1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap_btree.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_errortag.h" 20 #include "xfs_error.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_space.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_iomap.h" 25 #include "xfs_trace.h" 26 #include "xfs_quota.h" 27 #include "xfs_rtgroup.h" 28 #include "xfs_dquot_item.h" 29 #include "xfs_dquot.h" 30 #include "xfs_reflink.h" 31 #include "xfs_health.h" 32 #include "xfs_rtbitmap.h" 33 34 #define XFS_ALLOC_ALIGN(mp, off) \ 35 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log) 36 37 static int 38 xfs_alert_fsblock_zero( 39 xfs_inode_t *ip, 40 xfs_bmbt_irec_t *imap) 41 { 42 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO, 43 "Access to block zero in inode %llu " 44 "start_block: %llx start_off: %llx " 45 "blkcnt: %llx extent-state: %x", 46 (unsigned long long)ip->i_ino, 47 (unsigned long long)imap->br_startblock, 48 (unsigned long long)imap->br_startoff, 49 (unsigned long long)imap->br_blockcount, 50 imap->br_state); 51 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 52 return -EFSCORRUPTED; 53 } 54 55 u64 56 xfs_iomap_inode_sequence( 57 struct xfs_inode *ip, 58 u16 iomap_flags) 59 { 60 u64 cookie = 0; 61 62 if (iomap_flags & IOMAP_F_XATTR) 63 return READ_ONCE(ip->i_af.if_seq); 64 if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp) 65 cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32; 66 return cookie | READ_ONCE(ip->i_df.if_seq); 67 } 68 69 /* 70 * Check that the iomap passed to us is still valid for the given offset and 71 * length. 72 */ 73 static bool 74 xfs_iomap_valid( 75 struct inode *inode, 76 const struct iomap *iomap) 77 { 78 struct xfs_inode *ip = XFS_I(inode); 79 80 if (iomap->validity_cookie != 81 xfs_iomap_inode_sequence(ip, iomap->flags)) { 82 trace_xfs_iomap_invalid(ip, iomap); 83 return false; 84 } 85 86 XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS); 87 return true; 88 } 89 90 static const struct iomap_folio_ops xfs_iomap_folio_ops = { 91 .iomap_valid = xfs_iomap_valid, 92 }; 93 94 int 95 xfs_bmbt_to_iomap( 96 struct xfs_inode *ip, 97 struct iomap *iomap, 98 struct xfs_bmbt_irec *imap, 99 unsigned int mapping_flags, 100 u16 iomap_flags, 101 u64 sequence_cookie) 102 { 103 struct xfs_mount *mp = ip->i_mount; 104 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 105 106 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) { 107 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 108 return xfs_alert_fsblock_zero(ip, imap); 109 } 110 111 if (imap->br_startblock == HOLESTARTBLOCK) { 112 iomap->addr = IOMAP_NULL_ADDR; 113 iomap->type = IOMAP_HOLE; 114 } else if (imap->br_startblock == DELAYSTARTBLOCK || 115 isnullstartblock(imap->br_startblock)) { 116 iomap->addr = IOMAP_NULL_ADDR; 117 iomap->type = IOMAP_DELALLOC; 118 } else { 119 xfs_daddr_t daddr = xfs_fsb_to_db(ip, imap->br_startblock); 120 121 iomap->addr = BBTOB(daddr); 122 if (mapping_flags & IOMAP_DAX) 123 iomap->addr += target->bt_dax_part_off; 124 125 if (imap->br_state == XFS_EXT_UNWRITTEN) 126 iomap->type = IOMAP_UNWRITTEN; 127 else 128 iomap->type = IOMAP_MAPPED; 129 130 /* 131 * Mark iomaps starting at the first sector of a RTG as merge 132 * boundary so that each I/O completions is contained to a 133 * single RTG. 134 */ 135 if (XFS_IS_REALTIME_INODE(ip) && xfs_has_rtgroups(mp) && 136 xfs_rtbno_is_group_start(mp, imap->br_startblock)) 137 iomap->flags |= IOMAP_F_BOUNDARY; 138 } 139 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff); 140 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount); 141 if (mapping_flags & IOMAP_DAX) 142 iomap->dax_dev = target->bt_daxdev; 143 else 144 iomap->bdev = target->bt_bdev; 145 iomap->flags = iomap_flags; 146 147 if (xfs_ipincount(ip) && 148 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 149 iomap->flags |= IOMAP_F_DIRTY; 150 151 iomap->validity_cookie = sequence_cookie; 152 iomap->folio_ops = &xfs_iomap_folio_ops; 153 return 0; 154 } 155 156 static void 157 xfs_hole_to_iomap( 158 struct xfs_inode *ip, 159 struct iomap *iomap, 160 xfs_fileoff_t offset_fsb, 161 xfs_fileoff_t end_fsb) 162 { 163 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 164 165 iomap->addr = IOMAP_NULL_ADDR; 166 iomap->type = IOMAP_HOLE; 167 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb); 168 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb); 169 iomap->bdev = target->bt_bdev; 170 iomap->dax_dev = target->bt_daxdev; 171 } 172 173 static inline xfs_fileoff_t 174 xfs_iomap_end_fsb( 175 struct xfs_mount *mp, 176 loff_t offset, 177 loff_t count) 178 { 179 ASSERT(offset <= mp->m_super->s_maxbytes); 180 return min(XFS_B_TO_FSB(mp, offset + count), 181 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); 182 } 183 184 static xfs_extlen_t 185 xfs_eof_alignment( 186 struct xfs_inode *ip) 187 { 188 struct xfs_mount *mp = ip->i_mount; 189 xfs_extlen_t align = 0; 190 191 if (!XFS_IS_REALTIME_INODE(ip)) { 192 /* 193 * Round up the allocation request to a stripe unit 194 * (m_dalign) boundary if the file size is >= stripe unit 195 * size, and we are allocating past the allocation eof. 196 * 197 * If mounted with the "-o swalloc" option the alignment is 198 * increased from the strip unit size to the stripe width. 199 */ 200 if (mp->m_swidth && xfs_has_swalloc(mp)) 201 align = mp->m_swidth; 202 else if (mp->m_dalign) 203 align = mp->m_dalign; 204 205 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align)) 206 align = 0; 207 } 208 209 return align; 210 } 211 212 /* 213 * Check if last_fsb is outside the last extent, and if so grow it to the next 214 * stripe unit boundary. 215 */ 216 xfs_fileoff_t 217 xfs_iomap_eof_align_last_fsb( 218 struct xfs_inode *ip, 219 xfs_fileoff_t end_fsb) 220 { 221 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 222 xfs_extlen_t extsz = xfs_get_extsz_hint(ip); 223 xfs_extlen_t align = xfs_eof_alignment(ip); 224 struct xfs_bmbt_irec irec; 225 struct xfs_iext_cursor icur; 226 227 ASSERT(!xfs_need_iread_extents(ifp)); 228 229 /* 230 * Always round up the allocation request to the extent hint boundary. 231 */ 232 if (extsz) { 233 if (align) 234 align = roundup_64(align, extsz); 235 else 236 align = extsz; 237 } 238 239 if (align) { 240 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align); 241 242 xfs_iext_last(ifp, &icur); 243 if (!xfs_iext_get_extent(ifp, &icur, &irec) || 244 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount) 245 return aligned_end_fsb; 246 } 247 248 return end_fsb; 249 } 250 251 int 252 xfs_iomap_write_direct( 253 struct xfs_inode *ip, 254 xfs_fileoff_t offset_fsb, 255 xfs_fileoff_t count_fsb, 256 unsigned int flags, 257 struct xfs_bmbt_irec *imap, 258 u64 *seq) 259 { 260 struct xfs_mount *mp = ip->i_mount; 261 struct xfs_trans *tp; 262 xfs_filblks_t resaligned; 263 int nimaps; 264 unsigned int dblocks, rblocks; 265 bool force = false; 266 int error; 267 int bmapi_flags = XFS_BMAPI_PREALLOC; 268 int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT; 269 270 ASSERT(count_fsb > 0); 271 272 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb, 273 xfs_get_extsz_hint(ip)); 274 if (unlikely(XFS_IS_REALTIME_INODE(ip))) { 275 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 276 rblocks = resaligned; 277 } else { 278 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 279 rblocks = 0; 280 } 281 282 error = xfs_qm_dqattach(ip); 283 if (error) 284 return error; 285 286 /* 287 * For DAX, we do not allocate unwritten extents, but instead we zero 288 * the block before we commit the transaction. Ideally we'd like to do 289 * this outside the transaction context, but if we commit and then crash 290 * we may not have zeroed the blocks and this will be exposed on 291 * recovery of the allocation. Hence we must zero before commit. 292 * 293 * Further, if we are mapping unwritten extents here, we need to zero 294 * and convert them to written so that we don't need an unwritten extent 295 * callback for DAX. This also means that we need to be able to dip into 296 * the reserve block pool for bmbt block allocation if there is no space 297 * left but we need to do unwritten extent conversion. 298 */ 299 if (flags & IOMAP_DAX) { 300 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO; 301 if (imap->br_state == XFS_EXT_UNWRITTEN) { 302 force = true; 303 nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT; 304 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 305 } 306 } 307 308 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks, 309 rblocks, force, &tp); 310 if (error) 311 return error; 312 313 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, nr_exts); 314 if (error) 315 goto out_trans_cancel; 316 317 /* 318 * From this point onwards we overwrite the imap pointer that the 319 * caller gave to us. 320 */ 321 nimaps = 1; 322 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0, 323 imap, &nimaps); 324 if (error) 325 goto out_trans_cancel; 326 327 /* 328 * Complete the transaction 329 */ 330 error = xfs_trans_commit(tp); 331 if (error) 332 goto out_unlock; 333 334 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) { 335 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 336 error = xfs_alert_fsblock_zero(ip, imap); 337 } 338 339 out_unlock: 340 *seq = xfs_iomap_inode_sequence(ip, 0); 341 xfs_iunlock(ip, XFS_ILOCK_EXCL); 342 return error; 343 344 out_trans_cancel: 345 xfs_trans_cancel(tp); 346 goto out_unlock; 347 } 348 349 STATIC bool 350 xfs_quota_need_throttle( 351 struct xfs_inode *ip, 352 xfs_dqtype_t type, 353 xfs_fsblock_t alloc_blocks) 354 { 355 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 356 struct xfs_dquot_res *res; 357 struct xfs_dquot_pre *pre; 358 359 if (!dq || !xfs_this_quota_on(ip->i_mount, type)) 360 return false; 361 362 if (XFS_IS_REALTIME_INODE(ip)) { 363 res = &dq->q_rtb; 364 pre = &dq->q_rtb_prealloc; 365 } else { 366 res = &dq->q_blk; 367 pre = &dq->q_blk_prealloc; 368 } 369 370 /* no hi watermark, no throttle */ 371 if (!pre->q_prealloc_hi_wmark) 372 return false; 373 374 /* under the lo watermark, no throttle */ 375 if (res->reserved + alloc_blocks < pre->q_prealloc_lo_wmark) 376 return false; 377 378 return true; 379 } 380 381 STATIC void 382 xfs_quota_calc_throttle( 383 struct xfs_inode *ip, 384 xfs_dqtype_t type, 385 xfs_fsblock_t *qblocks, 386 int *qshift, 387 int64_t *qfreesp) 388 { 389 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 390 struct xfs_dquot_res *res; 391 struct xfs_dquot_pre *pre; 392 int64_t freesp; 393 int shift = 0; 394 395 if (!dq) { 396 res = NULL; 397 pre = NULL; 398 } else if (XFS_IS_REALTIME_INODE(ip)) { 399 res = &dq->q_rtb; 400 pre = &dq->q_rtb_prealloc; 401 } else { 402 res = &dq->q_blk; 403 pre = &dq->q_blk_prealloc; 404 } 405 406 /* no dq, or over hi wmark, squash the prealloc completely */ 407 if (!res || res->reserved >= pre->q_prealloc_hi_wmark) { 408 *qblocks = 0; 409 *qfreesp = 0; 410 return; 411 } 412 413 freesp = pre->q_prealloc_hi_wmark - res->reserved; 414 if (freesp < pre->q_low_space[XFS_QLOWSP_5_PCNT]) { 415 shift = 2; 416 if (freesp < pre->q_low_space[XFS_QLOWSP_3_PCNT]) 417 shift += 2; 418 if (freesp < pre->q_low_space[XFS_QLOWSP_1_PCNT]) 419 shift += 2; 420 } 421 422 if (freesp < *qfreesp) 423 *qfreesp = freesp; 424 425 /* only overwrite the throttle values if we are more aggressive */ 426 if ((freesp >> shift) < (*qblocks >> *qshift)) { 427 *qblocks = freesp; 428 *qshift = shift; 429 } 430 } 431 432 static int64_t 433 xfs_iomap_freesp( 434 struct percpu_counter *counter, 435 uint64_t low_space[XFS_LOWSP_MAX], 436 int *shift) 437 { 438 int64_t freesp; 439 440 freesp = percpu_counter_read_positive(counter); 441 if (freesp < low_space[XFS_LOWSP_5_PCNT]) { 442 *shift = 2; 443 if (freesp < low_space[XFS_LOWSP_4_PCNT]) 444 (*shift)++; 445 if (freesp < low_space[XFS_LOWSP_3_PCNT]) 446 (*shift)++; 447 if (freesp < low_space[XFS_LOWSP_2_PCNT]) 448 (*shift)++; 449 if (freesp < low_space[XFS_LOWSP_1_PCNT]) 450 (*shift)++; 451 } 452 return freesp; 453 } 454 455 /* 456 * If we don't have a user specified preallocation size, dynamically increase 457 * the preallocation size as the size of the file grows. Cap the maximum size 458 * at a single extent or less if the filesystem is near full. The closer the 459 * filesystem is to being full, the smaller the maximum preallocation. 460 */ 461 STATIC xfs_fsblock_t 462 xfs_iomap_prealloc_size( 463 struct xfs_inode *ip, 464 int whichfork, 465 loff_t offset, 466 loff_t count, 467 struct xfs_iext_cursor *icur) 468 { 469 struct xfs_iext_cursor ncur = *icur; 470 struct xfs_bmbt_irec prev, got; 471 struct xfs_mount *mp = ip->i_mount; 472 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 473 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 474 int64_t freesp; 475 xfs_fsblock_t qblocks; 476 xfs_fsblock_t alloc_blocks = 0; 477 xfs_extlen_t plen; 478 int shift = 0; 479 int qshift = 0; 480 481 /* 482 * As an exception we don't do any preallocation at all if the file is 483 * smaller than the minimum preallocation and we are using the default 484 * dynamic preallocation scheme, as it is likely this is the only write 485 * to the file that is going to be done. 486 */ 487 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks)) 488 return 0; 489 490 /* 491 * Use the minimum preallocation size for small files or if we are 492 * writing right after a hole. 493 */ 494 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) || 495 !xfs_iext_prev_extent(ifp, &ncur, &prev) || 496 prev.br_startoff + prev.br_blockcount < offset_fsb) 497 return mp->m_allocsize_blocks; 498 499 /* 500 * Take the size of the preceding data extents as the basis for the 501 * preallocation size. Note that we don't care if the previous extents 502 * are written or not. 503 */ 504 plen = prev.br_blockcount; 505 while (xfs_iext_prev_extent(ifp, &ncur, &got)) { 506 if (plen > XFS_MAX_BMBT_EXTLEN / 2 || 507 isnullstartblock(got.br_startblock) || 508 got.br_startoff + got.br_blockcount != prev.br_startoff || 509 got.br_startblock + got.br_blockcount != prev.br_startblock) 510 break; 511 plen += got.br_blockcount; 512 prev = got; 513 } 514 515 /* 516 * If the size of the extents is greater than half the maximum extent 517 * length, then use the current offset as the basis. This ensures that 518 * for large files the preallocation size always extends to 519 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe 520 * unit/width alignment of real extents. 521 */ 522 alloc_blocks = plen * 2; 523 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN) 524 alloc_blocks = XFS_B_TO_FSB(mp, offset); 525 qblocks = alloc_blocks; 526 527 /* 528 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc 529 * down to the nearest power of two value after throttling. To prevent 530 * the round down from unconditionally reducing the maximum supported 531 * prealloc size, we round up first, apply appropriate throttling, round 532 * down and cap the value to XFS_BMBT_MAX_EXTLEN. 533 */ 534 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN), 535 alloc_blocks); 536 537 if (unlikely(XFS_IS_REALTIME_INODE(ip))) 538 freesp = xfs_rtbxlen_to_blen(mp, 539 xfs_iomap_freesp(&mp->m_frextents, 540 mp->m_low_rtexts, &shift)); 541 else 542 freesp = xfs_iomap_freesp(&mp->m_fdblocks, mp->m_low_space, 543 &shift); 544 545 /* 546 * Check each quota to cap the prealloc size, provide a shift value to 547 * throttle with and adjust amount of available space. 548 */ 549 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks)) 550 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift, 551 &freesp); 552 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks)) 553 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift, 554 &freesp); 555 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks)) 556 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift, 557 &freesp); 558 559 /* 560 * The final prealloc size is set to the minimum of free space available 561 * in each of the quotas and the overall filesystem. 562 * 563 * The shift throttle value is set to the maximum value as determined by 564 * the global low free space values and per-quota low free space values. 565 */ 566 alloc_blocks = min(alloc_blocks, qblocks); 567 shift = max(shift, qshift); 568 569 if (shift) 570 alloc_blocks >>= shift; 571 /* 572 * rounddown_pow_of_two() returns an undefined result if we pass in 573 * alloc_blocks = 0. 574 */ 575 if (alloc_blocks) 576 alloc_blocks = rounddown_pow_of_two(alloc_blocks); 577 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN) 578 alloc_blocks = XFS_MAX_BMBT_EXTLEN; 579 580 /* 581 * If we are still trying to allocate more space than is 582 * available, squash the prealloc hard. This can happen if we 583 * have a large file on a small filesystem and the above 584 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN. 585 */ 586 while (alloc_blocks && alloc_blocks >= freesp) 587 alloc_blocks >>= 4; 588 if (alloc_blocks < mp->m_allocsize_blocks) 589 alloc_blocks = mp->m_allocsize_blocks; 590 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift, 591 mp->m_allocsize_blocks); 592 return alloc_blocks; 593 } 594 595 int 596 xfs_iomap_write_unwritten( 597 xfs_inode_t *ip, 598 xfs_off_t offset, 599 xfs_off_t count, 600 bool update_isize) 601 { 602 xfs_mount_t *mp = ip->i_mount; 603 xfs_fileoff_t offset_fsb; 604 xfs_filblks_t count_fsb; 605 xfs_filblks_t numblks_fsb; 606 int nimaps; 607 xfs_trans_t *tp; 608 xfs_bmbt_irec_t imap; 609 struct inode *inode = VFS_I(ip); 610 xfs_fsize_t i_size; 611 uint resblks; 612 int error; 613 614 trace_xfs_unwritten_convert(ip, offset, count); 615 616 offset_fsb = XFS_B_TO_FSBT(mp, offset); 617 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 618 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb); 619 620 /* 621 * Reserve enough blocks in this transaction for two complete extent 622 * btree splits. We may be converting the middle part of an unwritten 623 * extent and in this case we will insert two new extents in the btree 624 * each of which could cause a full split. 625 * 626 * This reservation amount will be used in the first call to 627 * xfs_bmbt_split() to select an AG with enough space to satisfy the 628 * rest of the operation. 629 */ 630 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 631 632 /* Attach dquots so that bmbt splits are accounted correctly. */ 633 error = xfs_qm_dqattach(ip); 634 if (error) 635 return error; 636 637 do { 638 /* 639 * Set up a transaction to convert the range of extents 640 * from unwritten to real. Do allocations in a loop until 641 * we have covered the range passed in. 642 * 643 * Note that we can't risk to recursing back into the filesystem 644 * here as we might be asked to write out the same inode that we 645 * complete here and might deadlock on the iolock. 646 */ 647 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 648 0, true, &tp); 649 if (error) 650 return error; 651 652 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, 653 XFS_IEXT_WRITE_UNWRITTEN_CNT); 654 if (error) 655 goto error_on_bmapi_transaction; 656 657 /* 658 * Modify the unwritten extent state of the buffer. 659 */ 660 nimaps = 1; 661 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, 662 XFS_BMAPI_CONVERT, resblks, &imap, 663 &nimaps); 664 if (error) 665 goto error_on_bmapi_transaction; 666 667 /* 668 * Log the updated inode size as we go. We have to be careful 669 * to only log it up to the actual write offset if it is 670 * halfway into a block. 671 */ 672 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb); 673 if (i_size > offset + count) 674 i_size = offset + count; 675 if (update_isize && i_size > i_size_read(inode)) 676 i_size_write(inode, i_size); 677 i_size = xfs_new_eof(ip, i_size); 678 if (i_size) { 679 ip->i_disk_size = i_size; 680 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 681 } 682 683 error = xfs_trans_commit(tp); 684 xfs_iunlock(ip, XFS_ILOCK_EXCL); 685 if (error) 686 return error; 687 688 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) { 689 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 690 return xfs_alert_fsblock_zero(ip, &imap); 691 } 692 693 if ((numblks_fsb = imap.br_blockcount) == 0) { 694 /* 695 * The numblks_fsb value should always get 696 * smaller, otherwise the loop is stuck. 697 */ 698 ASSERT(imap.br_blockcount); 699 break; 700 } 701 offset_fsb += numblks_fsb; 702 count_fsb -= numblks_fsb; 703 } while (count_fsb > 0); 704 705 return 0; 706 707 error_on_bmapi_transaction: 708 xfs_trans_cancel(tp); 709 xfs_iunlock(ip, XFS_ILOCK_EXCL); 710 return error; 711 } 712 713 static inline bool 714 imap_needs_alloc( 715 struct inode *inode, 716 unsigned flags, 717 struct xfs_bmbt_irec *imap, 718 int nimaps) 719 { 720 /* don't allocate blocks when just zeroing */ 721 if (flags & IOMAP_ZERO) 722 return false; 723 if (!nimaps || 724 imap->br_startblock == HOLESTARTBLOCK || 725 imap->br_startblock == DELAYSTARTBLOCK) 726 return true; 727 /* we convert unwritten extents before copying the data for DAX */ 728 if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN) 729 return true; 730 return false; 731 } 732 733 static inline bool 734 imap_needs_cow( 735 struct xfs_inode *ip, 736 unsigned int flags, 737 struct xfs_bmbt_irec *imap, 738 int nimaps) 739 { 740 if (!xfs_is_cow_inode(ip)) 741 return false; 742 743 /* when zeroing we don't have to COW holes or unwritten extents */ 744 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) { 745 if (!nimaps || 746 imap->br_startblock == HOLESTARTBLOCK || 747 imap->br_state == XFS_EXT_UNWRITTEN) 748 return false; 749 } 750 751 return true; 752 } 753 754 /* 755 * Extents not yet cached requires exclusive access, don't block for 756 * IOMAP_NOWAIT. 757 * 758 * This is basically an opencoded xfs_ilock_data_map_shared() call, but with 759 * support for IOMAP_NOWAIT. 760 */ 761 static int 762 xfs_ilock_for_iomap( 763 struct xfs_inode *ip, 764 unsigned flags, 765 unsigned *lockmode) 766 { 767 if (flags & IOMAP_NOWAIT) { 768 if (xfs_need_iread_extents(&ip->i_df)) 769 return -EAGAIN; 770 if (!xfs_ilock_nowait(ip, *lockmode)) 771 return -EAGAIN; 772 } else { 773 if (xfs_need_iread_extents(&ip->i_df)) 774 *lockmode = XFS_ILOCK_EXCL; 775 xfs_ilock(ip, *lockmode); 776 } 777 778 return 0; 779 } 780 781 /* 782 * Check that the imap we are going to return to the caller spans the entire 783 * range that the caller requested for the IO. 784 */ 785 static bool 786 imap_spans_range( 787 struct xfs_bmbt_irec *imap, 788 xfs_fileoff_t offset_fsb, 789 xfs_fileoff_t end_fsb) 790 { 791 if (imap->br_startoff > offset_fsb) 792 return false; 793 if (imap->br_startoff + imap->br_blockcount < end_fsb) 794 return false; 795 return true; 796 } 797 798 static int 799 xfs_direct_write_iomap_begin( 800 struct inode *inode, 801 loff_t offset, 802 loff_t length, 803 unsigned flags, 804 struct iomap *iomap, 805 struct iomap *srcmap) 806 { 807 struct xfs_inode *ip = XFS_I(inode); 808 struct xfs_mount *mp = ip->i_mount; 809 struct xfs_bmbt_irec imap, cmap; 810 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 811 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length); 812 int nimaps = 1, error = 0; 813 bool shared = false; 814 u16 iomap_flags = 0; 815 unsigned int lockmode; 816 u64 seq; 817 818 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO)); 819 820 if (xfs_is_shutdown(mp)) 821 return -EIO; 822 823 /* 824 * Writes that span EOF might trigger an IO size update on completion, 825 * so consider them to be dirty for the purposes of O_DSYNC even if 826 * there is no other metadata changes pending or have been made here. 827 */ 828 if (offset + length > i_size_read(inode)) 829 iomap_flags |= IOMAP_F_DIRTY; 830 831 /* HW-offload atomics are always used in this path */ 832 if (flags & IOMAP_ATOMIC) 833 iomap_flags |= IOMAP_F_ATOMIC_BIO; 834 835 /* 836 * COW writes may allocate delalloc space or convert unwritten COW 837 * extents, so we need to make sure to take the lock exclusively here. 838 */ 839 if (xfs_is_cow_inode(ip)) 840 lockmode = XFS_ILOCK_EXCL; 841 else 842 lockmode = XFS_ILOCK_SHARED; 843 844 relock: 845 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 846 if (error) 847 return error; 848 849 /* 850 * The reflink iflag could have changed since the earlier unlocked 851 * check, check if it again and relock if needed. 852 */ 853 if (xfs_is_cow_inode(ip) && lockmode == XFS_ILOCK_SHARED) { 854 xfs_iunlock(ip, lockmode); 855 lockmode = XFS_ILOCK_EXCL; 856 goto relock; 857 } 858 859 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 860 &nimaps, 0); 861 if (error) 862 goto out_unlock; 863 864 if (imap_needs_cow(ip, flags, &imap, nimaps)) { 865 error = -EAGAIN; 866 if (flags & IOMAP_NOWAIT) 867 goto out_unlock; 868 869 /* may drop and re-acquire the ilock */ 870 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared, 871 &lockmode, 872 (flags & IOMAP_DIRECT) || IS_DAX(inode)); 873 if (error) 874 goto out_unlock; 875 if (shared) 876 goto out_found_cow; 877 end_fsb = imap.br_startoff + imap.br_blockcount; 878 length = XFS_FSB_TO_B(mp, end_fsb) - offset; 879 } 880 881 if (imap_needs_alloc(inode, flags, &imap, nimaps)) 882 goto allocate_blocks; 883 884 /* 885 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with 886 * a single map so that we avoid partial IO failures due to the rest of 887 * the I/O range not covered by this map triggering an EAGAIN condition 888 * when it is subsequently mapped and aborting the I/O. 889 */ 890 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) { 891 error = -EAGAIN; 892 if (!imap_spans_range(&imap, offset_fsb, end_fsb)) 893 goto out_unlock; 894 } 895 896 /* 897 * For overwrite only I/O, we cannot convert unwritten extents without 898 * requiring sub-block zeroing. This can only be done under an 899 * exclusive IOLOCK, hence return -EAGAIN if this is not a written 900 * extent to tell the caller to try again. 901 */ 902 if (flags & IOMAP_OVERWRITE_ONLY) { 903 error = -EAGAIN; 904 if (imap.br_state != XFS_EXT_NORM && 905 ((offset | length) & mp->m_blockmask)) 906 goto out_unlock; 907 } 908 909 seq = xfs_iomap_inode_sequence(ip, iomap_flags); 910 xfs_iunlock(ip, lockmode); 911 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); 912 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq); 913 914 allocate_blocks: 915 error = -EAGAIN; 916 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) 917 goto out_unlock; 918 919 /* 920 * We cap the maximum length we map to a sane size to keep the chunks 921 * of work done where somewhat symmetric with the work writeback does. 922 * This is a completely arbitrary number pulled out of thin air as a 923 * best guess for initial testing. 924 * 925 * Note that the values needs to be less than 32-bits wide until the 926 * lower level functions are updated. 927 */ 928 length = min_t(loff_t, length, 1024 * PAGE_SIZE); 929 end_fsb = xfs_iomap_end_fsb(mp, offset, length); 930 931 if (offset + length > XFS_ISIZE(ip)) 932 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb); 933 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK) 934 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount); 935 xfs_iunlock(ip, lockmode); 936 937 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb, 938 flags, &imap, &seq); 939 if (error) 940 return error; 941 942 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap); 943 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 944 iomap_flags | IOMAP_F_NEW, seq); 945 946 out_found_cow: 947 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount); 948 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap); 949 if (imap.br_startblock != HOLESTARTBLOCK) { 950 seq = xfs_iomap_inode_sequence(ip, 0); 951 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq); 952 if (error) 953 goto out_unlock; 954 } 955 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); 956 xfs_iunlock(ip, lockmode); 957 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq); 958 959 out_unlock: 960 if (lockmode) 961 xfs_iunlock(ip, lockmode); 962 return error; 963 } 964 965 const struct iomap_ops xfs_direct_write_iomap_ops = { 966 .iomap_begin = xfs_direct_write_iomap_begin, 967 }; 968 969 static int 970 xfs_dax_write_iomap_end( 971 struct inode *inode, 972 loff_t pos, 973 loff_t length, 974 ssize_t written, 975 unsigned flags, 976 struct iomap *iomap) 977 { 978 struct xfs_inode *ip = XFS_I(inode); 979 980 if (!xfs_is_cow_inode(ip)) 981 return 0; 982 983 if (!written) 984 return xfs_reflink_cancel_cow_range(ip, pos, length, true); 985 986 return xfs_reflink_end_cow(ip, pos, written); 987 } 988 989 const struct iomap_ops xfs_dax_write_iomap_ops = { 990 .iomap_begin = xfs_direct_write_iomap_begin, 991 .iomap_end = xfs_dax_write_iomap_end, 992 }; 993 994 static int 995 xfs_buffered_write_iomap_begin( 996 struct inode *inode, 997 loff_t offset, 998 loff_t count, 999 unsigned flags, 1000 struct iomap *iomap, 1001 struct iomap *srcmap) 1002 { 1003 struct xfs_inode *ip = XFS_I(inode); 1004 struct xfs_mount *mp = ip->i_mount; 1005 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1006 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count); 1007 struct xfs_bmbt_irec imap, cmap; 1008 struct xfs_iext_cursor icur, ccur; 1009 xfs_fsblock_t prealloc_blocks = 0; 1010 bool eof = false, cow_eof = false, shared = false; 1011 int allocfork = XFS_DATA_FORK; 1012 int error = 0; 1013 unsigned int lockmode = XFS_ILOCK_EXCL; 1014 unsigned int iomap_flags = 0; 1015 u64 seq; 1016 1017 if (xfs_is_shutdown(mp)) 1018 return -EIO; 1019 1020 /* we can't use delayed allocations when using extent size hints */ 1021 if (xfs_get_extsz_hint(ip)) 1022 return xfs_direct_write_iomap_begin(inode, offset, count, 1023 flags, iomap, srcmap); 1024 1025 error = xfs_qm_dqattach(ip); 1026 if (error) 1027 return error; 1028 1029 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 1030 if (error) 1031 return error; 1032 1033 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) || 1034 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) { 1035 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 1036 error = -EFSCORRUPTED; 1037 goto out_unlock; 1038 } 1039 1040 XFS_STATS_INC(mp, xs_blk_mapw); 1041 1042 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 1043 if (error) 1044 goto out_unlock; 1045 1046 /* 1047 * Search the data fork first to look up our source mapping. We 1048 * always need the data fork map, as we have to return it to the 1049 * iomap code so that the higher level write code can read data in to 1050 * perform read-modify-write cycles for unaligned writes. 1051 */ 1052 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap); 1053 if (eof) 1054 imap.br_startoff = end_fsb; /* fake hole until the end */ 1055 1056 /* We never need to allocate blocks for zeroing or unsharing a hole. */ 1057 if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) && 1058 imap.br_startoff > offset_fsb) { 1059 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff); 1060 goto out_unlock; 1061 } 1062 1063 /* 1064 * For zeroing, trim a delalloc extent that extends beyond the EOF 1065 * block. If it starts beyond the EOF block, convert it to an 1066 * unwritten extent. 1067 */ 1068 if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb && 1069 isnullstartblock(imap.br_startblock)) { 1070 xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip)); 1071 1072 if (offset_fsb >= eof_fsb) 1073 goto convert_delay; 1074 if (end_fsb > eof_fsb) { 1075 end_fsb = eof_fsb; 1076 xfs_trim_extent(&imap, offset_fsb, 1077 end_fsb - offset_fsb); 1078 } 1079 } 1080 1081 /* 1082 * Search the COW fork extent list even if we did not find a data fork 1083 * extent. This serves two purposes: first this implements the 1084 * speculative preallocation using cowextsize, so that we also unshare 1085 * block adjacent to shared blocks instead of just the shared blocks 1086 * themselves. Second the lookup in the extent list is generally faster 1087 * than going out to the shared extent tree. 1088 */ 1089 if (xfs_is_cow_inode(ip)) { 1090 if (!ip->i_cowfp) { 1091 ASSERT(!xfs_is_reflink_inode(ip)); 1092 xfs_ifork_init_cow(ip); 1093 } 1094 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, 1095 &ccur, &cmap); 1096 if (!cow_eof && cmap.br_startoff <= offset_fsb) { 1097 trace_xfs_reflink_cow_found(ip, &cmap); 1098 goto found_cow; 1099 } 1100 } 1101 1102 if (imap.br_startoff <= offset_fsb) { 1103 /* 1104 * For reflink files we may need a delalloc reservation when 1105 * overwriting shared extents. This includes zeroing of 1106 * existing extents that contain data. 1107 */ 1108 if (!xfs_is_cow_inode(ip) || 1109 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) { 1110 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 1111 &imap); 1112 goto found_imap; 1113 } 1114 1115 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); 1116 1117 /* Trim the mapping to the nearest shared extent boundary. */ 1118 error = xfs_bmap_trim_cow(ip, &imap, &shared); 1119 if (error) 1120 goto out_unlock; 1121 1122 /* Not shared? Just report the (potentially capped) extent. */ 1123 if (!shared) { 1124 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 1125 &imap); 1126 goto found_imap; 1127 } 1128 1129 /* 1130 * Fork all the shared blocks from our write offset until the 1131 * end of the extent. 1132 */ 1133 allocfork = XFS_COW_FORK; 1134 end_fsb = imap.br_startoff + imap.br_blockcount; 1135 } else { 1136 /* 1137 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES 1138 * pages to keep the chunks of work done where somewhat 1139 * symmetric with the work writeback does. This is a completely 1140 * arbitrary number pulled out of thin air. 1141 * 1142 * Note that the values needs to be less than 32-bits wide until 1143 * the lower level functions are updated. 1144 */ 1145 count = min_t(loff_t, count, 1024 * PAGE_SIZE); 1146 end_fsb = xfs_iomap_end_fsb(mp, offset, count); 1147 1148 if (xfs_is_always_cow_inode(ip)) 1149 allocfork = XFS_COW_FORK; 1150 } 1151 1152 if (eof && offset + count > XFS_ISIZE(ip)) { 1153 /* 1154 * Determine the initial size of the preallocation. 1155 * We clean up any extra preallocation when the file is closed. 1156 */ 1157 if (xfs_has_allocsize(mp)) 1158 prealloc_blocks = mp->m_allocsize_blocks; 1159 else if (allocfork == XFS_DATA_FORK) 1160 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork, 1161 offset, count, &icur); 1162 else 1163 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork, 1164 offset, count, &ccur); 1165 if (prealloc_blocks) { 1166 xfs_extlen_t align; 1167 xfs_off_t end_offset; 1168 xfs_fileoff_t p_end_fsb; 1169 1170 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1); 1171 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) + 1172 prealloc_blocks; 1173 1174 align = xfs_eof_alignment(ip); 1175 if (align) 1176 p_end_fsb = roundup_64(p_end_fsb, align); 1177 1178 p_end_fsb = min(p_end_fsb, 1179 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); 1180 ASSERT(p_end_fsb > offset_fsb); 1181 prealloc_blocks = p_end_fsb - end_fsb; 1182 } 1183 } 1184 1185 /* 1186 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch 1187 * them out if the write happens to fail. 1188 */ 1189 iomap_flags |= IOMAP_F_NEW; 1190 if (allocfork == XFS_COW_FORK) { 1191 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb, 1192 end_fsb - offset_fsb, prealloc_blocks, &cmap, 1193 &ccur, cow_eof); 1194 if (error) 1195 goto out_unlock; 1196 1197 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap); 1198 goto found_cow; 1199 } 1200 1201 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb, 1202 end_fsb - offset_fsb, prealloc_blocks, &imap, &icur, 1203 eof); 1204 if (error) 1205 goto out_unlock; 1206 1207 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap); 1208 found_imap: 1209 seq = xfs_iomap_inode_sequence(ip, iomap_flags); 1210 xfs_iunlock(ip, lockmode); 1211 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq); 1212 1213 convert_delay: 1214 xfs_iunlock(ip, lockmode); 1215 truncate_pagecache(inode, offset); 1216 error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset, 1217 iomap, NULL); 1218 if (error) 1219 return error; 1220 1221 trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap); 1222 return 0; 1223 1224 found_cow: 1225 if (imap.br_startoff <= offset_fsb) { 1226 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, 1227 xfs_iomap_inode_sequence(ip, 0)); 1228 if (error) 1229 goto out_unlock; 1230 } else { 1231 xfs_trim_extent(&cmap, offset_fsb, 1232 imap.br_startoff - offset_fsb); 1233 } 1234 1235 iomap_flags |= IOMAP_F_SHARED; 1236 seq = xfs_iomap_inode_sequence(ip, iomap_flags); 1237 xfs_iunlock(ip, lockmode); 1238 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, iomap_flags, seq); 1239 1240 out_unlock: 1241 xfs_iunlock(ip, lockmode); 1242 return error; 1243 } 1244 1245 static void 1246 xfs_buffered_write_delalloc_punch( 1247 struct inode *inode, 1248 loff_t offset, 1249 loff_t length, 1250 struct iomap *iomap) 1251 { 1252 xfs_bmap_punch_delalloc_range(XFS_I(inode), 1253 (iomap->flags & IOMAP_F_SHARED) ? 1254 XFS_COW_FORK : XFS_DATA_FORK, 1255 offset, offset + length); 1256 } 1257 1258 static int 1259 xfs_buffered_write_iomap_end( 1260 struct inode *inode, 1261 loff_t offset, 1262 loff_t length, 1263 ssize_t written, 1264 unsigned flags, 1265 struct iomap *iomap) 1266 { 1267 loff_t start_byte, end_byte; 1268 1269 /* If we didn't reserve the blocks, we're not allowed to punch them. */ 1270 if (iomap->type != IOMAP_DELALLOC || !(iomap->flags & IOMAP_F_NEW)) 1271 return 0; 1272 1273 /* 1274 * iomap_page_mkwrite() will never fail in a way that requires delalloc 1275 * extents that it allocated to be revoked. Hence never try to release 1276 * them here. 1277 */ 1278 if (flags & IOMAP_FAULT) 1279 return 0; 1280 1281 /* Nothing to do if we've written the entire delalloc extent */ 1282 start_byte = iomap_last_written_block(inode, offset, written); 1283 end_byte = round_up(offset + length, i_blocksize(inode)); 1284 if (start_byte >= end_byte) 1285 return 0; 1286 1287 /* For zeroing operations the callers already hold invalidate_lock. */ 1288 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) { 1289 rwsem_assert_held_write(&inode->i_mapping->invalidate_lock); 1290 iomap_write_delalloc_release(inode, start_byte, end_byte, flags, 1291 iomap, xfs_buffered_write_delalloc_punch); 1292 } else { 1293 filemap_invalidate_lock(inode->i_mapping); 1294 iomap_write_delalloc_release(inode, start_byte, end_byte, flags, 1295 iomap, xfs_buffered_write_delalloc_punch); 1296 filemap_invalidate_unlock(inode->i_mapping); 1297 } 1298 1299 return 0; 1300 } 1301 1302 const struct iomap_ops xfs_buffered_write_iomap_ops = { 1303 .iomap_begin = xfs_buffered_write_iomap_begin, 1304 .iomap_end = xfs_buffered_write_iomap_end, 1305 }; 1306 1307 static int 1308 xfs_read_iomap_begin( 1309 struct inode *inode, 1310 loff_t offset, 1311 loff_t length, 1312 unsigned flags, 1313 struct iomap *iomap, 1314 struct iomap *srcmap) 1315 { 1316 struct xfs_inode *ip = XFS_I(inode); 1317 struct xfs_mount *mp = ip->i_mount; 1318 struct xfs_bmbt_irec imap; 1319 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1320 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length); 1321 int nimaps = 1, error = 0; 1322 bool shared = false; 1323 unsigned int lockmode = XFS_ILOCK_SHARED; 1324 u64 seq; 1325 1326 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO))); 1327 1328 if (xfs_is_shutdown(mp)) 1329 return -EIO; 1330 1331 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 1332 if (error) 1333 return error; 1334 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 1335 &nimaps, 0); 1336 if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode))) 1337 error = xfs_reflink_trim_around_shared(ip, &imap, &shared); 1338 seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0); 1339 xfs_iunlock(ip, lockmode); 1340 1341 if (error) 1342 return error; 1343 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); 1344 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 1345 shared ? IOMAP_F_SHARED : 0, seq); 1346 } 1347 1348 const struct iomap_ops xfs_read_iomap_ops = { 1349 .iomap_begin = xfs_read_iomap_begin, 1350 }; 1351 1352 static int 1353 xfs_seek_iomap_begin( 1354 struct inode *inode, 1355 loff_t offset, 1356 loff_t length, 1357 unsigned flags, 1358 struct iomap *iomap, 1359 struct iomap *srcmap) 1360 { 1361 struct xfs_inode *ip = XFS_I(inode); 1362 struct xfs_mount *mp = ip->i_mount; 1363 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1364 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1365 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF; 1366 struct xfs_iext_cursor icur; 1367 struct xfs_bmbt_irec imap, cmap; 1368 int error = 0; 1369 unsigned lockmode; 1370 u64 seq; 1371 1372 if (xfs_is_shutdown(mp)) 1373 return -EIO; 1374 1375 lockmode = xfs_ilock_data_map_shared(ip); 1376 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 1377 if (error) 1378 goto out_unlock; 1379 1380 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) { 1381 /* 1382 * If we found a data extent we are done. 1383 */ 1384 if (imap.br_startoff <= offset_fsb) 1385 goto done; 1386 data_fsb = imap.br_startoff; 1387 } else { 1388 /* 1389 * Fake a hole until the end of the file. 1390 */ 1391 data_fsb = xfs_iomap_end_fsb(mp, offset, length); 1392 } 1393 1394 /* 1395 * If a COW fork extent covers the hole, report it - capped to the next 1396 * data fork extent: 1397 */ 1398 if (xfs_inode_has_cow_data(ip) && 1399 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap)) 1400 cow_fsb = cmap.br_startoff; 1401 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 1402 if (data_fsb < cow_fsb + cmap.br_blockcount) 1403 end_fsb = min(end_fsb, data_fsb); 1404 xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb); 1405 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); 1406 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 1407 IOMAP_F_SHARED, seq); 1408 /* 1409 * This is a COW extent, so we must probe the page cache 1410 * because there could be dirty page cache being backed 1411 * by this extent. 1412 */ 1413 iomap->type = IOMAP_UNWRITTEN; 1414 goto out_unlock; 1415 } 1416 1417 /* 1418 * Else report a hole, capped to the next found data or COW extent. 1419 */ 1420 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb) 1421 imap.br_blockcount = cow_fsb - offset_fsb; 1422 else 1423 imap.br_blockcount = data_fsb - offset_fsb; 1424 imap.br_startoff = offset_fsb; 1425 imap.br_startblock = HOLESTARTBLOCK; 1426 imap.br_state = XFS_EXT_NORM; 1427 done: 1428 seq = xfs_iomap_inode_sequence(ip, 0); 1429 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); 1430 error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq); 1431 out_unlock: 1432 xfs_iunlock(ip, lockmode); 1433 return error; 1434 } 1435 1436 const struct iomap_ops xfs_seek_iomap_ops = { 1437 .iomap_begin = xfs_seek_iomap_begin, 1438 }; 1439 1440 static int 1441 xfs_xattr_iomap_begin( 1442 struct inode *inode, 1443 loff_t offset, 1444 loff_t length, 1445 unsigned flags, 1446 struct iomap *iomap, 1447 struct iomap *srcmap) 1448 { 1449 struct xfs_inode *ip = XFS_I(inode); 1450 struct xfs_mount *mp = ip->i_mount; 1451 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1452 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1453 struct xfs_bmbt_irec imap; 1454 int nimaps = 1, error = 0; 1455 unsigned lockmode; 1456 int seq; 1457 1458 if (xfs_is_shutdown(mp)) 1459 return -EIO; 1460 1461 lockmode = xfs_ilock_attr_map_shared(ip); 1462 1463 /* if there are no attribute fork or extents, return ENOENT */ 1464 if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) { 1465 error = -ENOENT; 1466 goto out_unlock; 1467 } 1468 1469 ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL); 1470 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 1471 &nimaps, XFS_BMAPI_ATTRFORK); 1472 out_unlock: 1473 1474 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR); 1475 xfs_iunlock(ip, lockmode); 1476 1477 if (error) 1478 return error; 1479 ASSERT(nimaps); 1480 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq); 1481 } 1482 1483 const struct iomap_ops xfs_xattr_iomap_ops = { 1484 .iomap_begin = xfs_xattr_iomap_begin, 1485 }; 1486 1487 int 1488 xfs_zero_range( 1489 struct xfs_inode *ip, 1490 loff_t pos, 1491 loff_t len, 1492 bool *did_zero) 1493 { 1494 struct inode *inode = VFS_I(ip); 1495 1496 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL); 1497 1498 if (IS_DAX(inode)) 1499 return dax_zero_range(inode, pos, len, did_zero, 1500 &xfs_dax_write_iomap_ops); 1501 return iomap_zero_range(inode, pos, len, did_zero, 1502 &xfs_buffered_write_iomap_ops, NULL); 1503 } 1504 1505 int 1506 xfs_truncate_page( 1507 struct xfs_inode *ip, 1508 loff_t pos, 1509 bool *did_zero) 1510 { 1511 struct inode *inode = VFS_I(ip); 1512 1513 if (IS_DAX(inode)) 1514 return dax_truncate_page(inode, pos, did_zero, 1515 &xfs_dax_write_iomap_ops); 1516 return iomap_truncate_page(inode, pos, did_zero, 1517 &xfs_buffered_write_iomap_ops, NULL); 1518 } 1519