xref: /linux/fs/xfs/xfs_iops.c (revision 058443934524590d5537a80f490267cc95a61c05)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_acl.h"
15 #include "xfs_quota.h"
16 #include "xfs_da_format.h"
17 #include "xfs_da_btree.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans.h"
20 #include "xfs_trace.h"
21 #include "xfs_icache.h"
22 #include "xfs_symlink.h"
23 #include "xfs_dir2.h"
24 #include "xfs_iomap.h"
25 #include "xfs_error.h"
26 #include "xfs_ioctl.h"
27 #include "xfs_xattr.h"
28 
29 #include <linux/posix_acl.h>
30 #include <linux/security.h>
31 #include <linux/iversion.h>
32 #include <linux/fiemap.h>
33 
34 /*
35  * Directories have different lock order w.r.t. mmap_lock compared to regular
36  * files. This is due to readdir potentially triggering page faults on a user
37  * buffer inside filldir(), and this happens with the ilock on the directory
38  * held. For regular files, the lock order is the other way around - the
39  * mmap_lock is taken during the page fault, and then we lock the ilock to do
40  * block mapping. Hence we need a different class for the directory ilock so
41  * that lockdep can tell them apart.
42  */
43 static struct lock_class_key xfs_nondir_ilock_class;
44 static struct lock_class_key xfs_dir_ilock_class;
45 
46 static int
47 xfs_initxattrs(
48 	struct inode		*inode,
49 	const struct xattr	*xattr_array,
50 	void			*fs_info)
51 {
52 	const struct xattr	*xattr;
53 	struct xfs_inode	*ip = XFS_I(inode);
54 	int			error = 0;
55 
56 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
57 		struct xfs_da_args	args = {
58 			.dp		= ip,
59 			.attr_filter	= XFS_ATTR_SECURE,
60 			.name		= xattr->name,
61 			.namelen	= strlen(xattr->name),
62 			.value		= xattr->value,
63 			.valuelen	= xattr->value_len,
64 		};
65 		error = xfs_attr_change(&args);
66 		if (error < 0)
67 			break;
68 	}
69 	return error;
70 }
71 
72 /*
73  * Hook in SELinux.  This is not quite correct yet, what we really need
74  * here (as we do for default ACLs) is a mechanism by which creation of
75  * these attrs can be journalled at inode creation time (along with the
76  * inode, of course, such that log replay can't cause these to be lost).
77  */
78 int
79 xfs_inode_init_security(
80 	struct inode	*inode,
81 	struct inode	*dir,
82 	const struct qstr *qstr)
83 {
84 	return security_inode_init_security(inode, dir, qstr,
85 					     &xfs_initxattrs, NULL);
86 }
87 
88 static void
89 xfs_dentry_to_name(
90 	struct xfs_name	*namep,
91 	struct dentry	*dentry)
92 {
93 	namep->name = dentry->d_name.name;
94 	namep->len = dentry->d_name.len;
95 	namep->type = XFS_DIR3_FT_UNKNOWN;
96 }
97 
98 static int
99 xfs_dentry_mode_to_name(
100 	struct xfs_name	*namep,
101 	struct dentry	*dentry,
102 	int		mode)
103 {
104 	namep->name = dentry->d_name.name;
105 	namep->len = dentry->d_name.len;
106 	namep->type = xfs_mode_to_ftype(mode);
107 
108 	if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN))
109 		return -EFSCORRUPTED;
110 
111 	return 0;
112 }
113 
114 STATIC void
115 xfs_cleanup_inode(
116 	struct inode	*dir,
117 	struct inode	*inode,
118 	struct dentry	*dentry)
119 {
120 	struct xfs_name	teardown;
121 
122 	/* Oh, the horror.
123 	 * If we can't add the ACL or we fail in
124 	 * xfs_inode_init_security we must back out.
125 	 * ENOSPC can hit here, among other things.
126 	 */
127 	xfs_dentry_to_name(&teardown, dentry);
128 
129 	xfs_remove(XFS_I(dir), &teardown, XFS_I(inode));
130 }
131 
132 /*
133  * Check to see if we are likely to need an extended attribute to be added to
134  * the inode we are about to allocate. This allows the attribute fork to be
135  * created during the inode allocation, reducing the number of transactions we
136  * need to do in this fast path.
137  *
138  * The security checks are optimistic, but not guaranteed. The two LSMs that
139  * require xattrs to be added here (selinux and smack) are also the only two
140  * LSMs that add a sb->s_security structure to the superblock. Hence if security
141  * is enabled and sb->s_security is set, we have a pretty good idea that we are
142  * going to be asked to add a security xattr immediately after allocating the
143  * xfs inode and instantiating the VFS inode.
144  */
145 static inline bool
146 xfs_create_need_xattr(
147 	struct inode	*dir,
148 	struct posix_acl *default_acl,
149 	struct posix_acl *acl)
150 {
151 	if (acl)
152 		return true;
153 	if (default_acl)
154 		return true;
155 #if IS_ENABLED(CONFIG_SECURITY)
156 	if (dir->i_sb->s_security)
157 		return true;
158 #endif
159 	return false;
160 }
161 
162 
163 STATIC int
164 xfs_generic_create(
165 	struct user_namespace	*mnt_userns,
166 	struct inode	*dir,
167 	struct dentry	*dentry,
168 	umode_t		mode,
169 	dev_t		rdev,
170 	bool		tmpfile)	/* unnamed file */
171 {
172 	struct inode	*inode;
173 	struct xfs_inode *ip = NULL;
174 	struct posix_acl *default_acl, *acl;
175 	struct xfs_name	name;
176 	int		error;
177 
178 	/*
179 	 * Irix uses Missed'em'V split, but doesn't want to see
180 	 * the upper 5 bits of (14bit) major.
181 	 */
182 	if (S_ISCHR(mode) || S_ISBLK(mode)) {
183 		if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff))
184 			return -EINVAL;
185 	} else {
186 		rdev = 0;
187 	}
188 
189 	error = posix_acl_create(dir, &mode, &default_acl, &acl);
190 	if (error)
191 		return error;
192 
193 	/* Verify mode is valid also for tmpfile case */
194 	error = xfs_dentry_mode_to_name(&name, dentry, mode);
195 	if (unlikely(error))
196 		goto out_free_acl;
197 
198 	if (!tmpfile) {
199 		error = xfs_create(mnt_userns, XFS_I(dir), &name, mode, rdev,
200 				xfs_create_need_xattr(dir, default_acl, acl),
201 				&ip);
202 	} else {
203 		error = xfs_create_tmpfile(mnt_userns, XFS_I(dir), mode, &ip);
204 	}
205 	if (unlikely(error))
206 		goto out_free_acl;
207 
208 	inode = VFS_I(ip);
209 
210 	error = xfs_inode_init_security(inode, dir, &dentry->d_name);
211 	if (unlikely(error))
212 		goto out_cleanup_inode;
213 
214 	if (default_acl) {
215 		error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
216 		if (error)
217 			goto out_cleanup_inode;
218 	}
219 	if (acl) {
220 		error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS);
221 		if (error)
222 			goto out_cleanup_inode;
223 	}
224 
225 	xfs_setup_iops(ip);
226 
227 	if (tmpfile) {
228 		/*
229 		 * The VFS requires that any inode fed to d_tmpfile must have
230 		 * nlink == 1 so that it can decrement the nlink in d_tmpfile.
231 		 * However, we created the temp file with nlink == 0 because
232 		 * we're not allowed to put an inode with nlink > 0 on the
233 		 * unlinked list.  Therefore we have to set nlink to 1 so that
234 		 * d_tmpfile can immediately set it back to zero.
235 		 */
236 		set_nlink(inode, 1);
237 		d_tmpfile(dentry, inode);
238 	} else
239 		d_instantiate(dentry, inode);
240 
241 	xfs_finish_inode_setup(ip);
242 
243  out_free_acl:
244 	posix_acl_release(default_acl);
245 	posix_acl_release(acl);
246 	return error;
247 
248  out_cleanup_inode:
249 	xfs_finish_inode_setup(ip);
250 	if (!tmpfile)
251 		xfs_cleanup_inode(dir, inode, dentry);
252 	xfs_irele(ip);
253 	goto out_free_acl;
254 }
255 
256 STATIC int
257 xfs_vn_mknod(
258 	struct user_namespace	*mnt_userns,
259 	struct inode		*dir,
260 	struct dentry		*dentry,
261 	umode_t			mode,
262 	dev_t			rdev)
263 {
264 	return xfs_generic_create(mnt_userns, dir, dentry, mode, rdev, false);
265 }
266 
267 STATIC int
268 xfs_vn_create(
269 	struct user_namespace	*mnt_userns,
270 	struct inode		*dir,
271 	struct dentry		*dentry,
272 	umode_t			mode,
273 	bool			flags)
274 {
275 	return xfs_generic_create(mnt_userns, dir, dentry, mode, 0, false);
276 }
277 
278 STATIC int
279 xfs_vn_mkdir(
280 	struct user_namespace	*mnt_userns,
281 	struct inode		*dir,
282 	struct dentry		*dentry,
283 	umode_t			mode)
284 {
285 	return xfs_generic_create(mnt_userns, dir, dentry, mode | S_IFDIR, 0,
286 				  false);
287 }
288 
289 STATIC struct dentry *
290 xfs_vn_lookup(
291 	struct inode	*dir,
292 	struct dentry	*dentry,
293 	unsigned int flags)
294 {
295 	struct inode *inode;
296 	struct xfs_inode *cip;
297 	struct xfs_name	name;
298 	int		error;
299 
300 	if (dentry->d_name.len >= MAXNAMELEN)
301 		return ERR_PTR(-ENAMETOOLONG);
302 
303 	xfs_dentry_to_name(&name, dentry);
304 	error = xfs_lookup(XFS_I(dir), &name, &cip, NULL);
305 	if (likely(!error))
306 		inode = VFS_I(cip);
307 	else if (likely(error == -ENOENT))
308 		inode = NULL;
309 	else
310 		inode = ERR_PTR(error);
311 	return d_splice_alias(inode, dentry);
312 }
313 
314 STATIC struct dentry *
315 xfs_vn_ci_lookup(
316 	struct inode	*dir,
317 	struct dentry	*dentry,
318 	unsigned int flags)
319 {
320 	struct xfs_inode *ip;
321 	struct xfs_name	xname;
322 	struct xfs_name ci_name;
323 	struct qstr	dname;
324 	int		error;
325 
326 	if (dentry->d_name.len >= MAXNAMELEN)
327 		return ERR_PTR(-ENAMETOOLONG);
328 
329 	xfs_dentry_to_name(&xname, dentry);
330 	error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name);
331 	if (unlikely(error)) {
332 		if (unlikely(error != -ENOENT))
333 			return ERR_PTR(error);
334 		/*
335 		 * call d_add(dentry, NULL) here when d_drop_negative_children
336 		 * is called in xfs_vn_mknod (ie. allow negative dentries
337 		 * with CI filesystems).
338 		 */
339 		return NULL;
340 	}
341 
342 	/* if exact match, just splice and exit */
343 	if (!ci_name.name)
344 		return d_splice_alias(VFS_I(ip), dentry);
345 
346 	/* else case-insensitive match... */
347 	dname.name = ci_name.name;
348 	dname.len = ci_name.len;
349 	dentry = d_add_ci(dentry, VFS_I(ip), &dname);
350 	kmem_free(ci_name.name);
351 	return dentry;
352 }
353 
354 STATIC int
355 xfs_vn_link(
356 	struct dentry	*old_dentry,
357 	struct inode	*dir,
358 	struct dentry	*dentry)
359 {
360 	struct inode	*inode = d_inode(old_dentry);
361 	struct xfs_name	name;
362 	int		error;
363 
364 	error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode);
365 	if (unlikely(error))
366 		return error;
367 
368 	error = xfs_link(XFS_I(dir), XFS_I(inode), &name);
369 	if (unlikely(error))
370 		return error;
371 
372 	ihold(inode);
373 	d_instantiate(dentry, inode);
374 	return 0;
375 }
376 
377 STATIC int
378 xfs_vn_unlink(
379 	struct inode	*dir,
380 	struct dentry	*dentry)
381 {
382 	struct xfs_name	name;
383 	int		error;
384 
385 	xfs_dentry_to_name(&name, dentry);
386 
387 	error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry)));
388 	if (error)
389 		return error;
390 
391 	/*
392 	 * With unlink, the VFS makes the dentry "negative": no inode,
393 	 * but still hashed. This is incompatible with case-insensitive
394 	 * mode, so invalidate (unhash) the dentry in CI-mode.
395 	 */
396 	if (xfs_has_asciici(XFS_M(dir->i_sb)))
397 		d_invalidate(dentry);
398 	return 0;
399 }
400 
401 STATIC int
402 xfs_vn_symlink(
403 	struct user_namespace	*mnt_userns,
404 	struct inode		*dir,
405 	struct dentry		*dentry,
406 	const char		*symname)
407 {
408 	struct inode	*inode;
409 	struct xfs_inode *cip = NULL;
410 	struct xfs_name	name;
411 	int		error;
412 	umode_t		mode;
413 
414 	mode = S_IFLNK |
415 		(irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO);
416 	error = xfs_dentry_mode_to_name(&name, dentry, mode);
417 	if (unlikely(error))
418 		goto out;
419 
420 	error = xfs_symlink(mnt_userns, XFS_I(dir), &name, symname, mode, &cip);
421 	if (unlikely(error))
422 		goto out;
423 
424 	inode = VFS_I(cip);
425 
426 	error = xfs_inode_init_security(inode, dir, &dentry->d_name);
427 	if (unlikely(error))
428 		goto out_cleanup_inode;
429 
430 	xfs_setup_iops(cip);
431 
432 	d_instantiate(dentry, inode);
433 	xfs_finish_inode_setup(cip);
434 	return 0;
435 
436  out_cleanup_inode:
437 	xfs_finish_inode_setup(cip);
438 	xfs_cleanup_inode(dir, inode, dentry);
439 	xfs_irele(cip);
440  out:
441 	return error;
442 }
443 
444 STATIC int
445 xfs_vn_rename(
446 	struct user_namespace	*mnt_userns,
447 	struct inode		*odir,
448 	struct dentry		*odentry,
449 	struct inode		*ndir,
450 	struct dentry		*ndentry,
451 	unsigned int		flags)
452 {
453 	struct inode	*new_inode = d_inode(ndentry);
454 	int		omode = 0;
455 	int		error;
456 	struct xfs_name	oname;
457 	struct xfs_name	nname;
458 
459 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
460 		return -EINVAL;
461 
462 	/* if we are exchanging files, we need to set i_mode of both files */
463 	if (flags & RENAME_EXCHANGE)
464 		omode = d_inode(ndentry)->i_mode;
465 
466 	error = xfs_dentry_mode_to_name(&oname, odentry, omode);
467 	if (omode && unlikely(error))
468 		return error;
469 
470 	error = xfs_dentry_mode_to_name(&nname, ndentry,
471 					d_inode(odentry)->i_mode);
472 	if (unlikely(error))
473 		return error;
474 
475 	return xfs_rename(mnt_userns, XFS_I(odir), &oname,
476 			  XFS_I(d_inode(odentry)), XFS_I(ndir), &nname,
477 			  new_inode ? XFS_I(new_inode) : NULL, flags);
478 }
479 
480 /*
481  * careful here - this function can get called recursively, so
482  * we need to be very careful about how much stack we use.
483  * uio is kmalloced for this reason...
484  */
485 STATIC const char *
486 xfs_vn_get_link(
487 	struct dentry		*dentry,
488 	struct inode		*inode,
489 	struct delayed_call	*done)
490 {
491 	char			*link;
492 	int			error = -ENOMEM;
493 
494 	if (!dentry)
495 		return ERR_PTR(-ECHILD);
496 
497 	link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL);
498 	if (!link)
499 		goto out_err;
500 
501 	error = xfs_readlink(XFS_I(d_inode(dentry)), link);
502 	if (unlikely(error))
503 		goto out_kfree;
504 
505 	set_delayed_call(done, kfree_link, link);
506 	return link;
507 
508  out_kfree:
509 	kfree(link);
510  out_err:
511 	return ERR_PTR(error);
512 }
513 
514 static uint32_t
515 xfs_stat_blksize(
516 	struct xfs_inode	*ip)
517 {
518 	struct xfs_mount	*mp = ip->i_mount;
519 
520 	/*
521 	 * If the file blocks are being allocated from a realtime volume, then
522 	 * always return the realtime extent size.
523 	 */
524 	if (XFS_IS_REALTIME_INODE(ip))
525 		return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip));
526 
527 	/*
528 	 * Allow large block sizes to be reported to userspace programs if the
529 	 * "largeio" mount option is used.
530 	 *
531 	 * If compatibility mode is specified, simply return the basic unit of
532 	 * caching so that we don't get inefficient read/modify/write I/O from
533 	 * user apps. Otherwise....
534 	 *
535 	 * If the underlying volume is a stripe, then return the stripe width in
536 	 * bytes as the recommended I/O size. It is not a stripe and we've set a
537 	 * default buffered I/O size, return that, otherwise return the compat
538 	 * default.
539 	 */
540 	if (xfs_has_large_iosize(mp)) {
541 		if (mp->m_swidth)
542 			return XFS_FSB_TO_B(mp, mp->m_swidth);
543 		if (xfs_has_allocsize(mp))
544 			return 1U << mp->m_allocsize_log;
545 	}
546 
547 	return PAGE_SIZE;
548 }
549 
550 STATIC int
551 xfs_vn_getattr(
552 	struct user_namespace	*mnt_userns,
553 	const struct path	*path,
554 	struct kstat		*stat,
555 	u32			request_mask,
556 	unsigned int		query_flags)
557 {
558 	struct inode		*inode = d_inode(path->dentry);
559 	struct xfs_inode	*ip = XFS_I(inode);
560 	struct xfs_mount	*mp = ip->i_mount;
561 
562 	trace_xfs_getattr(ip);
563 
564 	if (xfs_is_shutdown(mp))
565 		return -EIO;
566 
567 	stat->size = XFS_ISIZE(ip);
568 	stat->dev = inode->i_sb->s_dev;
569 	stat->mode = inode->i_mode;
570 	stat->nlink = inode->i_nlink;
571 	stat->uid = i_uid_into_mnt(mnt_userns, inode);
572 	stat->gid = i_gid_into_mnt(mnt_userns, inode);
573 	stat->ino = ip->i_ino;
574 	stat->atime = inode->i_atime;
575 	stat->mtime = inode->i_mtime;
576 	stat->ctime = inode->i_ctime;
577 	stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks);
578 
579 	if (xfs_has_v3inodes(mp)) {
580 		if (request_mask & STATX_BTIME) {
581 			stat->result_mask |= STATX_BTIME;
582 			stat->btime = ip->i_crtime;
583 		}
584 	}
585 
586 	/*
587 	 * Note: If you add another clause to set an attribute flag, please
588 	 * update attributes_mask below.
589 	 */
590 	if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
591 		stat->attributes |= STATX_ATTR_IMMUTABLE;
592 	if (ip->i_diflags & XFS_DIFLAG_APPEND)
593 		stat->attributes |= STATX_ATTR_APPEND;
594 	if (ip->i_diflags & XFS_DIFLAG_NODUMP)
595 		stat->attributes |= STATX_ATTR_NODUMP;
596 
597 	stat->attributes_mask |= (STATX_ATTR_IMMUTABLE |
598 				  STATX_ATTR_APPEND |
599 				  STATX_ATTR_NODUMP);
600 
601 	switch (inode->i_mode & S_IFMT) {
602 	case S_IFBLK:
603 	case S_IFCHR:
604 		stat->blksize = BLKDEV_IOSIZE;
605 		stat->rdev = inode->i_rdev;
606 		break;
607 	case S_IFREG:
608 		if (request_mask & STATX_DIOALIGN) {
609 			struct xfs_buftarg	*target = xfs_inode_buftarg(ip);
610 			struct block_device	*bdev = target->bt_bdev;
611 
612 			stat->result_mask |= STATX_DIOALIGN;
613 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
614 			stat->dio_offset_align = bdev_logical_block_size(bdev);
615 		}
616 		fallthrough;
617 	default:
618 		stat->blksize = xfs_stat_blksize(ip);
619 		stat->rdev = 0;
620 		break;
621 	}
622 
623 	return 0;
624 }
625 
626 static int
627 xfs_vn_change_ok(
628 	struct user_namespace	*mnt_userns,
629 	struct dentry		*dentry,
630 	struct iattr		*iattr)
631 {
632 	struct xfs_mount	*mp = XFS_I(d_inode(dentry))->i_mount;
633 
634 	if (xfs_is_readonly(mp))
635 		return -EROFS;
636 
637 	if (xfs_is_shutdown(mp))
638 		return -EIO;
639 
640 	return setattr_prepare(mnt_userns, dentry, iattr);
641 }
642 
643 /*
644  * Set non-size attributes of an inode.
645  *
646  * Caution: The caller of this function is responsible for calling
647  * setattr_prepare() or otherwise verifying the change is fine.
648  */
649 static int
650 xfs_setattr_nonsize(
651 	struct user_namespace	*mnt_userns,
652 	struct xfs_inode	*ip,
653 	struct iattr		*iattr)
654 {
655 	xfs_mount_t		*mp = ip->i_mount;
656 	struct inode		*inode = VFS_I(ip);
657 	int			mask = iattr->ia_valid;
658 	xfs_trans_t		*tp;
659 	int			error;
660 	kuid_t			uid = GLOBAL_ROOT_UID;
661 	kgid_t			gid = GLOBAL_ROOT_GID;
662 	struct xfs_dquot	*udqp = NULL, *gdqp = NULL;
663 	struct xfs_dquot	*old_udqp = NULL, *old_gdqp = NULL;
664 
665 	ASSERT((mask & ATTR_SIZE) == 0);
666 
667 	/*
668 	 * If disk quotas is on, we make sure that the dquots do exist on disk,
669 	 * before we start any other transactions. Trying to do this later
670 	 * is messy. We don't care to take a readlock to look at the ids
671 	 * in inode here, because we can't hold it across the trans_reserve.
672 	 * If the IDs do change before we take the ilock, we're covered
673 	 * because the i_*dquot fields will get updated anyway.
674 	 */
675 	if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
676 		uint	qflags = 0;
677 
678 		if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
679 			uid = from_vfsuid(mnt_userns, i_user_ns(inode),
680 					  iattr->ia_vfsuid);
681 			qflags |= XFS_QMOPT_UQUOTA;
682 		} else {
683 			uid = inode->i_uid;
684 		}
685 		if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
686 			gid = from_vfsgid(mnt_userns, i_user_ns(inode),
687 					  iattr->ia_vfsgid);
688 			qflags |= XFS_QMOPT_GQUOTA;
689 		}  else {
690 			gid = inode->i_gid;
691 		}
692 
693 		/*
694 		 * We take a reference when we initialize udqp and gdqp,
695 		 * so it is important that we never blindly double trip on
696 		 * the same variable. See xfs_create() for an example.
697 		 */
698 		ASSERT(udqp == NULL);
699 		ASSERT(gdqp == NULL);
700 		error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid,
701 					   qflags, &udqp, &gdqp, NULL);
702 		if (error)
703 			return error;
704 	}
705 
706 	error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL,
707 			has_capability_noaudit(current, CAP_FOWNER), &tp);
708 	if (error)
709 		goto out_dqrele;
710 
711 	/*
712 	 * Register quota modifications in the transaction.  Must be the owner
713 	 * or privileged.  These IDs could have changed since we last looked at
714 	 * them.  But, we're assured that if the ownership did change while we
715 	 * didn't have the inode locked, inode's dquot(s) would have changed
716 	 * also.
717 	 */
718 	if (XFS_IS_UQUOTA_ON(mp) &&
719 	    i_uid_needs_update(mnt_userns, iattr, inode)) {
720 		ASSERT(udqp);
721 		old_udqp = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp);
722 	}
723 	if (XFS_IS_GQUOTA_ON(mp) &&
724 	    i_gid_needs_update(mnt_userns, iattr, inode)) {
725 		ASSERT(xfs_has_pquotino(mp) || !XFS_IS_PQUOTA_ON(mp));
726 		ASSERT(gdqp);
727 		old_gdqp = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp);
728 	}
729 
730 	setattr_copy(mnt_userns, inode, iattr);
731 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
732 
733 	XFS_STATS_INC(mp, xs_ig_attrchg);
734 
735 	if (xfs_has_wsync(mp))
736 		xfs_trans_set_sync(tp);
737 	error = xfs_trans_commit(tp);
738 
739 	/*
740 	 * Release any dquot(s) the inode had kept before chown.
741 	 */
742 	xfs_qm_dqrele(old_udqp);
743 	xfs_qm_dqrele(old_gdqp);
744 	xfs_qm_dqrele(udqp);
745 	xfs_qm_dqrele(gdqp);
746 
747 	if (error)
748 		return error;
749 
750 	/*
751 	 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode
752 	 * 	     update.  We could avoid this with linked transactions
753 	 * 	     and passing down the transaction pointer all the way
754 	 *	     to attr_set.  No previous user of the generic
755 	 * 	     Posix ACL code seems to care about this issue either.
756 	 */
757 	if (mask & ATTR_MODE) {
758 		error = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
759 		if (error)
760 			return error;
761 	}
762 
763 	return 0;
764 
765 out_dqrele:
766 	xfs_qm_dqrele(udqp);
767 	xfs_qm_dqrele(gdqp);
768 	return error;
769 }
770 
771 /*
772  * Truncate file.  Must have write permission and not be a directory.
773  *
774  * Caution: The caller of this function is responsible for calling
775  * setattr_prepare() or otherwise verifying the change is fine.
776  */
777 STATIC int
778 xfs_setattr_size(
779 	struct user_namespace	*mnt_userns,
780 	struct xfs_inode	*ip,
781 	struct iattr		*iattr)
782 {
783 	struct xfs_mount	*mp = ip->i_mount;
784 	struct inode		*inode = VFS_I(ip);
785 	xfs_off_t		oldsize, newsize;
786 	struct xfs_trans	*tp;
787 	int			error;
788 	uint			lock_flags = 0;
789 	bool			did_zeroing = false;
790 
791 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
792 	ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
793 	ASSERT(S_ISREG(inode->i_mode));
794 	ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET|
795 		ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0);
796 
797 	oldsize = inode->i_size;
798 	newsize = iattr->ia_size;
799 
800 	/*
801 	 * Short circuit the truncate case for zero length files.
802 	 */
803 	if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) {
804 		if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME)))
805 			return 0;
806 
807 		/*
808 		 * Use the regular setattr path to update the timestamps.
809 		 */
810 		iattr->ia_valid &= ~ATTR_SIZE;
811 		return xfs_setattr_nonsize(mnt_userns, ip, iattr);
812 	}
813 
814 	/*
815 	 * Make sure that the dquots are attached to the inode.
816 	 */
817 	error = xfs_qm_dqattach(ip);
818 	if (error)
819 		return error;
820 
821 	/*
822 	 * Wait for all direct I/O to complete.
823 	 */
824 	inode_dio_wait(inode);
825 
826 	/*
827 	 * File data changes must be complete before we start the transaction to
828 	 * modify the inode.  This needs to be done before joining the inode to
829 	 * the transaction because the inode cannot be unlocked once it is a
830 	 * part of the transaction.
831 	 *
832 	 * Start with zeroing any data beyond EOF that we may expose on file
833 	 * extension, or zeroing out the rest of the block on a downward
834 	 * truncate.
835 	 */
836 	if (newsize > oldsize) {
837 		trace_xfs_zero_eof(ip, oldsize, newsize - oldsize);
838 		error = xfs_zero_range(ip, oldsize, newsize - oldsize,
839 				&did_zeroing);
840 	} else {
841 		/*
842 		 * iomap won't detect a dirty page over an unwritten block (or a
843 		 * cow block over a hole) and subsequently skips zeroing the
844 		 * newly post-EOF portion of the page. Flush the new EOF to
845 		 * convert the block before the pagecache truncate.
846 		 */
847 		error = filemap_write_and_wait_range(inode->i_mapping, newsize,
848 						     newsize);
849 		if (error)
850 			return error;
851 		error = xfs_truncate_page(ip, newsize, &did_zeroing);
852 	}
853 
854 	if (error)
855 		return error;
856 
857 	/*
858 	 * We've already locked out new page faults, so now we can safely remove
859 	 * pages from the page cache knowing they won't get refaulted until we
860 	 * drop the XFS_MMAP_EXCL lock after the extent manipulations are
861 	 * complete. The truncate_setsize() call also cleans partial EOF page
862 	 * PTEs on extending truncates and hence ensures sub-page block size
863 	 * filesystems are correctly handled, too.
864 	 *
865 	 * We have to do all the page cache truncate work outside the
866 	 * transaction context as the "lock" order is page lock->log space
867 	 * reservation as defined by extent allocation in the writeback path.
868 	 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but
869 	 * having already truncated the in-memory version of the file (i.e. made
870 	 * user visible changes). There's not much we can do about this, except
871 	 * to hope that the caller sees ENOMEM and retries the truncate
872 	 * operation.
873 	 *
874 	 * And we update in-core i_size and truncate page cache beyond newsize
875 	 * before writeback the [i_disk_size, newsize] range, so we're
876 	 * guaranteed not to write stale data past the new EOF on truncate down.
877 	 */
878 	truncate_setsize(inode, newsize);
879 
880 	/*
881 	 * We are going to log the inode size change in this transaction so
882 	 * any previous writes that are beyond the on disk EOF and the new
883 	 * EOF that have not been written out need to be written here.  If we
884 	 * do not write the data out, we expose ourselves to the null files
885 	 * problem. Note that this includes any block zeroing we did above;
886 	 * otherwise those blocks may not be zeroed after a crash.
887 	 */
888 	if (did_zeroing ||
889 	    (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) {
890 		error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
891 						ip->i_disk_size, newsize - 1);
892 		if (error)
893 			return error;
894 	}
895 
896 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
897 	if (error)
898 		return error;
899 
900 	lock_flags |= XFS_ILOCK_EXCL;
901 	xfs_ilock(ip, XFS_ILOCK_EXCL);
902 	xfs_trans_ijoin(tp, ip, 0);
903 
904 	/*
905 	 * Only change the c/mtime if we are changing the size or we are
906 	 * explicitly asked to change it.  This handles the semantic difference
907 	 * between truncate() and ftruncate() as implemented in the VFS.
908 	 *
909 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
910 	 * special case where we need to update the times despite not having
911 	 * these flags set.  For all other operations the VFS set these flags
912 	 * explicitly if it wants a timestamp update.
913 	 */
914 	if (newsize != oldsize &&
915 	    !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) {
916 		iattr->ia_ctime = iattr->ia_mtime =
917 			current_time(inode);
918 		iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME;
919 	}
920 
921 	/*
922 	 * The first thing we do is set the size to new_size permanently on
923 	 * disk.  This way we don't have to worry about anyone ever being able
924 	 * to look at the data being freed even in the face of a crash.
925 	 * What we're getting around here is the case where we free a block, it
926 	 * is allocated to another file, it is written to, and then we crash.
927 	 * If the new data gets written to the file but the log buffers
928 	 * containing the free and reallocation don't, then we'd end up with
929 	 * garbage in the blocks being freed.  As long as we make the new size
930 	 * permanent before actually freeing any blocks it doesn't matter if
931 	 * they get written to.
932 	 */
933 	ip->i_disk_size = newsize;
934 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
935 
936 	if (newsize <= oldsize) {
937 		error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize);
938 		if (error)
939 			goto out_trans_cancel;
940 
941 		/*
942 		 * Truncated "down", so we're removing references to old data
943 		 * here - if we delay flushing for a long time, we expose
944 		 * ourselves unduly to the notorious NULL files problem.  So,
945 		 * we mark this inode and flush it when the file is closed,
946 		 * and do not wait the usual (long) time for writeout.
947 		 */
948 		xfs_iflags_set(ip, XFS_ITRUNCATED);
949 
950 		/* A truncate down always removes post-EOF blocks. */
951 		xfs_inode_clear_eofblocks_tag(ip);
952 	}
953 
954 	ASSERT(!(iattr->ia_valid & (ATTR_UID | ATTR_GID)));
955 	setattr_copy(mnt_userns, inode, iattr);
956 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
957 
958 	XFS_STATS_INC(mp, xs_ig_attrchg);
959 
960 	if (xfs_has_wsync(mp))
961 		xfs_trans_set_sync(tp);
962 
963 	error = xfs_trans_commit(tp);
964 out_unlock:
965 	if (lock_flags)
966 		xfs_iunlock(ip, lock_flags);
967 	return error;
968 
969 out_trans_cancel:
970 	xfs_trans_cancel(tp);
971 	goto out_unlock;
972 }
973 
974 int
975 xfs_vn_setattr_size(
976 	struct user_namespace	*mnt_userns,
977 	struct dentry		*dentry,
978 	struct iattr		*iattr)
979 {
980 	struct xfs_inode	*ip = XFS_I(d_inode(dentry));
981 	int error;
982 
983 	trace_xfs_setattr(ip);
984 
985 	error = xfs_vn_change_ok(mnt_userns, dentry, iattr);
986 	if (error)
987 		return error;
988 	return xfs_setattr_size(mnt_userns, ip, iattr);
989 }
990 
991 STATIC int
992 xfs_vn_setattr(
993 	struct user_namespace	*mnt_userns,
994 	struct dentry		*dentry,
995 	struct iattr		*iattr)
996 {
997 	struct inode		*inode = d_inode(dentry);
998 	struct xfs_inode	*ip = XFS_I(inode);
999 	int			error;
1000 
1001 	if (iattr->ia_valid & ATTR_SIZE) {
1002 		uint			iolock;
1003 
1004 		xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1005 		iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1006 
1007 		error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1008 		if (error) {
1009 			xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1010 			return error;
1011 		}
1012 
1013 		error = xfs_vn_setattr_size(mnt_userns, dentry, iattr);
1014 		xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1015 	} else {
1016 		trace_xfs_setattr(ip);
1017 
1018 		error = xfs_vn_change_ok(mnt_userns, dentry, iattr);
1019 		if (!error)
1020 			error = xfs_setattr_nonsize(mnt_userns, ip, iattr);
1021 	}
1022 
1023 	return error;
1024 }
1025 
1026 STATIC int
1027 xfs_vn_update_time(
1028 	struct inode		*inode,
1029 	struct timespec64	*now,
1030 	int			flags)
1031 {
1032 	struct xfs_inode	*ip = XFS_I(inode);
1033 	struct xfs_mount	*mp = ip->i_mount;
1034 	int			log_flags = XFS_ILOG_TIMESTAMP;
1035 	struct xfs_trans	*tp;
1036 	int			error;
1037 
1038 	trace_xfs_update_time(ip);
1039 
1040 	if (inode->i_sb->s_flags & SB_LAZYTIME) {
1041 		if (!((flags & S_VERSION) &&
1042 		      inode_maybe_inc_iversion(inode, false)))
1043 			return generic_update_time(inode, now, flags);
1044 
1045 		/* Capture the iversion update that just occurred */
1046 		log_flags |= XFS_ILOG_CORE;
1047 	}
1048 
1049 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
1050 	if (error)
1051 		return error;
1052 
1053 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1054 	if (flags & S_CTIME)
1055 		inode->i_ctime = *now;
1056 	if (flags & S_MTIME)
1057 		inode->i_mtime = *now;
1058 	if (flags & S_ATIME)
1059 		inode->i_atime = *now;
1060 
1061 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1062 	xfs_trans_log_inode(tp, ip, log_flags);
1063 	return xfs_trans_commit(tp);
1064 }
1065 
1066 STATIC int
1067 xfs_vn_fiemap(
1068 	struct inode		*inode,
1069 	struct fiemap_extent_info *fieinfo,
1070 	u64			start,
1071 	u64			length)
1072 {
1073 	int			error;
1074 
1075 	xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED);
1076 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1077 		fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
1078 		error = iomap_fiemap(inode, fieinfo, start, length,
1079 				&xfs_xattr_iomap_ops);
1080 	} else {
1081 		error = iomap_fiemap(inode, fieinfo, start, length,
1082 				&xfs_read_iomap_ops);
1083 	}
1084 	xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED);
1085 
1086 	return error;
1087 }
1088 
1089 STATIC int
1090 xfs_vn_tmpfile(
1091 	struct user_namespace	*mnt_userns,
1092 	struct inode		*dir,
1093 	struct dentry		*dentry,
1094 	umode_t			mode)
1095 {
1096 	return xfs_generic_create(mnt_userns, dir, dentry, mode, 0, true);
1097 }
1098 
1099 static const struct inode_operations xfs_inode_operations = {
1100 	.get_acl		= xfs_get_acl,
1101 	.set_acl		= xfs_set_acl,
1102 	.getattr		= xfs_vn_getattr,
1103 	.setattr		= xfs_vn_setattr,
1104 	.listxattr		= xfs_vn_listxattr,
1105 	.fiemap			= xfs_vn_fiemap,
1106 	.update_time		= xfs_vn_update_time,
1107 	.fileattr_get		= xfs_fileattr_get,
1108 	.fileattr_set		= xfs_fileattr_set,
1109 };
1110 
1111 static const struct inode_operations xfs_dir_inode_operations = {
1112 	.create			= xfs_vn_create,
1113 	.lookup			= xfs_vn_lookup,
1114 	.link			= xfs_vn_link,
1115 	.unlink			= xfs_vn_unlink,
1116 	.symlink		= xfs_vn_symlink,
1117 	.mkdir			= xfs_vn_mkdir,
1118 	/*
1119 	 * Yes, XFS uses the same method for rmdir and unlink.
1120 	 *
1121 	 * There are some subtile differences deeper in the code,
1122 	 * but we use S_ISDIR to check for those.
1123 	 */
1124 	.rmdir			= xfs_vn_unlink,
1125 	.mknod			= xfs_vn_mknod,
1126 	.rename			= xfs_vn_rename,
1127 	.get_acl		= xfs_get_acl,
1128 	.set_acl		= xfs_set_acl,
1129 	.getattr		= xfs_vn_getattr,
1130 	.setattr		= xfs_vn_setattr,
1131 	.listxattr		= xfs_vn_listxattr,
1132 	.update_time		= xfs_vn_update_time,
1133 	.tmpfile		= xfs_vn_tmpfile,
1134 	.fileattr_get		= xfs_fileattr_get,
1135 	.fileattr_set		= xfs_fileattr_set,
1136 };
1137 
1138 static const struct inode_operations xfs_dir_ci_inode_operations = {
1139 	.create			= xfs_vn_create,
1140 	.lookup			= xfs_vn_ci_lookup,
1141 	.link			= xfs_vn_link,
1142 	.unlink			= xfs_vn_unlink,
1143 	.symlink		= xfs_vn_symlink,
1144 	.mkdir			= xfs_vn_mkdir,
1145 	/*
1146 	 * Yes, XFS uses the same method for rmdir and unlink.
1147 	 *
1148 	 * There are some subtile differences deeper in the code,
1149 	 * but we use S_ISDIR to check for those.
1150 	 */
1151 	.rmdir			= xfs_vn_unlink,
1152 	.mknod			= xfs_vn_mknod,
1153 	.rename			= xfs_vn_rename,
1154 	.get_acl		= xfs_get_acl,
1155 	.set_acl		= xfs_set_acl,
1156 	.getattr		= xfs_vn_getattr,
1157 	.setattr		= xfs_vn_setattr,
1158 	.listxattr		= xfs_vn_listxattr,
1159 	.update_time		= xfs_vn_update_time,
1160 	.tmpfile		= xfs_vn_tmpfile,
1161 	.fileattr_get		= xfs_fileattr_get,
1162 	.fileattr_set		= xfs_fileattr_set,
1163 };
1164 
1165 static const struct inode_operations xfs_symlink_inode_operations = {
1166 	.get_link		= xfs_vn_get_link,
1167 	.getattr		= xfs_vn_getattr,
1168 	.setattr		= xfs_vn_setattr,
1169 	.listxattr		= xfs_vn_listxattr,
1170 	.update_time		= xfs_vn_update_time,
1171 };
1172 
1173 /* Figure out if this file actually supports DAX. */
1174 static bool
1175 xfs_inode_supports_dax(
1176 	struct xfs_inode	*ip)
1177 {
1178 	struct xfs_mount	*mp = ip->i_mount;
1179 
1180 	/* Only supported on regular files. */
1181 	if (!S_ISREG(VFS_I(ip)->i_mode))
1182 		return false;
1183 
1184 	/* Only supported on non-reflinked files. */
1185 	if (xfs_is_reflink_inode(ip))
1186 		return false;
1187 
1188 	/* Block size must match page size */
1189 	if (mp->m_sb.sb_blocksize != PAGE_SIZE)
1190 		return false;
1191 
1192 	/* Device has to support DAX too. */
1193 	return xfs_inode_buftarg(ip)->bt_daxdev != NULL;
1194 }
1195 
1196 static bool
1197 xfs_inode_should_enable_dax(
1198 	struct xfs_inode *ip)
1199 {
1200 	if (!IS_ENABLED(CONFIG_FS_DAX))
1201 		return false;
1202 	if (xfs_has_dax_never(ip->i_mount))
1203 		return false;
1204 	if (!xfs_inode_supports_dax(ip))
1205 		return false;
1206 	if (xfs_has_dax_always(ip->i_mount))
1207 		return true;
1208 	if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
1209 		return true;
1210 	return false;
1211 }
1212 
1213 void
1214 xfs_diflags_to_iflags(
1215 	struct xfs_inode	*ip,
1216 	bool init)
1217 {
1218 	struct inode            *inode = VFS_I(ip);
1219 	unsigned int            xflags = xfs_ip2xflags(ip);
1220 	unsigned int            flags = 0;
1221 
1222 	ASSERT(!(IS_DAX(inode) && init));
1223 
1224 	if (xflags & FS_XFLAG_IMMUTABLE)
1225 		flags |= S_IMMUTABLE;
1226 	if (xflags & FS_XFLAG_APPEND)
1227 		flags |= S_APPEND;
1228 	if (xflags & FS_XFLAG_SYNC)
1229 		flags |= S_SYNC;
1230 	if (xflags & FS_XFLAG_NOATIME)
1231 		flags |= S_NOATIME;
1232 	if (init && xfs_inode_should_enable_dax(ip))
1233 		flags |= S_DAX;
1234 
1235 	/*
1236 	 * S_DAX can only be set during inode initialization and is never set by
1237 	 * the VFS, so we cannot mask off S_DAX in i_flags.
1238 	 */
1239 	inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME);
1240 	inode->i_flags |= flags;
1241 }
1242 
1243 /*
1244  * Initialize the Linux inode.
1245  *
1246  * When reading existing inodes from disk this is called directly from xfs_iget,
1247  * when creating a new inode it is called from xfs_init_new_inode after setting
1248  * up the inode. These callers have different criteria for clearing XFS_INEW, so
1249  * leave it up to the caller to deal with unlocking the inode appropriately.
1250  */
1251 void
1252 xfs_setup_inode(
1253 	struct xfs_inode	*ip)
1254 {
1255 	struct inode		*inode = &ip->i_vnode;
1256 	gfp_t			gfp_mask;
1257 
1258 	inode->i_ino = ip->i_ino;
1259 	inode->i_state |= I_NEW;
1260 
1261 	inode_sb_list_add(inode);
1262 	/* make the inode look hashed for the writeback code */
1263 	inode_fake_hash(inode);
1264 
1265 	i_size_write(inode, ip->i_disk_size);
1266 	xfs_diflags_to_iflags(ip, true);
1267 
1268 	if (S_ISDIR(inode->i_mode)) {
1269 		/*
1270 		 * We set the i_rwsem class here to avoid potential races with
1271 		 * lockdep_annotate_inode_mutex_key() reinitialising the lock
1272 		 * after a filehandle lookup has already found the inode in
1273 		 * cache before it has been unlocked via unlock_new_inode().
1274 		 */
1275 		lockdep_set_class(&inode->i_rwsem,
1276 				  &inode->i_sb->s_type->i_mutex_dir_key);
1277 		lockdep_set_class(&ip->i_lock.mr_lock, &xfs_dir_ilock_class);
1278 	} else {
1279 		lockdep_set_class(&ip->i_lock.mr_lock, &xfs_nondir_ilock_class);
1280 	}
1281 
1282 	/*
1283 	 * Ensure all page cache allocations are done from GFP_NOFS context to
1284 	 * prevent direct reclaim recursion back into the filesystem and blowing
1285 	 * stacks or deadlocking.
1286 	 */
1287 	gfp_mask = mapping_gfp_mask(inode->i_mapping);
1288 	mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS)));
1289 
1290 	/*
1291 	 * If there is no attribute fork no ACL can exist on this inode,
1292 	 * and it can't have any file capabilities attached to it either.
1293 	 */
1294 	if (!xfs_inode_has_attr_fork(ip)) {
1295 		inode_has_no_xattr(inode);
1296 		cache_no_acl(inode);
1297 	}
1298 }
1299 
1300 void
1301 xfs_setup_iops(
1302 	struct xfs_inode	*ip)
1303 {
1304 	struct inode		*inode = &ip->i_vnode;
1305 
1306 	switch (inode->i_mode & S_IFMT) {
1307 	case S_IFREG:
1308 		inode->i_op = &xfs_inode_operations;
1309 		inode->i_fop = &xfs_file_operations;
1310 		if (IS_DAX(inode))
1311 			inode->i_mapping->a_ops = &xfs_dax_aops;
1312 		else
1313 			inode->i_mapping->a_ops = &xfs_address_space_operations;
1314 		break;
1315 	case S_IFDIR:
1316 		if (xfs_has_asciici(XFS_M(inode->i_sb)))
1317 			inode->i_op = &xfs_dir_ci_inode_operations;
1318 		else
1319 			inode->i_op = &xfs_dir_inode_operations;
1320 		inode->i_fop = &xfs_dir_file_operations;
1321 		break;
1322 	case S_IFLNK:
1323 		inode->i_op = &xfs_symlink_inode_operations;
1324 		break;
1325 	default:
1326 		inode->i_op = &xfs_inode_operations;
1327 		init_special_inode(inode, inode->i_mode, inode->i_rdev);
1328 		break;
1329 	}
1330 }
1331