1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap_btree.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_errortag.h" 20 #include "xfs_error.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_space.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_iomap.h" 25 #include "xfs_trace.h" 26 #include "xfs_quota.h" 27 #include "xfs_dquot_item.h" 28 #include "xfs_dquot.h" 29 #include "xfs_reflink.h" 30 #include "xfs_health.h" 31 #include "xfs_rtbitmap.h" 32 33 #define XFS_ALLOC_ALIGN(mp, off) \ 34 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log) 35 36 static int 37 xfs_alert_fsblock_zero( 38 xfs_inode_t *ip, 39 xfs_bmbt_irec_t *imap) 40 { 41 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO, 42 "Access to block zero in inode %llu " 43 "start_block: %llx start_off: %llx " 44 "blkcnt: %llx extent-state: %x", 45 (unsigned long long)ip->i_ino, 46 (unsigned long long)imap->br_startblock, 47 (unsigned long long)imap->br_startoff, 48 (unsigned long long)imap->br_blockcount, 49 imap->br_state); 50 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 51 return -EFSCORRUPTED; 52 } 53 54 u64 55 xfs_iomap_inode_sequence( 56 struct xfs_inode *ip, 57 u16 iomap_flags) 58 { 59 u64 cookie = 0; 60 61 if (iomap_flags & IOMAP_F_XATTR) 62 return READ_ONCE(ip->i_af.if_seq); 63 if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp) 64 cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32; 65 return cookie | READ_ONCE(ip->i_df.if_seq); 66 } 67 68 /* 69 * Check that the iomap passed to us is still valid for the given offset and 70 * length. 71 */ 72 static bool 73 xfs_iomap_valid( 74 struct inode *inode, 75 const struct iomap *iomap) 76 { 77 struct xfs_inode *ip = XFS_I(inode); 78 79 if (iomap->validity_cookie != 80 xfs_iomap_inode_sequence(ip, iomap->flags)) { 81 trace_xfs_iomap_invalid(ip, iomap); 82 return false; 83 } 84 85 XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS); 86 return true; 87 } 88 89 static const struct iomap_folio_ops xfs_iomap_folio_ops = { 90 .iomap_valid = xfs_iomap_valid, 91 }; 92 93 int 94 xfs_bmbt_to_iomap( 95 struct xfs_inode *ip, 96 struct iomap *iomap, 97 struct xfs_bmbt_irec *imap, 98 unsigned int mapping_flags, 99 u16 iomap_flags, 100 u64 sequence_cookie) 101 { 102 struct xfs_mount *mp = ip->i_mount; 103 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 104 105 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) { 106 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 107 return xfs_alert_fsblock_zero(ip, imap); 108 } 109 110 if (imap->br_startblock == HOLESTARTBLOCK) { 111 iomap->addr = IOMAP_NULL_ADDR; 112 iomap->type = IOMAP_HOLE; 113 } else if (imap->br_startblock == DELAYSTARTBLOCK || 114 isnullstartblock(imap->br_startblock)) { 115 iomap->addr = IOMAP_NULL_ADDR; 116 iomap->type = IOMAP_DELALLOC; 117 } else { 118 iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock)); 119 if (mapping_flags & IOMAP_DAX) 120 iomap->addr += target->bt_dax_part_off; 121 122 if (imap->br_state == XFS_EXT_UNWRITTEN) 123 iomap->type = IOMAP_UNWRITTEN; 124 else 125 iomap->type = IOMAP_MAPPED; 126 127 } 128 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff); 129 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount); 130 if (mapping_flags & IOMAP_DAX) 131 iomap->dax_dev = target->bt_daxdev; 132 else 133 iomap->bdev = target->bt_bdev; 134 iomap->flags = iomap_flags; 135 136 if (xfs_ipincount(ip) && 137 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 138 iomap->flags |= IOMAP_F_DIRTY; 139 140 iomap->validity_cookie = sequence_cookie; 141 iomap->folio_ops = &xfs_iomap_folio_ops; 142 return 0; 143 } 144 145 static void 146 xfs_hole_to_iomap( 147 struct xfs_inode *ip, 148 struct iomap *iomap, 149 xfs_fileoff_t offset_fsb, 150 xfs_fileoff_t end_fsb) 151 { 152 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 153 154 iomap->addr = IOMAP_NULL_ADDR; 155 iomap->type = IOMAP_HOLE; 156 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb); 157 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb); 158 iomap->bdev = target->bt_bdev; 159 iomap->dax_dev = target->bt_daxdev; 160 } 161 162 static inline xfs_fileoff_t 163 xfs_iomap_end_fsb( 164 struct xfs_mount *mp, 165 loff_t offset, 166 loff_t count) 167 { 168 ASSERT(offset <= mp->m_super->s_maxbytes); 169 return min(XFS_B_TO_FSB(mp, offset + count), 170 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); 171 } 172 173 static xfs_extlen_t 174 xfs_eof_alignment( 175 struct xfs_inode *ip) 176 { 177 struct xfs_mount *mp = ip->i_mount; 178 xfs_extlen_t align = 0; 179 180 if (!XFS_IS_REALTIME_INODE(ip)) { 181 /* 182 * Round up the allocation request to a stripe unit 183 * (m_dalign) boundary if the file size is >= stripe unit 184 * size, and we are allocating past the allocation eof. 185 * 186 * If mounted with the "-o swalloc" option the alignment is 187 * increased from the strip unit size to the stripe width. 188 */ 189 if (mp->m_swidth && xfs_has_swalloc(mp)) 190 align = mp->m_swidth; 191 else if (mp->m_dalign) 192 align = mp->m_dalign; 193 194 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align)) 195 align = 0; 196 } 197 198 return align; 199 } 200 201 /* 202 * Check if last_fsb is outside the last extent, and if so grow it to the next 203 * stripe unit boundary. 204 */ 205 xfs_fileoff_t 206 xfs_iomap_eof_align_last_fsb( 207 struct xfs_inode *ip, 208 xfs_fileoff_t end_fsb) 209 { 210 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 211 xfs_extlen_t extsz = xfs_get_extsz_hint(ip); 212 xfs_extlen_t align = xfs_eof_alignment(ip); 213 struct xfs_bmbt_irec irec; 214 struct xfs_iext_cursor icur; 215 216 ASSERT(!xfs_need_iread_extents(ifp)); 217 218 /* 219 * Always round up the allocation request to the extent hint boundary. 220 */ 221 if (extsz) { 222 if (align) 223 align = roundup_64(align, extsz); 224 else 225 align = extsz; 226 } 227 228 if (align) { 229 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align); 230 231 xfs_iext_last(ifp, &icur); 232 if (!xfs_iext_get_extent(ifp, &icur, &irec) || 233 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount) 234 return aligned_end_fsb; 235 } 236 237 return end_fsb; 238 } 239 240 int 241 xfs_iomap_write_direct( 242 struct xfs_inode *ip, 243 xfs_fileoff_t offset_fsb, 244 xfs_fileoff_t count_fsb, 245 unsigned int flags, 246 struct xfs_bmbt_irec *imap, 247 u64 *seq) 248 { 249 struct xfs_mount *mp = ip->i_mount; 250 struct xfs_trans *tp; 251 xfs_filblks_t resaligned; 252 int nimaps; 253 unsigned int dblocks, rblocks; 254 bool force = false; 255 int error; 256 int bmapi_flags = XFS_BMAPI_PREALLOC; 257 int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT; 258 259 ASSERT(count_fsb > 0); 260 261 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb, 262 xfs_get_extsz_hint(ip)); 263 if (unlikely(XFS_IS_REALTIME_INODE(ip))) { 264 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 265 rblocks = resaligned; 266 } else { 267 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 268 rblocks = 0; 269 } 270 271 error = xfs_qm_dqattach(ip); 272 if (error) 273 return error; 274 275 /* 276 * For DAX, we do not allocate unwritten extents, but instead we zero 277 * the block before we commit the transaction. Ideally we'd like to do 278 * this outside the transaction context, but if we commit and then crash 279 * we may not have zeroed the blocks and this will be exposed on 280 * recovery of the allocation. Hence we must zero before commit. 281 * 282 * Further, if we are mapping unwritten extents here, we need to zero 283 * and convert them to written so that we don't need an unwritten extent 284 * callback for DAX. This also means that we need to be able to dip into 285 * the reserve block pool for bmbt block allocation if there is no space 286 * left but we need to do unwritten extent conversion. 287 */ 288 if (flags & IOMAP_DAX) { 289 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO; 290 if (imap->br_state == XFS_EXT_UNWRITTEN) { 291 force = true; 292 nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT; 293 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 294 } 295 } 296 297 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks, 298 rblocks, force, &tp); 299 if (error) 300 return error; 301 302 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, nr_exts); 303 if (error) 304 goto out_trans_cancel; 305 306 /* 307 * From this point onwards we overwrite the imap pointer that the 308 * caller gave to us. 309 */ 310 nimaps = 1; 311 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0, 312 imap, &nimaps); 313 if (error) 314 goto out_trans_cancel; 315 316 /* 317 * Complete the transaction 318 */ 319 error = xfs_trans_commit(tp); 320 if (error) 321 goto out_unlock; 322 323 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) { 324 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 325 error = xfs_alert_fsblock_zero(ip, imap); 326 } 327 328 out_unlock: 329 *seq = xfs_iomap_inode_sequence(ip, 0); 330 xfs_iunlock(ip, XFS_ILOCK_EXCL); 331 return error; 332 333 out_trans_cancel: 334 xfs_trans_cancel(tp); 335 goto out_unlock; 336 } 337 338 STATIC bool 339 xfs_quota_need_throttle( 340 struct xfs_inode *ip, 341 xfs_dqtype_t type, 342 xfs_fsblock_t alloc_blocks) 343 { 344 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 345 346 if (!dq || !xfs_this_quota_on(ip->i_mount, type)) 347 return false; 348 349 /* no hi watermark, no throttle */ 350 if (!dq->q_prealloc_hi_wmark) 351 return false; 352 353 /* under the lo watermark, no throttle */ 354 if (dq->q_blk.reserved + alloc_blocks < dq->q_prealloc_lo_wmark) 355 return false; 356 357 return true; 358 } 359 360 STATIC void 361 xfs_quota_calc_throttle( 362 struct xfs_inode *ip, 363 xfs_dqtype_t type, 364 xfs_fsblock_t *qblocks, 365 int *qshift, 366 int64_t *qfreesp) 367 { 368 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 369 int64_t freesp; 370 int shift = 0; 371 372 /* no dq, or over hi wmark, squash the prealloc completely */ 373 if (!dq || dq->q_blk.reserved >= dq->q_prealloc_hi_wmark) { 374 *qblocks = 0; 375 *qfreesp = 0; 376 return; 377 } 378 379 freesp = dq->q_prealloc_hi_wmark - dq->q_blk.reserved; 380 if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) { 381 shift = 2; 382 if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT]) 383 shift += 2; 384 if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT]) 385 shift += 2; 386 } 387 388 if (freesp < *qfreesp) 389 *qfreesp = freesp; 390 391 /* only overwrite the throttle values if we are more aggressive */ 392 if ((freesp >> shift) < (*qblocks >> *qshift)) { 393 *qblocks = freesp; 394 *qshift = shift; 395 } 396 } 397 398 static int64_t 399 xfs_iomap_freesp( 400 struct percpu_counter *counter, 401 uint64_t low_space[XFS_LOWSP_MAX], 402 int *shift) 403 { 404 int64_t freesp; 405 406 freesp = percpu_counter_read_positive(counter); 407 if (freesp < low_space[XFS_LOWSP_5_PCNT]) { 408 *shift = 2; 409 if (freesp < low_space[XFS_LOWSP_4_PCNT]) 410 (*shift)++; 411 if (freesp < low_space[XFS_LOWSP_3_PCNT]) 412 (*shift)++; 413 if (freesp < low_space[XFS_LOWSP_2_PCNT]) 414 (*shift)++; 415 if (freesp < low_space[XFS_LOWSP_1_PCNT]) 416 (*shift)++; 417 } 418 return freesp; 419 } 420 421 /* 422 * If we don't have a user specified preallocation size, dynamically increase 423 * the preallocation size as the size of the file grows. Cap the maximum size 424 * at a single extent or less if the filesystem is near full. The closer the 425 * filesystem is to being full, the smaller the maximum preallocation. 426 */ 427 STATIC xfs_fsblock_t 428 xfs_iomap_prealloc_size( 429 struct xfs_inode *ip, 430 int whichfork, 431 loff_t offset, 432 loff_t count, 433 struct xfs_iext_cursor *icur) 434 { 435 struct xfs_iext_cursor ncur = *icur; 436 struct xfs_bmbt_irec prev, got; 437 struct xfs_mount *mp = ip->i_mount; 438 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 439 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 440 int64_t freesp; 441 xfs_fsblock_t qblocks; 442 xfs_fsblock_t alloc_blocks = 0; 443 xfs_extlen_t plen; 444 int shift = 0; 445 int qshift = 0; 446 447 /* 448 * As an exception we don't do any preallocation at all if the file is 449 * smaller than the minimum preallocation and we are using the default 450 * dynamic preallocation scheme, as it is likely this is the only write 451 * to the file that is going to be done. 452 */ 453 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks)) 454 return 0; 455 456 /* 457 * Use the minimum preallocation size for small files or if we are 458 * writing right after a hole. 459 */ 460 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) || 461 !xfs_iext_prev_extent(ifp, &ncur, &prev) || 462 prev.br_startoff + prev.br_blockcount < offset_fsb) 463 return mp->m_allocsize_blocks; 464 465 /* 466 * Take the size of the preceding data extents as the basis for the 467 * preallocation size. Note that we don't care if the previous extents 468 * are written or not. 469 */ 470 plen = prev.br_blockcount; 471 while (xfs_iext_prev_extent(ifp, &ncur, &got)) { 472 if (plen > XFS_MAX_BMBT_EXTLEN / 2 || 473 isnullstartblock(got.br_startblock) || 474 got.br_startoff + got.br_blockcount != prev.br_startoff || 475 got.br_startblock + got.br_blockcount != prev.br_startblock) 476 break; 477 plen += got.br_blockcount; 478 prev = got; 479 } 480 481 /* 482 * If the size of the extents is greater than half the maximum extent 483 * length, then use the current offset as the basis. This ensures that 484 * for large files the preallocation size always extends to 485 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe 486 * unit/width alignment of real extents. 487 */ 488 alloc_blocks = plen * 2; 489 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN) 490 alloc_blocks = XFS_B_TO_FSB(mp, offset); 491 qblocks = alloc_blocks; 492 493 /* 494 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc 495 * down to the nearest power of two value after throttling. To prevent 496 * the round down from unconditionally reducing the maximum supported 497 * prealloc size, we round up first, apply appropriate throttling, round 498 * down and cap the value to XFS_BMBT_MAX_EXTLEN. 499 */ 500 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN), 501 alloc_blocks); 502 503 if (unlikely(XFS_IS_REALTIME_INODE(ip))) 504 freesp = xfs_rtx_to_rtb(mp, 505 xfs_iomap_freesp(&mp->m_frextents, 506 mp->m_low_rtexts, &shift)); 507 else 508 freesp = xfs_iomap_freesp(&mp->m_fdblocks, mp->m_low_space, 509 &shift); 510 511 /* 512 * Check each quota to cap the prealloc size, provide a shift value to 513 * throttle with and adjust amount of available space. 514 */ 515 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks)) 516 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift, 517 &freesp); 518 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks)) 519 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift, 520 &freesp); 521 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks)) 522 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift, 523 &freesp); 524 525 /* 526 * The final prealloc size is set to the minimum of free space available 527 * in each of the quotas and the overall filesystem. 528 * 529 * The shift throttle value is set to the maximum value as determined by 530 * the global low free space values and per-quota low free space values. 531 */ 532 alloc_blocks = min(alloc_blocks, qblocks); 533 shift = max(shift, qshift); 534 535 if (shift) 536 alloc_blocks >>= shift; 537 /* 538 * rounddown_pow_of_two() returns an undefined result if we pass in 539 * alloc_blocks = 0. 540 */ 541 if (alloc_blocks) 542 alloc_blocks = rounddown_pow_of_two(alloc_blocks); 543 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN) 544 alloc_blocks = XFS_MAX_BMBT_EXTLEN; 545 546 /* 547 * If we are still trying to allocate more space than is 548 * available, squash the prealloc hard. This can happen if we 549 * have a large file on a small filesystem and the above 550 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN. 551 */ 552 while (alloc_blocks && alloc_blocks >= freesp) 553 alloc_blocks >>= 4; 554 if (alloc_blocks < mp->m_allocsize_blocks) 555 alloc_blocks = mp->m_allocsize_blocks; 556 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift, 557 mp->m_allocsize_blocks); 558 return alloc_blocks; 559 } 560 561 int 562 xfs_iomap_write_unwritten( 563 xfs_inode_t *ip, 564 xfs_off_t offset, 565 xfs_off_t count, 566 bool update_isize) 567 { 568 xfs_mount_t *mp = ip->i_mount; 569 xfs_fileoff_t offset_fsb; 570 xfs_filblks_t count_fsb; 571 xfs_filblks_t numblks_fsb; 572 int nimaps; 573 xfs_trans_t *tp; 574 xfs_bmbt_irec_t imap; 575 struct inode *inode = VFS_I(ip); 576 xfs_fsize_t i_size; 577 uint resblks; 578 int error; 579 580 trace_xfs_unwritten_convert(ip, offset, count); 581 582 offset_fsb = XFS_B_TO_FSBT(mp, offset); 583 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 584 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb); 585 586 /* 587 * Reserve enough blocks in this transaction for two complete extent 588 * btree splits. We may be converting the middle part of an unwritten 589 * extent and in this case we will insert two new extents in the btree 590 * each of which could cause a full split. 591 * 592 * This reservation amount will be used in the first call to 593 * xfs_bmbt_split() to select an AG with enough space to satisfy the 594 * rest of the operation. 595 */ 596 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 597 598 /* Attach dquots so that bmbt splits are accounted correctly. */ 599 error = xfs_qm_dqattach(ip); 600 if (error) 601 return error; 602 603 do { 604 /* 605 * Set up a transaction to convert the range of extents 606 * from unwritten to real. Do allocations in a loop until 607 * we have covered the range passed in. 608 * 609 * Note that we can't risk to recursing back into the filesystem 610 * here as we might be asked to write out the same inode that we 611 * complete here and might deadlock on the iolock. 612 */ 613 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 614 0, true, &tp); 615 if (error) 616 return error; 617 618 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, 619 XFS_IEXT_WRITE_UNWRITTEN_CNT); 620 if (error) 621 goto error_on_bmapi_transaction; 622 623 /* 624 * Modify the unwritten extent state of the buffer. 625 */ 626 nimaps = 1; 627 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, 628 XFS_BMAPI_CONVERT, resblks, &imap, 629 &nimaps); 630 if (error) 631 goto error_on_bmapi_transaction; 632 633 /* 634 * Log the updated inode size as we go. We have to be careful 635 * to only log it up to the actual write offset if it is 636 * halfway into a block. 637 */ 638 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb); 639 if (i_size > offset + count) 640 i_size = offset + count; 641 if (update_isize && i_size > i_size_read(inode)) 642 i_size_write(inode, i_size); 643 i_size = xfs_new_eof(ip, i_size); 644 if (i_size) { 645 ip->i_disk_size = i_size; 646 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 647 } 648 649 error = xfs_trans_commit(tp); 650 xfs_iunlock(ip, XFS_ILOCK_EXCL); 651 if (error) 652 return error; 653 654 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) { 655 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 656 return xfs_alert_fsblock_zero(ip, &imap); 657 } 658 659 if ((numblks_fsb = imap.br_blockcount) == 0) { 660 /* 661 * The numblks_fsb value should always get 662 * smaller, otherwise the loop is stuck. 663 */ 664 ASSERT(imap.br_blockcount); 665 break; 666 } 667 offset_fsb += numblks_fsb; 668 count_fsb -= numblks_fsb; 669 } while (count_fsb > 0); 670 671 return 0; 672 673 error_on_bmapi_transaction: 674 xfs_trans_cancel(tp); 675 xfs_iunlock(ip, XFS_ILOCK_EXCL); 676 return error; 677 } 678 679 static inline bool 680 imap_needs_alloc( 681 struct inode *inode, 682 unsigned flags, 683 struct xfs_bmbt_irec *imap, 684 int nimaps) 685 { 686 /* don't allocate blocks when just zeroing */ 687 if (flags & IOMAP_ZERO) 688 return false; 689 if (!nimaps || 690 imap->br_startblock == HOLESTARTBLOCK || 691 imap->br_startblock == DELAYSTARTBLOCK) 692 return true; 693 /* we convert unwritten extents before copying the data for DAX */ 694 if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN) 695 return true; 696 return false; 697 } 698 699 static inline bool 700 imap_needs_cow( 701 struct xfs_inode *ip, 702 unsigned int flags, 703 struct xfs_bmbt_irec *imap, 704 int nimaps) 705 { 706 if (!xfs_is_cow_inode(ip)) 707 return false; 708 709 /* when zeroing we don't have to COW holes or unwritten extents */ 710 if (flags & IOMAP_ZERO) { 711 if (!nimaps || 712 imap->br_startblock == HOLESTARTBLOCK || 713 imap->br_state == XFS_EXT_UNWRITTEN) 714 return false; 715 } 716 717 return true; 718 } 719 720 /* 721 * Extents not yet cached requires exclusive access, don't block for 722 * IOMAP_NOWAIT. 723 * 724 * This is basically an opencoded xfs_ilock_data_map_shared() call, but with 725 * support for IOMAP_NOWAIT. 726 */ 727 static int 728 xfs_ilock_for_iomap( 729 struct xfs_inode *ip, 730 unsigned flags, 731 unsigned *lockmode) 732 { 733 if (flags & IOMAP_NOWAIT) { 734 if (xfs_need_iread_extents(&ip->i_df)) 735 return -EAGAIN; 736 if (!xfs_ilock_nowait(ip, *lockmode)) 737 return -EAGAIN; 738 } else { 739 if (xfs_need_iread_extents(&ip->i_df)) 740 *lockmode = XFS_ILOCK_EXCL; 741 xfs_ilock(ip, *lockmode); 742 } 743 744 return 0; 745 } 746 747 /* 748 * Check that the imap we are going to return to the caller spans the entire 749 * range that the caller requested for the IO. 750 */ 751 static bool 752 imap_spans_range( 753 struct xfs_bmbt_irec *imap, 754 xfs_fileoff_t offset_fsb, 755 xfs_fileoff_t end_fsb) 756 { 757 if (imap->br_startoff > offset_fsb) 758 return false; 759 if (imap->br_startoff + imap->br_blockcount < end_fsb) 760 return false; 761 return true; 762 } 763 764 static int 765 xfs_direct_write_iomap_begin( 766 struct inode *inode, 767 loff_t offset, 768 loff_t length, 769 unsigned flags, 770 struct iomap *iomap, 771 struct iomap *srcmap) 772 { 773 struct xfs_inode *ip = XFS_I(inode); 774 struct xfs_mount *mp = ip->i_mount; 775 struct xfs_bmbt_irec imap, cmap; 776 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 777 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length); 778 int nimaps = 1, error = 0; 779 bool shared = false; 780 u16 iomap_flags = 0; 781 unsigned int lockmode; 782 u64 seq; 783 784 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO)); 785 786 if (xfs_is_shutdown(mp)) 787 return -EIO; 788 789 /* 790 * Writes that span EOF might trigger an IO size update on completion, 791 * so consider them to be dirty for the purposes of O_DSYNC even if 792 * there is no other metadata changes pending or have been made here. 793 */ 794 if (offset + length > i_size_read(inode)) 795 iomap_flags |= IOMAP_F_DIRTY; 796 797 /* 798 * COW writes may allocate delalloc space or convert unwritten COW 799 * extents, so we need to make sure to take the lock exclusively here. 800 */ 801 if (xfs_is_cow_inode(ip)) 802 lockmode = XFS_ILOCK_EXCL; 803 else 804 lockmode = XFS_ILOCK_SHARED; 805 806 relock: 807 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 808 if (error) 809 return error; 810 811 /* 812 * The reflink iflag could have changed since the earlier unlocked 813 * check, check if it again and relock if needed. 814 */ 815 if (xfs_is_cow_inode(ip) && lockmode == XFS_ILOCK_SHARED) { 816 xfs_iunlock(ip, lockmode); 817 lockmode = XFS_ILOCK_EXCL; 818 goto relock; 819 } 820 821 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 822 &nimaps, 0); 823 if (error) 824 goto out_unlock; 825 826 if (imap_needs_cow(ip, flags, &imap, nimaps)) { 827 error = -EAGAIN; 828 if (flags & IOMAP_NOWAIT) 829 goto out_unlock; 830 831 /* may drop and re-acquire the ilock */ 832 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared, 833 &lockmode, 834 (flags & IOMAP_DIRECT) || IS_DAX(inode)); 835 if (error) 836 goto out_unlock; 837 if (shared) 838 goto out_found_cow; 839 end_fsb = imap.br_startoff + imap.br_blockcount; 840 length = XFS_FSB_TO_B(mp, end_fsb) - offset; 841 } 842 843 if (imap_needs_alloc(inode, flags, &imap, nimaps)) 844 goto allocate_blocks; 845 846 /* 847 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with 848 * a single map so that we avoid partial IO failures due to the rest of 849 * the I/O range not covered by this map triggering an EAGAIN condition 850 * when it is subsequently mapped and aborting the I/O. 851 */ 852 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) { 853 error = -EAGAIN; 854 if (!imap_spans_range(&imap, offset_fsb, end_fsb)) 855 goto out_unlock; 856 } 857 858 /* 859 * For overwrite only I/O, we cannot convert unwritten extents without 860 * requiring sub-block zeroing. This can only be done under an 861 * exclusive IOLOCK, hence return -EAGAIN if this is not a written 862 * extent to tell the caller to try again. 863 */ 864 if (flags & IOMAP_OVERWRITE_ONLY) { 865 error = -EAGAIN; 866 if (imap.br_state != XFS_EXT_NORM && 867 ((offset | length) & mp->m_blockmask)) 868 goto out_unlock; 869 } 870 871 seq = xfs_iomap_inode_sequence(ip, iomap_flags); 872 xfs_iunlock(ip, lockmode); 873 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); 874 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq); 875 876 allocate_blocks: 877 error = -EAGAIN; 878 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) 879 goto out_unlock; 880 881 /* 882 * We cap the maximum length we map to a sane size to keep the chunks 883 * of work done where somewhat symmetric with the work writeback does. 884 * This is a completely arbitrary number pulled out of thin air as a 885 * best guess for initial testing. 886 * 887 * Note that the values needs to be less than 32-bits wide until the 888 * lower level functions are updated. 889 */ 890 length = min_t(loff_t, length, 1024 * PAGE_SIZE); 891 end_fsb = xfs_iomap_end_fsb(mp, offset, length); 892 893 if (offset + length > XFS_ISIZE(ip)) 894 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb); 895 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK) 896 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount); 897 xfs_iunlock(ip, lockmode); 898 899 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb, 900 flags, &imap, &seq); 901 if (error) 902 return error; 903 904 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap); 905 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 906 iomap_flags | IOMAP_F_NEW, seq); 907 908 out_found_cow: 909 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount); 910 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap); 911 if (imap.br_startblock != HOLESTARTBLOCK) { 912 seq = xfs_iomap_inode_sequence(ip, 0); 913 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq); 914 if (error) 915 goto out_unlock; 916 } 917 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); 918 xfs_iunlock(ip, lockmode); 919 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq); 920 921 out_unlock: 922 if (lockmode) 923 xfs_iunlock(ip, lockmode); 924 return error; 925 } 926 927 const struct iomap_ops xfs_direct_write_iomap_ops = { 928 .iomap_begin = xfs_direct_write_iomap_begin, 929 }; 930 931 static int 932 xfs_dax_write_iomap_end( 933 struct inode *inode, 934 loff_t pos, 935 loff_t length, 936 ssize_t written, 937 unsigned flags, 938 struct iomap *iomap) 939 { 940 struct xfs_inode *ip = XFS_I(inode); 941 942 if (!xfs_is_cow_inode(ip)) 943 return 0; 944 945 if (!written) { 946 xfs_reflink_cancel_cow_range(ip, pos, length, true); 947 return 0; 948 } 949 950 return xfs_reflink_end_cow(ip, pos, written); 951 } 952 953 const struct iomap_ops xfs_dax_write_iomap_ops = { 954 .iomap_begin = xfs_direct_write_iomap_begin, 955 .iomap_end = xfs_dax_write_iomap_end, 956 }; 957 958 static int 959 xfs_buffered_write_iomap_begin( 960 struct inode *inode, 961 loff_t offset, 962 loff_t count, 963 unsigned flags, 964 struct iomap *iomap, 965 struct iomap *srcmap) 966 { 967 struct xfs_inode *ip = XFS_I(inode); 968 struct xfs_mount *mp = ip->i_mount; 969 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 970 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count); 971 struct xfs_bmbt_irec imap, cmap; 972 struct xfs_iext_cursor icur, ccur; 973 xfs_fsblock_t prealloc_blocks = 0; 974 bool eof = false, cow_eof = false, shared = false; 975 int allocfork = XFS_DATA_FORK; 976 int error = 0; 977 unsigned int lockmode = XFS_ILOCK_EXCL; 978 u64 seq; 979 980 if (xfs_is_shutdown(mp)) 981 return -EIO; 982 983 /* we can't use delayed allocations when using extent size hints */ 984 if (xfs_get_extsz_hint(ip)) 985 return xfs_direct_write_iomap_begin(inode, offset, count, 986 flags, iomap, srcmap); 987 988 error = xfs_qm_dqattach(ip); 989 if (error) 990 return error; 991 992 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 993 if (error) 994 return error; 995 996 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) || 997 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) { 998 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 999 error = -EFSCORRUPTED; 1000 goto out_unlock; 1001 } 1002 1003 XFS_STATS_INC(mp, xs_blk_mapw); 1004 1005 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 1006 if (error) 1007 goto out_unlock; 1008 1009 /* 1010 * Search the data fork first to look up our source mapping. We 1011 * always need the data fork map, as we have to return it to the 1012 * iomap code so that the higher level write code can read data in to 1013 * perform read-modify-write cycles for unaligned writes. 1014 */ 1015 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap); 1016 if (eof) 1017 imap.br_startoff = end_fsb; /* fake hole until the end */ 1018 1019 /* We never need to allocate blocks for zeroing or unsharing a hole. */ 1020 if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) && 1021 imap.br_startoff > offset_fsb) { 1022 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff); 1023 goto out_unlock; 1024 } 1025 1026 /* 1027 * For zeroing, trim a delalloc extent that extends beyond the EOF 1028 * block. If it starts beyond the EOF block, convert it to an 1029 * unwritten extent. 1030 */ 1031 if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb && 1032 isnullstartblock(imap.br_startblock)) { 1033 xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip)); 1034 1035 if (offset_fsb >= eof_fsb) 1036 goto convert_delay; 1037 if (end_fsb > eof_fsb) { 1038 end_fsb = eof_fsb; 1039 xfs_trim_extent(&imap, offset_fsb, 1040 end_fsb - offset_fsb); 1041 } 1042 } 1043 1044 /* 1045 * Search the COW fork extent list even if we did not find a data fork 1046 * extent. This serves two purposes: first this implements the 1047 * speculative preallocation using cowextsize, so that we also unshare 1048 * block adjacent to shared blocks instead of just the shared blocks 1049 * themselves. Second the lookup in the extent list is generally faster 1050 * than going out to the shared extent tree. 1051 */ 1052 if (xfs_is_cow_inode(ip)) { 1053 if (!ip->i_cowfp) { 1054 ASSERT(!xfs_is_reflink_inode(ip)); 1055 xfs_ifork_init_cow(ip); 1056 } 1057 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, 1058 &ccur, &cmap); 1059 if (!cow_eof && cmap.br_startoff <= offset_fsb) { 1060 trace_xfs_reflink_cow_found(ip, &cmap); 1061 goto found_cow; 1062 } 1063 } 1064 1065 if (imap.br_startoff <= offset_fsb) { 1066 /* 1067 * For reflink files we may need a delalloc reservation when 1068 * overwriting shared extents. This includes zeroing of 1069 * existing extents that contain data. 1070 */ 1071 if (!xfs_is_cow_inode(ip) || 1072 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) { 1073 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 1074 &imap); 1075 goto found_imap; 1076 } 1077 1078 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); 1079 1080 /* Trim the mapping to the nearest shared extent boundary. */ 1081 error = xfs_bmap_trim_cow(ip, &imap, &shared); 1082 if (error) 1083 goto out_unlock; 1084 1085 /* Not shared? Just report the (potentially capped) extent. */ 1086 if (!shared) { 1087 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 1088 &imap); 1089 goto found_imap; 1090 } 1091 1092 /* 1093 * Fork all the shared blocks from our write offset until the 1094 * end of the extent. 1095 */ 1096 allocfork = XFS_COW_FORK; 1097 end_fsb = imap.br_startoff + imap.br_blockcount; 1098 } else { 1099 /* 1100 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES 1101 * pages to keep the chunks of work done where somewhat 1102 * symmetric with the work writeback does. This is a completely 1103 * arbitrary number pulled out of thin air. 1104 * 1105 * Note that the values needs to be less than 32-bits wide until 1106 * the lower level functions are updated. 1107 */ 1108 count = min_t(loff_t, count, 1024 * PAGE_SIZE); 1109 end_fsb = xfs_iomap_end_fsb(mp, offset, count); 1110 1111 if (xfs_is_always_cow_inode(ip)) 1112 allocfork = XFS_COW_FORK; 1113 } 1114 1115 if (eof && offset + count > XFS_ISIZE(ip)) { 1116 /* 1117 * Determine the initial size of the preallocation. 1118 * We clean up any extra preallocation when the file is closed. 1119 */ 1120 if (xfs_has_allocsize(mp)) 1121 prealloc_blocks = mp->m_allocsize_blocks; 1122 else if (allocfork == XFS_DATA_FORK) 1123 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork, 1124 offset, count, &icur); 1125 else 1126 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork, 1127 offset, count, &ccur); 1128 if (prealloc_blocks) { 1129 xfs_extlen_t align; 1130 xfs_off_t end_offset; 1131 xfs_fileoff_t p_end_fsb; 1132 1133 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1); 1134 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) + 1135 prealloc_blocks; 1136 1137 align = xfs_eof_alignment(ip); 1138 if (align) 1139 p_end_fsb = roundup_64(p_end_fsb, align); 1140 1141 p_end_fsb = min(p_end_fsb, 1142 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); 1143 ASSERT(p_end_fsb > offset_fsb); 1144 prealloc_blocks = p_end_fsb - end_fsb; 1145 } 1146 } 1147 1148 if (allocfork == XFS_COW_FORK) { 1149 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb, 1150 end_fsb - offset_fsb, prealloc_blocks, &cmap, 1151 &ccur, cow_eof); 1152 if (error) 1153 goto out_unlock; 1154 1155 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap); 1156 goto found_cow; 1157 } 1158 1159 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb, 1160 end_fsb - offset_fsb, prealloc_blocks, &imap, &icur, 1161 eof); 1162 if (error) 1163 goto out_unlock; 1164 1165 /* 1166 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch 1167 * them out if the write happens to fail. 1168 */ 1169 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_NEW); 1170 xfs_iunlock(ip, lockmode); 1171 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap); 1172 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_NEW, seq); 1173 1174 found_imap: 1175 seq = xfs_iomap_inode_sequence(ip, 0); 1176 xfs_iunlock(ip, lockmode); 1177 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq); 1178 1179 convert_delay: 1180 xfs_iunlock(ip, lockmode); 1181 truncate_pagecache(inode, offset); 1182 error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset, 1183 iomap, NULL); 1184 if (error) 1185 return error; 1186 1187 trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap); 1188 return 0; 1189 1190 found_cow: 1191 seq = xfs_iomap_inode_sequence(ip, 0); 1192 if (imap.br_startoff <= offset_fsb) { 1193 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq); 1194 if (error) 1195 goto out_unlock; 1196 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); 1197 xfs_iunlock(ip, lockmode); 1198 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 1199 IOMAP_F_SHARED, seq); 1200 } 1201 1202 xfs_trim_extent(&cmap, offset_fsb, imap.br_startoff - offset_fsb); 1203 xfs_iunlock(ip, lockmode); 1204 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 0, seq); 1205 1206 out_unlock: 1207 xfs_iunlock(ip, lockmode); 1208 return error; 1209 } 1210 1211 static int 1212 xfs_buffered_write_delalloc_punch( 1213 struct inode *inode, 1214 loff_t offset, 1215 loff_t length) 1216 { 1217 xfs_bmap_punch_delalloc_range(XFS_I(inode), offset, offset + length); 1218 return 0; 1219 } 1220 1221 static int 1222 xfs_buffered_write_iomap_end( 1223 struct inode *inode, 1224 loff_t offset, 1225 loff_t length, 1226 ssize_t written, 1227 unsigned flags, 1228 struct iomap *iomap) 1229 { 1230 1231 struct xfs_mount *mp = XFS_M(inode->i_sb); 1232 int error; 1233 1234 error = iomap_file_buffered_write_punch_delalloc(inode, iomap, offset, 1235 length, written, &xfs_buffered_write_delalloc_punch); 1236 if (error && !xfs_is_shutdown(mp)) { 1237 xfs_alert(mp, "%s: unable to clean up ino 0x%llx", 1238 __func__, XFS_I(inode)->i_ino); 1239 return error; 1240 } 1241 return 0; 1242 } 1243 1244 const struct iomap_ops xfs_buffered_write_iomap_ops = { 1245 .iomap_begin = xfs_buffered_write_iomap_begin, 1246 .iomap_end = xfs_buffered_write_iomap_end, 1247 }; 1248 1249 /* 1250 * iomap_page_mkwrite() will never fail in a way that requires delalloc extents 1251 * that it allocated to be revoked. Hence we do not need an .iomap_end method 1252 * for this operation. 1253 */ 1254 const struct iomap_ops xfs_page_mkwrite_iomap_ops = { 1255 .iomap_begin = xfs_buffered_write_iomap_begin, 1256 }; 1257 1258 static int 1259 xfs_read_iomap_begin( 1260 struct inode *inode, 1261 loff_t offset, 1262 loff_t length, 1263 unsigned flags, 1264 struct iomap *iomap, 1265 struct iomap *srcmap) 1266 { 1267 struct xfs_inode *ip = XFS_I(inode); 1268 struct xfs_mount *mp = ip->i_mount; 1269 struct xfs_bmbt_irec imap; 1270 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1271 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length); 1272 int nimaps = 1, error = 0; 1273 bool shared = false; 1274 unsigned int lockmode = XFS_ILOCK_SHARED; 1275 u64 seq; 1276 1277 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO))); 1278 1279 if (xfs_is_shutdown(mp)) 1280 return -EIO; 1281 1282 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 1283 if (error) 1284 return error; 1285 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 1286 &nimaps, 0); 1287 if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode))) 1288 error = xfs_reflink_trim_around_shared(ip, &imap, &shared); 1289 seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0); 1290 xfs_iunlock(ip, lockmode); 1291 1292 if (error) 1293 return error; 1294 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); 1295 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 1296 shared ? IOMAP_F_SHARED : 0, seq); 1297 } 1298 1299 const struct iomap_ops xfs_read_iomap_ops = { 1300 .iomap_begin = xfs_read_iomap_begin, 1301 }; 1302 1303 static int 1304 xfs_seek_iomap_begin( 1305 struct inode *inode, 1306 loff_t offset, 1307 loff_t length, 1308 unsigned flags, 1309 struct iomap *iomap, 1310 struct iomap *srcmap) 1311 { 1312 struct xfs_inode *ip = XFS_I(inode); 1313 struct xfs_mount *mp = ip->i_mount; 1314 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1315 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1316 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF; 1317 struct xfs_iext_cursor icur; 1318 struct xfs_bmbt_irec imap, cmap; 1319 int error = 0; 1320 unsigned lockmode; 1321 u64 seq; 1322 1323 if (xfs_is_shutdown(mp)) 1324 return -EIO; 1325 1326 lockmode = xfs_ilock_data_map_shared(ip); 1327 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 1328 if (error) 1329 goto out_unlock; 1330 1331 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) { 1332 /* 1333 * If we found a data extent we are done. 1334 */ 1335 if (imap.br_startoff <= offset_fsb) 1336 goto done; 1337 data_fsb = imap.br_startoff; 1338 } else { 1339 /* 1340 * Fake a hole until the end of the file. 1341 */ 1342 data_fsb = xfs_iomap_end_fsb(mp, offset, length); 1343 } 1344 1345 /* 1346 * If a COW fork extent covers the hole, report it - capped to the next 1347 * data fork extent: 1348 */ 1349 if (xfs_inode_has_cow_data(ip) && 1350 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap)) 1351 cow_fsb = cmap.br_startoff; 1352 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 1353 if (data_fsb < cow_fsb + cmap.br_blockcount) 1354 end_fsb = min(end_fsb, data_fsb); 1355 xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb); 1356 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); 1357 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 1358 IOMAP_F_SHARED, seq); 1359 /* 1360 * This is a COW extent, so we must probe the page cache 1361 * because there could be dirty page cache being backed 1362 * by this extent. 1363 */ 1364 iomap->type = IOMAP_UNWRITTEN; 1365 goto out_unlock; 1366 } 1367 1368 /* 1369 * Else report a hole, capped to the next found data or COW extent. 1370 */ 1371 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb) 1372 imap.br_blockcount = cow_fsb - offset_fsb; 1373 else 1374 imap.br_blockcount = data_fsb - offset_fsb; 1375 imap.br_startoff = offset_fsb; 1376 imap.br_startblock = HOLESTARTBLOCK; 1377 imap.br_state = XFS_EXT_NORM; 1378 done: 1379 seq = xfs_iomap_inode_sequence(ip, 0); 1380 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); 1381 error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq); 1382 out_unlock: 1383 xfs_iunlock(ip, lockmode); 1384 return error; 1385 } 1386 1387 const struct iomap_ops xfs_seek_iomap_ops = { 1388 .iomap_begin = xfs_seek_iomap_begin, 1389 }; 1390 1391 static int 1392 xfs_xattr_iomap_begin( 1393 struct inode *inode, 1394 loff_t offset, 1395 loff_t length, 1396 unsigned flags, 1397 struct iomap *iomap, 1398 struct iomap *srcmap) 1399 { 1400 struct xfs_inode *ip = XFS_I(inode); 1401 struct xfs_mount *mp = ip->i_mount; 1402 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1403 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1404 struct xfs_bmbt_irec imap; 1405 int nimaps = 1, error = 0; 1406 unsigned lockmode; 1407 int seq; 1408 1409 if (xfs_is_shutdown(mp)) 1410 return -EIO; 1411 1412 lockmode = xfs_ilock_attr_map_shared(ip); 1413 1414 /* if there are no attribute fork or extents, return ENOENT */ 1415 if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) { 1416 error = -ENOENT; 1417 goto out_unlock; 1418 } 1419 1420 ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL); 1421 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 1422 &nimaps, XFS_BMAPI_ATTRFORK); 1423 out_unlock: 1424 1425 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR); 1426 xfs_iunlock(ip, lockmode); 1427 1428 if (error) 1429 return error; 1430 ASSERT(nimaps); 1431 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq); 1432 } 1433 1434 const struct iomap_ops xfs_xattr_iomap_ops = { 1435 .iomap_begin = xfs_xattr_iomap_begin, 1436 }; 1437 1438 int 1439 xfs_zero_range( 1440 struct xfs_inode *ip, 1441 loff_t pos, 1442 loff_t len, 1443 bool *did_zero) 1444 { 1445 struct inode *inode = VFS_I(ip); 1446 1447 if (IS_DAX(inode)) 1448 return dax_zero_range(inode, pos, len, did_zero, 1449 &xfs_dax_write_iomap_ops); 1450 return iomap_zero_range(inode, pos, len, did_zero, 1451 &xfs_buffered_write_iomap_ops); 1452 } 1453 1454 int 1455 xfs_truncate_page( 1456 struct xfs_inode *ip, 1457 loff_t pos, 1458 bool *did_zero) 1459 { 1460 struct inode *inode = VFS_I(ip); 1461 1462 if (IS_DAX(inode)) 1463 return dax_truncate_page(inode, pos, did_zero, 1464 &xfs_dax_write_iomap_ops); 1465 return iomap_truncate_page(inode, pos, did_zero, 1466 &xfs_buffered_write_iomap_ops); 1467 } 1468