goto out_cleanup_inode; 452 453 xfs_setup_iops(cip); 454 455 d_instantiate(dentry, inode); 456 xfs_finish_inode_setup(cip); 457 return 0; 458 459 out_cleanup_inode: 460 xfs_finish_inode_setup(cip); 461 xfs_cleanup_inode(dir, inode, dentry); 462 xfs_irele(cip); 463 out: 464 return error; 465 } 466 467 STATIC int 468 xfs_vn_rename( 469 struct mnt_idmap *idmap, 470 struct inode *odir, 471 struct dentry *odentry, 472 struct inode *ndir, 473 struct dentry *ndentry, 474 unsigned int flags) 475 { 476 struct inode *new_inode = d_inode(ndentry); 477 int omode = 0; 478 int error; 479 struct xfs_name oname; 480 struct xfs_name nname; 481 482 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 483 return -EINVAL; 484 485 /* if we are exchanging files, we need to set i_mode of both files */ 486 if (flags & RENAME_EXCHANGE) 487 omode = d_inode(ndentry)->i_mode; 488 489 error = xfs_dentry_mode_to_name(&oname, odentry, omode); 490 if (omode && unlikely(error)) 491 return error; 492 493 error = xfs_dentry_mode_to_name(&nname, ndentry, 494 d_inode(odentry)->i_mode); 495 if (unlikely(error)) 496 return error; 497 498 return xfs_rename(idmap, XFS_I(odir), &oname, 499 XFS_I(d_inode(odentry)), XFS_I(ndir), &nname, 500 new_inode ? XFS_I(new_inode) : NULL, flags); 501 } 502 503 /* 504 * careful here - this function can get called recursively, so 505 * we need to be very careful about how much stack we use. 506 * uio is kmalloced for this reason... 507 */ 508 STATIC const char * 509 xfs_vn_get_link( 510 struct dentry *dentry, 511 struct inode *inode, 512 struct delayed_call *done) 513 { 514 char *link; 515 int error = -ENOMEM; 516 517 if (!dentry) 518 return ERR_PTR(-ECHILD); 519 520 link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL); 521 if (!link) 522 goto out_err; 523 524 error = xfs_readlink(XFS_I(d_inode(dentry)), link); 525 if (unlikely(error)) 526 goto out_kfree; 527 528 set_delayed_call(done, kfree_link, link); 529 return link; 530 531 out_kfree: 532 kfree(link); 533 out_err: 534 return ERR_PTR(error); 535 } 536 537 static uint32_t 538 xfs_stat_blksize( 539 struct xfs_inode *ip) 540 { 541 struct xfs_mount *mp = ip->i_mount; 542 543 /* 544 * If the file blocks are being allocated from a realtime volume, then 545 * always return the realtime extent size. 546 */ 547 if (XFS_IS_REALTIME_INODE(ip)) 548 return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip) ? : 1); 549 550 /* 551 * Allow large block sizes to be reported to userspace programs if the 552 * "largeio" mount option is used. 553 * 554 * If compatibility mode is specified, simply return the basic unit of 555 * caching so that we don't get inefficient read/modify/write I/O from 556 * user apps. Otherwise.... 557 * 558 * If the underlying volume is a stripe, then return the stripe width in 559 * bytes as the recommended I/O size. It is not a stripe and we've set a 560 * default buffered I/O size, return that, otherwise return the compat 561 * default. 562 */ 563 if (xfs_has_large_iosize(mp)) { 564 if (mp->m_swidth) 565 return XFS_FSB_TO_B(mp, mp->m_swidth); 566 if (xfs_has_allocsize(mp)) 567 return 1U << mp->m_allocsize_log; 568 } 569 570 return max_t(uint32_t, PAGE_SIZE, mp->m_sb.sb_blocksize); 571 } 572 573 static void 574 xfs_get_atomic_write_attr( 575 struct xfs_inode *ip, 576 unsigned int *unit_min, 577 unsigned int *unit_max) 578 { 579 if (!xfs_inode_can_atomicwrite(ip)) { 580 *unit_min = *unit_max = 0; 581 return; 582 } 583 584 *unit_min = *unit_max = ip->i_mount->m_sb.sb_blocksize; 585 } 586 587 STATIC int 588 xfs_vn_getattr( 589 struct mnt_idmap *idmap, 590 const struct path *path, 591 struct kstat *stat, 592 u32 request_mask, 593 unsigned int query_flags) 594 { 595 struct inode *inode = d_inode(path->dentry); 596 struct xfs_inode *ip = XFS_I(inode); 597 struct xfs_mount *mp = ip->i_mount; 598 vfsuid_t vfsuid = i_uid_into_vfsuid(idmap, inode); 599 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 600 601 trace_xfs_getattr(ip); 602 603 if (xfs_is_shutdown(mp)) 604 return -EIO; 605 606 stat->size = XFS_ISIZE(ip); 607 stat->dev = inode->i_sb->s_dev; 608 stat->mode = inode->i_mode; 609 stat->nlink = inode->i_nlink; 610 stat->uid = vfsuid_into_kuid(vfsuid); 611 stat->gid = vfsgid_into_kgid(vfsgid); 612 stat->ino = ip->i_ino; 613 stat->atime = inode_get_atime(inode); 614 615 fill_mg_cmtime(stat, request_mask, inode); 616 617 stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks); 618 619 if (xfs_has_v3inodes(mp)) { 620 if (request_mask & STATX_BTIME) { 621 stat->result_mask |= STATX_BTIME; 622 stat->btime = ip->i_crtime; 623 } 624 } 625 626 /* 627 * Note: If you add another clause to set an attribute flag, please 628 * update attributes_mask below. 629 */ 630 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 631 stat->attributes |= STATX_ATTR_IMMUTABLE; 632 if (ip->i_diflags & XFS_DIFLAG_APPEND) 633 stat->attributes |= STATX_ATTR_APPEND; 634 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 635 stat->attributes |= STATX_ATTR_NODUMP; 636 637 stat->attributes_mask |= (STATX_ATTR_IMMUTABLE | 638 STATX_ATTR_APPEND | 639 STATX_ATTR_NODUMP); 640 641 switch (inode->i_mode & S_IFMT) { 642 case S_IFBLK: 643 case S_IFCHR: 644 stat->blksize = BLKDEV_IOSIZE; 645 stat->rdev = inode->i_rdev; 646 break; 647 case S_IFREG: 648 if (request_mask & STATX_DIOALIGN) { 649 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 650 struct block_device *bdev = target->bt_bdev; 651 652 stat->result_mask |= STATX_DIOALIGN; 653 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 654 stat->dio_offset_align = bdev_logical_block_size(bdev); 655 } 656 if (request_mask & STATX_WRITE_ATOMIC) { 657 unsigned int unit_min, unit_max; 658 659 xfs_get_atomic_write_attr(ip, &unit_min, 660 &unit_max); 661 generic_fill_statx_atomic_writes(stat, 662 unit_min, unit_max); 663 } 664 fallthrough; 665 default: 666 stat->blksize = xfs_stat_blksize(ip); 667 stat->rdev = 0; 668 break; 669 } 670 671 return 0; 672 } 673 674 static int 675 xfs_vn_change_ok( 676 struct mnt_idmap *idmap, 677 struct dentry *dentry, 678 struct iattr *iattr) 679 { 680 struct xfs_mount *mp = XFS_I(d_inode(dentry))->i_mount; 681 682 if (xfs_is_readonly(mp)) 683 return -EROFS; 684 685 if (xfs_is_shutdown(mp)) 686 return -EIO; 687 688 return setattr_prepare(idmap, dentry, iattr); 689 } 690 691 /* 692 * Set non-size attributes of an inode. 693 * 694 * Caution: The caller of this function is responsible for calling 695 * setattr_prepare() or otherwise verifying the change is fine. 696 */ 697 static int 698 xfs_setattr_nonsize( 699 struct mnt_idmap *idmap, 700 struct dentry *dentry, 701 struct xfs_inode *ip, 702 struct iattr *iattr) 703 { 704 xfs_mount_t *mp = ip->i_mount; 705 struct inode *inode = VFS_I(ip); 706 int mask = iattr->ia_valid; 707 xfs_trans_t *tp; 708 int error; 709 kuid_t uid = GLOBAL_ROOT_UID; 710 kgid_t gid = GLOBAL_ROOT_GID; 711 struct xfs_dquot *udqp = NULL, *gdqp = NULL; 712 struct xfs_dquot *old_udqp = NULL, *old_gdqp = NULL; 713 714 ASSERT((mask & ATTR_SIZE) == 0); 715 716 /* 717 * If disk quotas is on, we make sure that the dquots do exist on disk, 718 * before we start any other transactions. Trying to do this later 719 * is messy. We don't care to take a readlock to look at the ids 720 * in inode here, because we can't hold it across the trans_reserve. 721 * If the IDs do change before we take the ilock, we're covered 722 * because the i_*dquot fields will get updated anyway. 723 */ 724 if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) { 725 uint qflags = 0; 726 727 if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) { 728 uid = from_vfsuid(idmap, i_user_ns(inode), 729 iattr->ia_vfsuid); 730 qflags |= XFS_QMOPT_UQUOTA; 731 } else { 732 uid = inode->i_uid; 733 } 734 if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) { 735 gid = from_vfsgid(idmap, i_user_ns(inode), 736 iattr->ia_vfsgid); 737 qflags |= XFS_QMOPT_GQUOTA; 738 } else { 739 gid = inode->i_gid; 740 } 741 742 /* 743 * We take a reference when we initialize udqp and gdqp, 744 * so it is important that we never blindly double trip on 745 * the same variable. See xfs_create() for an example. 746 */ 747 ASSERT(udqp == NULL); 748 ASSERT(gdqp == NULL); 749 error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid, 750 qflags, &udqp, &gdqp, NULL); 751 if (error) 752 return error; 753 } 754 755 error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL, 756 has_capability_noaudit(current, CAP_FOWNER), &tp); 757 if (error) 758 goto out_dqrele; 759 760 /* 761 * Register quota modifications in the transaction. Must be the owner 762 * or privileged. These IDs could have changed since we last looked at 763 * them. But, we're assured that if the ownership did change while we 764 * didn't have the inode locked, inode's dquot(s) would have changed 765 * also. 766 */ 767 if (XFS_IS_UQUOTA_ON(mp) && 768 i_uid_needs_update(idmap, iattr, inode)) { 769 ASSERT(udqp); 770 old_udqp = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp); 771 } 772 if (XFS_IS_GQUOTA_ON(mp) && 773 i_gid_needs_update(idmap, iattr, inode)) { 774 ASSERT(xfs_has_pquotino(mp) || !XFS_IS_PQUOTA_ON(mp)); 775 ASSERT(gdqp); 776 old_gdqp = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp); 777 } 778 779 setattr_copy(idmap, inode, iattr); 780 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 781 782 XFS_STATS_INC(mp, xs_ig_attrchg); 783 784 if (xfs_has_wsync(mp)) 785 xfs_trans_set_sync(tp); 786 error = xfs_trans_commit(tp); 787 788 /* 789 * Release any dquot(s) the inode had kept before chown. 790 */ 791 xfs_qm_dqrele(old_udqp); 792 xfs_qm_dqrele(old_gdqp); 793 xfs_qm_dqrele(udqp); 794 xfs_qm_dqrele(gdqp); 795 796 if (error) 797 return error; 798 799 /* 800 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode 801 * update. We could avoid this with linked transactions 802 * and passing down the transaction pointer all the way 803 * to attr_set. No previous user of the generic 804 * Posix ACL code seems to care about this issue either. 805 */ 806 if (mask & ATTR_MODE) { 807 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 808 if (error) 809 return error; 810 } 811 812 return 0; 813 814 out_dqrele: 815 xfs_qm_dqrele(udqp); 816 xfs_qm_dqrele(gdqp); 817 return error; 818 } 819 820 /* 821 * Truncate file. Must have write permission and not be a directory. 822 * 823 * Caution: The caller of this function is responsible for calling 824 * setattr_prepare() or otherwise verifying the change is fine. 825 */ 826 STATIC int 827 xfs_setattr_size( 828 struct mnt_idmap *idmap, 829 struct dentry *dentry, 830 struct xfs_inode *ip, 831 struct iattr *iattr) 832 { 833 struct xfs_mount *mp = ip->i_mount; 834 struct inode *inode = VFS_I(ip); 835 xfs_off_t oldsize, newsize; 836 struct xfs_trans *tp; 837 int error; 838 uint lock_flags = 0; 839 uint resblks = 0; 840 bool did_zeroing = false; 841 842 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL); 843 ASSERT(S_ISREG(inode->i_mode)); 844 ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET| 845 ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0); 846 847 oldsize = inode->i_size; 848 newsize = iattr->ia_size; 849 850 /* 851 * Short circuit the truncate case for zero length files. 852 */ 853 if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) { 854 if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME))) 855 return 0; 856 857 /* 858 * Use the regular setattr path to update the timestamps. 859 */ 860 iattr->ia_valid &= ~ATTR_SIZE; 861 return xfs_setattr_nonsize(idmap, dentry, ip, iattr); 862 } 863 864 /* 865 * Make sure that the dquots are attached to the inode. 866 */ 867 error = xfs_qm_dqattach(ip); 868 if (error) 869 return error; 870 871 /* 872 * Wait for all direct I/O to complete. 873 */ 874 inode_dio_wait(inode); 875 876 /* 877 * File data changes must be complete before we start the transaction to 878 * modify the inode. This needs to be done before joining the inode to 879 * the transaction because the inode cannot be unlocked once it is a 880 * part of the transaction. 881 * 882 * Start with zeroing any data beyond EOF that we may expose on file 883 * extension, or zeroing out the rest of the block on a downward 884 * truncate. 885 */ 886 if (newsize > oldsize) { 887 trace_xfs_zero_eof(ip, oldsize, newsize - oldsize); 888 error = xfs_zero_range(ip, oldsize, newsize - oldsize, 889 &did_zeroing); 890 } else { 891 error = xfs_truncate_page(ip, newsize, &did_zeroing); 892 } 893 894 if (error) 895 return error; 896 897 /* 898 * We've already locked out new page faults, so now we can safely remove 899 * pages from the page cache knowing they won't get refaulted until we 900 * drop the XFS_MMAP_EXCL lock after the extent manipulations are 901 * complete. The truncate_setsize() call also cleans partial EOF page 902 * PTEs on extending truncates and hence ensures sub-page block size 903 * filesystems are correctly handled, too. 904 * 905 * We have to do all the page cache truncate work outside the 906 * transaction context as the "lock" order is page lock->log space 907 * reservation as defined by extent allocation in the writeback path. 908 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but 909 * having already truncated the in-memory version of the file (i.e. made 910 * user visible changes). There's not much we can do about this, except 911 * to hope that the caller sees ENOMEM and retries the truncate 912 * operation. 913 * 914 * And we update in-core i_size and truncate page cache beyond newsize 915 * before writeback the [i_disk_size, newsize] range, so we're 916 * guaranteed not to write stale data past the new EOF on truncate down. 917 */ 918 truncate_setsize(inode, newsize); 919 920 /* 921 * We are going to log the inode size change in this transaction so 922 * any previous writes that are beyond the on disk EOF and the new 923 * EOF that have not been written out need to be written here. If we 924 * do not write the data out, we expose ourselves to the null files 925 * problem. Note that this includes any block zeroing we did above; 926 * otherwise those blocks may not be zeroed after a crash. 927 */ 928 if (did_zeroing || 929 (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) { 930 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 931 ip->i_disk_size, newsize - 1); 932 if (error) 933 return error; 934 } 935 936 /* 937 * For realtime inode with more than one block rtextsize, we need the 938 * block reservation for bmap btree block allocations/splits that can 939 * happen since it could split the tail written extent and convert the 940 * right beyond EOF one to unwritten. 941 */ 942 if (xfs_inode_has_bigrtalloc(ip)) 943 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 944 945 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks, 946 0, 0, &tp); 947 if (error) 948 return error; 949 950 lock_flags |= XFS_ILOCK_EXCL; 951 xfs_ilock(ip, XFS_ILOCK_EXCL); 952 xfs_trans_ijoin(tp, ip, 0); 953 954 /* 955 * Only change the c/mtime if we are changing the size or we are 956 * explicitly asked to change it. This handles the semantic difference 957 * between truncate() and ftruncate() as implemented in the VFS. 958 * 959 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 960 * special case where we need to update the times despite not having 961 * these flags set. For all other operations the VFS set these flags 962 * explicitly if it wants a timestamp update. 963 */ 964 if (newsize != oldsize && 965 !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) { 966 iattr->ia_ctime = iattr->ia_mtime = 967 current_time(inode); 968 iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME; 969 } 970 971 /* 972 * The first thing we do is set the size to new_size permanently on 973 * disk. This way we don't have to worry about anyone ever being able 974 * to look at the data being freed even in the face of a crash. 975 * What we're getting around here is the case where we free a block, it 976 * is allocated to another file, it is written to, and then we crash. 977 * If the new data gets written to the file but the log buffers 978 * containing the free and reallocation don't, then we'd end up with 979 * garbage in the blocks being freed. As long as we make the new size 980 * permanent before actually freeing any blocks it doesn't matter if 981 * they get written to. 982 */ 983 ip->i_disk_size = newsize; 984 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 985 986 if (newsize <= oldsize) { 987 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize); 988 if (error) 989 goto out_trans_cancel; 990 991 /* 992 * Truncated "down", so we're removing references to old data 993 * here - if we delay flushing for a long time, we expose 994 * ourselves unduly to the notorious NULL files problem. So, 995 * we mark this inode and flush it when the file is closed, 996 * and do not wait the usual (long) time for writeout. 997 */ 998 xfs_iflags_set(ip, XFS_ITRUNCATED); 999 1000 /* A truncate down always removes post-EOF blocks. */ 1001 xfs_inode_clear_eofblocks_tag(ip); 1002 } 1003 1004 ASSERT(!(iattr->ia_valid & (ATTR_UID | ATTR_GID))); 1005 setattr_copy(idmap, inode, iattr); 1006 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1007 1008 XFS_STATS_INC(mp, xs_ig_attrchg); 1009 1010 if (xfs_has_wsync(mp)) 1011 xfs_trans_set_sync(tp); 1012 1013 error = xfs_trans_commit(tp); 1014 out_unlock: 1015 if (lock_flags) 1016 xfs_iunlock(ip, lock_flags); 1017 return error; 1018 1019 out_trans_cancel: 1020 xfs_trans_cancel(tp); 1021 goto out_unlock; 1022 } 1023 1024 int 1025 xfs_vn_setattr_size( 1026 struct mnt_idmap *idmap, 1027 struct dentry *dentry, 1028 struct iattr *iattr) 1029 { 1030 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 1031 int error; 1032 1033 trace_xfs_setattr(ip); 1034 1035 error = xfs_vn_change_ok(idmap, dentry, iattr); 1036 if (error) 1037 return error; 1038 return xfs_setattr_size(idmap, dentry, ip, iattr); 1039 } 1040 1041 STATIC int 1042 xfs_vn_setattr( 1043 struct mnt_idmap *idmap, 1044 struct dentry *dentry, 1045 struct iattr *iattr) 1046 { 1047 struct inode *inode = d_inode(dentry); 1048 struct xfs_inode *ip = XFS_I(inode); 1049 int error; 1050 1051 if (iattr->ia_valid & ATTR_SIZE) { 1052 uint iolock; 1053 1054 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 1055 iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 1056 1057 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 1058 if (error) { 1059 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1060 return error; 1061 } 1062 1063 error = xfs_vn_setattr_size(idmap, dentry, iattr); 1064 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1065 } else { 1066 trace_xfs_setattr(ip); 1067 1068 error = xfs_vn_change_ok(idmap, dentry, iattr); 1069 if (!error) 1070 error = xfs_setattr_nonsize(idmap, dentry, ip, iattr); 1071 } 1072 1073 return error; 1074 } 1075 1076 STATIC int 1077 xfs_vn_update_time( 1078 struct inode *inode, 1079 int flags) 1080 { 1081 struct xfs_inode *ip = XFS_I(inode); 1082 struct xfs_mount *mp = ip->i_mount; 1083 int log_flags = XFS_ILOG_TIMESTAMP; 1084 struct xfs_trans *tp; 1085 int error; 1086 struct timespec64 now; 1087 1088 trace_xfs_update_time(ip); 1089 1090 if (inode->i_sb->s_flags & SB_LAZYTIME) { 1091 if (!((flags & S_VERSION) && 1092 inode_maybe_inc_iversion(inode, false))) { 1093 generic_update_time(inode, flags); 1094 return 0; 1095 } 1096 1097 /* Capture the iversion update that just occurred */ 1098 log_flags |= XFS_ILOG_CORE; 1099 } 1100 1101 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 1102 if (error) 1103 return error; 1104 1105 xfs_ilock(ip, XFS_ILOCK_EXCL); 1106 if (flags & (S_CTIME|S_MTIME)) 1107 now = inode_set_ctime_current(inode); 1108 else 1109 now = current_time(inode); 1110 1111 if (flags & S_MTIME) 1112 inode_set_mtime_to_ts(inode, now); 1113 if (flags & S_ATIME) 1114 inode_set_atime_to_ts(inode, now); 1115 1116 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1117 xfs_trans_log_inode(tp, ip, log_flags); 1118 return xfs_trans_commit(tp); 1119 } 1120 1121 STATIC int 1122 xfs_vn_fiemap( 1123 struct inode *inode, 1124 struct fiemap_extent_info *fieinfo, 1125 u64 start, 1126 u64 length) 1127 { 1128 int error; 1129 1130 xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED); 1131 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1132 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR; 1133 error = iomap_fiemap(inode, fieinfo, start, length, 1134 &xfs_xattr_iomap_ops); 1135 } else { 1136 error = iomap_fiemap(inode, fieinfo, start, length, 1137 &xfs_read_iomap_ops); 1138 } 1139 xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED); 1140 1141 return error; 1142 } 1143 1144 STATIC int 1145 xfs_vn_tmpfile( 1146 struct mnt_idmap *idmap, 1147 struct inode *dir, 1148 struct file *file, 1149 umode_t mode) 1150 { 1151 int err = xfs_generic_create(idmap, dir, file->f_path.dentry, mode, 0, file); 1152 1153 return finish_open_simple(file, err); 1154 } 1155 1156 static const struct inode_operations xfs_inode_operations = { 1157 .get_inode_acl = xfs_get_acl, 1158 .set_acl = xfs_set_acl, 1159 .getattr = xfs_vn_getattr, 1160 .setattr = xfs_vn_setattr, 1161 .listxattr = xfs_vn_listxattr, 1162 .fiemap = xfs_vn_fiemap, 1163 .update_time = xfs_vn_update_time, 1164 .fileattr_get = xfs_fileattr_get, 1165 .fileattr_set = xfs_fileattr_set, 1166 }; 1167 1168 static const struct inode_operations xfs_dir_inode_operations = { 1169 .create = xfs_vn_create, 1170 .lookup = xfs_vn_lookup, 1171 .link = xfs_vn_link, 1172 .unlink = xfs_vn_unlink, 1173 .symlink = xfs_vn_symlink, 1174 .mkdir = xfs_vn_mkdir, 1175 /* 1176 * Yes, XFS uses the same method for rmdir and unlink. 1177 * 1178 * There are some subtile differences deeper in the code, 1179 * but we use S_ISDIR to check for those. 1180 */ 1181 .rmdir = xfs_vn_unlink, 1182 .mknod = xfs_vn_mknod, 1183 .rename = xfs_vn_rename, 1184 .get_inode_acl = xfs_get_acl, 1185 .set_acl = xfs_set_acl, 1186 .getattr = xfs_vn_getattr, 1187 .setattr = xfs_vn_setattr, 1188 .listxattr = xfs_vn_listxattr, 1189 .update_time = xfs_vn_update_time, 1190 .tmpfile = xfs_vn_tmpfile, 1191 .fileattr_get = xfs_fileattr_get, 1192 .fileattr_set = xfs_fileattr_set, 1193 }; 1194 1195 static const struct inode_operations xfs_dir_ci_inode_operations = { 1196 .create = xfs_vn_create, 1197 .lookup = xfs_vn_ci_lookup, 1198 .link = xfs_vn_link, 1199 .unlink = xfs_vn_unlink, 1200 .symlink = xfs_vn_symlink, 1201 .mkdir = xfs_vn_mkdir, 1202 /* 1203 * Yes, XFS uses the same method for rmdir and unlink. 1204 * 1205 * There are some subtile differences deeper in the code, 1206 * but we use S_ISDIR to check for those. 1207 */ 1208 .rmdir = xfs_vn_unlink, 1209 .mknod = xfs_vn_mknod, 1210 .rename = xfs_vn_rename, 1211 .get_inode_acl = xfs_get_acl, 1212 .set_acl = xfs_set_acl, 1213 .getattr = xfs_vn_getattr, 1214 .setattr = xfs_vn_setattr, 1215 .listxattr = xfs_vn_listxattr, 1216 .update_time = xfs_vn_update_time, 1217 .tmpfile = xfs_vn_tmpfile, 1218 .fileattr_get = xfs_fileattr_get, 1219 .fileattr_set = xfs_fileattr_set, 1220 }; 1221 1222 static const struct inode_operations xfs_symlink_inode_operations = { 1223 .get_link = xfs_vn_get_link, 1224 .getattr = xfs_vn_getattr, 1225 .setattr = xfs_vn_setattr, 1226 .listxattr = xfs_vn_listxattr, 1227 .update_time = xfs_vn_update_time, 1228 }; 1229 1230 /* Figure out if this file actually supports DAX. */ 1231 static bool 1232 xfs_inode_supports_dax( 1233 struct xfs_inode *ip) 1234 { 1235 struct xfs_mount *mp = ip->i_mount; 1236 1237 /* Only supported on regular files. */ 1238 if (!S_ISREG(VFS_I(ip)->i_mode)) 1239 return false; 1240 1241 /* Block size must match page size */ 1242 if (mp->m_sb.sb_blocksize != PAGE_SIZE) 1243 return false; 1244 1245 /* Device has to support DAX too. */ 1246 return xfs_inode_buftarg(ip)->bt_daxdev != NULL; 1247 } 1248 1249 static bool 1250 xfs_inode_should_enable_dax( 1251 struct xfs_inode *ip) 1252 { 1253 if (!IS_ENABLED(CONFIG_FS_DAX)) 1254 return false; 1255 if (xfs_has_dax_never(ip->i_mount)) 1256 return false; 1257 if (!xfs_inode_supports_dax(ip)) 1258 return false; 1259 if (xfs_has_dax_always(ip->i_mount)) 1260 return true; 1261 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 1262 return true; 1263 return false; 1264 } 1265 1266 void 1267 xfs_diflags_to_iflags( 1268 struct xfs_inode *ip, 1269 bool init) 1270 { 1271 struct inode *inode = VFS_I(ip); 1272 unsigned int xflags = xfs_ip2xflags(ip); 1273 unsigned int flags = 0; 1274 1275 ASSERT(!(IS_DAX(inode) && init)); 1276 1277 if (xflags & FS_XFLAG_IMMUTABLE) 1278 flags |= S_IMMUTABLE; 1279 if (xflags & FS_XFLAG_APPEND) 1280 flags |= S_APPEND; 1281 if (xflags & FS_XFLAG_SYNC) 1282 flags |= S_SYNC; 1283 if (xflags & FS_XFLAG_NOATIME) 1284 flags |= S_NOATIME; 1285 if (init && xfs_inode_should_enable_dax(ip)) 1286 flags |= S_DAX; 1287 1288 /* 1289 * S_DAX can only be set during inode initialization and is never set by 1290 * the VFS, so we cannot mask off S_DAX in i_flags. 1291 */ 1292 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME); 1293 inode->i_flags |= flags; 1294 } 1295 1296 /* 1297 * Initialize the Linux inode. 1298 * 1299 * When reading existing inodes from disk this is called directly from xfs_iget, 1300 * when creating a new inode it is called from xfs_init_new_inode after setting 1301 * up the inode. These callers have different criteria for clearing XFS_INEW, so 1302 * leave it up to the caller to deal with unlocking the inode appropriately. 1303 */ 1304 void 1305 xfs_setup_inode( 1306 struct xfs_inode *ip) 1307 { 1308 struct inode *inode = &ip->i_vnode; 1309 gfp_t gfp_mask; 1310 1311 inode->i_ino = ip->i_ino; 1312 inode->i_state |= I_NEW; 1313 1314 inode_sb_list_add(inode); 1315 /* make the inode look hashed for the writeback code */ 1316 inode_fake_hash(inode); 1317 1318 i_size_write(inode, ip->i_disk_size); 1319 xfs_diflags_to_iflags(ip, true); 1320 1321 if (S_ISDIR(inode->i_mode)) { 1322 /* 1323 * We set the i_rwsem class here to avoid potential races with 1324 * lockdep_annotate_inode_mutex_key() reinitialising the lock 1325 * after a filehandle lookup has already found the inode in 1326 * cache before it has been unlocked via unlock_new_inode(). 1327 */ 1328 lockdep_set_class(&inode->i_rwsem, 1329 &inode->i_sb->s_type->i_mutex_dir_key); 1330 lockdep_set_class(&ip->i_lock, &xfs_dir_ilock_class); 1331 } else { 1332 lockdep_set_class(&ip->i_lock, &xfs_nondir_ilock_class); 1333 } 1334 1335 /* 1336 * Ensure all page cache allocations are done from GFP_NOFS context to 1337 * prevent direct reclaim recursion back into the filesystem and blowing 1338 * stacks or deadlocking. 1339 */ 1340 gfp_mask = mapping_gfp_mask(inode->i_mapping); 1341 mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS))); 1342 1343 /* 1344 * For real-time inodes update the stable write flags to that of the RT 1345 * device instead of the data device. 1346 */ 1347 if (S_ISREG(inode->i_mode) && XFS_IS_REALTIME_INODE(ip)) 1348 xfs_update_stable_writes(ip); 1349 1350 /* 1351 * If there is no attribute fork no ACL can exist on this inode, 1352 * and it can't have any file capabilities attached to it either. 1353 */ 1354 if (!xfs_inode_has_attr_fork(ip)) { 1355 inode_has_no_xattr(inode); 1356 cache_no_acl(inode); 1357 } 1358 } 1359 1360 void 1361 xfs_setup_iops( 1362 struct xfs_inode *ip) 1363 { 1364 struct inode *inode = &ip->i_vnode; 1365 1366 switch (inode->i_mode & S_IFMT) { 1367 case S_IFREG: 1368 inode->i_op = &xfs_inode_operations; 1369 inode->i_fop = &xfs_file_operations; 1370 if (IS_DAX(inode)) 1371 inode->i_mapping->a_ops = &xfs_dax_aops; 1372 else 1373 inode->i_mapping->a_ops = &xfs_address_space_operations; 1374 break; 1375 case S_IFDIR: 1376 if (xfs_has_asciici(XFS_M(inode->i_sb))) 1377 inode->i_op = &xfs_dir_ci_inode_operations; 1378 else 1379 inode->i_op = &xfs_dir_inode_operations; 1380 inode->i_fop = &xfs_dir_file_operations; 1381 break; 1382 case S_IFLNK: 1383 inode->i_op = &xfs_symlink_inode_operations; 1384 break; 1385 default: 1386 inode->i_op = &xfs_inode_operations; 1387 init_special_inode(inode, inode->i_mode, inode->i_rdev); 1388 break; 1389 } 1390 } 1391