1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap_btree.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_errortag.h" 20 #include "xfs_error.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_space.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_iomap.h" 25 #include "xfs_trace.h" 26 #include "xfs_quota.h" 27 #include "xfs_rtgroup.h" 28 #include "xfs_dquot_item.h" 29 #include "xfs_dquot.h" 30 #include "xfs_reflink.h" 31 #include "xfs_health.h" 32 #include "xfs_rtbitmap.h" 33 #include "xfs_icache.h" 34 #include "xfs_zone_alloc.h" 35 36 #define XFS_ALLOC_ALIGN(mp, off) \ 37 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log) 38 39 static int 40 xfs_alert_fsblock_zero( 41 xfs_inode_t *ip, 42 xfs_bmbt_irec_t *imap) 43 { 44 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO, 45 "Access to block zero in inode %llu " 46 "start_block: %llx start_off: %llx " 47 "blkcnt: %llx extent-state: %x", 48 (unsigned long long)ip->i_ino, 49 (unsigned long long)imap->br_startblock, 50 (unsigned long long)imap->br_startoff, 51 (unsigned long long)imap->br_blockcount, 52 imap->br_state); 53 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 54 return -EFSCORRUPTED; 55 } 56 57 u64 58 xfs_iomap_inode_sequence( 59 struct xfs_inode *ip, 60 u16 iomap_flags) 61 { 62 u64 cookie = 0; 63 64 if (iomap_flags & IOMAP_F_XATTR) 65 return READ_ONCE(ip->i_af.if_seq); 66 if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp) 67 cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32; 68 return cookie | READ_ONCE(ip->i_df.if_seq); 69 } 70 71 /* 72 * Check that the iomap passed to us is still valid for the given offset and 73 * length. 74 */ 75 static bool 76 xfs_iomap_valid( 77 struct inode *inode, 78 const struct iomap *iomap) 79 { 80 struct xfs_inode *ip = XFS_I(inode); 81 82 if (iomap->type == IOMAP_HOLE) 83 return true; 84 85 if (iomap->validity_cookie != 86 xfs_iomap_inode_sequence(ip, iomap->flags)) { 87 trace_xfs_iomap_invalid(ip, iomap); 88 return false; 89 } 90 91 XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS); 92 return true; 93 } 94 95 const struct iomap_write_ops xfs_iomap_write_ops = { 96 .iomap_valid = xfs_iomap_valid, 97 }; 98 99 int 100 xfs_bmbt_to_iomap( 101 struct xfs_inode *ip, 102 struct iomap *iomap, 103 struct xfs_bmbt_irec *imap, 104 unsigned int mapping_flags, 105 u16 iomap_flags, 106 u64 sequence_cookie) 107 { 108 struct xfs_mount *mp = ip->i_mount; 109 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 110 111 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) { 112 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 113 return xfs_alert_fsblock_zero(ip, imap); 114 } 115 116 if (imap->br_startblock == HOLESTARTBLOCK) { 117 iomap->addr = IOMAP_NULL_ADDR; 118 iomap->type = IOMAP_HOLE; 119 } else if (imap->br_startblock == DELAYSTARTBLOCK || 120 isnullstartblock(imap->br_startblock)) { 121 iomap->addr = IOMAP_NULL_ADDR; 122 iomap->type = IOMAP_DELALLOC; 123 } else { 124 xfs_daddr_t daddr = xfs_fsb_to_db(ip, imap->br_startblock); 125 126 iomap->addr = BBTOB(daddr); 127 if (mapping_flags & IOMAP_DAX) 128 iomap->addr += target->bt_dax_part_off; 129 130 if (imap->br_state == XFS_EXT_UNWRITTEN) 131 iomap->type = IOMAP_UNWRITTEN; 132 else 133 iomap->type = IOMAP_MAPPED; 134 135 /* 136 * Mark iomaps starting at the first sector of a RTG as merge 137 * boundary so that each I/O completions is contained to a 138 * single RTG. 139 */ 140 if (XFS_IS_REALTIME_INODE(ip) && xfs_has_rtgroups(mp) && 141 xfs_rtbno_is_group_start(mp, imap->br_startblock)) 142 iomap->flags |= IOMAP_F_BOUNDARY; 143 } 144 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff); 145 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount); 146 if (mapping_flags & IOMAP_DAX) 147 iomap->dax_dev = target->bt_daxdev; 148 else 149 iomap->bdev = target->bt_bdev; 150 iomap->flags = iomap_flags; 151 152 /* 153 * If the inode is dirty for datasync purposes, let iomap know so it 154 * doesn't elide the IO completion journal flushes on O_DSYNC IO. 155 */ 156 if (ip->i_itemp) { 157 struct xfs_inode_log_item *iip = ip->i_itemp; 158 159 spin_lock(&iip->ili_lock); 160 if (iip->ili_datasync_seq) 161 iomap->flags |= IOMAP_F_DIRTY; 162 spin_unlock(&iip->ili_lock); 163 } 164 165 iomap->validity_cookie = sequence_cookie; 166 return 0; 167 } 168 169 static void 170 xfs_hole_to_iomap( 171 struct xfs_inode *ip, 172 struct iomap *iomap, 173 xfs_fileoff_t offset_fsb, 174 xfs_fileoff_t end_fsb) 175 { 176 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 177 178 iomap->addr = IOMAP_NULL_ADDR; 179 iomap->type = IOMAP_HOLE; 180 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb); 181 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb); 182 iomap->bdev = target->bt_bdev; 183 iomap->dax_dev = target->bt_daxdev; 184 } 185 186 static inline xfs_fileoff_t 187 xfs_iomap_end_fsb( 188 struct xfs_mount *mp, 189 loff_t offset, 190 loff_t count) 191 { 192 ASSERT(offset <= mp->m_super->s_maxbytes); 193 return min(XFS_B_TO_FSB(mp, offset + count), 194 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); 195 } 196 197 static xfs_extlen_t 198 xfs_eof_alignment( 199 struct xfs_inode *ip) 200 { 201 struct xfs_mount *mp = ip->i_mount; 202 xfs_extlen_t align = 0; 203 204 if (!XFS_IS_REALTIME_INODE(ip)) { 205 /* 206 * Round up the allocation request to a stripe unit 207 * (m_dalign) boundary if the file size is >= stripe unit 208 * size, and we are allocating past the allocation eof. 209 * 210 * If mounted with the "-o swalloc" option the alignment is 211 * increased from the strip unit size to the stripe width. 212 */ 213 if (mp->m_swidth && xfs_has_swalloc(mp)) 214 align = mp->m_swidth; 215 else if (mp->m_dalign) 216 align = mp->m_dalign; 217 218 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align)) 219 align = 0; 220 } 221 222 return align; 223 } 224 225 /* 226 * Check if last_fsb is outside the last extent, and if so grow it to the next 227 * stripe unit boundary. 228 */ 229 xfs_fileoff_t 230 xfs_iomap_eof_align_last_fsb( 231 struct xfs_inode *ip, 232 xfs_fileoff_t end_fsb) 233 { 234 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 235 xfs_extlen_t extsz = xfs_get_extsz_hint(ip); 236 xfs_extlen_t align = xfs_eof_alignment(ip); 237 struct xfs_bmbt_irec irec; 238 struct xfs_iext_cursor icur; 239 240 ASSERT(!xfs_need_iread_extents(ifp)); 241 242 /* 243 * Always round up the allocation request to the extent hint boundary. 244 */ 245 if (extsz) { 246 if (align) 247 align = roundup_64(align, extsz); 248 else 249 align = extsz; 250 } 251 252 if (align) { 253 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align); 254 255 xfs_iext_last(ifp, &icur); 256 if (!xfs_iext_get_extent(ifp, &icur, &irec) || 257 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount) 258 return aligned_end_fsb; 259 } 260 261 return end_fsb; 262 } 263 264 int 265 xfs_iomap_write_direct( 266 struct xfs_inode *ip, 267 xfs_fileoff_t offset_fsb, 268 xfs_fileoff_t count_fsb, 269 unsigned int flags, 270 struct xfs_bmbt_irec *imap, 271 u64 *seq) 272 { 273 struct xfs_mount *mp = ip->i_mount; 274 struct xfs_trans *tp; 275 xfs_filblks_t resaligned; 276 int nimaps; 277 unsigned int dblocks, rblocks; 278 bool force = false; 279 int error; 280 int bmapi_flags = XFS_BMAPI_PREALLOC; 281 int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT; 282 283 ASSERT(count_fsb > 0); 284 285 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb, 286 xfs_get_extsz_hint(ip)); 287 if (unlikely(XFS_IS_REALTIME_INODE(ip))) { 288 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 289 rblocks = resaligned; 290 } else { 291 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 292 rblocks = 0; 293 } 294 295 error = xfs_qm_dqattach(ip); 296 if (error) 297 return error; 298 299 /* 300 * For DAX, we do not allocate unwritten extents, but instead we zero 301 * the block before we commit the transaction. Ideally we'd like to do 302 * this outside the transaction context, but if we commit and then crash 303 * we may not have zeroed the blocks and this will be exposed on 304 * recovery of the allocation. Hence we must zero before commit. 305 * 306 * Further, if we are mapping unwritten extents here, we need to zero 307 * and convert them to written so that we don't need an unwritten extent 308 * callback for DAX. This also means that we need to be able to dip into 309 * the reserve block pool for bmbt block allocation if there is no space 310 * left but we need to do unwritten extent conversion. 311 */ 312 if (flags & IOMAP_DAX) { 313 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO; 314 if (imap->br_state == XFS_EXT_UNWRITTEN) { 315 force = true; 316 nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT; 317 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 318 } 319 } 320 321 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks, 322 rblocks, force, &tp); 323 if (error) 324 return error; 325 326 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, nr_exts); 327 if (error) 328 goto out_trans_cancel; 329 330 /* 331 * From this point onwards we overwrite the imap pointer that the 332 * caller gave to us. 333 */ 334 nimaps = 1; 335 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0, 336 imap, &nimaps); 337 if (error) 338 goto out_trans_cancel; 339 340 /* 341 * Complete the transaction 342 */ 343 error = xfs_trans_commit(tp); 344 if (error) 345 goto out_unlock; 346 347 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) { 348 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 349 error = xfs_alert_fsblock_zero(ip, imap); 350 } 351 352 out_unlock: 353 *seq = xfs_iomap_inode_sequence(ip, 0); 354 xfs_iunlock(ip, XFS_ILOCK_EXCL); 355 return error; 356 357 out_trans_cancel: 358 xfs_trans_cancel(tp); 359 goto out_unlock; 360 } 361 362 STATIC bool 363 xfs_quota_need_throttle( 364 struct xfs_inode *ip, 365 xfs_dqtype_t type, 366 xfs_fsblock_t alloc_blocks) 367 { 368 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 369 struct xfs_dquot_res *res; 370 struct xfs_dquot_pre *pre; 371 372 if (!dq || !xfs_this_quota_on(ip->i_mount, type)) 373 return false; 374 375 if (XFS_IS_REALTIME_INODE(ip)) { 376 res = &dq->q_rtb; 377 pre = &dq->q_rtb_prealloc; 378 } else { 379 res = &dq->q_blk; 380 pre = &dq->q_blk_prealloc; 381 } 382 383 /* no hi watermark, no throttle */ 384 if (!pre->q_prealloc_hi_wmark) 385 return false; 386 387 /* under the lo watermark, no throttle */ 388 if (res->reserved + alloc_blocks < pre->q_prealloc_lo_wmark) 389 return false; 390 391 return true; 392 } 393 394 STATIC void 395 xfs_quota_calc_throttle( 396 struct xfs_inode *ip, 397 xfs_dqtype_t type, 398 xfs_fsblock_t *qblocks, 399 int *qshift, 400 int64_t *qfreesp) 401 { 402 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 403 struct xfs_dquot_res *res; 404 struct xfs_dquot_pre *pre; 405 int64_t freesp; 406 int shift = 0; 407 408 if (!dq) { 409 res = NULL; 410 pre = NULL; 411 } else if (XFS_IS_REALTIME_INODE(ip)) { 412 res = &dq->q_rtb; 413 pre = &dq->q_rtb_prealloc; 414 } else { 415 res = &dq->q_blk; 416 pre = &dq->q_blk_prealloc; 417 } 418 419 /* no dq, or over hi wmark, squash the prealloc completely */ 420 if (!res || res->reserved >= pre->q_prealloc_hi_wmark) { 421 *qblocks = 0; 422 *qfreesp = 0; 423 return; 424 } 425 426 freesp = pre->q_prealloc_hi_wmark - res->reserved; 427 if (freesp < pre->q_low_space[XFS_QLOWSP_5_PCNT]) { 428 shift = 2; 429 if (freesp < pre->q_low_space[XFS_QLOWSP_3_PCNT]) 430 shift += 2; 431 if (freesp < pre->q_low_space[XFS_QLOWSP_1_PCNT]) 432 shift += 2; 433 } 434 435 if (freesp < *qfreesp) 436 *qfreesp = freesp; 437 438 /* only overwrite the throttle values if we are more aggressive */ 439 if ((freesp >> shift) < (*qblocks >> *qshift)) { 440 *qblocks = freesp; 441 *qshift = shift; 442 } 443 } 444 445 static int64_t 446 xfs_iomap_freesp( 447 struct xfs_mount *mp, 448 unsigned int idx, 449 uint64_t low_space[XFS_LOWSP_MAX], 450 int *shift) 451 { 452 int64_t freesp; 453 454 freesp = xfs_estimate_freecounter(mp, idx); 455 if (freesp < low_space[XFS_LOWSP_5_PCNT]) { 456 *shift = 2; 457 if (freesp < low_space[XFS_LOWSP_4_PCNT]) 458 (*shift)++; 459 if (freesp < low_space[XFS_LOWSP_3_PCNT]) 460 (*shift)++; 461 if (freesp < low_space[XFS_LOWSP_2_PCNT]) 462 (*shift)++; 463 if (freesp < low_space[XFS_LOWSP_1_PCNT]) 464 (*shift)++; 465 } 466 return freesp; 467 } 468 469 /* 470 * If we don't have a user specified preallocation size, dynamically increase 471 * the preallocation size as the size of the file grows. Cap the maximum size 472 * at a single extent or less if the filesystem is near full. The closer the 473 * filesystem is to being full, the smaller the maximum preallocation. 474 */ 475 STATIC xfs_fsblock_t 476 xfs_iomap_prealloc_size( 477 struct xfs_inode *ip, 478 int whichfork, 479 loff_t offset, 480 loff_t count, 481 struct xfs_iext_cursor *icur) 482 { 483 struct xfs_iext_cursor ncur = *icur; 484 struct xfs_bmbt_irec prev, got; 485 struct xfs_mount *mp = ip->i_mount; 486 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 487 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 488 int64_t freesp; 489 xfs_fsblock_t qblocks; 490 xfs_fsblock_t alloc_blocks = 0; 491 xfs_extlen_t plen; 492 int shift = 0; 493 int qshift = 0; 494 495 /* 496 * As an exception we don't do any preallocation at all if the file is 497 * smaller than the minimum preallocation and we are using the default 498 * dynamic preallocation scheme, as it is likely this is the only write 499 * to the file that is going to be done. 500 */ 501 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks)) 502 return 0; 503 504 /* 505 * Use the minimum preallocation size for small files or if we are 506 * writing right after a hole. 507 */ 508 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) || 509 !xfs_iext_prev_extent(ifp, &ncur, &prev) || 510 prev.br_startoff + prev.br_blockcount < offset_fsb) 511 return mp->m_allocsize_blocks; 512 513 /* 514 * Take the size of the preceding data extents as the basis for the 515 * preallocation size. Note that we don't care if the previous extents 516 * are written or not. 517 */ 518 plen = prev.br_blockcount; 519 while (xfs_iext_prev_extent(ifp, &ncur, &got)) { 520 if (plen > XFS_MAX_BMBT_EXTLEN / 2 || 521 isnullstartblock(got.br_startblock) || 522 got.br_startoff + got.br_blockcount != prev.br_startoff || 523 got.br_startblock + got.br_blockcount != prev.br_startblock) 524 break; 525 plen += got.br_blockcount; 526 prev = got; 527 } 528 529 /* 530 * If the size of the extents is greater than half the maximum extent 531 * length, then use the current offset as the basis. This ensures that 532 * for large files the preallocation size always extends to 533 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe 534 * unit/width alignment of real extents. 535 */ 536 alloc_blocks = plen * 2; 537 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN) 538 alloc_blocks = XFS_B_TO_FSB(mp, offset); 539 qblocks = alloc_blocks; 540 541 /* 542 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc 543 * down to the nearest power of two value after throttling. To prevent 544 * the round down from unconditionally reducing the maximum supported 545 * prealloc size, we round up first, apply appropriate throttling, round 546 * down and cap the value to XFS_BMBT_MAX_EXTLEN. 547 */ 548 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN), 549 alloc_blocks); 550 551 if (unlikely(XFS_IS_REALTIME_INODE(ip))) 552 freesp = xfs_rtbxlen_to_blen(mp, 553 xfs_iomap_freesp(mp, XC_FREE_RTEXTENTS, 554 mp->m_low_rtexts, &shift)); 555 else 556 freesp = xfs_iomap_freesp(mp, XC_FREE_BLOCKS, mp->m_low_space, 557 &shift); 558 559 /* 560 * Check each quota to cap the prealloc size, provide a shift value to 561 * throttle with and adjust amount of available space. 562 */ 563 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks)) 564 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift, 565 &freesp); 566 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks)) 567 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift, 568 &freesp); 569 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks)) 570 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift, 571 &freesp); 572 573 /* 574 * The final prealloc size is set to the minimum of free space available 575 * in each of the quotas and the overall filesystem. 576 * 577 * The shift throttle value is set to the maximum value as determined by 578 * the global low free space values and per-quota low free space values. 579 */ 580 alloc_blocks = min(alloc_blocks, qblocks); 581 shift = max(shift, qshift); 582 583 if (shift) 584 alloc_blocks >>= shift; 585 /* 586 * rounddown_pow_of_two() returns an undefined result if we pass in 587 * alloc_blocks = 0. 588 */ 589 if (alloc_blocks) 590 alloc_blocks = rounddown_pow_of_two(alloc_blocks); 591 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN) 592 alloc_blocks = XFS_MAX_BMBT_EXTLEN; 593 594 /* 595 * If we are still trying to allocate more space than is 596 * available, squash the prealloc hard. This can happen if we 597 * have a large file on a small filesystem and the above 598 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN. 599 */ 600 while (alloc_blocks && alloc_blocks >= freesp) 601 alloc_blocks >>= 4; 602 if (alloc_blocks < mp->m_allocsize_blocks) 603 alloc_blocks = mp->m_allocsize_blocks; 604 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift, 605 mp->m_allocsize_blocks); 606 return alloc_blocks; 607 } 608 609 int 610 xfs_iomap_write_unwritten( 611 xfs_inode_t *ip, 612 xfs_off_t offset, 613 xfs_off_t count, 614 bool update_isize) 615 { 616 xfs_mount_t *mp = ip->i_mount; 617 xfs_fileoff_t offset_fsb; 618 xfs_filblks_t count_fsb; 619 xfs_filblks_t numblks_fsb; 620 int nimaps; 621 xfs_trans_t *tp; 622 xfs_bmbt_irec_t imap; 623 struct inode *inode = VFS_I(ip); 624 xfs_fsize_t i_size; 625 uint resblks; 626 int error; 627 628 trace_xfs_unwritten_convert(ip, offset, count); 629 630 offset_fsb = XFS_B_TO_FSBT(mp, offset); 631 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 632 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb); 633 634 /* 635 * Reserve enough blocks in this transaction for two complete extent 636 * btree splits. We may be converting the middle part of an unwritten 637 * extent and in this case we will insert two new extents in the btree 638 * each of which could cause a full split. 639 * 640 * This reservation amount will be used in the first call to 641 * xfs_bmbt_split() to select an AG with enough space to satisfy the 642 * rest of the operation. 643 */ 644 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 645 646 /* Attach dquots so that bmbt splits are accounted correctly. */ 647 error = xfs_qm_dqattach(ip); 648 if (error) 649 return error; 650 651 do { 652 /* 653 * Set up a transaction to convert the range of extents 654 * from unwritten to real. Do allocations in a loop until 655 * we have covered the range passed in. 656 * 657 * Note that we can't risk to recursing back into the filesystem 658 * here as we might be asked to write out the same inode that we 659 * complete here and might deadlock on the iolock. 660 */ 661 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 662 0, true, &tp); 663 if (error) 664 return error; 665 666 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, 667 XFS_IEXT_WRITE_UNWRITTEN_CNT); 668 if (error) 669 goto error_on_bmapi_transaction; 670 671 /* 672 * Modify the unwritten extent state of the buffer. 673 */ 674 nimaps = 1; 675 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, 676 XFS_BMAPI_CONVERT, resblks, &imap, 677 &nimaps); 678 if (error) 679 goto error_on_bmapi_transaction; 680 681 /* 682 * Log the updated inode size as we go. We have to be careful 683 * to only log it up to the actual write offset if it is 684 * halfway into a block. 685 */ 686 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb); 687 if (i_size > offset + count) 688 i_size = offset + count; 689 if (update_isize && i_size > i_size_read(inode)) 690 i_size_write(inode, i_size); 691 i_size = xfs_new_eof(ip, i_size); 692 if (i_size) { 693 ip->i_disk_size = i_size; 694 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 695 } 696 697 error = xfs_trans_commit(tp); 698 xfs_iunlock(ip, XFS_ILOCK_EXCL); 699 if (error) 700 return error; 701 702 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) { 703 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 704 return xfs_alert_fsblock_zero(ip, &imap); 705 } 706 707 if ((numblks_fsb = imap.br_blockcount) == 0) { 708 /* 709 * The numblks_fsb value should always get 710 * smaller, otherwise the loop is stuck. 711 */ 712 ASSERT(imap.br_blockcount); 713 break; 714 } 715 offset_fsb += numblks_fsb; 716 count_fsb -= numblks_fsb; 717 } while (count_fsb > 0); 718 719 return 0; 720 721 error_on_bmapi_transaction: 722 xfs_trans_cancel(tp); 723 xfs_iunlock(ip, XFS_ILOCK_EXCL); 724 return error; 725 } 726 727 static inline bool 728 imap_needs_alloc( 729 struct inode *inode, 730 unsigned flags, 731 struct xfs_bmbt_irec *imap, 732 int nimaps) 733 { 734 /* don't allocate blocks when just zeroing */ 735 if (flags & IOMAP_ZERO) 736 return false; 737 if (!nimaps || 738 imap->br_startblock == HOLESTARTBLOCK || 739 imap->br_startblock == DELAYSTARTBLOCK) 740 return true; 741 /* we convert unwritten extents before copying the data for DAX */ 742 if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN) 743 return true; 744 return false; 745 } 746 747 static inline bool 748 imap_needs_cow( 749 struct xfs_inode *ip, 750 unsigned int flags, 751 struct xfs_bmbt_irec *imap, 752 int nimaps) 753 { 754 if (!xfs_is_cow_inode(ip)) 755 return false; 756 757 /* when zeroing we don't have to COW holes or unwritten extents */ 758 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) { 759 if (!nimaps || 760 imap->br_startblock == HOLESTARTBLOCK || 761 imap->br_state == XFS_EXT_UNWRITTEN) 762 return false; 763 } 764 765 return true; 766 } 767 768 /* 769 * Extents not yet cached requires exclusive access, don't block for 770 * IOMAP_NOWAIT. 771 * 772 * This is basically an opencoded xfs_ilock_data_map_shared() call, but with 773 * support for IOMAP_NOWAIT. 774 */ 775 static int 776 xfs_ilock_for_iomap( 777 struct xfs_inode *ip, 778 unsigned flags, 779 unsigned *lockmode) 780 { 781 if (flags & IOMAP_NOWAIT) { 782 if (xfs_need_iread_extents(&ip->i_df)) 783 return -EAGAIN; 784 if (!xfs_ilock_nowait(ip, *lockmode)) 785 return -EAGAIN; 786 } else { 787 if (xfs_need_iread_extents(&ip->i_df)) 788 *lockmode = XFS_ILOCK_EXCL; 789 xfs_ilock(ip, *lockmode); 790 } 791 792 return 0; 793 } 794 795 /* 796 * Check that the imap we are going to return to the caller spans the entire 797 * range that the caller requested for the IO. 798 */ 799 static bool 800 imap_spans_range( 801 struct xfs_bmbt_irec *imap, 802 xfs_fileoff_t offset_fsb, 803 xfs_fileoff_t end_fsb) 804 { 805 if (imap->br_startoff > offset_fsb) 806 return false; 807 if (imap->br_startoff + imap->br_blockcount < end_fsb) 808 return false; 809 return true; 810 } 811 812 static bool 813 xfs_bmap_hw_atomic_write_possible( 814 struct xfs_inode *ip, 815 struct xfs_bmbt_irec *imap, 816 xfs_fileoff_t offset_fsb, 817 xfs_fileoff_t end_fsb) 818 { 819 struct xfs_mount *mp = ip->i_mount; 820 xfs_fsize_t len = XFS_FSB_TO_B(mp, end_fsb - offset_fsb); 821 822 /* 823 * atomic writes are required to be naturally aligned for disk blocks, 824 * which ensures that we adhere to block layer rules that we won't 825 * straddle any boundary or violate write alignment requirement. 826 */ 827 if (!IS_ALIGNED(imap->br_startblock, imap->br_blockcount)) 828 return false; 829 830 /* 831 * Spanning multiple extents would mean that multiple BIOs would be 832 * issued, and so would lose atomicity required for REQ_ATOMIC-based 833 * atomics. 834 */ 835 if (!imap_spans_range(imap, offset_fsb, end_fsb)) 836 return false; 837 838 /* 839 * The ->iomap_begin caller should ensure this, but check anyway. 840 */ 841 return len <= xfs_inode_buftarg(ip)->bt_awu_max; 842 } 843 844 static int 845 xfs_direct_write_iomap_begin( 846 struct inode *inode, 847 loff_t offset, 848 loff_t length, 849 unsigned flags, 850 struct iomap *iomap, 851 struct iomap *srcmap) 852 { 853 struct xfs_inode *ip = XFS_I(inode); 854 struct xfs_mount *mp = ip->i_mount; 855 struct xfs_bmbt_irec imap, cmap; 856 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 857 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length); 858 xfs_fileoff_t orig_end_fsb = end_fsb; 859 int nimaps = 1, error = 0; 860 bool shared = false; 861 u16 iomap_flags = 0; 862 bool needs_alloc; 863 unsigned int lockmode; 864 u64 seq; 865 866 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO)); 867 868 if (xfs_is_shutdown(mp)) 869 return -EIO; 870 871 /* 872 * Writes that span EOF might trigger an IO size update on completion, 873 * so consider them to be dirty for the purposes of O_DSYNC even if 874 * there is no other metadata changes pending or have been made here. 875 */ 876 if (offset + length > i_size_read(inode)) 877 iomap_flags |= IOMAP_F_DIRTY; 878 879 /* HW-offload atomics are always used in this path */ 880 if (flags & IOMAP_ATOMIC) 881 iomap_flags |= IOMAP_F_ATOMIC_BIO; 882 883 /* 884 * COW writes may allocate delalloc space or convert unwritten COW 885 * extents, so we need to make sure to take the lock exclusively here. 886 */ 887 if (xfs_is_cow_inode(ip)) 888 lockmode = XFS_ILOCK_EXCL; 889 else 890 lockmode = XFS_ILOCK_SHARED; 891 892 relock: 893 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 894 if (error) 895 return error; 896 897 /* 898 * The reflink iflag could have changed since the earlier unlocked 899 * check, check if it again and relock if needed. 900 */ 901 if (xfs_is_cow_inode(ip) && lockmode == XFS_ILOCK_SHARED) { 902 xfs_iunlock(ip, lockmode); 903 lockmode = XFS_ILOCK_EXCL; 904 goto relock; 905 } 906 907 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 908 &nimaps, 0); 909 if (error) 910 goto out_unlock; 911 912 if (imap_needs_cow(ip, flags, &imap, nimaps)) { 913 error = -EAGAIN; 914 if (flags & IOMAP_NOWAIT) 915 goto out_unlock; 916 917 /* may drop and re-acquire the ilock */ 918 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared, 919 &lockmode, 920 (flags & IOMAP_DIRECT) || IS_DAX(inode)); 921 if (error) 922 goto out_unlock; 923 if (shared) { 924 if ((flags & IOMAP_ATOMIC) && 925 !xfs_bmap_hw_atomic_write_possible(ip, &cmap, 926 offset_fsb, end_fsb)) { 927 error = -ENOPROTOOPT; 928 goto out_unlock; 929 } 930 goto out_found_cow; 931 } 932 end_fsb = imap.br_startoff + imap.br_blockcount; 933 length = XFS_FSB_TO_B(mp, end_fsb) - offset; 934 } 935 936 needs_alloc = imap_needs_alloc(inode, flags, &imap, nimaps); 937 938 if (flags & IOMAP_ATOMIC) { 939 error = -ENOPROTOOPT; 940 /* 941 * If we allocate less than what is required for the write 942 * then we may end up with multiple extents, which means that 943 * REQ_ATOMIC-based cannot be used, so avoid this possibility. 944 */ 945 if (needs_alloc && orig_end_fsb - offset_fsb > 1) 946 goto out_unlock; 947 948 if (!xfs_bmap_hw_atomic_write_possible(ip, &imap, offset_fsb, 949 orig_end_fsb)) 950 goto out_unlock; 951 } 952 953 if (needs_alloc) 954 goto allocate_blocks; 955 956 /* 957 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with 958 * a single map so that we avoid partial IO failures due to the rest of 959 * the I/O range not covered by this map triggering an EAGAIN condition 960 * when it is subsequently mapped and aborting the I/O. 961 */ 962 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) { 963 error = -EAGAIN; 964 if (!imap_spans_range(&imap, offset_fsb, end_fsb)) 965 goto out_unlock; 966 } 967 968 /* 969 * For overwrite only I/O, we cannot convert unwritten extents without 970 * requiring sub-block zeroing. This can only be done under an 971 * exclusive IOLOCK, hence return -EAGAIN if this is not a written 972 * extent to tell the caller to try again. 973 */ 974 if (flags & IOMAP_OVERWRITE_ONLY) { 975 error = -EAGAIN; 976 if (imap.br_state != XFS_EXT_NORM && 977 ((offset | length) & mp->m_blockmask)) 978 goto out_unlock; 979 } 980 981 seq = xfs_iomap_inode_sequence(ip, iomap_flags); 982 xfs_iunlock(ip, lockmode); 983 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); 984 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq); 985 986 allocate_blocks: 987 error = -EAGAIN; 988 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) 989 goto out_unlock; 990 991 /* 992 * We cap the maximum length we map to a sane size to keep the chunks 993 * of work done where somewhat symmetric with the work writeback does. 994 * This is a completely arbitrary number pulled out of thin air as a 995 * best guess for initial testing. 996 * 997 * Note that the values needs to be less than 32-bits wide until the 998 * lower level functions are updated. 999 */ 1000 length = min_t(loff_t, length, 1024 * PAGE_SIZE); 1001 end_fsb = xfs_iomap_end_fsb(mp, offset, length); 1002 1003 if (offset + length > XFS_ISIZE(ip)) 1004 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb); 1005 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK) 1006 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount); 1007 xfs_iunlock(ip, lockmode); 1008 1009 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb, 1010 flags, &imap, &seq); 1011 if (error) 1012 return error; 1013 1014 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap); 1015 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 1016 iomap_flags | IOMAP_F_NEW, seq); 1017 1018 out_found_cow: 1019 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount); 1020 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap); 1021 if (imap.br_startblock != HOLESTARTBLOCK) { 1022 seq = xfs_iomap_inode_sequence(ip, 0); 1023 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq); 1024 if (error) 1025 goto out_unlock; 1026 } 1027 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); 1028 xfs_iunlock(ip, lockmode); 1029 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq); 1030 1031 out_unlock: 1032 if (lockmode) 1033 xfs_iunlock(ip, lockmode); 1034 return error; 1035 } 1036 1037 const struct iomap_ops xfs_direct_write_iomap_ops = { 1038 .iomap_begin = xfs_direct_write_iomap_begin, 1039 }; 1040 1041 #ifdef CONFIG_XFS_RT 1042 /* 1043 * This is really simple. The space has already been reserved before taking the 1044 * IOLOCK, the actual block allocation is done just before submitting the bio 1045 * and only recorded in the extent map on I/O completion. 1046 */ 1047 static int 1048 xfs_zoned_direct_write_iomap_begin( 1049 struct inode *inode, 1050 loff_t offset, 1051 loff_t length, 1052 unsigned flags, 1053 struct iomap *iomap, 1054 struct iomap *srcmap) 1055 { 1056 struct xfs_inode *ip = XFS_I(inode); 1057 int error; 1058 1059 ASSERT(!(flags & IOMAP_OVERWRITE_ONLY)); 1060 1061 /* 1062 * Needs to be pushed down into the allocator so that only writes into 1063 * a single zone can be supported. 1064 */ 1065 if (flags & IOMAP_NOWAIT) 1066 return -EAGAIN; 1067 1068 /* 1069 * Ensure the extent list is in memory in so that we don't have to do 1070 * read it from the I/O completion handler. 1071 */ 1072 if (xfs_need_iread_extents(&ip->i_df)) { 1073 xfs_ilock(ip, XFS_ILOCK_EXCL); 1074 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 1075 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1076 if (error) 1077 return error; 1078 } 1079 1080 iomap->type = IOMAP_MAPPED; 1081 iomap->flags = IOMAP_F_DIRTY; 1082 iomap->bdev = ip->i_mount->m_rtdev_targp->bt_bdev; 1083 iomap->offset = offset; 1084 iomap->length = length; 1085 iomap->flags = IOMAP_F_ANON_WRITE; 1086 return 0; 1087 } 1088 1089 const struct iomap_ops xfs_zoned_direct_write_iomap_ops = { 1090 .iomap_begin = xfs_zoned_direct_write_iomap_begin, 1091 }; 1092 #endif /* CONFIG_XFS_RT */ 1093 1094 #ifdef DEBUG 1095 static void 1096 xfs_check_atomic_cow_conversion( 1097 struct xfs_inode *ip, 1098 xfs_fileoff_t offset_fsb, 1099 xfs_filblks_t count_fsb, 1100 const struct xfs_bmbt_irec *cmap) 1101 { 1102 struct xfs_iext_cursor icur; 1103 struct xfs_bmbt_irec cmap2 = { }; 1104 1105 if (xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap2)) 1106 xfs_trim_extent(&cmap2, offset_fsb, count_fsb); 1107 1108 ASSERT(cmap2.br_startoff == cmap->br_startoff); 1109 ASSERT(cmap2.br_blockcount == cmap->br_blockcount); 1110 ASSERT(cmap2.br_startblock == cmap->br_startblock); 1111 ASSERT(cmap2.br_state == cmap->br_state); 1112 } 1113 #else 1114 # define xfs_check_atomic_cow_conversion(...) ((void)0) 1115 #endif 1116 1117 static int 1118 xfs_atomic_write_cow_iomap_begin( 1119 struct inode *inode, 1120 loff_t offset, 1121 loff_t length, 1122 unsigned flags, 1123 struct iomap *iomap, 1124 struct iomap *srcmap) 1125 { 1126 struct xfs_inode *ip = XFS_I(inode); 1127 struct xfs_mount *mp = ip->i_mount; 1128 const xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1129 const xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1130 const xfs_filblks_t count_fsb = end_fsb - offset_fsb; 1131 xfs_filblks_t hole_count_fsb; 1132 int nmaps = 1; 1133 xfs_filblks_t resaligned; 1134 struct xfs_bmbt_irec cmap; 1135 struct xfs_iext_cursor icur; 1136 struct xfs_trans *tp; 1137 unsigned int dblocks = 0, rblocks = 0; 1138 int error; 1139 u64 seq; 1140 1141 ASSERT(flags & IOMAP_WRITE); 1142 ASSERT(flags & IOMAP_DIRECT); 1143 1144 if (xfs_is_shutdown(mp)) 1145 return -EIO; 1146 1147 if (!xfs_can_sw_atomic_write(mp)) { 1148 ASSERT(xfs_can_sw_atomic_write(mp)); 1149 return -EINVAL; 1150 } 1151 1152 /* blocks are always allocated in this path */ 1153 if (flags & IOMAP_NOWAIT) 1154 return -EAGAIN; 1155 1156 trace_xfs_iomap_atomic_write_cow(ip, offset, length); 1157 retry: 1158 xfs_ilock(ip, XFS_ILOCK_EXCL); 1159 1160 if (!ip->i_cowfp) { 1161 ASSERT(!xfs_is_reflink_inode(ip)); 1162 xfs_ifork_init_cow(ip); 1163 } 1164 1165 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap)) 1166 cmap.br_startoff = end_fsb; 1167 if (cmap.br_startoff <= offset_fsb) { 1168 if (isnullstartblock(cmap.br_startblock)) 1169 goto convert_delay; 1170 1171 /* 1172 * cmap could extend outside the write range due to previous 1173 * speculative preallocations. We must trim cmap to the write 1174 * range because the cow fork treats written mappings to mean 1175 * "write in progress". 1176 */ 1177 xfs_trim_extent(&cmap, offset_fsb, count_fsb); 1178 goto found; 1179 } 1180 1181 hole_count_fsb = cmap.br_startoff - offset_fsb; 1182 1183 resaligned = xfs_aligned_fsb_count(offset_fsb, hole_count_fsb, 1184 xfs_get_cowextsz_hint(ip)); 1185 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1186 1187 if (XFS_IS_REALTIME_INODE(ip)) { 1188 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1189 rblocks = resaligned; 1190 } else { 1191 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 1192 rblocks = 0; 1193 } 1194 1195 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks, 1196 rblocks, false, &tp); 1197 if (error) 1198 return error; 1199 1200 /* extent layout could have changed since the unlock, so check again */ 1201 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap)) 1202 cmap.br_startoff = end_fsb; 1203 if (cmap.br_startoff <= offset_fsb) { 1204 xfs_trans_cancel(tp); 1205 if (isnullstartblock(cmap.br_startblock)) 1206 goto convert_delay; 1207 xfs_trim_extent(&cmap, offset_fsb, count_fsb); 1208 goto found; 1209 } 1210 1211 /* 1212 * Allocate the entire reservation as unwritten blocks. 1213 * 1214 * Use XFS_BMAPI_EXTSZALIGN to hint at aligning new extents according to 1215 * extszhint, such that there will be a greater chance that future 1216 * atomic writes to that same range will be aligned (and don't require 1217 * this COW-based method). 1218 */ 1219 error = xfs_bmapi_write(tp, ip, offset_fsb, hole_count_fsb, 1220 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC | 1221 XFS_BMAPI_EXTSZALIGN, 0, &cmap, &nmaps); 1222 if (error) { 1223 xfs_trans_cancel(tp); 1224 goto out_unlock; 1225 } 1226 1227 xfs_inode_set_cowblocks_tag(ip); 1228 error = xfs_trans_commit(tp); 1229 if (error) 1230 goto out_unlock; 1231 1232 /* 1233 * cmap could map more blocks than the range we passed into bmapi_write 1234 * because of EXTSZALIGN or adjacent pre-existing unwritten mappings 1235 * that were merged. Trim cmap to the original write range so that we 1236 * don't convert more than we were asked to do for this write. 1237 */ 1238 xfs_trim_extent(&cmap, offset_fsb, count_fsb); 1239 1240 found: 1241 if (cmap.br_state != XFS_EXT_NORM) { 1242 error = xfs_reflink_convert_cow_locked(ip, cmap.br_startoff, 1243 cmap.br_blockcount); 1244 if (error) 1245 goto out_unlock; 1246 cmap.br_state = XFS_EXT_NORM; 1247 xfs_check_atomic_cow_conversion(ip, offset_fsb, count_fsb, 1248 &cmap); 1249 } 1250 1251 trace_xfs_iomap_found(ip, offset, length, XFS_COW_FORK, &cmap); 1252 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); 1253 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1254 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq); 1255 1256 convert_delay: 1257 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1258 error = xfs_bmapi_convert_delalloc(ip, XFS_COW_FORK, offset, iomap, 1259 NULL); 1260 if (error) 1261 return error; 1262 1263 /* 1264 * Try the lookup again, because the delalloc conversion might have 1265 * turned the COW mapping into unwritten, but we need it to be in 1266 * written state. 1267 */ 1268 goto retry; 1269 out_unlock: 1270 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1271 return error; 1272 } 1273 1274 const struct iomap_ops xfs_atomic_write_cow_iomap_ops = { 1275 .iomap_begin = xfs_atomic_write_cow_iomap_begin, 1276 }; 1277 1278 static int 1279 xfs_dax_write_iomap_end( 1280 struct inode *inode, 1281 loff_t pos, 1282 loff_t length, 1283 ssize_t written, 1284 unsigned flags, 1285 struct iomap *iomap) 1286 { 1287 struct xfs_inode *ip = XFS_I(inode); 1288 1289 if (!xfs_is_cow_inode(ip)) 1290 return 0; 1291 1292 if (!written) 1293 return xfs_reflink_cancel_cow_range(ip, pos, length, true); 1294 1295 return xfs_reflink_end_cow(ip, pos, written); 1296 } 1297 1298 const struct iomap_ops xfs_dax_write_iomap_ops = { 1299 .iomap_begin = xfs_direct_write_iomap_begin, 1300 .iomap_end = xfs_dax_write_iomap_end, 1301 }; 1302 1303 /* 1304 * Convert a hole to a delayed allocation. 1305 */ 1306 static void 1307 xfs_bmap_add_extent_hole_delay( 1308 struct xfs_inode *ip, /* incore inode pointer */ 1309 int whichfork, 1310 struct xfs_iext_cursor *icur, 1311 struct xfs_bmbt_irec *new) /* new data to add to file extents */ 1312 { 1313 struct xfs_ifork *ifp; /* inode fork pointer */ 1314 xfs_bmbt_irec_t left; /* left neighbor extent entry */ 1315 xfs_filblks_t newlen=0; /* new indirect size */ 1316 xfs_filblks_t oldlen=0; /* old indirect size */ 1317 xfs_bmbt_irec_t right; /* right neighbor extent entry */ 1318 uint32_t state = xfs_bmap_fork_to_state(whichfork); 1319 xfs_filblks_t temp; /* temp for indirect calculations */ 1320 1321 ifp = xfs_ifork_ptr(ip, whichfork); 1322 ASSERT(isnullstartblock(new->br_startblock)); 1323 1324 /* 1325 * Check and set flags if this segment has a left neighbor 1326 */ 1327 if (xfs_iext_peek_prev_extent(ifp, icur, &left)) { 1328 state |= BMAP_LEFT_VALID; 1329 if (isnullstartblock(left.br_startblock)) 1330 state |= BMAP_LEFT_DELAY; 1331 } 1332 1333 /* 1334 * Check and set flags if the current (right) segment exists. 1335 * If it doesn't exist, we're converting the hole at end-of-file. 1336 */ 1337 if (xfs_iext_get_extent(ifp, icur, &right)) { 1338 state |= BMAP_RIGHT_VALID; 1339 if (isnullstartblock(right.br_startblock)) 1340 state |= BMAP_RIGHT_DELAY; 1341 } 1342 1343 /* 1344 * Set contiguity flags on the left and right neighbors. 1345 * Don't let extents get too large, even if the pieces are contiguous. 1346 */ 1347 if ((state & BMAP_LEFT_VALID) && (state & BMAP_LEFT_DELAY) && 1348 left.br_startoff + left.br_blockcount == new->br_startoff && 1349 left.br_blockcount + new->br_blockcount <= XFS_MAX_BMBT_EXTLEN) 1350 state |= BMAP_LEFT_CONTIG; 1351 1352 if ((state & BMAP_RIGHT_VALID) && (state & BMAP_RIGHT_DELAY) && 1353 new->br_startoff + new->br_blockcount == right.br_startoff && 1354 new->br_blockcount + right.br_blockcount <= XFS_MAX_BMBT_EXTLEN && 1355 (!(state & BMAP_LEFT_CONTIG) || 1356 (left.br_blockcount + new->br_blockcount + 1357 right.br_blockcount <= XFS_MAX_BMBT_EXTLEN))) 1358 state |= BMAP_RIGHT_CONTIG; 1359 1360 /* 1361 * Switch out based on the contiguity flags. 1362 */ 1363 switch (state & (BMAP_LEFT_CONTIG | BMAP_RIGHT_CONTIG)) { 1364 case BMAP_LEFT_CONTIG | BMAP_RIGHT_CONTIG: 1365 /* 1366 * New allocation is contiguous with delayed allocations 1367 * on the left and on the right. 1368 * Merge all three into a single extent record. 1369 */ 1370 temp = left.br_blockcount + new->br_blockcount + 1371 right.br_blockcount; 1372 1373 oldlen = startblockval(left.br_startblock) + 1374 startblockval(new->br_startblock) + 1375 startblockval(right.br_startblock); 1376 newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp), 1377 oldlen); 1378 left.br_startblock = nullstartblock(newlen); 1379 left.br_blockcount = temp; 1380 1381 xfs_iext_remove(ip, icur, state); 1382 xfs_iext_prev(ifp, icur); 1383 xfs_iext_update_extent(ip, state, icur, &left); 1384 break; 1385 1386 case BMAP_LEFT_CONTIG: 1387 /* 1388 * New allocation is contiguous with a delayed allocation 1389 * on the left. 1390 * Merge the new allocation with the left neighbor. 1391 */ 1392 temp = left.br_blockcount + new->br_blockcount; 1393 1394 oldlen = startblockval(left.br_startblock) + 1395 startblockval(new->br_startblock); 1396 newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp), 1397 oldlen); 1398 left.br_blockcount = temp; 1399 left.br_startblock = nullstartblock(newlen); 1400 1401 xfs_iext_prev(ifp, icur); 1402 xfs_iext_update_extent(ip, state, icur, &left); 1403 break; 1404 1405 case BMAP_RIGHT_CONTIG: 1406 /* 1407 * New allocation is contiguous with a delayed allocation 1408 * on the right. 1409 * Merge the new allocation with the right neighbor. 1410 */ 1411 temp = new->br_blockcount + right.br_blockcount; 1412 oldlen = startblockval(new->br_startblock) + 1413 startblockval(right.br_startblock); 1414 newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp), 1415 oldlen); 1416 right.br_startoff = new->br_startoff; 1417 right.br_startblock = nullstartblock(newlen); 1418 right.br_blockcount = temp; 1419 xfs_iext_update_extent(ip, state, icur, &right); 1420 break; 1421 1422 case 0: 1423 /* 1424 * New allocation is not contiguous with another 1425 * delayed allocation. 1426 * Insert a new entry. 1427 */ 1428 oldlen = newlen = 0; 1429 xfs_iext_insert(ip, icur, new, state); 1430 break; 1431 } 1432 if (oldlen != newlen) { 1433 ASSERT(oldlen > newlen); 1434 xfs_add_fdblocks(ip->i_mount, oldlen - newlen); 1435 1436 /* 1437 * Nothing to do for disk quota accounting here. 1438 */ 1439 xfs_mod_delalloc(ip, 0, (int64_t)newlen - oldlen); 1440 } 1441 } 1442 1443 /* 1444 * Add a delayed allocation extent to an inode. Blocks are reserved from the 1445 * global pool and the extent inserted into the inode in-core extent tree. 1446 * 1447 * On entry, got refers to the first extent beyond the offset of the extent to 1448 * allocate or eof is specified if no such extent exists. On return, got refers 1449 * to the extent record that was inserted to the inode fork. 1450 * 1451 * Note that the allocated extent may have been merged with contiguous extents 1452 * during insertion into the inode fork. Thus, got does not reflect the current 1453 * state of the inode fork on return. If necessary, the caller can use lastx to 1454 * look up the updated record in the inode fork. 1455 */ 1456 static int 1457 xfs_bmapi_reserve_delalloc( 1458 struct xfs_inode *ip, 1459 int whichfork, 1460 xfs_fileoff_t off, 1461 xfs_filblks_t len, 1462 xfs_filblks_t prealloc, 1463 struct xfs_bmbt_irec *got, 1464 struct xfs_iext_cursor *icur, 1465 int eof) 1466 { 1467 struct xfs_mount *mp = ip->i_mount; 1468 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 1469 xfs_extlen_t alen; 1470 xfs_extlen_t indlen; 1471 uint64_t fdblocks; 1472 int error; 1473 xfs_fileoff_t aoff; 1474 bool use_cowextszhint = 1475 whichfork == XFS_COW_FORK && !prealloc; 1476 1477 retry: 1478 /* 1479 * Cap the alloc length. Keep track of prealloc so we know whether to 1480 * tag the inode before we return. 1481 */ 1482 aoff = off; 1483 alen = XFS_FILBLKS_MIN(len + prealloc, XFS_MAX_BMBT_EXTLEN); 1484 if (!eof) 1485 alen = XFS_FILBLKS_MIN(alen, got->br_startoff - aoff); 1486 if (prealloc && alen >= len) 1487 prealloc = alen - len; 1488 1489 /* 1490 * If we're targetting the COW fork but aren't creating a speculative 1491 * posteof preallocation, try to expand the reservation to align with 1492 * the COW extent size hint if there's sufficient free space. 1493 * 1494 * Unlike the data fork, the CoW cancellation functions will free all 1495 * the reservations at inactivation, so we don't require that every 1496 * delalloc reservation have a dirty pagecache. 1497 */ 1498 if (use_cowextszhint) { 1499 struct xfs_bmbt_irec prev; 1500 xfs_extlen_t extsz = xfs_get_cowextsz_hint(ip); 1501 1502 if (!xfs_iext_peek_prev_extent(ifp, icur, &prev)) 1503 prev.br_startoff = NULLFILEOFF; 1504 1505 error = xfs_bmap_extsize_align(mp, got, &prev, extsz, 0, eof, 1506 1, 0, &aoff, &alen); 1507 ASSERT(!error); 1508 } 1509 1510 /* 1511 * Make a transaction-less quota reservation for delayed allocation 1512 * blocks. This number gets adjusted later. We return if we haven't 1513 * allocated blocks already inside this loop. 1514 */ 1515 error = xfs_quota_reserve_blkres(ip, alen); 1516 if (error) 1517 goto out; 1518 1519 /* 1520 * Split changing sb for alen and indlen since they could be coming 1521 * from different places. 1522 */ 1523 indlen = (xfs_extlen_t)xfs_bmap_worst_indlen(ip, alen); 1524 ASSERT(indlen > 0); 1525 1526 fdblocks = indlen; 1527 if (XFS_IS_REALTIME_INODE(ip)) { 1528 ASSERT(!xfs_is_zoned_inode(ip)); 1529 error = xfs_dec_frextents(mp, xfs_blen_to_rtbxlen(mp, alen)); 1530 if (error) 1531 goto out_unreserve_quota; 1532 } else { 1533 fdblocks += alen; 1534 } 1535 1536 error = xfs_dec_fdblocks(mp, fdblocks, false); 1537 if (error) 1538 goto out_unreserve_frextents; 1539 1540 ip->i_delayed_blks += alen; 1541 xfs_mod_delalloc(ip, alen, indlen); 1542 1543 got->br_startoff = aoff; 1544 got->br_startblock = nullstartblock(indlen); 1545 got->br_blockcount = alen; 1546 got->br_state = XFS_EXT_NORM; 1547 1548 xfs_bmap_add_extent_hole_delay(ip, whichfork, icur, got); 1549 1550 /* 1551 * Tag the inode if blocks were preallocated. Note that COW fork 1552 * preallocation can occur at the start or end of the extent, even when 1553 * prealloc == 0, so we must also check the aligned offset and length. 1554 */ 1555 if (whichfork == XFS_DATA_FORK && prealloc) 1556 xfs_inode_set_eofblocks_tag(ip); 1557 if (whichfork == XFS_COW_FORK && (prealloc || aoff < off || alen > len)) 1558 xfs_inode_set_cowblocks_tag(ip); 1559 1560 return 0; 1561 1562 out_unreserve_frextents: 1563 if (XFS_IS_REALTIME_INODE(ip)) 1564 xfs_add_frextents(mp, xfs_blen_to_rtbxlen(mp, alen)); 1565 out_unreserve_quota: 1566 if (XFS_IS_QUOTA_ON(mp)) 1567 xfs_quota_unreserve_blkres(ip, alen); 1568 out: 1569 if (error == -ENOSPC || error == -EDQUOT) { 1570 trace_xfs_delalloc_enospc(ip, off, len); 1571 1572 if (prealloc || use_cowextszhint) { 1573 /* retry without any preallocation */ 1574 use_cowextszhint = false; 1575 prealloc = 0; 1576 goto retry; 1577 } 1578 } 1579 return error; 1580 } 1581 1582 static int 1583 xfs_zoned_buffered_write_iomap_begin( 1584 struct inode *inode, 1585 loff_t offset, 1586 loff_t count, 1587 unsigned flags, 1588 struct iomap *iomap, 1589 struct iomap *srcmap) 1590 { 1591 struct iomap_iter *iter = 1592 container_of(iomap, struct iomap_iter, iomap); 1593 struct xfs_zone_alloc_ctx *ac = iter->private; 1594 struct xfs_inode *ip = XFS_I(inode); 1595 struct xfs_mount *mp = ip->i_mount; 1596 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1597 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count); 1598 u16 iomap_flags = IOMAP_F_SHARED; 1599 unsigned int lockmode = XFS_ILOCK_EXCL; 1600 xfs_filblks_t count_fsb; 1601 xfs_extlen_t indlen; 1602 struct xfs_bmbt_irec got; 1603 struct xfs_iext_cursor icur; 1604 int error = 0; 1605 1606 ASSERT(!xfs_get_extsz_hint(ip)); 1607 ASSERT(!(flags & IOMAP_UNSHARE)); 1608 ASSERT(ac); 1609 1610 if (xfs_is_shutdown(mp)) 1611 return -EIO; 1612 1613 error = xfs_qm_dqattach(ip); 1614 if (error) 1615 return error; 1616 1617 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 1618 if (error) 1619 return error; 1620 1621 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) || 1622 XFS_TEST_ERROR(mp, XFS_ERRTAG_BMAPIFORMAT)) { 1623 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 1624 error = -EFSCORRUPTED; 1625 goto out_unlock; 1626 } 1627 1628 XFS_STATS_INC(mp, xs_blk_mapw); 1629 1630 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 1631 if (error) 1632 goto out_unlock; 1633 1634 /* 1635 * For zeroing operations check if there is any data to zero first. 1636 * 1637 * For regular writes we always need to allocate new blocks, but need to 1638 * provide the source mapping when the range is unaligned to support 1639 * read-modify-write of the whole block in the page cache. 1640 * 1641 * In either case we need to limit the reported range to the boundaries 1642 * of the source map in the data fork. 1643 */ 1644 if (!IS_ALIGNED(offset, mp->m_sb.sb_blocksize) || 1645 !IS_ALIGNED(offset + count, mp->m_sb.sb_blocksize) || 1646 (flags & IOMAP_ZERO)) { 1647 struct xfs_bmbt_irec smap; 1648 struct xfs_iext_cursor scur; 1649 1650 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &scur, 1651 &smap)) 1652 smap.br_startoff = end_fsb; /* fake hole until EOF */ 1653 if (smap.br_startoff > offset_fsb) { 1654 /* 1655 * We never need to allocate blocks for zeroing a hole. 1656 */ 1657 if (flags & IOMAP_ZERO) { 1658 xfs_hole_to_iomap(ip, iomap, offset_fsb, 1659 smap.br_startoff); 1660 goto out_unlock; 1661 } 1662 end_fsb = min(end_fsb, smap.br_startoff); 1663 } else { 1664 end_fsb = min(end_fsb, 1665 smap.br_startoff + smap.br_blockcount); 1666 xfs_trim_extent(&smap, offset_fsb, 1667 end_fsb - offset_fsb); 1668 error = xfs_bmbt_to_iomap(ip, srcmap, &smap, flags, 0, 1669 xfs_iomap_inode_sequence(ip, 0)); 1670 if (error) 1671 goto out_unlock; 1672 } 1673 } 1674 1675 if (!ip->i_cowfp) 1676 xfs_ifork_init_cow(ip); 1677 1678 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got)) 1679 got.br_startoff = end_fsb; 1680 if (got.br_startoff <= offset_fsb) { 1681 trace_xfs_reflink_cow_found(ip, &got); 1682 goto done; 1683 } 1684 1685 /* 1686 * Cap the maximum length to keep the chunks of work done here somewhat 1687 * symmetric with the work writeback does. 1688 */ 1689 end_fsb = min(end_fsb, got.br_startoff); 1690 count_fsb = min3(end_fsb - offset_fsb, XFS_MAX_BMBT_EXTLEN, 1691 XFS_B_TO_FSB(mp, 1024 * PAGE_SIZE)); 1692 1693 /* 1694 * The block reservation is supposed to cover all blocks that the 1695 * operation could possible write, but there is a nasty corner case 1696 * where blocks could be stolen from underneath us: 1697 * 1698 * 1) while this thread iterates over a larger buffered write, 1699 * 2) another thread is causing a write fault that calls into 1700 * ->page_mkwrite in range this thread writes to, using up the 1701 * delalloc reservation created by a previous call to this function. 1702 * 3) another thread does direct I/O on the range that the write fault 1703 * happened on, which causes writeback of the dirty data. 1704 * 4) this then set the stale flag, which cuts the current iomap 1705 * iteration short, causing the new call to ->iomap_begin that gets 1706 * us here again, but now without a sufficient reservation. 1707 * 1708 * This is a very unusual I/O pattern, and nothing but generic/095 is 1709 * known to hit it. There's not really much we can do here, so turn this 1710 * into a short write. 1711 */ 1712 if (count_fsb > ac->reserved_blocks) { 1713 xfs_warn_ratelimited(mp, 1714 "Short write on ino 0x%llx comm %.20s due to three-way race with write fault and direct I/O", 1715 ip->i_ino, current->comm); 1716 count_fsb = ac->reserved_blocks; 1717 if (!count_fsb) { 1718 error = -EIO; 1719 goto out_unlock; 1720 } 1721 } 1722 1723 error = xfs_quota_reserve_blkres(ip, count_fsb); 1724 if (error) 1725 goto out_unlock; 1726 1727 indlen = xfs_bmap_worst_indlen(ip, count_fsb); 1728 error = xfs_dec_fdblocks(mp, indlen, false); 1729 if (error) 1730 goto out_unlock; 1731 ip->i_delayed_blks += count_fsb; 1732 xfs_mod_delalloc(ip, count_fsb, indlen); 1733 1734 got.br_startoff = offset_fsb; 1735 got.br_startblock = nullstartblock(indlen); 1736 got.br_blockcount = count_fsb; 1737 got.br_state = XFS_EXT_NORM; 1738 xfs_bmap_add_extent_hole_delay(ip, XFS_COW_FORK, &icur, &got); 1739 ac->reserved_blocks -= count_fsb; 1740 iomap_flags |= IOMAP_F_NEW; 1741 1742 trace_xfs_iomap_alloc(ip, offset, XFS_FSB_TO_B(mp, count_fsb), 1743 XFS_COW_FORK, &got); 1744 done: 1745 error = xfs_bmbt_to_iomap(ip, iomap, &got, flags, iomap_flags, 1746 xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED)); 1747 out_unlock: 1748 xfs_iunlock(ip, lockmode); 1749 return error; 1750 } 1751 1752 static int 1753 xfs_buffered_write_iomap_begin( 1754 struct inode *inode, 1755 loff_t offset, 1756 loff_t count, 1757 unsigned flags, 1758 struct iomap *iomap, 1759 struct iomap *srcmap) 1760 { 1761 struct xfs_inode *ip = XFS_I(inode); 1762 struct xfs_mount *mp = ip->i_mount; 1763 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1764 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count); 1765 struct xfs_bmbt_irec imap, cmap; 1766 struct xfs_iext_cursor icur, ccur; 1767 xfs_fsblock_t prealloc_blocks = 0; 1768 bool eof = false, cow_eof = false, shared = false; 1769 int allocfork = XFS_DATA_FORK; 1770 int error = 0; 1771 unsigned int lockmode = XFS_ILOCK_EXCL; 1772 unsigned int iomap_flags = 0; 1773 u64 seq; 1774 1775 if (xfs_is_shutdown(mp)) 1776 return -EIO; 1777 1778 if (xfs_is_zoned_inode(ip)) 1779 return xfs_zoned_buffered_write_iomap_begin(inode, offset, 1780 count, flags, iomap, srcmap); 1781 1782 /* we can't use delayed allocations when using extent size hints */ 1783 if (xfs_get_extsz_hint(ip)) 1784 return xfs_direct_write_iomap_begin(inode, offset, count, 1785 flags, iomap, srcmap); 1786 1787 error = xfs_qm_dqattach(ip); 1788 if (error) 1789 return error; 1790 1791 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 1792 if (error) 1793 return error; 1794 1795 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) || 1796 XFS_TEST_ERROR(mp, XFS_ERRTAG_BMAPIFORMAT)) { 1797 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 1798 error = -EFSCORRUPTED; 1799 goto out_unlock; 1800 } 1801 1802 XFS_STATS_INC(mp, xs_blk_mapw); 1803 1804 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 1805 if (error) 1806 goto out_unlock; 1807 1808 /* 1809 * Search the data fork first to look up our source mapping. We 1810 * always need the data fork map, as we have to return it to the 1811 * iomap code so that the higher level write code can read data in to 1812 * perform read-modify-write cycles for unaligned writes. 1813 */ 1814 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap); 1815 if (eof) 1816 imap.br_startoff = end_fsb; /* fake hole until the end */ 1817 1818 /* We never need to allocate blocks for zeroing or unsharing a hole. */ 1819 if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) && 1820 imap.br_startoff > offset_fsb) { 1821 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff); 1822 goto out_unlock; 1823 } 1824 1825 /* 1826 * For zeroing, trim a delalloc extent that extends beyond the EOF 1827 * block. If it starts beyond the EOF block, convert it to an 1828 * unwritten extent. 1829 */ 1830 if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb && 1831 isnullstartblock(imap.br_startblock)) { 1832 xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip)); 1833 1834 if (offset_fsb >= eof_fsb) 1835 goto convert_delay; 1836 if (end_fsb > eof_fsb) { 1837 end_fsb = eof_fsb; 1838 xfs_trim_extent(&imap, offset_fsb, 1839 end_fsb - offset_fsb); 1840 } 1841 } 1842 1843 /* 1844 * Search the COW fork extent list even if we did not find a data fork 1845 * extent. This serves two purposes: first this implements the 1846 * speculative preallocation using cowextsize, so that we also unshare 1847 * block adjacent to shared blocks instead of just the shared blocks 1848 * themselves. Second the lookup in the extent list is generally faster 1849 * than going out to the shared extent tree. 1850 */ 1851 if (xfs_is_cow_inode(ip)) { 1852 if (!ip->i_cowfp) { 1853 ASSERT(!xfs_is_reflink_inode(ip)); 1854 xfs_ifork_init_cow(ip); 1855 } 1856 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, 1857 &ccur, &cmap); 1858 if (!cow_eof && cmap.br_startoff <= offset_fsb) { 1859 trace_xfs_reflink_cow_found(ip, &cmap); 1860 goto found_cow; 1861 } 1862 } 1863 1864 if (imap.br_startoff <= offset_fsb) { 1865 /* 1866 * For reflink files we may need a delalloc reservation when 1867 * overwriting shared extents. This includes zeroing of 1868 * existing extents that contain data. 1869 */ 1870 if (!xfs_is_cow_inode(ip) || 1871 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) { 1872 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 1873 &imap); 1874 goto found_imap; 1875 } 1876 1877 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); 1878 1879 /* Trim the mapping to the nearest shared extent boundary. */ 1880 error = xfs_bmap_trim_cow(ip, &imap, &shared); 1881 if (error) 1882 goto out_unlock; 1883 1884 /* Not shared? Just report the (potentially capped) extent. */ 1885 if (!shared) { 1886 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 1887 &imap); 1888 goto found_imap; 1889 } 1890 1891 /* 1892 * Fork all the shared blocks from our write offset until the 1893 * end of the extent. 1894 */ 1895 allocfork = XFS_COW_FORK; 1896 end_fsb = imap.br_startoff + imap.br_blockcount; 1897 } else { 1898 /* 1899 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES 1900 * pages to keep the chunks of work done where somewhat 1901 * symmetric with the work writeback does. This is a completely 1902 * arbitrary number pulled out of thin air. 1903 * 1904 * Note that the values needs to be less than 32-bits wide until 1905 * the lower level functions are updated. 1906 */ 1907 count = min_t(loff_t, count, 1024 * PAGE_SIZE); 1908 end_fsb = xfs_iomap_end_fsb(mp, offset, count); 1909 1910 if (xfs_is_always_cow_inode(ip)) 1911 allocfork = XFS_COW_FORK; 1912 } 1913 1914 if (eof && offset + count > XFS_ISIZE(ip)) { 1915 /* 1916 * Determine the initial size of the preallocation. 1917 * We clean up any extra preallocation when the file is closed. 1918 */ 1919 if (xfs_has_allocsize(mp)) 1920 prealloc_blocks = mp->m_allocsize_blocks; 1921 else if (allocfork == XFS_DATA_FORK) 1922 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork, 1923 offset, count, &icur); 1924 else 1925 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork, 1926 offset, count, &ccur); 1927 if (prealloc_blocks) { 1928 xfs_extlen_t align; 1929 xfs_off_t end_offset; 1930 xfs_fileoff_t p_end_fsb; 1931 1932 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1); 1933 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) + 1934 prealloc_blocks; 1935 1936 align = xfs_eof_alignment(ip); 1937 if (align) 1938 p_end_fsb = roundup_64(p_end_fsb, align); 1939 1940 p_end_fsb = min(p_end_fsb, 1941 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); 1942 ASSERT(p_end_fsb > offset_fsb); 1943 prealloc_blocks = p_end_fsb - end_fsb; 1944 } 1945 } 1946 1947 /* 1948 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch 1949 * them out if the write happens to fail. 1950 */ 1951 iomap_flags |= IOMAP_F_NEW; 1952 if (allocfork == XFS_COW_FORK) { 1953 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb, 1954 end_fsb - offset_fsb, prealloc_blocks, &cmap, 1955 &ccur, cow_eof); 1956 if (error) 1957 goto out_unlock; 1958 1959 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap); 1960 goto found_cow; 1961 } 1962 1963 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb, 1964 end_fsb - offset_fsb, prealloc_blocks, &imap, &icur, 1965 eof); 1966 if (error) 1967 goto out_unlock; 1968 1969 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap); 1970 found_imap: 1971 seq = xfs_iomap_inode_sequence(ip, iomap_flags); 1972 xfs_iunlock(ip, lockmode); 1973 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq); 1974 1975 convert_delay: 1976 xfs_iunlock(ip, lockmode); 1977 truncate_pagecache(inode, offset); 1978 error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset, 1979 iomap, NULL); 1980 if (error) 1981 return error; 1982 1983 trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap); 1984 return 0; 1985 1986 found_cow: 1987 if (imap.br_startoff <= offset_fsb) { 1988 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, 1989 xfs_iomap_inode_sequence(ip, 0)); 1990 if (error) 1991 goto out_unlock; 1992 } else { 1993 xfs_trim_extent(&cmap, offset_fsb, 1994 imap.br_startoff - offset_fsb); 1995 } 1996 1997 iomap_flags |= IOMAP_F_SHARED; 1998 seq = xfs_iomap_inode_sequence(ip, iomap_flags); 1999 xfs_iunlock(ip, lockmode); 2000 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, iomap_flags, seq); 2001 2002 out_unlock: 2003 xfs_iunlock(ip, lockmode); 2004 return error; 2005 } 2006 2007 static void 2008 xfs_buffered_write_delalloc_punch( 2009 struct inode *inode, 2010 loff_t offset, 2011 loff_t length, 2012 struct iomap *iomap) 2013 { 2014 struct iomap_iter *iter = 2015 container_of(iomap, struct iomap_iter, iomap); 2016 2017 xfs_bmap_punch_delalloc_range(XFS_I(inode), 2018 (iomap->flags & IOMAP_F_SHARED) ? 2019 XFS_COW_FORK : XFS_DATA_FORK, 2020 offset, offset + length, iter->private); 2021 } 2022 2023 static int 2024 xfs_buffered_write_iomap_end( 2025 struct inode *inode, 2026 loff_t offset, 2027 loff_t length, 2028 ssize_t written, 2029 unsigned flags, 2030 struct iomap *iomap) 2031 { 2032 loff_t start_byte, end_byte; 2033 2034 /* If we didn't reserve the blocks, we're not allowed to punch them. */ 2035 if (iomap->type != IOMAP_DELALLOC || !(iomap->flags & IOMAP_F_NEW)) 2036 return 0; 2037 2038 /* 2039 * iomap_page_mkwrite() will never fail in a way that requires delalloc 2040 * extents that it allocated to be revoked. Hence never try to release 2041 * them here. 2042 */ 2043 if (flags & IOMAP_FAULT) 2044 return 0; 2045 2046 /* Nothing to do if we've written the entire delalloc extent */ 2047 start_byte = iomap_last_written_block(inode, offset, written); 2048 end_byte = round_up(offset + length, i_blocksize(inode)); 2049 if (start_byte >= end_byte) 2050 return 0; 2051 2052 /* For zeroing operations the callers already hold invalidate_lock. */ 2053 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) { 2054 rwsem_assert_held_write(&inode->i_mapping->invalidate_lock); 2055 iomap_write_delalloc_release(inode, start_byte, end_byte, flags, 2056 iomap, xfs_buffered_write_delalloc_punch); 2057 } else { 2058 filemap_invalidate_lock(inode->i_mapping); 2059 iomap_write_delalloc_release(inode, start_byte, end_byte, flags, 2060 iomap, xfs_buffered_write_delalloc_punch); 2061 filemap_invalidate_unlock(inode->i_mapping); 2062 } 2063 2064 return 0; 2065 } 2066 2067 const struct iomap_ops xfs_buffered_write_iomap_ops = { 2068 .iomap_begin = xfs_buffered_write_iomap_begin, 2069 .iomap_end = xfs_buffered_write_iomap_end, 2070 }; 2071 2072 static int 2073 xfs_read_iomap_begin( 2074 struct inode *inode, 2075 loff_t offset, 2076 loff_t length, 2077 unsigned flags, 2078 struct iomap *iomap, 2079 struct iomap *srcmap) 2080 { 2081 struct xfs_inode *ip = XFS_I(inode); 2082 struct xfs_mount *mp = ip->i_mount; 2083 struct xfs_bmbt_irec imap; 2084 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 2085 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length); 2086 int nimaps = 1, error = 0; 2087 bool shared = false; 2088 unsigned int lockmode = XFS_ILOCK_SHARED; 2089 u64 seq; 2090 2091 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO))); 2092 2093 if (xfs_is_shutdown(mp)) 2094 return -EIO; 2095 2096 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 2097 if (error) 2098 return error; 2099 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 2100 &nimaps, 0); 2101 if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode))) 2102 error = xfs_reflink_trim_around_shared(ip, &imap, &shared); 2103 seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0); 2104 xfs_iunlock(ip, lockmode); 2105 2106 if (error) 2107 return error; 2108 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); 2109 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 2110 shared ? IOMAP_F_SHARED : 0, seq); 2111 } 2112 2113 const struct iomap_ops xfs_read_iomap_ops = { 2114 .iomap_begin = xfs_read_iomap_begin, 2115 }; 2116 2117 static int 2118 xfs_seek_iomap_begin( 2119 struct inode *inode, 2120 loff_t offset, 2121 loff_t length, 2122 unsigned flags, 2123 struct iomap *iomap, 2124 struct iomap *srcmap) 2125 { 2126 struct xfs_inode *ip = XFS_I(inode); 2127 struct xfs_mount *mp = ip->i_mount; 2128 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 2129 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 2130 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF; 2131 struct xfs_iext_cursor icur; 2132 struct xfs_bmbt_irec imap, cmap; 2133 int error = 0; 2134 unsigned lockmode; 2135 u64 seq; 2136 2137 if (xfs_is_shutdown(mp)) 2138 return -EIO; 2139 2140 lockmode = xfs_ilock_data_map_shared(ip); 2141 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 2142 if (error) 2143 goto out_unlock; 2144 2145 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) { 2146 /* 2147 * If we found a data extent we are done. 2148 */ 2149 if (imap.br_startoff <= offset_fsb) 2150 goto done; 2151 data_fsb = imap.br_startoff; 2152 } else { 2153 /* 2154 * Fake a hole until the end of the file. 2155 */ 2156 data_fsb = xfs_iomap_end_fsb(mp, offset, length); 2157 } 2158 2159 /* 2160 * If a COW fork extent covers the hole, report it - capped to the next 2161 * data fork extent: 2162 */ 2163 if (xfs_inode_has_cow_data(ip) && 2164 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap)) 2165 cow_fsb = cmap.br_startoff; 2166 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 2167 if (data_fsb < cow_fsb + cmap.br_blockcount) 2168 end_fsb = min(end_fsb, data_fsb); 2169 xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb); 2170 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); 2171 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 2172 IOMAP_F_SHARED, seq); 2173 /* 2174 * This is a COW extent, so we must probe the page cache 2175 * because there could be dirty page cache being backed 2176 * by this extent. 2177 */ 2178 iomap->type = IOMAP_UNWRITTEN; 2179 goto out_unlock; 2180 } 2181 2182 /* 2183 * Else report a hole, capped to the next found data or COW extent. 2184 */ 2185 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb) 2186 imap.br_blockcount = cow_fsb - offset_fsb; 2187 else 2188 imap.br_blockcount = data_fsb - offset_fsb; 2189 imap.br_startoff = offset_fsb; 2190 imap.br_startblock = HOLESTARTBLOCK; 2191 imap.br_state = XFS_EXT_NORM; 2192 done: 2193 seq = xfs_iomap_inode_sequence(ip, 0); 2194 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); 2195 error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq); 2196 out_unlock: 2197 xfs_iunlock(ip, lockmode); 2198 return error; 2199 } 2200 2201 const struct iomap_ops xfs_seek_iomap_ops = { 2202 .iomap_begin = xfs_seek_iomap_begin, 2203 }; 2204 2205 static int 2206 xfs_xattr_iomap_begin( 2207 struct inode *inode, 2208 loff_t offset, 2209 loff_t length, 2210 unsigned flags, 2211 struct iomap *iomap, 2212 struct iomap *srcmap) 2213 { 2214 struct xfs_inode *ip = XFS_I(inode); 2215 struct xfs_mount *mp = ip->i_mount; 2216 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 2217 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 2218 struct xfs_bmbt_irec imap; 2219 int nimaps = 1, error = 0; 2220 unsigned lockmode; 2221 int seq; 2222 2223 if (xfs_is_shutdown(mp)) 2224 return -EIO; 2225 2226 lockmode = xfs_ilock_attr_map_shared(ip); 2227 2228 /* if there are no attribute fork or extents, return ENOENT */ 2229 if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) { 2230 error = -ENOENT; 2231 goto out_unlock; 2232 } 2233 2234 ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL); 2235 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 2236 &nimaps, XFS_BMAPI_ATTRFORK); 2237 out_unlock: 2238 2239 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR); 2240 xfs_iunlock(ip, lockmode); 2241 2242 if (error) 2243 return error; 2244 ASSERT(nimaps); 2245 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq); 2246 } 2247 2248 const struct iomap_ops xfs_xattr_iomap_ops = { 2249 .iomap_begin = xfs_xattr_iomap_begin, 2250 }; 2251 2252 int 2253 xfs_zero_range( 2254 struct xfs_inode *ip, 2255 loff_t pos, 2256 loff_t len, 2257 struct xfs_zone_alloc_ctx *ac, 2258 bool *did_zero) 2259 { 2260 struct inode *inode = VFS_I(ip); 2261 2262 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL); 2263 2264 if (IS_DAX(inode)) 2265 return dax_zero_range(inode, pos, len, did_zero, 2266 &xfs_dax_write_iomap_ops); 2267 return iomap_zero_range(inode, pos, len, did_zero, 2268 &xfs_buffered_write_iomap_ops, &xfs_iomap_write_ops, 2269 ac); 2270 } 2271 2272 int 2273 xfs_truncate_page( 2274 struct xfs_inode *ip, 2275 loff_t pos, 2276 struct xfs_zone_alloc_ctx *ac, 2277 bool *did_zero) 2278 { 2279 struct inode *inode = VFS_I(ip); 2280 2281 if (IS_DAX(inode)) 2282 return dax_truncate_page(inode, pos, did_zero, 2283 &xfs_dax_write_iomap_ops); 2284 return iomap_truncate_page(inode, pos, did_zero, 2285 &xfs_buffered_write_iomap_ops, &xfs_iomap_write_ops, 2286 ac); 2287 } 2288