1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap_btree.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_errortag.h" 20 #include "xfs_error.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_space.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_iomap.h" 25 #include "xfs_trace.h" 26 #include "xfs_quota.h" 27 #include "xfs_dquot_item.h" 28 #include "xfs_dquot.h" 29 #include "xfs_reflink.h" 30 #include "xfs_health.h" 31 #include "xfs_rtbitmap.h" 32 33 #define XFS_ALLOC_ALIGN(mp, off) \ 34 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log) 35 36 static int 37 xfs_alert_fsblock_zero( 38 xfs_inode_t *ip, 39 xfs_bmbt_irec_t *imap) 40 { 41 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO, 42 "Access to block zero in inode %llu " 43 "start_block: %llx start_off: %llx " 44 "blkcnt: %llx extent-state: %x", 45 (unsigned long long)ip->i_ino, 46 (unsigned long long)imap->br_startblock, 47 (unsigned long long)imap->br_startoff, 48 (unsigned long long)imap->br_blockcount, 49 imap->br_state); 50 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 51 return -EFSCORRUPTED; 52 } 53 54 u64 55 xfs_iomap_inode_sequence( 56 struct xfs_inode *ip, 57 u16 iomap_flags) 58 { 59 u64 cookie = 0; 60 61 if (iomap_flags & IOMAP_F_XATTR) 62 return READ_ONCE(ip->i_af.if_seq); 63 if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp) 64 cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32; 65 return cookie | READ_ONCE(ip->i_df.if_seq); 66 } 67 68 /* 69 * Check that the iomap passed to us is still valid for the given offset and 70 * length. 71 */ 72 static bool 73 xfs_iomap_valid( 74 struct inode *inode, 75 const struct iomap *iomap) 76 { 77 struct xfs_inode *ip = XFS_I(inode); 78 79 if (iomap->validity_cookie != 80 xfs_iomap_inode_sequence(ip, iomap->flags)) { 81 trace_xfs_iomap_invalid(ip, iomap); 82 return false; 83 } 84 85 XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS); 86 return true; 87 } 88 89 static const struct iomap_folio_ops xfs_iomap_folio_ops = { 90 .iomap_valid = xfs_iomap_valid, 91 }; 92 93 int 94 xfs_bmbt_to_iomap( 95 struct xfs_inode *ip, 96 struct iomap *iomap, 97 struct xfs_bmbt_irec *imap, 98 unsigned int mapping_flags, 99 u16 iomap_flags, 100 u64 sequence_cookie) 101 { 102 struct xfs_mount *mp = ip->i_mount; 103 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 104 105 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) { 106 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 107 return xfs_alert_fsblock_zero(ip, imap); 108 } 109 110 if (imap->br_startblock == HOLESTARTBLOCK) { 111 iomap->addr = IOMAP_NULL_ADDR; 112 iomap->type = IOMAP_HOLE; 113 } else if (imap->br_startblock == DELAYSTARTBLOCK || 114 isnullstartblock(imap->br_startblock)) { 115 iomap->addr = IOMAP_NULL_ADDR; 116 iomap->type = IOMAP_DELALLOC; 117 } else { 118 iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock)); 119 if (mapping_flags & IOMAP_DAX) 120 iomap->addr += target->bt_dax_part_off; 121 122 if (imap->br_state == XFS_EXT_UNWRITTEN) 123 iomap->type = IOMAP_UNWRITTEN; 124 else 125 iomap->type = IOMAP_MAPPED; 126 127 } 128 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff); 129 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount); 130 if (mapping_flags & IOMAP_DAX) 131 iomap->dax_dev = target->bt_daxdev; 132 else 133 iomap->bdev = target->bt_bdev; 134 iomap->flags = iomap_flags; 135 136 if (xfs_ipincount(ip) && 137 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 138 iomap->flags |= IOMAP_F_DIRTY; 139 140 iomap->validity_cookie = sequence_cookie; 141 iomap->folio_ops = &xfs_iomap_folio_ops; 142 return 0; 143 } 144 145 static void 146 xfs_hole_to_iomap( 147 struct xfs_inode *ip, 148 struct iomap *iomap, 149 xfs_fileoff_t offset_fsb, 150 xfs_fileoff_t end_fsb) 151 { 152 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 153 154 iomap->addr = IOMAP_NULL_ADDR; 155 iomap->type = IOMAP_HOLE; 156 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb); 157 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb); 158 iomap->bdev = target->bt_bdev; 159 iomap->dax_dev = target->bt_daxdev; 160 } 161 162 static inline xfs_fileoff_t 163 xfs_iomap_end_fsb( 164 struct xfs_mount *mp, 165 loff_t offset, 166 loff_t count) 167 { 168 ASSERT(offset <= mp->m_super->s_maxbytes); 169 return min(XFS_B_TO_FSB(mp, offset + count), 170 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); 171 } 172 173 static xfs_extlen_t 174 xfs_eof_alignment( 175 struct xfs_inode *ip) 176 { 177 struct xfs_mount *mp = ip->i_mount; 178 xfs_extlen_t align = 0; 179 180 if (!XFS_IS_REALTIME_INODE(ip)) { 181 /* 182 * Round up the allocation request to a stripe unit 183 * (m_dalign) boundary if the file size is >= stripe unit 184 * size, and we are allocating past the allocation eof. 185 * 186 * If mounted with the "-o swalloc" option the alignment is 187 * increased from the strip unit size to the stripe width. 188 */ 189 if (mp->m_swidth && xfs_has_swalloc(mp)) 190 align = mp->m_swidth; 191 else if (mp->m_dalign) 192 align = mp->m_dalign; 193 194 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align)) 195 align = 0; 196 } 197 198 return align; 199 } 200 201 /* 202 * Check if last_fsb is outside the last extent, and if so grow it to the next 203 * stripe unit boundary. 204 */ 205 xfs_fileoff_t 206 xfs_iomap_eof_align_last_fsb( 207 struct xfs_inode *ip, 208 xfs_fileoff_t end_fsb) 209 { 210 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 211 xfs_extlen_t extsz = xfs_get_extsz_hint(ip); 212 xfs_extlen_t align = xfs_eof_alignment(ip); 213 struct xfs_bmbt_irec irec; 214 struct xfs_iext_cursor icur; 215 216 ASSERT(!xfs_need_iread_extents(ifp)); 217 218 /* 219 * Always round up the allocation request to the extent hint boundary. 220 */ 221 if (extsz) { 222 if (align) 223 align = roundup_64(align, extsz); 224 else 225 align = extsz; 226 } 227 228 if (align) { 229 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align); 230 231 xfs_iext_last(ifp, &icur); 232 if (!xfs_iext_get_extent(ifp, &icur, &irec) || 233 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount) 234 return aligned_end_fsb; 235 } 236 237 return end_fsb; 238 } 239 240 int 241 xfs_iomap_write_direct( 242 struct xfs_inode *ip, 243 xfs_fileoff_t offset_fsb, 244 xfs_fileoff_t count_fsb, 245 unsigned int flags, 246 struct xfs_bmbt_irec *imap, 247 u64 *seq) 248 { 249 struct xfs_mount *mp = ip->i_mount; 250 struct xfs_trans *tp; 251 xfs_filblks_t resaligned; 252 int nimaps; 253 unsigned int dblocks, rblocks; 254 bool force = false; 255 int error; 256 int bmapi_flags = XFS_BMAPI_PREALLOC; 257 int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT; 258 259 ASSERT(count_fsb > 0); 260 261 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb, 262 xfs_get_extsz_hint(ip)); 263 if (unlikely(XFS_IS_REALTIME_INODE(ip))) { 264 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 265 rblocks = resaligned; 266 } else { 267 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 268 rblocks = 0; 269 } 270 271 error = xfs_qm_dqattach(ip); 272 if (error) 273 return error; 274 275 /* 276 * For DAX, we do not allocate unwritten extents, but instead we zero 277 * the block before we commit the transaction. Ideally we'd like to do 278 * this outside the transaction context, but if we commit and then crash 279 * we may not have zeroed the blocks and this will be exposed on 280 * recovery of the allocation. Hence we must zero before commit. 281 * 282 * Further, if we are mapping unwritten extents here, we need to zero 283 * and convert them to written so that we don't need an unwritten extent 284 * callback for DAX. This also means that we need to be able to dip into 285 * the reserve block pool for bmbt block allocation if there is no space 286 * left but we need to do unwritten extent conversion. 287 */ 288 if (flags & IOMAP_DAX) { 289 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO; 290 if (imap->br_state == XFS_EXT_UNWRITTEN) { 291 force = true; 292 nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT; 293 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 294 } 295 } 296 297 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks, 298 rblocks, force, &tp); 299 if (error) 300 return error; 301 302 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, nr_exts); 303 if (error) 304 goto out_trans_cancel; 305 306 /* 307 * From this point onwards we overwrite the imap pointer that the 308 * caller gave to us. 309 */ 310 nimaps = 1; 311 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0, 312 imap, &nimaps); 313 if (error) 314 goto out_trans_cancel; 315 316 /* 317 * Complete the transaction 318 */ 319 error = xfs_trans_commit(tp); 320 if (error) 321 goto out_unlock; 322 323 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) { 324 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 325 error = xfs_alert_fsblock_zero(ip, imap); 326 } 327 328 out_unlock: 329 *seq = xfs_iomap_inode_sequence(ip, 0); 330 xfs_iunlock(ip, XFS_ILOCK_EXCL); 331 return error; 332 333 out_trans_cancel: 334 xfs_trans_cancel(tp); 335 goto out_unlock; 336 } 337 338 STATIC bool 339 xfs_quota_need_throttle( 340 struct xfs_inode *ip, 341 xfs_dqtype_t type, 342 xfs_fsblock_t alloc_blocks) 343 { 344 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 345 346 if (!dq || !xfs_this_quota_on(ip->i_mount, type)) 347 return false; 348 349 /* no hi watermark, no throttle */ 350 if (!dq->q_prealloc_hi_wmark) 351 return false; 352 353 /* under the lo watermark, no throttle */ 354 if (dq->q_blk.reserved + alloc_blocks < dq->q_prealloc_lo_wmark) 355 return false; 356 357 return true; 358 } 359 360 STATIC void 361 xfs_quota_calc_throttle( 362 struct xfs_inode *ip, 363 xfs_dqtype_t type, 364 xfs_fsblock_t *qblocks, 365 int *qshift, 366 int64_t *qfreesp) 367 { 368 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 369 int64_t freesp; 370 int shift = 0; 371 372 /* no dq, or over hi wmark, squash the prealloc completely */ 373 if (!dq || dq->q_blk.reserved >= dq->q_prealloc_hi_wmark) { 374 *qblocks = 0; 375 *qfreesp = 0; 376 return; 377 } 378 379 freesp = dq->q_prealloc_hi_wmark - dq->q_blk.reserved; 380 if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) { 381 shift = 2; 382 if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT]) 383 shift += 2; 384 if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT]) 385 shift += 2; 386 } 387 388 if (freesp < *qfreesp) 389 *qfreesp = freesp; 390 391 /* only overwrite the throttle values if we are more aggressive */ 392 if ((freesp >> shift) < (*qblocks >> *qshift)) { 393 *qblocks = freesp; 394 *qshift = shift; 395 } 396 } 397 398 static int64_t 399 xfs_iomap_freesp( 400 struct percpu_counter *counter, 401 uint64_t low_space[XFS_LOWSP_MAX], 402 int *shift) 403 { 404 int64_t freesp; 405 406 freesp = percpu_counter_read_positive(counter); 407 if (freesp < low_space[XFS_LOWSP_5_PCNT]) { 408 *shift = 2; 409 if (freesp < low_space[XFS_LOWSP_4_PCNT]) 410 (*shift)++; 411 if (freesp < low_space[XFS_LOWSP_3_PCNT]) 412 (*shift)++; 413 if (freesp < low_space[XFS_LOWSP_2_PCNT]) 414 (*shift)++; 415 if (freesp < low_space[XFS_LOWSP_1_PCNT]) 416 (*shift)++; 417 } 418 return freesp; 419 } 420 421 /* 422 * If we don't have a user specified preallocation size, dynamically increase 423 * the preallocation size as the size of the file grows. Cap the maximum size 424 * at a single extent or less if the filesystem is near full. The closer the 425 * filesystem is to being full, the smaller the maximum preallocation. 426 */ 427 STATIC xfs_fsblock_t 428 xfs_iomap_prealloc_size( 429 struct xfs_inode *ip, 430 int whichfork, 431 loff_t offset, 432 loff_t count, 433 struct xfs_iext_cursor *icur) 434 { 435 struct xfs_iext_cursor ncur = *icur; 436 struct xfs_bmbt_irec prev, got; 437 struct xfs_mount *mp = ip->i_mount; 438 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 439 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 440 int64_t freesp; 441 xfs_fsblock_t qblocks; 442 xfs_fsblock_t alloc_blocks = 0; 443 xfs_extlen_t plen; 444 int shift = 0; 445 int qshift = 0; 446 447 /* 448 * As an exception we don't do any preallocation at all if the file is 449 * smaller than the minimum preallocation and we are using the default 450 * dynamic preallocation scheme, as it is likely this is the only write 451 * to the file that is going to be done. 452 */ 453 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks)) 454 return 0; 455 456 /* 457 * Use the minimum preallocation size for small files or if we are 458 * writing right after a hole. 459 */ 460 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) || 461 !xfs_iext_prev_extent(ifp, &ncur, &prev) || 462 prev.br_startoff + prev.br_blockcount < offset_fsb) 463 return mp->m_allocsize_blocks; 464 465 /* 466 * Take the size of the preceding data extents as the basis for the 467 * preallocation size. Note that we don't care if the previous extents 468 * are written or not. 469 */ 470 plen = prev.br_blockcount; 471 while (xfs_iext_prev_extent(ifp, &ncur, &got)) { 472 if (plen > XFS_MAX_BMBT_EXTLEN / 2 || 473 isnullstartblock(got.br_startblock) || 474 got.br_startoff + got.br_blockcount != prev.br_startoff || 475 got.br_startblock + got.br_blockcount != prev.br_startblock) 476 break; 477 plen += got.br_blockcount; 478 prev = got; 479 } 480 481 /* 482 * If the size of the extents is greater than half the maximum extent 483 * length, then use the current offset as the basis. This ensures that 484 * for large files the preallocation size always extends to 485 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe 486 * unit/width alignment of real extents. 487 */ 488 alloc_blocks = plen * 2; 489 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN) 490 alloc_blocks = XFS_B_TO_FSB(mp, offset); 491 qblocks = alloc_blocks; 492 493 /* 494 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc 495 * down to the nearest power of two value after throttling. To prevent 496 * the round down from unconditionally reducing the maximum supported 497 * prealloc size, we round up first, apply appropriate throttling, round 498 * down and cap the value to XFS_BMBT_MAX_EXTLEN. 499 */ 500 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN), 501 alloc_blocks); 502 503 if (unlikely(XFS_IS_REALTIME_INODE(ip))) 504 freesp = xfs_rtx_to_rtb(mp, 505 xfs_iomap_freesp(&mp->m_frextents, 506 mp->m_low_rtexts, &shift)); 507 else 508 freesp = xfs_iomap_freesp(&mp->m_fdblocks, mp->m_low_space, 509 &shift); 510 511 /* 512 * Check each quota to cap the prealloc size, provide a shift value to 513 * throttle with and adjust amount of available space. 514 */ 515 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks)) 516 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift, 517 &freesp); 518 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks)) 519 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift, 520 &freesp); 521 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks)) 522 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift, 523 &freesp); 524 525 /* 526 * The final prealloc size is set to the minimum of free space available 527 * in each of the quotas and the overall filesystem. 528 * 529 * The shift throttle value is set to the maximum value as determined by 530 * the global low free space values and per-quota low free space values. 531 */ 532 alloc_blocks = min(alloc_blocks, qblocks); 533 shift = max(shift, qshift); 534 535 if (shift) 536 alloc_blocks >>= shift; 537 /* 538 * rounddown_pow_of_two() returns an undefined result if we pass in 539 * alloc_blocks = 0. 540 */ 541 if (alloc_blocks) 542 alloc_blocks = rounddown_pow_of_two(alloc_blocks); 543 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN) 544 alloc_blocks = XFS_MAX_BMBT_EXTLEN; 545 546 /* 547 * If we are still trying to allocate more space than is 548 * available, squash the prealloc hard. This can happen if we 549 * have a large file on a small filesystem and the above 550 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN. 551 */ 552 while (alloc_blocks && alloc_blocks >= freesp) 553 alloc_blocks >>= 4; 554 if (alloc_blocks < mp->m_allocsize_blocks) 555 alloc_blocks = mp->m_allocsize_blocks; 556 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift, 557 mp->m_allocsize_blocks); 558 return alloc_blocks; 559 } 560 561 int 562 xfs_iomap_write_unwritten( 563 xfs_inode_t *ip, 564 xfs_off_t offset, 565 xfs_off_t count, 566 bool update_isize) 567 { 568 xfs_mount_t *mp = ip->i_mount; 569 xfs_fileoff_t offset_fsb; 570 xfs_filblks_t count_fsb; 571 xfs_filblks_t numblks_fsb; 572 int nimaps; 573 xfs_trans_t *tp; 574 xfs_bmbt_irec_t imap; 575 struct inode *inode = VFS_I(ip); 576 xfs_fsize_t i_size; 577 uint resblks; 578 int error; 579 580 trace_xfs_unwritten_convert(ip, offset, count); 581 582 offset_fsb = XFS_B_TO_FSBT(mp, offset); 583 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 584 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb); 585 586 /* 587 * Reserve enough blocks in this transaction for two complete extent 588 * btree splits. We may be converting the middle part of an unwritten 589 * extent and in this case we will insert two new extents in the btree 590 * each of which could cause a full split. 591 * 592 * This reservation amount will be used in the first call to 593 * xfs_bmbt_split() to select an AG with enough space to satisfy the 594 * rest of the operation. 595 */ 596 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 597 598 /* Attach dquots so that bmbt splits are accounted correctly. */ 599 error = xfs_qm_dqattach(ip); 600 if (error) 601 return error; 602 603 do { 604 /* 605 * Set up a transaction to convert the range of extents 606 * from unwritten to real. Do allocations in a loop until 607 * we have covered the range passed in. 608 * 609 * Note that we can't risk to recursing back into the filesystem 610 * here as we might be asked to write out the same inode that we 611 * complete here and might deadlock on the iolock. 612 */ 613 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 614 0, true, &tp); 615 if (error) 616 return error; 617 618 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, 619 XFS_IEXT_WRITE_UNWRITTEN_CNT); 620 if (error) 621 goto error_on_bmapi_transaction; 622 623 /* 624 * Modify the unwritten extent state of the buffer. 625 */ 626 nimaps = 1; 627 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, 628 XFS_BMAPI_CONVERT, resblks, &imap, 629 &nimaps); 630 if (error) 631 goto error_on_bmapi_transaction; 632 633 /* 634 * Log the updated inode size as we go. We have to be careful 635 * to only log it up to the actual write offset if it is 636 * halfway into a block. 637 */ 638 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb); 639 if (i_size > offset + count) 640 i_size = offset + count; 641 if (update_isize && i_size > i_size_read(inode)) 642 i_size_write(inode, i_size); 643 i_size = xfs_new_eof(ip, i_size); 644 if (i_size) { 645 ip->i_disk_size = i_size; 646 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 647 } 648 649 error = xfs_trans_commit(tp); 650 xfs_iunlock(ip, XFS_ILOCK_EXCL); 651 if (error) 652 return error; 653 654 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) { 655 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 656 return xfs_alert_fsblock_zero(ip, &imap); 657 } 658 659 if ((numblks_fsb = imap.br_blockcount) == 0) { 660 /* 661 * The numblks_fsb value should always get 662 * smaller, otherwise the loop is stuck. 663 */ 664 ASSERT(imap.br_blockcount); 665 break; 666 } 667 offset_fsb += numblks_fsb; 668 count_fsb -= numblks_fsb; 669 } while (count_fsb > 0); 670 671 return 0; 672 673 error_on_bmapi_transaction: 674 xfs_trans_cancel(tp); 675 xfs_iunlock(ip, XFS_ILOCK_EXCL); 676 return error; 677 } 678 679 static inline bool 680 imap_needs_alloc( 681 struct inode *inode, 682 unsigned flags, 683 struct xfs_bmbt_irec *imap, 684 int nimaps) 685 { 686 /* don't allocate blocks when just zeroing */ 687 if (flags & IOMAP_ZERO) 688 return false; 689 if (!nimaps || 690 imap->br_startblock == HOLESTARTBLOCK || 691 imap->br_startblock == DELAYSTARTBLOCK) 692 return true; 693 /* we convert unwritten extents before copying the data for DAX */ 694 if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN) 695 return true; 696 return false; 697 } 698 699 static inline bool 700 imap_needs_cow( 701 struct xfs_inode *ip, 702 unsigned int flags, 703 struct xfs_bmbt_irec *imap, 704 int nimaps) 705 { 706 if (!xfs_is_cow_inode(ip)) 707 return false; 708 709 /* when zeroing we don't have to COW holes or unwritten extents */ 710 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) { 711 if (!nimaps || 712 imap->br_startblock == HOLESTARTBLOCK || 713 imap->br_state == XFS_EXT_UNWRITTEN) 714 return false; 715 } 716 717 return true; 718 } 719 720 /* 721 * Extents not yet cached requires exclusive access, don't block for 722 * IOMAP_NOWAIT. 723 * 724 * This is basically an opencoded xfs_ilock_data_map_shared() call, but with 725 * support for IOMAP_NOWAIT. 726 */ 727 static int 728 xfs_ilock_for_iomap( 729 struct xfs_inode *ip, 730 unsigned flags, 731 unsigned *lockmode) 732 { 733 if (flags & IOMAP_NOWAIT) { 734 if (xfs_need_iread_extents(&ip->i_df)) 735 return -EAGAIN; 736 if (!xfs_ilock_nowait(ip, *lockmode)) 737 return -EAGAIN; 738 } else { 739 if (xfs_need_iread_extents(&ip->i_df)) 740 *lockmode = XFS_ILOCK_EXCL; 741 xfs_ilock(ip, *lockmode); 742 } 743 744 return 0; 745 } 746 747 /* 748 * Check that the imap we are going to return to the caller spans the entire 749 * range that the caller requested for the IO. 750 */ 751 static bool 752 imap_spans_range( 753 struct xfs_bmbt_irec *imap, 754 xfs_fileoff_t offset_fsb, 755 xfs_fileoff_t end_fsb) 756 { 757 if (imap->br_startoff > offset_fsb) 758 return false; 759 if (imap->br_startoff + imap->br_blockcount < end_fsb) 760 return false; 761 return true; 762 } 763 764 static int 765 xfs_direct_write_iomap_begin( 766 struct inode *inode, 767 loff_t offset, 768 loff_t length, 769 unsigned flags, 770 struct iomap *iomap, 771 struct iomap *srcmap) 772 { 773 struct xfs_inode *ip = XFS_I(inode); 774 struct xfs_mount *mp = ip->i_mount; 775 struct xfs_bmbt_irec imap, cmap; 776 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 777 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length); 778 int nimaps = 1, error = 0; 779 bool shared = false; 780 u16 iomap_flags = 0; 781 unsigned int lockmode; 782 u64 seq; 783 784 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO)); 785 786 if (xfs_is_shutdown(mp)) 787 return -EIO; 788 789 /* 790 * Writes that span EOF might trigger an IO size update on completion, 791 * so consider them to be dirty for the purposes of O_DSYNC even if 792 * there is no other metadata changes pending or have been made here. 793 */ 794 if (offset + length > i_size_read(inode)) 795 iomap_flags |= IOMAP_F_DIRTY; 796 797 /* 798 * COW writes may allocate delalloc space or convert unwritten COW 799 * extents, so we need to make sure to take the lock exclusively here. 800 */ 801 if (xfs_is_cow_inode(ip)) 802 lockmode = XFS_ILOCK_EXCL; 803 else 804 lockmode = XFS_ILOCK_SHARED; 805 806 relock: 807 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 808 if (error) 809 return error; 810 811 /* 812 * The reflink iflag could have changed since the earlier unlocked 813 * check, check if it again and relock if needed. 814 */ 815 if (xfs_is_cow_inode(ip) && lockmode == XFS_ILOCK_SHARED) { 816 xfs_iunlock(ip, lockmode); 817 lockmode = XFS_ILOCK_EXCL; 818 goto relock; 819 } 820 821 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 822 &nimaps, 0); 823 if (error) 824 goto out_unlock; 825 826 if (imap_needs_cow(ip, flags, &imap, nimaps)) { 827 error = -EAGAIN; 828 if (flags & IOMAP_NOWAIT) 829 goto out_unlock; 830 831 /* may drop and re-acquire the ilock */ 832 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared, 833 &lockmode, 834 (flags & IOMAP_DIRECT) || IS_DAX(inode)); 835 if (error) 836 goto out_unlock; 837 if (shared) 838 goto out_found_cow; 839 end_fsb = imap.br_startoff + imap.br_blockcount; 840 length = XFS_FSB_TO_B(mp, end_fsb) - offset; 841 } 842 843 if (imap_needs_alloc(inode, flags, &imap, nimaps)) 844 goto allocate_blocks; 845 846 /* 847 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with 848 * a single map so that we avoid partial IO failures due to the rest of 849 * the I/O range not covered by this map triggering an EAGAIN condition 850 * when it is subsequently mapped and aborting the I/O. 851 */ 852 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) { 853 error = -EAGAIN; 854 if (!imap_spans_range(&imap, offset_fsb, end_fsb)) 855 goto out_unlock; 856 } 857 858 /* 859 * For overwrite only I/O, we cannot convert unwritten extents without 860 * requiring sub-block zeroing. This can only be done under an 861 * exclusive IOLOCK, hence return -EAGAIN if this is not a written 862 * extent to tell the caller to try again. 863 */ 864 if (flags & IOMAP_OVERWRITE_ONLY) { 865 error = -EAGAIN; 866 if (imap.br_state != XFS_EXT_NORM && 867 ((offset | length) & mp->m_blockmask)) 868 goto out_unlock; 869 } 870 871 seq = xfs_iomap_inode_sequence(ip, iomap_flags); 872 xfs_iunlock(ip, lockmode); 873 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); 874 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq); 875 876 allocate_blocks: 877 error = -EAGAIN; 878 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) 879 goto out_unlock; 880 881 /* 882 * We cap the maximum length we map to a sane size to keep the chunks 883 * of work done where somewhat symmetric with the work writeback does. 884 * This is a completely arbitrary number pulled out of thin air as a 885 * best guess for initial testing. 886 * 887 * Note that the values needs to be less than 32-bits wide until the 888 * lower level functions are updated. 889 */ 890 length = min_t(loff_t, length, 1024 * PAGE_SIZE); 891 end_fsb = xfs_iomap_end_fsb(mp, offset, length); 892 893 if (offset + length > XFS_ISIZE(ip)) 894 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb); 895 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK) 896 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount); 897 xfs_iunlock(ip, lockmode); 898 899 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb, 900 flags, &imap, &seq); 901 if (error) 902 return error; 903 904 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap); 905 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 906 iomap_flags | IOMAP_F_NEW, seq); 907 908 out_found_cow: 909 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount); 910 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap); 911 if (imap.br_startblock != HOLESTARTBLOCK) { 912 seq = xfs_iomap_inode_sequence(ip, 0); 913 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq); 914 if (error) 915 goto out_unlock; 916 } 917 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); 918 xfs_iunlock(ip, lockmode); 919 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq); 920 921 out_unlock: 922 if (lockmode) 923 xfs_iunlock(ip, lockmode); 924 return error; 925 } 926 927 const struct iomap_ops xfs_direct_write_iomap_ops = { 928 .iomap_begin = xfs_direct_write_iomap_begin, 929 }; 930 931 static int 932 xfs_dax_write_iomap_end( 933 struct inode *inode, 934 loff_t pos, 935 loff_t length, 936 ssize_t written, 937 unsigned flags, 938 struct iomap *iomap) 939 { 940 struct xfs_inode *ip = XFS_I(inode); 941 942 if (!xfs_is_cow_inode(ip)) 943 return 0; 944 945 if (!written) { 946 xfs_reflink_cancel_cow_range(ip, pos, length, true); 947 return 0; 948 } 949 950 return xfs_reflink_end_cow(ip, pos, written); 951 } 952 953 const struct iomap_ops xfs_dax_write_iomap_ops = { 954 .iomap_begin = xfs_direct_write_iomap_begin, 955 .iomap_end = xfs_dax_write_iomap_end, 956 }; 957 958 static int 959 xfs_buffered_write_iomap_begin( 960 struct inode *inode, 961 loff_t offset, 962 loff_t count, 963 unsigned flags, 964 struct iomap *iomap, 965 struct iomap *srcmap) 966 { 967 struct xfs_inode *ip = XFS_I(inode); 968 struct xfs_mount *mp = ip->i_mount; 969 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 970 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count); 971 struct xfs_bmbt_irec imap, cmap; 972 struct xfs_iext_cursor icur, ccur; 973 xfs_fsblock_t prealloc_blocks = 0; 974 bool eof = false, cow_eof = false, shared = false; 975 int allocfork = XFS_DATA_FORK; 976 int error = 0; 977 unsigned int lockmode = XFS_ILOCK_EXCL; 978 unsigned int iomap_flags = 0; 979 u64 seq; 980 981 if (xfs_is_shutdown(mp)) 982 return -EIO; 983 984 /* we can't use delayed allocations when using extent size hints */ 985 if (xfs_get_extsz_hint(ip)) 986 return xfs_direct_write_iomap_begin(inode, offset, count, 987 flags, iomap, srcmap); 988 989 error = xfs_qm_dqattach(ip); 990 if (error) 991 return error; 992 993 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 994 if (error) 995 return error; 996 997 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) || 998 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) { 999 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 1000 error = -EFSCORRUPTED; 1001 goto out_unlock; 1002 } 1003 1004 XFS_STATS_INC(mp, xs_blk_mapw); 1005 1006 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 1007 if (error) 1008 goto out_unlock; 1009 1010 /* 1011 * Search the data fork first to look up our source mapping. We 1012 * always need the data fork map, as we have to return it to the 1013 * iomap code so that the higher level write code can read data in to 1014 * perform read-modify-write cycles for unaligned writes. 1015 */ 1016 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap); 1017 if (eof) 1018 imap.br_startoff = end_fsb; /* fake hole until the end */ 1019 1020 /* We never need to allocate blocks for zeroing or unsharing a hole. */ 1021 if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) && 1022 imap.br_startoff > offset_fsb) { 1023 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff); 1024 goto out_unlock; 1025 } 1026 1027 /* 1028 * For zeroing, trim a delalloc extent that extends beyond the EOF 1029 * block. If it starts beyond the EOF block, convert it to an 1030 * unwritten extent. 1031 */ 1032 if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb && 1033 isnullstartblock(imap.br_startblock)) { 1034 xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip)); 1035 1036 if (offset_fsb >= eof_fsb) 1037 goto convert_delay; 1038 if (end_fsb > eof_fsb) { 1039 end_fsb = eof_fsb; 1040 xfs_trim_extent(&imap, offset_fsb, 1041 end_fsb - offset_fsb); 1042 } 1043 } 1044 1045 /* 1046 * Search the COW fork extent list even if we did not find a data fork 1047 * extent. This serves two purposes: first this implements the 1048 * speculative preallocation using cowextsize, so that we also unshare 1049 * block adjacent to shared blocks instead of just the shared blocks 1050 * themselves. Second the lookup in the extent list is generally faster 1051 * than going out to the shared extent tree. 1052 */ 1053 if (xfs_is_cow_inode(ip)) { 1054 if (!ip->i_cowfp) { 1055 ASSERT(!xfs_is_reflink_inode(ip)); 1056 xfs_ifork_init_cow(ip); 1057 } 1058 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, 1059 &ccur, &cmap); 1060 if (!cow_eof && cmap.br_startoff <= offset_fsb) { 1061 trace_xfs_reflink_cow_found(ip, &cmap); 1062 goto found_cow; 1063 } 1064 } 1065 1066 if (imap.br_startoff <= offset_fsb) { 1067 /* 1068 * For reflink files we may need a delalloc reservation when 1069 * overwriting shared extents. This includes zeroing of 1070 * existing extents that contain data. 1071 */ 1072 if (!xfs_is_cow_inode(ip) || 1073 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) { 1074 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 1075 &imap); 1076 goto found_imap; 1077 } 1078 1079 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); 1080 1081 /* Trim the mapping to the nearest shared extent boundary. */ 1082 error = xfs_bmap_trim_cow(ip, &imap, &shared); 1083 if (error) 1084 goto out_unlock; 1085 1086 /* Not shared? Just report the (potentially capped) extent. */ 1087 if (!shared) { 1088 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 1089 &imap); 1090 goto found_imap; 1091 } 1092 1093 /* 1094 * Fork all the shared blocks from our write offset until the 1095 * end of the extent. 1096 */ 1097 allocfork = XFS_COW_FORK; 1098 end_fsb = imap.br_startoff + imap.br_blockcount; 1099 } else { 1100 /* 1101 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES 1102 * pages to keep the chunks of work done where somewhat 1103 * symmetric with the work writeback does. This is a completely 1104 * arbitrary number pulled out of thin air. 1105 * 1106 * Note that the values needs to be less than 32-bits wide until 1107 * the lower level functions are updated. 1108 */ 1109 count = min_t(loff_t, count, 1024 * PAGE_SIZE); 1110 end_fsb = xfs_iomap_end_fsb(mp, offset, count); 1111 1112 if (xfs_is_always_cow_inode(ip)) 1113 allocfork = XFS_COW_FORK; 1114 } 1115 1116 if (eof && offset + count > XFS_ISIZE(ip)) { 1117 /* 1118 * Determine the initial size of the preallocation. 1119 * We clean up any extra preallocation when the file is closed. 1120 */ 1121 if (xfs_has_allocsize(mp)) 1122 prealloc_blocks = mp->m_allocsize_blocks; 1123 else if (allocfork == XFS_DATA_FORK) 1124 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork, 1125 offset, count, &icur); 1126 else 1127 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork, 1128 offset, count, &ccur); 1129 if (prealloc_blocks) { 1130 xfs_extlen_t align; 1131 xfs_off_t end_offset; 1132 xfs_fileoff_t p_end_fsb; 1133 1134 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1); 1135 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) + 1136 prealloc_blocks; 1137 1138 align = xfs_eof_alignment(ip); 1139 if (align) 1140 p_end_fsb = roundup_64(p_end_fsb, align); 1141 1142 p_end_fsb = min(p_end_fsb, 1143 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); 1144 ASSERT(p_end_fsb > offset_fsb); 1145 prealloc_blocks = p_end_fsb - end_fsb; 1146 } 1147 } 1148 1149 /* 1150 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch 1151 * them out if the write happens to fail. 1152 */ 1153 iomap_flags |= IOMAP_F_NEW; 1154 if (allocfork == XFS_COW_FORK) { 1155 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb, 1156 end_fsb - offset_fsb, prealloc_blocks, &cmap, 1157 &ccur, cow_eof); 1158 if (error) 1159 goto out_unlock; 1160 1161 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap); 1162 goto found_cow; 1163 } 1164 1165 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb, 1166 end_fsb - offset_fsb, prealloc_blocks, &imap, &icur, 1167 eof); 1168 if (error) 1169 goto out_unlock; 1170 1171 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap); 1172 found_imap: 1173 seq = xfs_iomap_inode_sequence(ip, iomap_flags); 1174 xfs_iunlock(ip, lockmode); 1175 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq); 1176 1177 convert_delay: 1178 xfs_iunlock(ip, lockmode); 1179 truncate_pagecache(inode, offset); 1180 error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset, 1181 iomap, NULL); 1182 if (error) 1183 return error; 1184 1185 trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap); 1186 return 0; 1187 1188 found_cow: 1189 if (imap.br_startoff <= offset_fsb) { 1190 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, 1191 xfs_iomap_inode_sequence(ip, 0)); 1192 if (error) 1193 goto out_unlock; 1194 } else { 1195 xfs_trim_extent(&cmap, offset_fsb, 1196 imap.br_startoff - offset_fsb); 1197 } 1198 1199 iomap_flags |= IOMAP_F_SHARED; 1200 seq = xfs_iomap_inode_sequence(ip, iomap_flags); 1201 xfs_iunlock(ip, lockmode); 1202 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, iomap_flags, seq); 1203 1204 out_unlock: 1205 xfs_iunlock(ip, lockmode); 1206 return error; 1207 } 1208 1209 static void 1210 xfs_buffered_write_delalloc_punch( 1211 struct inode *inode, 1212 loff_t offset, 1213 loff_t length, 1214 struct iomap *iomap) 1215 { 1216 xfs_bmap_punch_delalloc_range(XFS_I(inode), 1217 (iomap->flags & IOMAP_F_SHARED) ? 1218 XFS_COW_FORK : XFS_DATA_FORK, 1219 offset, offset + length); 1220 } 1221 1222 static int 1223 xfs_buffered_write_iomap_end( 1224 struct inode *inode, 1225 loff_t offset, 1226 loff_t length, 1227 ssize_t written, 1228 unsigned flags, 1229 struct iomap *iomap) 1230 { 1231 loff_t start_byte, end_byte; 1232 1233 /* If we didn't reserve the blocks, we're not allowed to punch them. */ 1234 if (iomap->type != IOMAP_DELALLOC || !(iomap->flags & IOMAP_F_NEW)) 1235 return 0; 1236 1237 /* Nothing to do if we've written the entire delalloc extent */ 1238 start_byte = iomap_last_written_block(inode, offset, written); 1239 end_byte = round_up(offset + length, i_blocksize(inode)); 1240 if (start_byte >= end_byte) 1241 return 0; 1242 1243 /* For zeroing operations the callers already hold invalidate_lock. */ 1244 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) { 1245 rwsem_assert_held_write(&inode->i_mapping->invalidate_lock); 1246 iomap_write_delalloc_release(inode, start_byte, end_byte, flags, 1247 iomap, xfs_buffered_write_delalloc_punch); 1248 } else { 1249 filemap_invalidate_lock(inode->i_mapping); 1250 iomap_write_delalloc_release(inode, start_byte, end_byte, flags, 1251 iomap, xfs_buffered_write_delalloc_punch); 1252 filemap_invalidate_unlock(inode->i_mapping); 1253 } 1254 1255 return 0; 1256 } 1257 1258 const struct iomap_ops xfs_buffered_write_iomap_ops = { 1259 .iomap_begin = xfs_buffered_write_iomap_begin, 1260 .iomap_end = xfs_buffered_write_iomap_end, 1261 }; 1262 1263 /* 1264 * iomap_page_mkwrite() will never fail in a way that requires delalloc extents 1265 * that it allocated to be revoked. Hence we do not need an .iomap_end method 1266 * for this operation. 1267 */ 1268 const struct iomap_ops xfs_page_mkwrite_iomap_ops = { 1269 .iomap_begin = xfs_buffered_write_iomap_begin, 1270 }; 1271 1272 static int 1273 xfs_read_iomap_begin( 1274 struct inode *inode, 1275 loff_t offset, 1276 loff_t length, 1277 unsigned flags, 1278 struct iomap *iomap, 1279 struct iomap *srcmap) 1280 { 1281 struct xfs_inode *ip = XFS_I(inode); 1282 struct xfs_mount *mp = ip->i_mount; 1283 struct xfs_bmbt_irec imap; 1284 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1285 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length); 1286 int nimaps = 1, error = 0; 1287 bool shared = false; 1288 unsigned int lockmode = XFS_ILOCK_SHARED; 1289 u64 seq; 1290 1291 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO))); 1292 1293 if (xfs_is_shutdown(mp)) 1294 return -EIO; 1295 1296 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 1297 if (error) 1298 return error; 1299 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 1300 &nimaps, 0); 1301 if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode))) 1302 error = xfs_reflink_trim_around_shared(ip, &imap, &shared); 1303 seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0); 1304 xfs_iunlock(ip, lockmode); 1305 1306 if (error) 1307 return error; 1308 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); 1309 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 1310 shared ? IOMAP_F_SHARED : 0, seq); 1311 } 1312 1313 const struct iomap_ops xfs_read_iomap_ops = { 1314 .iomap_begin = xfs_read_iomap_begin, 1315 }; 1316 1317 static int 1318 xfs_seek_iomap_begin( 1319 struct inode *inode, 1320 loff_t offset, 1321 loff_t length, 1322 unsigned flags, 1323 struct iomap *iomap, 1324 struct iomap *srcmap) 1325 { 1326 struct xfs_inode *ip = XFS_I(inode); 1327 struct xfs_mount *mp = ip->i_mount; 1328 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1329 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1330 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF; 1331 struct xfs_iext_cursor icur; 1332 struct xfs_bmbt_irec imap, cmap; 1333 int error = 0; 1334 unsigned lockmode; 1335 u64 seq; 1336 1337 if (xfs_is_shutdown(mp)) 1338 return -EIO; 1339 1340 lockmode = xfs_ilock_data_map_shared(ip); 1341 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 1342 if (error) 1343 goto out_unlock; 1344 1345 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) { 1346 /* 1347 * If we found a data extent we are done. 1348 */ 1349 if (imap.br_startoff <= offset_fsb) 1350 goto done; 1351 data_fsb = imap.br_startoff; 1352 } else { 1353 /* 1354 * Fake a hole until the end of the file. 1355 */ 1356 data_fsb = xfs_iomap_end_fsb(mp, offset, length); 1357 } 1358 1359 /* 1360 * If a COW fork extent covers the hole, report it - capped to the next 1361 * data fork extent: 1362 */ 1363 if (xfs_inode_has_cow_data(ip) && 1364 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap)) 1365 cow_fsb = cmap.br_startoff; 1366 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 1367 if (data_fsb < cow_fsb + cmap.br_blockcount) 1368 end_fsb = min(end_fsb, data_fsb); 1369 xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb); 1370 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); 1371 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 1372 IOMAP_F_SHARED, seq); 1373 /* 1374 * This is a COW extent, so we must probe the page cache 1375 * because there could be dirty page cache being backed 1376 * by this extent. 1377 */ 1378 iomap->type = IOMAP_UNWRITTEN; 1379 goto out_unlock; 1380 } 1381 1382 /* 1383 * Else report a hole, capped to the next found data or COW extent. 1384 */ 1385 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb) 1386 imap.br_blockcount = cow_fsb - offset_fsb; 1387 else 1388 imap.br_blockcount = data_fsb - offset_fsb; 1389 imap.br_startoff = offset_fsb; 1390 imap.br_startblock = HOLESTARTBLOCK; 1391 imap.br_state = XFS_EXT_NORM; 1392 done: 1393 seq = xfs_iomap_inode_sequence(ip, 0); 1394 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); 1395 error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq); 1396 out_unlock: 1397 xfs_iunlock(ip, lockmode); 1398 return error; 1399 } 1400 1401 const struct iomap_ops xfs_seek_iomap_ops = { 1402 .iomap_begin = xfs_seek_iomap_begin, 1403 }; 1404 1405 static int 1406 xfs_xattr_iomap_begin( 1407 struct inode *inode, 1408 loff_t offset, 1409 loff_t length, 1410 unsigned flags, 1411 struct iomap *iomap, 1412 struct iomap *srcmap) 1413 { 1414 struct xfs_inode *ip = XFS_I(inode); 1415 struct xfs_mount *mp = ip->i_mount; 1416 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1417 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1418 struct xfs_bmbt_irec imap; 1419 int nimaps = 1, error = 0; 1420 unsigned lockmode; 1421 int seq; 1422 1423 if (xfs_is_shutdown(mp)) 1424 return -EIO; 1425 1426 lockmode = xfs_ilock_attr_map_shared(ip); 1427 1428 /* if there are no attribute fork or extents, return ENOENT */ 1429 if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) { 1430 error = -ENOENT; 1431 goto out_unlock; 1432 } 1433 1434 ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL); 1435 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 1436 &nimaps, XFS_BMAPI_ATTRFORK); 1437 out_unlock: 1438 1439 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR); 1440 xfs_iunlock(ip, lockmode); 1441 1442 if (error) 1443 return error; 1444 ASSERT(nimaps); 1445 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq); 1446 } 1447 1448 const struct iomap_ops xfs_xattr_iomap_ops = { 1449 .iomap_begin = xfs_xattr_iomap_begin, 1450 }; 1451 1452 int 1453 xfs_zero_range( 1454 struct xfs_inode *ip, 1455 loff_t pos, 1456 loff_t len, 1457 bool *did_zero) 1458 { 1459 struct inode *inode = VFS_I(ip); 1460 1461 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL); 1462 1463 if (IS_DAX(inode)) 1464 return dax_zero_range(inode, pos, len, did_zero, 1465 &xfs_dax_write_iomap_ops); 1466 return iomap_zero_range(inode, pos, len, did_zero, 1467 &xfs_buffered_write_iomap_ops); 1468 } 1469 1470 int 1471 xfs_truncate_page( 1472 struct xfs_inode *ip, 1473 loff_t pos, 1474 bool *did_zero) 1475 { 1476 struct inode *inode = VFS_I(ip); 1477 1478 if (IS_DAX(inode)) 1479 return dax_truncate_page(inode, pos, did_zero, 1480 &xfs_dax_write_iomap_ops); 1481 return iomap_truncate_page(inode, pos, did_zero, 1482 &xfs_buffered_write_iomap_ops); 1483 } 1484