xref: /linux/fs/xfs/xfs_iomap.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_bmap_btree.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_space.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iomap.h"
25 #include "xfs_trace.h"
26 #include "xfs_quota.h"
27 #include "xfs_dquot_item.h"
28 #include "xfs_dquot.h"
29 #include "xfs_reflink.h"
30 #include "xfs_health.h"
31 
32 #define XFS_ALLOC_ALIGN(mp, off) \
33 	(((off) >> mp->m_allocsize_log) << mp->m_allocsize_log)
34 
35 static int
36 xfs_alert_fsblock_zero(
37 	xfs_inode_t	*ip,
38 	xfs_bmbt_irec_t	*imap)
39 {
40 	xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
41 			"Access to block zero in inode %llu "
42 			"start_block: %llx start_off: %llx "
43 			"blkcnt: %llx extent-state: %x",
44 		(unsigned long long)ip->i_ino,
45 		(unsigned long long)imap->br_startblock,
46 		(unsigned long long)imap->br_startoff,
47 		(unsigned long long)imap->br_blockcount,
48 		imap->br_state);
49 	xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
50 	return -EFSCORRUPTED;
51 }
52 
53 u64
54 xfs_iomap_inode_sequence(
55 	struct xfs_inode	*ip,
56 	u16			iomap_flags)
57 {
58 	u64			cookie = 0;
59 
60 	if (iomap_flags & IOMAP_F_XATTR)
61 		return READ_ONCE(ip->i_af.if_seq);
62 	if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp)
63 		cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32;
64 	return cookie | READ_ONCE(ip->i_df.if_seq);
65 }
66 
67 /*
68  * Check that the iomap passed to us is still valid for the given offset and
69  * length.
70  */
71 static bool
72 xfs_iomap_valid(
73 	struct inode		*inode,
74 	const struct iomap	*iomap)
75 {
76 	struct xfs_inode	*ip = XFS_I(inode);
77 
78 	if (iomap->validity_cookie !=
79 			xfs_iomap_inode_sequence(ip, iomap->flags)) {
80 		trace_xfs_iomap_invalid(ip, iomap);
81 		return false;
82 	}
83 
84 	XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS);
85 	return true;
86 }
87 
88 static const struct iomap_folio_ops xfs_iomap_folio_ops = {
89 	.iomap_valid		= xfs_iomap_valid,
90 };
91 
92 int
93 xfs_bmbt_to_iomap(
94 	struct xfs_inode	*ip,
95 	struct iomap		*iomap,
96 	struct xfs_bmbt_irec	*imap,
97 	unsigned int		mapping_flags,
98 	u16			iomap_flags,
99 	u64			sequence_cookie)
100 {
101 	struct xfs_mount	*mp = ip->i_mount;
102 	struct xfs_buftarg	*target = xfs_inode_buftarg(ip);
103 
104 	if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
105 		xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
106 		return xfs_alert_fsblock_zero(ip, imap);
107 	}
108 
109 	if (imap->br_startblock == HOLESTARTBLOCK) {
110 		iomap->addr = IOMAP_NULL_ADDR;
111 		iomap->type = IOMAP_HOLE;
112 	} else if (imap->br_startblock == DELAYSTARTBLOCK ||
113 		   isnullstartblock(imap->br_startblock)) {
114 		iomap->addr = IOMAP_NULL_ADDR;
115 		iomap->type = IOMAP_DELALLOC;
116 	} else {
117 		iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock));
118 		if (mapping_flags & IOMAP_DAX)
119 			iomap->addr += target->bt_dax_part_off;
120 
121 		if (imap->br_state == XFS_EXT_UNWRITTEN)
122 			iomap->type = IOMAP_UNWRITTEN;
123 		else
124 			iomap->type = IOMAP_MAPPED;
125 
126 	}
127 	iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
128 	iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
129 	if (mapping_flags & IOMAP_DAX)
130 		iomap->dax_dev = target->bt_daxdev;
131 	else
132 		iomap->bdev = target->bt_bdev;
133 	iomap->flags = iomap_flags;
134 
135 	if (xfs_ipincount(ip) &&
136 	    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
137 		iomap->flags |= IOMAP_F_DIRTY;
138 
139 	iomap->validity_cookie = sequence_cookie;
140 	iomap->folio_ops = &xfs_iomap_folio_ops;
141 	return 0;
142 }
143 
144 static void
145 xfs_hole_to_iomap(
146 	struct xfs_inode	*ip,
147 	struct iomap		*iomap,
148 	xfs_fileoff_t		offset_fsb,
149 	xfs_fileoff_t		end_fsb)
150 {
151 	struct xfs_buftarg	*target = xfs_inode_buftarg(ip);
152 
153 	iomap->addr = IOMAP_NULL_ADDR;
154 	iomap->type = IOMAP_HOLE;
155 	iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
156 	iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
157 	iomap->bdev = target->bt_bdev;
158 	iomap->dax_dev = target->bt_daxdev;
159 }
160 
161 static inline xfs_fileoff_t
162 xfs_iomap_end_fsb(
163 	struct xfs_mount	*mp,
164 	loff_t			offset,
165 	loff_t			count)
166 {
167 	ASSERT(offset <= mp->m_super->s_maxbytes);
168 	return min(XFS_B_TO_FSB(mp, offset + count),
169 		   XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
170 }
171 
172 static xfs_extlen_t
173 xfs_eof_alignment(
174 	struct xfs_inode	*ip)
175 {
176 	struct xfs_mount	*mp = ip->i_mount;
177 	xfs_extlen_t		align = 0;
178 
179 	if (!XFS_IS_REALTIME_INODE(ip)) {
180 		/*
181 		 * Round up the allocation request to a stripe unit
182 		 * (m_dalign) boundary if the file size is >= stripe unit
183 		 * size, and we are allocating past the allocation eof.
184 		 *
185 		 * If mounted with the "-o swalloc" option the alignment is
186 		 * increased from the strip unit size to the stripe width.
187 		 */
188 		if (mp->m_swidth && xfs_has_swalloc(mp))
189 			align = mp->m_swidth;
190 		else if (mp->m_dalign)
191 			align = mp->m_dalign;
192 
193 		if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
194 			align = 0;
195 	}
196 
197 	return align;
198 }
199 
200 /*
201  * Check if last_fsb is outside the last extent, and if so grow it to the next
202  * stripe unit boundary.
203  */
204 xfs_fileoff_t
205 xfs_iomap_eof_align_last_fsb(
206 	struct xfs_inode	*ip,
207 	xfs_fileoff_t		end_fsb)
208 {
209 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
210 	xfs_extlen_t		extsz = xfs_get_extsz_hint(ip);
211 	xfs_extlen_t		align = xfs_eof_alignment(ip);
212 	struct xfs_bmbt_irec	irec;
213 	struct xfs_iext_cursor	icur;
214 
215 	ASSERT(!xfs_need_iread_extents(ifp));
216 
217 	/*
218 	 * Always round up the allocation request to the extent hint boundary.
219 	 */
220 	if (extsz) {
221 		if (align)
222 			align = roundup_64(align, extsz);
223 		else
224 			align = extsz;
225 	}
226 
227 	if (align) {
228 		xfs_fileoff_t	aligned_end_fsb = roundup_64(end_fsb, align);
229 
230 		xfs_iext_last(ifp, &icur);
231 		if (!xfs_iext_get_extent(ifp, &icur, &irec) ||
232 		    aligned_end_fsb >= irec.br_startoff + irec.br_blockcount)
233 			return aligned_end_fsb;
234 	}
235 
236 	return end_fsb;
237 }
238 
239 int
240 xfs_iomap_write_direct(
241 	struct xfs_inode	*ip,
242 	xfs_fileoff_t		offset_fsb,
243 	xfs_fileoff_t		count_fsb,
244 	unsigned int		flags,
245 	struct xfs_bmbt_irec	*imap,
246 	u64			*seq)
247 {
248 	struct xfs_mount	*mp = ip->i_mount;
249 	struct xfs_trans	*tp;
250 	xfs_filblks_t		resaligned;
251 	int			nimaps;
252 	unsigned int		dblocks, rblocks;
253 	bool			force = false;
254 	int			error;
255 	int			bmapi_flags = XFS_BMAPI_PREALLOC;
256 	int			nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT;
257 
258 	ASSERT(count_fsb > 0);
259 
260 	resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
261 					   xfs_get_extsz_hint(ip));
262 	if (unlikely(XFS_IS_REALTIME_INODE(ip))) {
263 		dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
264 		rblocks = resaligned;
265 	} else {
266 		dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
267 		rblocks = 0;
268 	}
269 
270 	error = xfs_qm_dqattach(ip);
271 	if (error)
272 		return error;
273 
274 	/*
275 	 * For DAX, we do not allocate unwritten extents, but instead we zero
276 	 * the block before we commit the transaction.  Ideally we'd like to do
277 	 * this outside the transaction context, but if we commit and then crash
278 	 * we may not have zeroed the blocks and this will be exposed on
279 	 * recovery of the allocation. Hence we must zero before commit.
280 	 *
281 	 * Further, if we are mapping unwritten extents here, we need to zero
282 	 * and convert them to written so that we don't need an unwritten extent
283 	 * callback for DAX. This also means that we need to be able to dip into
284 	 * the reserve block pool for bmbt block allocation if there is no space
285 	 * left but we need to do unwritten extent conversion.
286 	 */
287 	if (flags & IOMAP_DAX) {
288 		bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
289 		if (imap->br_state == XFS_EXT_UNWRITTEN) {
290 			force = true;
291 			nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT;
292 			dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
293 		}
294 	}
295 
296 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
297 			rblocks, force, &tp);
298 	if (error)
299 		return error;
300 
301 	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, nr_exts);
302 	if (error == -EFBIG)
303 		error = xfs_iext_count_upgrade(tp, ip, nr_exts);
304 	if (error)
305 		goto out_trans_cancel;
306 
307 	/*
308 	 * From this point onwards we overwrite the imap pointer that the
309 	 * caller gave to us.
310 	 */
311 	nimaps = 1;
312 	error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0,
313 				imap, &nimaps);
314 	if (error)
315 		goto out_trans_cancel;
316 
317 	/*
318 	 * Complete the transaction
319 	 */
320 	error = xfs_trans_commit(tp);
321 	if (error)
322 		goto out_unlock;
323 
324 	/*
325 	 * Copy any maps to caller's array and return any error.
326 	 */
327 	if (nimaps == 0) {
328 		error = -ENOSPC;
329 		goto out_unlock;
330 	}
331 
332 	if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
333 		xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
334 		error = xfs_alert_fsblock_zero(ip, imap);
335 	}
336 
337 out_unlock:
338 	*seq = xfs_iomap_inode_sequence(ip, 0);
339 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
340 	return error;
341 
342 out_trans_cancel:
343 	xfs_trans_cancel(tp);
344 	goto out_unlock;
345 }
346 
347 STATIC bool
348 xfs_quota_need_throttle(
349 	struct xfs_inode	*ip,
350 	xfs_dqtype_t		type,
351 	xfs_fsblock_t		alloc_blocks)
352 {
353 	struct xfs_dquot	*dq = xfs_inode_dquot(ip, type);
354 
355 	if (!dq || !xfs_this_quota_on(ip->i_mount, type))
356 		return false;
357 
358 	/* no hi watermark, no throttle */
359 	if (!dq->q_prealloc_hi_wmark)
360 		return false;
361 
362 	/* under the lo watermark, no throttle */
363 	if (dq->q_blk.reserved + alloc_blocks < dq->q_prealloc_lo_wmark)
364 		return false;
365 
366 	return true;
367 }
368 
369 STATIC void
370 xfs_quota_calc_throttle(
371 	struct xfs_inode	*ip,
372 	xfs_dqtype_t		type,
373 	xfs_fsblock_t		*qblocks,
374 	int			*qshift,
375 	int64_t			*qfreesp)
376 {
377 	struct xfs_dquot	*dq = xfs_inode_dquot(ip, type);
378 	int64_t			freesp;
379 	int			shift = 0;
380 
381 	/* no dq, or over hi wmark, squash the prealloc completely */
382 	if (!dq || dq->q_blk.reserved >= dq->q_prealloc_hi_wmark) {
383 		*qblocks = 0;
384 		*qfreesp = 0;
385 		return;
386 	}
387 
388 	freesp = dq->q_prealloc_hi_wmark - dq->q_blk.reserved;
389 	if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) {
390 		shift = 2;
391 		if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT])
392 			shift += 2;
393 		if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT])
394 			shift += 2;
395 	}
396 
397 	if (freesp < *qfreesp)
398 		*qfreesp = freesp;
399 
400 	/* only overwrite the throttle values if we are more aggressive */
401 	if ((freesp >> shift) < (*qblocks >> *qshift)) {
402 		*qblocks = freesp;
403 		*qshift = shift;
404 	}
405 }
406 
407 /*
408  * If we don't have a user specified preallocation size, dynamically increase
409  * the preallocation size as the size of the file grows.  Cap the maximum size
410  * at a single extent or less if the filesystem is near full. The closer the
411  * filesystem is to being full, the smaller the maximum preallocation.
412  */
413 STATIC xfs_fsblock_t
414 xfs_iomap_prealloc_size(
415 	struct xfs_inode	*ip,
416 	int			whichfork,
417 	loff_t			offset,
418 	loff_t			count,
419 	struct xfs_iext_cursor	*icur)
420 {
421 	struct xfs_iext_cursor	ncur = *icur;
422 	struct xfs_bmbt_irec	prev, got;
423 	struct xfs_mount	*mp = ip->i_mount;
424 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
425 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
426 	int64_t			freesp;
427 	xfs_fsblock_t		qblocks;
428 	xfs_fsblock_t		alloc_blocks = 0;
429 	xfs_extlen_t		plen;
430 	int			shift = 0;
431 	int			qshift = 0;
432 
433 	/*
434 	 * As an exception we don't do any preallocation at all if the file is
435 	 * smaller than the minimum preallocation and we are using the default
436 	 * dynamic preallocation scheme, as it is likely this is the only write
437 	 * to the file that is going to be done.
438 	 */
439 	if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks))
440 		return 0;
441 
442 	/*
443 	 * Use the minimum preallocation size for small files or if we are
444 	 * writing right after a hole.
445 	 */
446 	if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
447 	    !xfs_iext_prev_extent(ifp, &ncur, &prev) ||
448 	    prev.br_startoff + prev.br_blockcount < offset_fsb)
449 		return mp->m_allocsize_blocks;
450 
451 	/*
452 	 * Take the size of the preceding data extents as the basis for the
453 	 * preallocation size. Note that we don't care if the previous extents
454 	 * are written or not.
455 	 */
456 	plen = prev.br_blockcount;
457 	while (xfs_iext_prev_extent(ifp, &ncur, &got)) {
458 		if (plen > XFS_MAX_BMBT_EXTLEN / 2 ||
459 		    isnullstartblock(got.br_startblock) ||
460 		    got.br_startoff + got.br_blockcount != prev.br_startoff ||
461 		    got.br_startblock + got.br_blockcount != prev.br_startblock)
462 			break;
463 		plen += got.br_blockcount;
464 		prev = got;
465 	}
466 
467 	/*
468 	 * If the size of the extents is greater than half the maximum extent
469 	 * length, then use the current offset as the basis.  This ensures that
470 	 * for large files the preallocation size always extends to
471 	 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe
472 	 * unit/width alignment of real extents.
473 	 */
474 	alloc_blocks = plen * 2;
475 	if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
476 		alloc_blocks = XFS_B_TO_FSB(mp, offset);
477 	qblocks = alloc_blocks;
478 
479 	/*
480 	 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc
481 	 * down to the nearest power of two value after throttling. To prevent
482 	 * the round down from unconditionally reducing the maximum supported
483 	 * prealloc size, we round up first, apply appropriate throttling, round
484 	 * down and cap the value to XFS_BMBT_MAX_EXTLEN.
485 	 */
486 	alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN),
487 				       alloc_blocks);
488 
489 	freesp = percpu_counter_read_positive(&mp->m_fdblocks);
490 	if (freesp < mp->m_low_space[XFS_LOWSP_5_PCNT]) {
491 		shift = 2;
492 		if (freesp < mp->m_low_space[XFS_LOWSP_4_PCNT])
493 			shift++;
494 		if (freesp < mp->m_low_space[XFS_LOWSP_3_PCNT])
495 			shift++;
496 		if (freesp < mp->m_low_space[XFS_LOWSP_2_PCNT])
497 			shift++;
498 		if (freesp < mp->m_low_space[XFS_LOWSP_1_PCNT])
499 			shift++;
500 	}
501 
502 	/*
503 	 * Check each quota to cap the prealloc size, provide a shift value to
504 	 * throttle with and adjust amount of available space.
505 	 */
506 	if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks))
507 		xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift,
508 					&freesp);
509 	if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks))
510 		xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift,
511 					&freesp);
512 	if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks))
513 		xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift,
514 					&freesp);
515 
516 	/*
517 	 * The final prealloc size is set to the minimum of free space available
518 	 * in each of the quotas and the overall filesystem.
519 	 *
520 	 * The shift throttle value is set to the maximum value as determined by
521 	 * the global low free space values and per-quota low free space values.
522 	 */
523 	alloc_blocks = min(alloc_blocks, qblocks);
524 	shift = max(shift, qshift);
525 
526 	if (shift)
527 		alloc_blocks >>= shift;
528 	/*
529 	 * rounddown_pow_of_two() returns an undefined result if we pass in
530 	 * alloc_blocks = 0.
531 	 */
532 	if (alloc_blocks)
533 		alloc_blocks = rounddown_pow_of_two(alloc_blocks);
534 	if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
535 		alloc_blocks = XFS_MAX_BMBT_EXTLEN;
536 
537 	/*
538 	 * If we are still trying to allocate more space than is
539 	 * available, squash the prealloc hard. This can happen if we
540 	 * have a large file on a small filesystem and the above
541 	 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN.
542 	 */
543 	while (alloc_blocks && alloc_blocks >= freesp)
544 		alloc_blocks >>= 4;
545 	if (alloc_blocks < mp->m_allocsize_blocks)
546 		alloc_blocks = mp->m_allocsize_blocks;
547 	trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
548 				      mp->m_allocsize_blocks);
549 	return alloc_blocks;
550 }
551 
552 int
553 xfs_iomap_write_unwritten(
554 	xfs_inode_t	*ip,
555 	xfs_off_t	offset,
556 	xfs_off_t	count,
557 	bool		update_isize)
558 {
559 	xfs_mount_t	*mp = ip->i_mount;
560 	xfs_fileoff_t	offset_fsb;
561 	xfs_filblks_t	count_fsb;
562 	xfs_filblks_t	numblks_fsb;
563 	int		nimaps;
564 	xfs_trans_t	*tp;
565 	xfs_bmbt_irec_t imap;
566 	struct inode	*inode = VFS_I(ip);
567 	xfs_fsize_t	i_size;
568 	uint		resblks;
569 	int		error;
570 
571 	trace_xfs_unwritten_convert(ip, offset, count);
572 
573 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
574 	count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
575 	count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
576 
577 	/*
578 	 * Reserve enough blocks in this transaction for two complete extent
579 	 * btree splits.  We may be converting the middle part of an unwritten
580 	 * extent and in this case we will insert two new extents in the btree
581 	 * each of which could cause a full split.
582 	 *
583 	 * This reservation amount will be used in the first call to
584 	 * xfs_bmbt_split() to select an AG with enough space to satisfy the
585 	 * rest of the operation.
586 	 */
587 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
588 
589 	/* Attach dquots so that bmbt splits are accounted correctly. */
590 	error = xfs_qm_dqattach(ip);
591 	if (error)
592 		return error;
593 
594 	do {
595 		/*
596 		 * Set up a transaction to convert the range of extents
597 		 * from unwritten to real. Do allocations in a loop until
598 		 * we have covered the range passed in.
599 		 *
600 		 * Note that we can't risk to recursing back into the filesystem
601 		 * here as we might be asked to write out the same inode that we
602 		 * complete here and might deadlock on the iolock.
603 		 */
604 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks,
605 				0, true, &tp);
606 		if (error)
607 			return error;
608 
609 		error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
610 				XFS_IEXT_WRITE_UNWRITTEN_CNT);
611 		if (error == -EFBIG)
612 			error = xfs_iext_count_upgrade(tp, ip,
613 					XFS_IEXT_WRITE_UNWRITTEN_CNT);
614 		if (error)
615 			goto error_on_bmapi_transaction;
616 
617 		/*
618 		 * Modify the unwritten extent state of the buffer.
619 		 */
620 		nimaps = 1;
621 		error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
622 					XFS_BMAPI_CONVERT, resblks, &imap,
623 					&nimaps);
624 		if (error)
625 			goto error_on_bmapi_transaction;
626 
627 		/*
628 		 * Log the updated inode size as we go.  We have to be careful
629 		 * to only log it up to the actual write offset if it is
630 		 * halfway into a block.
631 		 */
632 		i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
633 		if (i_size > offset + count)
634 			i_size = offset + count;
635 		if (update_isize && i_size > i_size_read(inode))
636 			i_size_write(inode, i_size);
637 		i_size = xfs_new_eof(ip, i_size);
638 		if (i_size) {
639 			ip->i_disk_size = i_size;
640 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
641 		}
642 
643 		error = xfs_trans_commit(tp);
644 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
645 		if (error)
646 			return error;
647 
648 		if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) {
649 			xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
650 			return xfs_alert_fsblock_zero(ip, &imap);
651 		}
652 
653 		if ((numblks_fsb = imap.br_blockcount) == 0) {
654 			/*
655 			 * The numblks_fsb value should always get
656 			 * smaller, otherwise the loop is stuck.
657 			 */
658 			ASSERT(imap.br_blockcount);
659 			break;
660 		}
661 		offset_fsb += numblks_fsb;
662 		count_fsb -= numblks_fsb;
663 	} while (count_fsb > 0);
664 
665 	return 0;
666 
667 error_on_bmapi_transaction:
668 	xfs_trans_cancel(tp);
669 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
670 	return error;
671 }
672 
673 static inline bool
674 imap_needs_alloc(
675 	struct inode		*inode,
676 	unsigned		flags,
677 	struct xfs_bmbt_irec	*imap,
678 	int			nimaps)
679 {
680 	/* don't allocate blocks when just zeroing */
681 	if (flags & IOMAP_ZERO)
682 		return false;
683 	if (!nimaps ||
684 	    imap->br_startblock == HOLESTARTBLOCK ||
685 	    imap->br_startblock == DELAYSTARTBLOCK)
686 		return true;
687 	/* we convert unwritten extents before copying the data for DAX */
688 	if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN)
689 		return true;
690 	return false;
691 }
692 
693 static inline bool
694 imap_needs_cow(
695 	struct xfs_inode	*ip,
696 	unsigned int		flags,
697 	struct xfs_bmbt_irec	*imap,
698 	int			nimaps)
699 {
700 	if (!xfs_is_cow_inode(ip))
701 		return false;
702 
703 	/* when zeroing we don't have to COW holes or unwritten extents */
704 	if (flags & IOMAP_ZERO) {
705 		if (!nimaps ||
706 		    imap->br_startblock == HOLESTARTBLOCK ||
707 		    imap->br_state == XFS_EXT_UNWRITTEN)
708 			return false;
709 	}
710 
711 	return true;
712 }
713 
714 static int
715 xfs_ilock_for_iomap(
716 	struct xfs_inode	*ip,
717 	unsigned		flags,
718 	unsigned		*lockmode)
719 {
720 	unsigned int		mode = *lockmode;
721 	bool			is_write = flags & (IOMAP_WRITE | IOMAP_ZERO);
722 
723 	/*
724 	 * COW writes may allocate delalloc space or convert unwritten COW
725 	 * extents, so we need to make sure to take the lock exclusively here.
726 	 */
727 	if (xfs_is_cow_inode(ip) && is_write)
728 		mode = XFS_ILOCK_EXCL;
729 
730 	/*
731 	 * Extents not yet cached requires exclusive access, don't block.  This
732 	 * is an opencoded xfs_ilock_data_map_shared() call but with
733 	 * non-blocking behaviour.
734 	 */
735 	if (xfs_need_iread_extents(&ip->i_df)) {
736 		if (flags & IOMAP_NOWAIT)
737 			return -EAGAIN;
738 		mode = XFS_ILOCK_EXCL;
739 	}
740 
741 relock:
742 	if (flags & IOMAP_NOWAIT) {
743 		if (!xfs_ilock_nowait(ip, mode))
744 			return -EAGAIN;
745 	} else {
746 		xfs_ilock(ip, mode);
747 	}
748 
749 	/*
750 	 * The reflink iflag could have changed since the earlier unlocked
751 	 * check, so if we got ILOCK_SHARED for a write and but we're now a
752 	 * reflink inode we have to switch to ILOCK_EXCL and relock.
753 	 */
754 	if (mode == XFS_ILOCK_SHARED && is_write && xfs_is_cow_inode(ip)) {
755 		xfs_iunlock(ip, mode);
756 		mode = XFS_ILOCK_EXCL;
757 		goto relock;
758 	}
759 
760 	*lockmode = mode;
761 	return 0;
762 }
763 
764 /*
765  * Check that the imap we are going to return to the caller spans the entire
766  * range that the caller requested for the IO.
767  */
768 static bool
769 imap_spans_range(
770 	struct xfs_bmbt_irec	*imap,
771 	xfs_fileoff_t		offset_fsb,
772 	xfs_fileoff_t		end_fsb)
773 {
774 	if (imap->br_startoff > offset_fsb)
775 		return false;
776 	if (imap->br_startoff + imap->br_blockcount < end_fsb)
777 		return false;
778 	return true;
779 }
780 
781 static int
782 xfs_direct_write_iomap_begin(
783 	struct inode		*inode,
784 	loff_t			offset,
785 	loff_t			length,
786 	unsigned		flags,
787 	struct iomap		*iomap,
788 	struct iomap		*srcmap)
789 {
790 	struct xfs_inode	*ip = XFS_I(inode);
791 	struct xfs_mount	*mp = ip->i_mount;
792 	struct xfs_bmbt_irec	imap, cmap;
793 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
794 	xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, length);
795 	int			nimaps = 1, error = 0;
796 	bool			shared = false;
797 	u16			iomap_flags = 0;
798 	unsigned int		lockmode = XFS_ILOCK_SHARED;
799 	u64			seq;
800 
801 	ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO));
802 
803 	if (xfs_is_shutdown(mp))
804 		return -EIO;
805 
806 	/*
807 	 * Writes that span EOF might trigger an IO size update on completion,
808 	 * so consider them to be dirty for the purposes of O_DSYNC even if
809 	 * there is no other metadata changes pending or have been made here.
810 	 */
811 	if (offset + length > i_size_read(inode))
812 		iomap_flags |= IOMAP_F_DIRTY;
813 
814 	error = xfs_ilock_for_iomap(ip, flags, &lockmode);
815 	if (error)
816 		return error;
817 
818 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
819 			       &nimaps, 0);
820 	if (error)
821 		goto out_unlock;
822 
823 	if (imap_needs_cow(ip, flags, &imap, nimaps)) {
824 		error = -EAGAIN;
825 		if (flags & IOMAP_NOWAIT)
826 			goto out_unlock;
827 
828 		/* may drop and re-acquire the ilock */
829 		error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared,
830 				&lockmode,
831 				(flags & IOMAP_DIRECT) || IS_DAX(inode));
832 		if (error)
833 			goto out_unlock;
834 		if (shared)
835 			goto out_found_cow;
836 		end_fsb = imap.br_startoff + imap.br_blockcount;
837 		length = XFS_FSB_TO_B(mp, end_fsb) - offset;
838 	}
839 
840 	if (imap_needs_alloc(inode, flags, &imap, nimaps))
841 		goto allocate_blocks;
842 
843 	/*
844 	 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with
845 	 * a single map so that we avoid partial IO failures due to the rest of
846 	 * the I/O range not covered by this map triggering an EAGAIN condition
847 	 * when it is subsequently mapped and aborting the I/O.
848 	 */
849 	if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) {
850 		error = -EAGAIN;
851 		if (!imap_spans_range(&imap, offset_fsb, end_fsb))
852 			goto out_unlock;
853 	}
854 
855 	/*
856 	 * For overwrite only I/O, we cannot convert unwritten extents without
857 	 * requiring sub-block zeroing.  This can only be done under an
858 	 * exclusive IOLOCK, hence return -EAGAIN if this is not a written
859 	 * extent to tell the caller to try again.
860 	 */
861 	if (flags & IOMAP_OVERWRITE_ONLY) {
862 		error = -EAGAIN;
863 		if (imap.br_state != XFS_EXT_NORM &&
864 	            ((offset | length) & mp->m_blockmask))
865 			goto out_unlock;
866 	}
867 
868 	seq = xfs_iomap_inode_sequence(ip, iomap_flags);
869 	xfs_iunlock(ip, lockmode);
870 	trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
871 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
872 
873 allocate_blocks:
874 	error = -EAGAIN;
875 	if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY))
876 		goto out_unlock;
877 
878 	/*
879 	 * We cap the maximum length we map to a sane size  to keep the chunks
880 	 * of work done where somewhat symmetric with the work writeback does.
881 	 * This is a completely arbitrary number pulled out of thin air as a
882 	 * best guess for initial testing.
883 	 *
884 	 * Note that the values needs to be less than 32-bits wide until the
885 	 * lower level functions are updated.
886 	 */
887 	length = min_t(loff_t, length, 1024 * PAGE_SIZE);
888 	end_fsb = xfs_iomap_end_fsb(mp, offset, length);
889 
890 	if (offset + length > XFS_ISIZE(ip))
891 		end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb);
892 	else if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
893 		end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
894 	xfs_iunlock(ip, lockmode);
895 
896 	error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb,
897 			flags, &imap, &seq);
898 	if (error)
899 		return error;
900 
901 	trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
902 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
903 				 iomap_flags | IOMAP_F_NEW, seq);
904 
905 out_found_cow:
906 	length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
907 	trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
908 	if (imap.br_startblock != HOLESTARTBLOCK) {
909 		seq = xfs_iomap_inode_sequence(ip, 0);
910 		error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq);
911 		if (error)
912 			goto out_unlock;
913 	}
914 	seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
915 	xfs_iunlock(ip, lockmode);
916 	return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq);
917 
918 out_unlock:
919 	if (lockmode)
920 		xfs_iunlock(ip, lockmode);
921 	return error;
922 }
923 
924 const struct iomap_ops xfs_direct_write_iomap_ops = {
925 	.iomap_begin		= xfs_direct_write_iomap_begin,
926 };
927 
928 static int
929 xfs_dax_write_iomap_end(
930 	struct inode		*inode,
931 	loff_t			pos,
932 	loff_t			length,
933 	ssize_t			written,
934 	unsigned		flags,
935 	struct iomap		*iomap)
936 {
937 	struct xfs_inode	*ip = XFS_I(inode);
938 
939 	if (!xfs_is_cow_inode(ip))
940 		return 0;
941 
942 	if (!written) {
943 		xfs_reflink_cancel_cow_range(ip, pos, length, true);
944 		return 0;
945 	}
946 
947 	return xfs_reflink_end_cow(ip, pos, written);
948 }
949 
950 const struct iomap_ops xfs_dax_write_iomap_ops = {
951 	.iomap_begin	= xfs_direct_write_iomap_begin,
952 	.iomap_end	= xfs_dax_write_iomap_end,
953 };
954 
955 static int
956 xfs_buffered_write_iomap_begin(
957 	struct inode		*inode,
958 	loff_t			offset,
959 	loff_t			count,
960 	unsigned		flags,
961 	struct iomap		*iomap,
962 	struct iomap		*srcmap)
963 {
964 	struct xfs_inode	*ip = XFS_I(inode);
965 	struct xfs_mount	*mp = ip->i_mount;
966 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
967 	xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, count);
968 	struct xfs_bmbt_irec	imap, cmap;
969 	struct xfs_iext_cursor	icur, ccur;
970 	xfs_fsblock_t		prealloc_blocks = 0;
971 	bool			eof = false, cow_eof = false, shared = false;
972 	int			allocfork = XFS_DATA_FORK;
973 	int			error = 0;
974 	unsigned int		lockmode = XFS_ILOCK_EXCL;
975 	u64			seq;
976 
977 	if (xfs_is_shutdown(mp))
978 		return -EIO;
979 
980 	/* we can't use delayed allocations when using extent size hints */
981 	if (xfs_get_extsz_hint(ip))
982 		return xfs_direct_write_iomap_begin(inode, offset, count,
983 				flags, iomap, srcmap);
984 
985 	ASSERT(!XFS_IS_REALTIME_INODE(ip));
986 
987 	error = xfs_qm_dqattach(ip);
988 	if (error)
989 		return error;
990 
991 	error = xfs_ilock_for_iomap(ip, flags, &lockmode);
992 	if (error)
993 		return error;
994 
995 	if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
996 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
997 		xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
998 		error = -EFSCORRUPTED;
999 		goto out_unlock;
1000 	}
1001 
1002 	XFS_STATS_INC(mp, xs_blk_mapw);
1003 
1004 	error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1005 	if (error)
1006 		goto out_unlock;
1007 
1008 	/*
1009 	 * Search the data fork first to look up our source mapping.  We
1010 	 * always need the data fork map, as we have to return it to the
1011 	 * iomap code so that the higher level write code can read data in to
1012 	 * perform read-modify-write cycles for unaligned writes.
1013 	 */
1014 	eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
1015 	if (eof)
1016 		imap.br_startoff = end_fsb; /* fake hole until the end */
1017 
1018 	/* We never need to allocate blocks for zeroing or unsharing a hole. */
1019 	if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) &&
1020 	    imap.br_startoff > offset_fsb) {
1021 		xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
1022 		goto out_unlock;
1023 	}
1024 
1025 	/*
1026 	 * Search the COW fork extent list even if we did not find a data fork
1027 	 * extent.  This serves two purposes: first this implements the
1028 	 * speculative preallocation using cowextsize, so that we also unshare
1029 	 * block adjacent to shared blocks instead of just the shared blocks
1030 	 * themselves.  Second the lookup in the extent list is generally faster
1031 	 * than going out to the shared extent tree.
1032 	 */
1033 	if (xfs_is_cow_inode(ip)) {
1034 		if (!ip->i_cowfp) {
1035 			ASSERT(!xfs_is_reflink_inode(ip));
1036 			xfs_ifork_init_cow(ip);
1037 		}
1038 		cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
1039 				&ccur, &cmap);
1040 		if (!cow_eof && cmap.br_startoff <= offset_fsb) {
1041 			trace_xfs_reflink_cow_found(ip, &cmap);
1042 			goto found_cow;
1043 		}
1044 	}
1045 
1046 	if (imap.br_startoff <= offset_fsb) {
1047 		/*
1048 		 * For reflink files we may need a delalloc reservation when
1049 		 * overwriting shared extents.   This includes zeroing of
1050 		 * existing extents that contain data.
1051 		 */
1052 		if (!xfs_is_cow_inode(ip) ||
1053 		    ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
1054 			trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1055 					&imap);
1056 			goto found_imap;
1057 		}
1058 
1059 		xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1060 
1061 		/* Trim the mapping to the nearest shared extent boundary. */
1062 		error = xfs_bmap_trim_cow(ip, &imap, &shared);
1063 		if (error)
1064 			goto out_unlock;
1065 
1066 		/* Not shared?  Just report the (potentially capped) extent. */
1067 		if (!shared) {
1068 			trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1069 					&imap);
1070 			goto found_imap;
1071 		}
1072 
1073 		/*
1074 		 * Fork all the shared blocks from our write offset until the
1075 		 * end of the extent.
1076 		 */
1077 		allocfork = XFS_COW_FORK;
1078 		end_fsb = imap.br_startoff + imap.br_blockcount;
1079 	} else {
1080 		/*
1081 		 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES
1082 		 * pages to keep the chunks of work done where somewhat
1083 		 * symmetric with the work writeback does.  This is a completely
1084 		 * arbitrary number pulled out of thin air.
1085 		 *
1086 		 * Note that the values needs to be less than 32-bits wide until
1087 		 * the lower level functions are updated.
1088 		 */
1089 		count = min_t(loff_t, count, 1024 * PAGE_SIZE);
1090 		end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1091 
1092 		if (xfs_is_always_cow_inode(ip))
1093 			allocfork = XFS_COW_FORK;
1094 	}
1095 
1096 	if (eof && offset + count > XFS_ISIZE(ip)) {
1097 		/*
1098 		 * Determine the initial size of the preallocation.
1099 		 * We clean up any extra preallocation when the file is closed.
1100 		 */
1101 		if (xfs_has_allocsize(mp))
1102 			prealloc_blocks = mp->m_allocsize_blocks;
1103 		else if (allocfork == XFS_DATA_FORK)
1104 			prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1105 						offset, count, &icur);
1106 		else
1107 			prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1108 						offset, count, &ccur);
1109 		if (prealloc_blocks) {
1110 			xfs_extlen_t	align;
1111 			xfs_off_t	end_offset;
1112 			xfs_fileoff_t	p_end_fsb;
1113 
1114 			end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1);
1115 			p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
1116 					prealloc_blocks;
1117 
1118 			align = xfs_eof_alignment(ip);
1119 			if (align)
1120 				p_end_fsb = roundup_64(p_end_fsb, align);
1121 
1122 			p_end_fsb = min(p_end_fsb,
1123 				XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
1124 			ASSERT(p_end_fsb > offset_fsb);
1125 			prealloc_blocks = p_end_fsb - end_fsb;
1126 		}
1127 	}
1128 
1129 retry:
1130 	error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1131 			end_fsb - offset_fsb, prealloc_blocks,
1132 			allocfork == XFS_DATA_FORK ? &imap : &cmap,
1133 			allocfork == XFS_DATA_FORK ? &icur : &ccur,
1134 			allocfork == XFS_DATA_FORK ? eof : cow_eof);
1135 	switch (error) {
1136 	case 0:
1137 		break;
1138 	case -ENOSPC:
1139 	case -EDQUOT:
1140 		/* retry without any preallocation */
1141 		trace_xfs_delalloc_enospc(ip, offset, count);
1142 		if (prealloc_blocks) {
1143 			prealloc_blocks = 0;
1144 			goto retry;
1145 		}
1146 		fallthrough;
1147 	default:
1148 		goto out_unlock;
1149 	}
1150 
1151 	if (allocfork == XFS_COW_FORK) {
1152 		trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap);
1153 		goto found_cow;
1154 	}
1155 
1156 	/*
1157 	 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
1158 	 * them out if the write happens to fail.
1159 	 */
1160 	seq = xfs_iomap_inode_sequence(ip, IOMAP_F_NEW);
1161 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1162 	trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap);
1163 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_NEW, seq);
1164 
1165 found_imap:
1166 	seq = xfs_iomap_inode_sequence(ip, 0);
1167 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1168 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq);
1169 
1170 found_cow:
1171 	seq = xfs_iomap_inode_sequence(ip, 0);
1172 	if (imap.br_startoff <= offset_fsb) {
1173 		error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq);
1174 		if (error)
1175 			goto out_unlock;
1176 		seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1177 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1178 		return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
1179 					 IOMAP_F_SHARED, seq);
1180 	}
1181 
1182 	xfs_trim_extent(&cmap, offset_fsb, imap.br_startoff - offset_fsb);
1183 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1184 	return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 0, seq);
1185 
1186 out_unlock:
1187 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1188 	return error;
1189 }
1190 
1191 static int
1192 xfs_buffered_write_delalloc_punch(
1193 	struct inode		*inode,
1194 	loff_t			offset,
1195 	loff_t			length)
1196 {
1197 	return xfs_bmap_punch_delalloc_range(XFS_I(inode), offset,
1198 			offset + length);
1199 }
1200 
1201 static int
1202 xfs_buffered_write_iomap_end(
1203 	struct inode		*inode,
1204 	loff_t			offset,
1205 	loff_t			length,
1206 	ssize_t			written,
1207 	unsigned		flags,
1208 	struct iomap		*iomap)
1209 {
1210 
1211 	struct xfs_mount	*mp = XFS_M(inode->i_sb);
1212 	int			error;
1213 
1214 	error = iomap_file_buffered_write_punch_delalloc(inode, iomap, offset,
1215 			length, written, &xfs_buffered_write_delalloc_punch);
1216 	if (error && !xfs_is_shutdown(mp)) {
1217 		xfs_alert(mp, "%s: unable to clean up ino 0x%llx",
1218 			__func__, XFS_I(inode)->i_ino);
1219 		return error;
1220 	}
1221 	return 0;
1222 }
1223 
1224 const struct iomap_ops xfs_buffered_write_iomap_ops = {
1225 	.iomap_begin		= xfs_buffered_write_iomap_begin,
1226 	.iomap_end		= xfs_buffered_write_iomap_end,
1227 };
1228 
1229 /*
1230  * iomap_page_mkwrite() will never fail in a way that requires delalloc extents
1231  * that it allocated to be revoked. Hence we do not need an .iomap_end method
1232  * for this operation.
1233  */
1234 const struct iomap_ops xfs_page_mkwrite_iomap_ops = {
1235 	.iomap_begin		= xfs_buffered_write_iomap_begin,
1236 };
1237 
1238 static int
1239 xfs_read_iomap_begin(
1240 	struct inode		*inode,
1241 	loff_t			offset,
1242 	loff_t			length,
1243 	unsigned		flags,
1244 	struct iomap		*iomap,
1245 	struct iomap		*srcmap)
1246 {
1247 	struct xfs_inode	*ip = XFS_I(inode);
1248 	struct xfs_mount	*mp = ip->i_mount;
1249 	struct xfs_bmbt_irec	imap;
1250 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
1251 	xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, length);
1252 	int			nimaps = 1, error = 0;
1253 	bool			shared = false;
1254 	unsigned int		lockmode = XFS_ILOCK_SHARED;
1255 	u64			seq;
1256 
1257 	ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO)));
1258 
1259 	if (xfs_is_shutdown(mp))
1260 		return -EIO;
1261 
1262 	error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1263 	if (error)
1264 		return error;
1265 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1266 			       &nimaps, 0);
1267 	if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode)))
1268 		error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
1269 	seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0);
1270 	xfs_iunlock(ip, lockmode);
1271 
1272 	if (error)
1273 		return error;
1274 	trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
1275 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
1276 				 shared ? IOMAP_F_SHARED : 0, seq);
1277 }
1278 
1279 const struct iomap_ops xfs_read_iomap_ops = {
1280 	.iomap_begin		= xfs_read_iomap_begin,
1281 };
1282 
1283 static int
1284 xfs_seek_iomap_begin(
1285 	struct inode		*inode,
1286 	loff_t			offset,
1287 	loff_t			length,
1288 	unsigned		flags,
1289 	struct iomap		*iomap,
1290 	struct iomap		*srcmap)
1291 {
1292 	struct xfs_inode	*ip = XFS_I(inode);
1293 	struct xfs_mount	*mp = ip->i_mount;
1294 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
1295 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + length);
1296 	xfs_fileoff_t		cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
1297 	struct xfs_iext_cursor	icur;
1298 	struct xfs_bmbt_irec	imap, cmap;
1299 	int			error = 0;
1300 	unsigned		lockmode;
1301 	u64			seq;
1302 
1303 	if (xfs_is_shutdown(mp))
1304 		return -EIO;
1305 
1306 	lockmode = xfs_ilock_data_map_shared(ip);
1307 	error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1308 	if (error)
1309 		goto out_unlock;
1310 
1311 	if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
1312 		/*
1313 		 * If we found a data extent we are done.
1314 		 */
1315 		if (imap.br_startoff <= offset_fsb)
1316 			goto done;
1317 		data_fsb = imap.br_startoff;
1318 	} else {
1319 		/*
1320 		 * Fake a hole until the end of the file.
1321 		 */
1322 		data_fsb = xfs_iomap_end_fsb(mp, offset, length);
1323 	}
1324 
1325 	/*
1326 	 * If a COW fork extent covers the hole, report it - capped to the next
1327 	 * data fork extent:
1328 	 */
1329 	if (xfs_inode_has_cow_data(ip) &&
1330 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1331 		cow_fsb = cmap.br_startoff;
1332 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
1333 		if (data_fsb < cow_fsb + cmap.br_blockcount)
1334 			end_fsb = min(end_fsb, data_fsb);
1335 		xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb);
1336 		seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1337 		error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
1338 				IOMAP_F_SHARED, seq);
1339 		/*
1340 		 * This is a COW extent, so we must probe the page cache
1341 		 * because there could be dirty page cache being backed
1342 		 * by this extent.
1343 		 */
1344 		iomap->type = IOMAP_UNWRITTEN;
1345 		goto out_unlock;
1346 	}
1347 
1348 	/*
1349 	 * Else report a hole, capped to the next found data or COW extent.
1350 	 */
1351 	if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
1352 		imap.br_blockcount = cow_fsb - offset_fsb;
1353 	else
1354 		imap.br_blockcount = data_fsb - offset_fsb;
1355 	imap.br_startoff = offset_fsb;
1356 	imap.br_startblock = HOLESTARTBLOCK;
1357 	imap.br_state = XFS_EXT_NORM;
1358 done:
1359 	seq = xfs_iomap_inode_sequence(ip, 0);
1360 	xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1361 	error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq);
1362 out_unlock:
1363 	xfs_iunlock(ip, lockmode);
1364 	return error;
1365 }
1366 
1367 const struct iomap_ops xfs_seek_iomap_ops = {
1368 	.iomap_begin		= xfs_seek_iomap_begin,
1369 };
1370 
1371 static int
1372 xfs_xattr_iomap_begin(
1373 	struct inode		*inode,
1374 	loff_t			offset,
1375 	loff_t			length,
1376 	unsigned		flags,
1377 	struct iomap		*iomap,
1378 	struct iomap		*srcmap)
1379 {
1380 	struct xfs_inode	*ip = XFS_I(inode);
1381 	struct xfs_mount	*mp = ip->i_mount;
1382 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
1383 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + length);
1384 	struct xfs_bmbt_irec	imap;
1385 	int			nimaps = 1, error = 0;
1386 	unsigned		lockmode;
1387 	int			seq;
1388 
1389 	if (xfs_is_shutdown(mp))
1390 		return -EIO;
1391 
1392 	lockmode = xfs_ilock_attr_map_shared(ip);
1393 
1394 	/* if there are no attribute fork or extents, return ENOENT */
1395 	if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) {
1396 		error = -ENOENT;
1397 		goto out_unlock;
1398 	}
1399 
1400 	ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL);
1401 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1402 			       &nimaps, XFS_BMAPI_ATTRFORK);
1403 out_unlock:
1404 
1405 	seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR);
1406 	xfs_iunlock(ip, lockmode);
1407 
1408 	if (error)
1409 		return error;
1410 	ASSERT(nimaps);
1411 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq);
1412 }
1413 
1414 const struct iomap_ops xfs_xattr_iomap_ops = {
1415 	.iomap_begin		= xfs_xattr_iomap_begin,
1416 };
1417 
1418 int
1419 xfs_zero_range(
1420 	struct xfs_inode	*ip,
1421 	loff_t			pos,
1422 	loff_t			len,
1423 	bool			*did_zero)
1424 {
1425 	struct inode		*inode = VFS_I(ip);
1426 
1427 	if (IS_DAX(inode))
1428 		return dax_zero_range(inode, pos, len, did_zero,
1429 				      &xfs_dax_write_iomap_ops);
1430 	return iomap_zero_range(inode, pos, len, did_zero,
1431 				&xfs_buffered_write_iomap_ops);
1432 }
1433 
1434 int
1435 xfs_truncate_page(
1436 	struct xfs_inode	*ip,
1437 	loff_t			pos,
1438 	bool			*did_zero)
1439 {
1440 	struct inode		*inode = VFS_I(ip);
1441 
1442 	if (IS_DAX(inode))
1443 		return dax_truncate_page(inode, pos, did_zero,
1444 					&xfs_dax_write_iomap_ops);
1445 	return iomap_truncate_page(inode, pos, did_zero,
1446 				   &xfs_buffered_write_iomap_ops);
1447 }
1448