1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap_btree.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_errortag.h" 20 #include "xfs_error.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_space.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_iomap.h" 25 #include "xfs_trace.h" 26 #include "xfs_quota.h" 27 #include "xfs_rtgroup.h" 28 #include "xfs_dquot_item.h" 29 #include "xfs_dquot.h" 30 #include "xfs_reflink.h" 31 #include "xfs_health.h" 32 #include "xfs_rtbitmap.h" 33 34 #define XFS_ALLOC_ALIGN(mp, off) \ 35 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log) 36 37 static int 38 xfs_alert_fsblock_zero( 39 xfs_inode_t *ip, 40 xfs_bmbt_irec_t *imap) 41 { 42 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO, 43 "Access to block zero in inode %llu " 44 "start_block: %llx start_off: %llx " 45 "blkcnt: %llx extent-state: %x", 46 (unsigned long long)ip->i_ino, 47 (unsigned long long)imap->br_startblock, 48 (unsigned long long)imap->br_startoff, 49 (unsigned long long)imap->br_blockcount, 50 imap->br_state); 51 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 52 return -EFSCORRUPTED; 53 } 54 55 u64 56 xfs_iomap_inode_sequence( 57 struct xfs_inode *ip, 58 u16 iomap_flags) 59 { 60 u64 cookie = 0; 61 62 if (iomap_flags & IOMAP_F_XATTR) 63 return READ_ONCE(ip->i_af.if_seq); 64 if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp) 65 cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32; 66 return cookie | READ_ONCE(ip->i_df.if_seq); 67 } 68 69 /* 70 * Check that the iomap passed to us is still valid for the given offset and 71 * length. 72 */ 73 static bool 74 xfs_iomap_valid( 75 struct inode *inode, 76 const struct iomap *iomap) 77 { 78 struct xfs_inode *ip = XFS_I(inode); 79 80 if (iomap->validity_cookie != 81 xfs_iomap_inode_sequence(ip, iomap->flags)) { 82 trace_xfs_iomap_invalid(ip, iomap); 83 return false; 84 } 85 86 XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS); 87 return true; 88 } 89 90 static const struct iomap_folio_ops xfs_iomap_folio_ops = { 91 .iomap_valid = xfs_iomap_valid, 92 }; 93 94 int 95 xfs_bmbt_to_iomap( 96 struct xfs_inode *ip, 97 struct iomap *iomap, 98 struct xfs_bmbt_irec *imap, 99 unsigned int mapping_flags, 100 u16 iomap_flags, 101 u64 sequence_cookie) 102 { 103 struct xfs_mount *mp = ip->i_mount; 104 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 105 106 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) { 107 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 108 return xfs_alert_fsblock_zero(ip, imap); 109 } 110 111 if (imap->br_startblock == HOLESTARTBLOCK) { 112 iomap->addr = IOMAP_NULL_ADDR; 113 iomap->type = IOMAP_HOLE; 114 } else if (imap->br_startblock == DELAYSTARTBLOCK || 115 isnullstartblock(imap->br_startblock)) { 116 iomap->addr = IOMAP_NULL_ADDR; 117 iomap->type = IOMAP_DELALLOC; 118 } else { 119 xfs_daddr_t daddr = xfs_fsb_to_db(ip, imap->br_startblock); 120 121 iomap->addr = BBTOB(daddr); 122 if (mapping_flags & IOMAP_DAX) 123 iomap->addr += target->bt_dax_part_off; 124 125 if (imap->br_state == XFS_EXT_UNWRITTEN) 126 iomap->type = IOMAP_UNWRITTEN; 127 else 128 iomap->type = IOMAP_MAPPED; 129 130 /* 131 * Mark iomaps starting at the first sector of a RTG as merge 132 * boundary so that each I/O completions is contained to a 133 * single RTG. 134 */ 135 if (XFS_IS_REALTIME_INODE(ip) && xfs_has_rtgroups(mp) && 136 xfs_rtbno_is_group_start(mp, imap->br_startblock)) 137 iomap->flags |= IOMAP_F_BOUNDARY; 138 } 139 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff); 140 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount); 141 if (mapping_flags & IOMAP_DAX) 142 iomap->dax_dev = target->bt_daxdev; 143 else 144 iomap->bdev = target->bt_bdev; 145 iomap->flags = iomap_flags; 146 147 if (xfs_ipincount(ip) && 148 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 149 iomap->flags |= IOMAP_F_DIRTY; 150 151 iomap->validity_cookie = sequence_cookie; 152 iomap->folio_ops = &xfs_iomap_folio_ops; 153 return 0; 154 } 155 156 static void 157 xfs_hole_to_iomap( 158 struct xfs_inode *ip, 159 struct iomap *iomap, 160 xfs_fileoff_t offset_fsb, 161 xfs_fileoff_t end_fsb) 162 { 163 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 164 165 iomap->addr = IOMAP_NULL_ADDR; 166 iomap->type = IOMAP_HOLE; 167 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb); 168 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb); 169 iomap->bdev = target->bt_bdev; 170 iomap->dax_dev = target->bt_daxdev; 171 } 172 173 static inline xfs_fileoff_t 174 xfs_iomap_end_fsb( 175 struct xfs_mount *mp, 176 loff_t offset, 177 loff_t count) 178 { 179 ASSERT(offset <= mp->m_super->s_maxbytes); 180 return min(XFS_B_TO_FSB(mp, offset + count), 181 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); 182 } 183 184 static xfs_extlen_t 185 xfs_eof_alignment( 186 struct xfs_inode *ip) 187 { 188 struct xfs_mount *mp = ip->i_mount; 189 xfs_extlen_t align = 0; 190 191 if (!XFS_IS_REALTIME_INODE(ip)) { 192 /* 193 * Round up the allocation request to a stripe unit 194 * (m_dalign) boundary if the file size is >= stripe unit 195 * size, and we are allocating past the allocation eof. 196 * 197 * If mounted with the "-o swalloc" option the alignment is 198 * increased from the strip unit size to the stripe width. 199 */ 200 if (mp->m_swidth && xfs_has_swalloc(mp)) 201 align = mp->m_swidth; 202 else if (mp->m_dalign) 203 align = mp->m_dalign; 204 205 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align)) 206 align = 0; 207 } 208 209 return align; 210 } 211 212 /* 213 * Check if last_fsb is outside the last extent, and if so grow it to the next 214 * stripe unit boundary. 215 */ 216 xfs_fileoff_t 217 xfs_iomap_eof_align_last_fsb( 218 struct xfs_inode *ip, 219 xfs_fileoff_t end_fsb) 220 { 221 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 222 xfs_extlen_t extsz = xfs_get_extsz_hint(ip); 223 xfs_extlen_t align = xfs_eof_alignment(ip); 224 struct xfs_bmbt_irec irec; 225 struct xfs_iext_cursor icur; 226 227 ASSERT(!xfs_need_iread_extents(ifp)); 228 229 /* 230 * Always round up the allocation request to the extent hint boundary. 231 */ 232 if (extsz) { 233 if (align) 234 align = roundup_64(align, extsz); 235 else 236 align = extsz; 237 } 238 239 if (align) { 240 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align); 241 242 xfs_iext_last(ifp, &icur); 243 if (!xfs_iext_get_extent(ifp, &icur, &irec) || 244 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount) 245 return aligned_end_fsb; 246 } 247 248 return end_fsb; 249 } 250 251 int 252 xfs_iomap_write_direct( 253 struct xfs_inode *ip, 254 xfs_fileoff_t offset_fsb, 255 xfs_fileoff_t count_fsb, 256 unsigned int flags, 257 struct xfs_bmbt_irec *imap, 258 u64 *seq) 259 { 260 struct xfs_mount *mp = ip->i_mount; 261 struct xfs_trans *tp; 262 xfs_filblks_t resaligned; 263 int nimaps; 264 unsigned int dblocks, rblocks; 265 bool force = false; 266 int error; 267 int bmapi_flags = XFS_BMAPI_PREALLOC; 268 int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT; 269 270 ASSERT(count_fsb > 0); 271 272 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb, 273 xfs_get_extsz_hint(ip)); 274 if (unlikely(XFS_IS_REALTIME_INODE(ip))) { 275 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 276 rblocks = resaligned; 277 } else { 278 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 279 rblocks = 0; 280 } 281 282 error = xfs_qm_dqattach(ip); 283 if (error) 284 return error; 285 286 /* 287 * For DAX, we do not allocate unwritten extents, but instead we zero 288 * the block before we commit the transaction. Ideally we'd like to do 289 * this outside the transaction context, but if we commit and then crash 290 * we may not have zeroed the blocks and this will be exposed on 291 * recovery of the allocation. Hence we must zero before commit. 292 * 293 * Further, if we are mapping unwritten extents here, we need to zero 294 * and convert them to written so that we don't need an unwritten extent 295 * callback for DAX. This also means that we need to be able to dip into 296 * the reserve block pool for bmbt block allocation if there is no space 297 * left but we need to do unwritten extent conversion. 298 */ 299 if (flags & IOMAP_DAX) { 300 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO; 301 if (imap->br_state == XFS_EXT_UNWRITTEN) { 302 force = true; 303 nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT; 304 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 305 } 306 } 307 308 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks, 309 rblocks, force, &tp); 310 if (error) 311 return error; 312 313 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, nr_exts); 314 if (error) 315 goto out_trans_cancel; 316 317 /* 318 * From this point onwards we overwrite the imap pointer that the 319 * caller gave to us. 320 */ 321 nimaps = 1; 322 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0, 323 imap, &nimaps); 324 if (error) 325 goto out_trans_cancel; 326 327 /* 328 * Complete the transaction 329 */ 330 error = xfs_trans_commit(tp); 331 if (error) 332 goto out_unlock; 333 334 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) { 335 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 336 error = xfs_alert_fsblock_zero(ip, imap); 337 } 338 339 out_unlock: 340 *seq = xfs_iomap_inode_sequence(ip, 0); 341 xfs_iunlock(ip, XFS_ILOCK_EXCL); 342 return error; 343 344 out_trans_cancel: 345 xfs_trans_cancel(tp); 346 goto out_unlock; 347 } 348 349 STATIC bool 350 xfs_quota_need_throttle( 351 struct xfs_inode *ip, 352 xfs_dqtype_t type, 353 xfs_fsblock_t alloc_blocks) 354 { 355 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 356 struct xfs_dquot_res *res; 357 struct xfs_dquot_pre *pre; 358 359 if (!dq || !xfs_this_quota_on(ip->i_mount, type)) 360 return false; 361 362 if (XFS_IS_REALTIME_INODE(ip)) { 363 res = &dq->q_rtb; 364 pre = &dq->q_rtb_prealloc; 365 } else { 366 res = &dq->q_blk; 367 pre = &dq->q_blk_prealloc; 368 } 369 370 /* no hi watermark, no throttle */ 371 if (!pre->q_prealloc_hi_wmark) 372 return false; 373 374 /* under the lo watermark, no throttle */ 375 if (res->reserved + alloc_blocks < pre->q_prealloc_lo_wmark) 376 return false; 377 378 return true; 379 } 380 381 STATIC void 382 xfs_quota_calc_throttle( 383 struct xfs_inode *ip, 384 xfs_dqtype_t type, 385 xfs_fsblock_t *qblocks, 386 int *qshift, 387 int64_t *qfreesp) 388 { 389 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 390 struct xfs_dquot_res *res; 391 struct xfs_dquot_pre *pre; 392 int64_t freesp; 393 int shift = 0; 394 395 if (!dq) { 396 res = NULL; 397 pre = NULL; 398 } else if (XFS_IS_REALTIME_INODE(ip)) { 399 res = &dq->q_rtb; 400 pre = &dq->q_rtb_prealloc; 401 } else { 402 res = &dq->q_blk; 403 pre = &dq->q_blk_prealloc; 404 } 405 406 /* no dq, or over hi wmark, squash the prealloc completely */ 407 if (!res || res->reserved >= pre->q_prealloc_hi_wmark) { 408 *qblocks = 0; 409 *qfreesp = 0; 410 return; 411 } 412 413 freesp = pre->q_prealloc_hi_wmark - res->reserved; 414 if (freesp < pre->q_low_space[XFS_QLOWSP_5_PCNT]) { 415 shift = 2; 416 if (freesp < pre->q_low_space[XFS_QLOWSP_3_PCNT]) 417 shift += 2; 418 if (freesp < pre->q_low_space[XFS_QLOWSP_1_PCNT]) 419 shift += 2; 420 } 421 422 if (freesp < *qfreesp) 423 *qfreesp = freesp; 424 425 /* only overwrite the throttle values if we are more aggressive */ 426 if ((freesp >> shift) < (*qblocks >> *qshift)) { 427 *qblocks = freesp; 428 *qshift = shift; 429 } 430 } 431 432 static int64_t 433 xfs_iomap_freesp( 434 struct percpu_counter *counter, 435 uint64_t low_space[XFS_LOWSP_MAX], 436 int *shift) 437 { 438 int64_t freesp; 439 440 freesp = percpu_counter_read_positive(counter); 441 if (freesp < low_space[XFS_LOWSP_5_PCNT]) { 442 *shift = 2; 443 if (freesp < low_space[XFS_LOWSP_4_PCNT]) 444 (*shift)++; 445 if (freesp < low_space[XFS_LOWSP_3_PCNT]) 446 (*shift)++; 447 if (freesp < low_space[XFS_LOWSP_2_PCNT]) 448 (*shift)++; 449 if (freesp < low_space[XFS_LOWSP_1_PCNT]) 450 (*shift)++; 451 } 452 return freesp; 453 } 454 455 /* 456 * If we don't have a user specified preallocation size, dynamically increase 457 * the preallocation size as the size of the file grows. Cap the maximum size 458 * at a single extent or less if the filesystem is near full. The closer the 459 * filesystem is to being full, the smaller the maximum preallocation. 460 */ 461 STATIC xfs_fsblock_t 462 xfs_iomap_prealloc_size( 463 struct xfs_inode *ip, 464 int whichfork, 465 loff_t offset, 466 loff_t count, 467 struct xfs_iext_cursor *icur) 468 { 469 struct xfs_iext_cursor ncur = *icur; 470 struct xfs_bmbt_irec prev, got; 471 struct xfs_mount *mp = ip->i_mount; 472 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 473 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 474 int64_t freesp; 475 xfs_fsblock_t qblocks; 476 xfs_fsblock_t alloc_blocks = 0; 477 xfs_extlen_t plen; 478 int shift = 0; 479 int qshift = 0; 480 481 /* 482 * As an exception we don't do any preallocation at all if the file is 483 * smaller than the minimum preallocation and we are using the default 484 * dynamic preallocation scheme, as it is likely this is the only write 485 * to the file that is going to be done. 486 */ 487 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks)) 488 return 0; 489 490 /* 491 * Use the minimum preallocation size for small files or if we are 492 * writing right after a hole. 493 */ 494 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) || 495 !xfs_iext_prev_extent(ifp, &ncur, &prev) || 496 prev.br_startoff + prev.br_blockcount < offset_fsb) 497 return mp->m_allocsize_blocks; 498 499 /* 500 * Take the size of the preceding data extents as the basis for the 501 * preallocation size. Note that we don't care if the previous extents 502 * are written or not. 503 */ 504 plen = prev.br_blockcount; 505 while (xfs_iext_prev_extent(ifp, &ncur, &got)) { 506 if (plen > XFS_MAX_BMBT_EXTLEN / 2 || 507 isnullstartblock(got.br_startblock) || 508 got.br_startoff + got.br_blockcount != prev.br_startoff || 509 got.br_startblock + got.br_blockcount != prev.br_startblock) 510 break; 511 plen += got.br_blockcount; 512 prev = got; 513 } 514 515 /* 516 * If the size of the extents is greater than half the maximum extent 517 * length, then use the current offset as the basis. This ensures that 518 * for large files the preallocation size always extends to 519 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe 520 * unit/width alignment of real extents. 521 */ 522 alloc_blocks = plen * 2; 523 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN) 524 alloc_blocks = XFS_B_TO_FSB(mp, offset); 525 qblocks = alloc_blocks; 526 527 /* 528 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc 529 * down to the nearest power of two value after throttling. To prevent 530 * the round down from unconditionally reducing the maximum supported 531 * prealloc size, we round up first, apply appropriate throttling, round 532 * down and cap the value to XFS_BMBT_MAX_EXTLEN. 533 */ 534 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN), 535 alloc_blocks); 536 537 if (unlikely(XFS_IS_REALTIME_INODE(ip))) 538 freesp = xfs_rtbxlen_to_blen(mp, 539 xfs_iomap_freesp(&mp->m_frextents, 540 mp->m_low_rtexts, &shift)); 541 else 542 freesp = xfs_iomap_freesp(&mp->m_fdblocks, mp->m_low_space, 543 &shift); 544 545 /* 546 * Check each quota to cap the prealloc size, provide a shift value to 547 * throttle with and adjust amount of available space. 548 */ 549 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks)) 550 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift, 551 &freesp); 552 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks)) 553 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift, 554 &freesp); 555 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks)) 556 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift, 557 &freesp); 558 559 /* 560 * The final prealloc size is set to the minimum of free space available 561 * in each of the quotas and the overall filesystem. 562 * 563 * The shift throttle value is set to the maximum value as determined by 564 * the global low free space values and per-quota low free space values. 565 */ 566 alloc_blocks = min(alloc_blocks, qblocks); 567 shift = max(shift, qshift); 568 569 if (shift) 570 alloc_blocks >>= shift; 571 /* 572 * rounddown_pow_of_two() returns an undefined result if we pass in 573 * alloc_blocks = 0. 574 */ 575 if (alloc_blocks) 576 alloc_blocks = rounddown_pow_of_two(alloc_blocks); 577 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN) 578 alloc_blocks = XFS_MAX_BMBT_EXTLEN; 579 580 /* 581 * If we are still trying to allocate more space than is 582 * available, squash the prealloc hard. This can happen if we 583 * have a large file on a small filesystem and the above 584 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN. 585 */ 586 while (alloc_blocks && alloc_blocks >= freesp) 587 alloc_blocks >>= 4; 588 if (alloc_blocks < mp->m_allocsize_blocks) 589 alloc_blocks = mp->m_allocsize_blocks; 590 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift, 591 mp->m_allocsize_blocks); 592 return alloc_blocks; 593 } 594 595 int 596 xfs_iomap_write_unwritten( 597 xfs_inode_t *ip, 598 xfs_off_t offset, 599 xfs_off_t count, 600 bool update_isize) 601 { 602 xfs_mount_t *mp = ip->i_mount; 603 xfs_fileoff_t offset_fsb; 604 xfs_filblks_t count_fsb; 605 xfs_filblks_t numblks_fsb; 606 int nimaps; 607 xfs_trans_t *tp; 608 xfs_bmbt_irec_t imap; 609 struct inode *inode = VFS_I(ip); 610 xfs_fsize_t i_size; 611 uint resblks; 612 int error; 613 614 trace_xfs_unwritten_convert(ip, offset, count); 615 616 offset_fsb = XFS_B_TO_FSBT(mp, offset); 617 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 618 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb); 619 620 /* 621 * Reserve enough blocks in this transaction for two complete extent 622 * btree splits. We may be converting the middle part of an unwritten 623 * extent and in this case we will insert two new extents in the btree 624 * each of which could cause a full split. 625 * 626 * This reservation amount will be used in the first call to 627 * xfs_bmbt_split() to select an AG with enough space to satisfy the 628 * rest of the operation. 629 */ 630 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 631 632 /* Attach dquots so that bmbt splits are accounted correctly. */ 633 error = xfs_qm_dqattach(ip); 634 if (error) 635 return error; 636 637 do { 638 /* 639 * Set up a transaction to convert the range of extents 640 * from unwritten to real. Do allocations in a loop until 641 * we have covered the range passed in. 642 * 643 * Note that we can't risk to recursing back into the filesystem 644 * here as we might be asked to write out the same inode that we 645 * complete here and might deadlock on the iolock. 646 */ 647 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 648 0, true, &tp); 649 if (error) 650 return error; 651 652 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, 653 XFS_IEXT_WRITE_UNWRITTEN_CNT); 654 if (error) 655 goto error_on_bmapi_transaction; 656 657 /* 658 * Modify the unwritten extent state of the buffer. 659 */ 660 nimaps = 1; 661 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, 662 XFS_BMAPI_CONVERT, resblks, &imap, 663 &nimaps); 664 if (error) 665 goto error_on_bmapi_transaction; 666 667 /* 668 * Log the updated inode size as we go. We have to be careful 669 * to only log it up to the actual write offset if it is 670 * halfway into a block. 671 */ 672 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb); 673 if (i_size > offset + count) 674 i_size = offset + count; 675 if (update_isize && i_size > i_size_read(inode)) 676 i_size_write(inode, i_size); 677 i_size = xfs_new_eof(ip, i_size); 678 if (i_size) { 679 ip->i_disk_size = i_size; 680 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 681 } 682 683 error = xfs_trans_commit(tp); 684 xfs_iunlock(ip, XFS_ILOCK_EXCL); 685 if (error) 686 return error; 687 688 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) { 689 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 690 return xfs_alert_fsblock_zero(ip, &imap); 691 } 692 693 if ((numblks_fsb = imap.br_blockcount) == 0) { 694 /* 695 * The numblks_fsb value should always get 696 * smaller, otherwise the loop is stuck. 697 */ 698 ASSERT(imap.br_blockcount); 699 break; 700 } 701 offset_fsb += numblks_fsb; 702 count_fsb -= numblks_fsb; 703 } while (count_fsb > 0); 704 705 return 0; 706 707 error_on_bmapi_transaction: 708 xfs_trans_cancel(tp); 709 xfs_iunlock(ip, XFS_ILOCK_EXCL); 710 return error; 711 } 712 713 static inline bool 714 imap_needs_alloc( 715 struct inode *inode, 716 unsigned flags, 717 struct xfs_bmbt_irec *imap, 718 int nimaps) 719 { 720 /* don't allocate blocks when just zeroing */ 721 if (flags & IOMAP_ZERO) 722 return false; 723 if (!nimaps || 724 imap->br_startblock == HOLESTARTBLOCK || 725 imap->br_startblock == DELAYSTARTBLOCK) 726 return true; 727 /* we convert unwritten extents before copying the data for DAX */ 728 if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN) 729 return true; 730 return false; 731 } 732 733 static inline bool 734 imap_needs_cow( 735 struct xfs_inode *ip, 736 unsigned int flags, 737 struct xfs_bmbt_irec *imap, 738 int nimaps) 739 { 740 if (!xfs_is_cow_inode(ip)) 741 return false; 742 743 /* when zeroing we don't have to COW holes or unwritten extents */ 744 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) { 745 if (!nimaps || 746 imap->br_startblock == HOLESTARTBLOCK || 747 imap->br_state == XFS_EXT_UNWRITTEN) 748 return false; 749 } 750 751 return true; 752 } 753 754 /* 755 * Extents not yet cached requires exclusive access, don't block for 756 * IOMAP_NOWAIT. 757 * 758 * This is basically an opencoded xfs_ilock_data_map_shared() call, but with 759 * support for IOMAP_NOWAIT. 760 */ 761 static int 762 xfs_ilock_for_iomap( 763 struct xfs_inode *ip, 764 unsigned flags, 765 unsigned *lockmode) 766 { 767 if (flags & IOMAP_NOWAIT) { 768 if (xfs_need_iread_extents(&ip->i_df)) 769 return -EAGAIN; 770 if (!xfs_ilock_nowait(ip, *lockmode)) 771 return -EAGAIN; 772 } else { 773 if (xfs_need_iread_extents(&ip->i_df)) 774 *lockmode = XFS_ILOCK_EXCL; 775 xfs_ilock(ip, *lockmode); 776 } 777 778 return 0; 779 } 780 781 /* 782 * Check that the imap we are going to return to the caller spans the entire 783 * range that the caller requested for the IO. 784 */ 785 static bool 786 imap_spans_range( 787 struct xfs_bmbt_irec *imap, 788 xfs_fileoff_t offset_fsb, 789 xfs_fileoff_t end_fsb) 790 { 791 if (imap->br_startoff > offset_fsb) 792 return false; 793 if (imap->br_startoff + imap->br_blockcount < end_fsb) 794 return false; 795 return true; 796 } 797 798 static int 799 xfs_direct_write_iomap_begin( 800 struct inode *inode, 801 loff_t offset, 802 loff_t length, 803 unsigned flags, 804 struct iomap *iomap, 805 struct iomap *srcmap) 806 { 807 struct xfs_inode *ip = XFS_I(inode); 808 struct xfs_mount *mp = ip->i_mount; 809 struct xfs_bmbt_irec imap, cmap; 810 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 811 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length); 812 int nimaps = 1, error = 0; 813 bool shared = false; 814 u16 iomap_flags = 0; 815 unsigned int lockmode; 816 u64 seq; 817 818 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO)); 819 820 if (xfs_is_shutdown(mp)) 821 return -EIO; 822 823 /* 824 * Writes that span EOF might trigger an IO size update on completion, 825 * so consider them to be dirty for the purposes of O_DSYNC even if 826 * there is no other metadata changes pending or have been made here. 827 */ 828 if (offset + length > i_size_read(inode)) 829 iomap_flags |= IOMAP_F_DIRTY; 830 831 /* 832 * COW writes may allocate delalloc space or convert unwritten COW 833 * extents, so we need to make sure to take the lock exclusively here. 834 */ 835 if (xfs_is_cow_inode(ip)) 836 lockmode = XFS_ILOCK_EXCL; 837 else 838 lockmode = XFS_ILOCK_SHARED; 839 840 relock: 841 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 842 if (error) 843 return error; 844 845 /* 846 * The reflink iflag could have changed since the earlier unlocked 847 * check, check if it again and relock if needed. 848 */ 849 if (xfs_is_cow_inode(ip) && lockmode == XFS_ILOCK_SHARED) { 850 xfs_iunlock(ip, lockmode); 851 lockmode = XFS_ILOCK_EXCL; 852 goto relock; 853 } 854 855 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 856 &nimaps, 0); 857 if (error) 858 goto out_unlock; 859 860 if (imap_needs_cow(ip, flags, &imap, nimaps)) { 861 error = -EAGAIN; 862 if (flags & IOMAP_NOWAIT) 863 goto out_unlock; 864 865 /* may drop and re-acquire the ilock */ 866 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared, 867 &lockmode, 868 (flags & IOMAP_DIRECT) || IS_DAX(inode)); 869 if (error) 870 goto out_unlock; 871 if (shared) 872 goto out_found_cow; 873 end_fsb = imap.br_startoff + imap.br_blockcount; 874 length = XFS_FSB_TO_B(mp, end_fsb) - offset; 875 } 876 877 if (imap_needs_alloc(inode, flags, &imap, nimaps)) 878 goto allocate_blocks; 879 880 /* 881 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with 882 * a single map so that we avoid partial IO failures due to the rest of 883 * the I/O range not covered by this map triggering an EAGAIN condition 884 * when it is subsequently mapped and aborting the I/O. 885 */ 886 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) { 887 error = -EAGAIN; 888 if (!imap_spans_range(&imap, offset_fsb, end_fsb)) 889 goto out_unlock; 890 } 891 892 /* 893 * For overwrite only I/O, we cannot convert unwritten extents without 894 * requiring sub-block zeroing. This can only be done under an 895 * exclusive IOLOCK, hence return -EAGAIN if this is not a written 896 * extent to tell the caller to try again. 897 */ 898 if (flags & IOMAP_OVERWRITE_ONLY) { 899 error = -EAGAIN; 900 if (imap.br_state != XFS_EXT_NORM && 901 ((offset | length) & mp->m_blockmask)) 902 goto out_unlock; 903 } 904 905 seq = xfs_iomap_inode_sequence(ip, iomap_flags); 906 xfs_iunlock(ip, lockmode); 907 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); 908 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq); 909 910 allocate_blocks: 911 error = -EAGAIN; 912 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) 913 goto out_unlock; 914 915 /* 916 * We cap the maximum length we map to a sane size to keep the chunks 917 * of work done where somewhat symmetric with the work writeback does. 918 * This is a completely arbitrary number pulled out of thin air as a 919 * best guess for initial testing. 920 * 921 * Note that the values needs to be less than 32-bits wide until the 922 * lower level functions are updated. 923 */ 924 length = min_t(loff_t, length, 1024 * PAGE_SIZE); 925 end_fsb = xfs_iomap_end_fsb(mp, offset, length); 926 927 if (offset + length > XFS_ISIZE(ip)) 928 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb); 929 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK) 930 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount); 931 xfs_iunlock(ip, lockmode); 932 933 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb, 934 flags, &imap, &seq); 935 if (error) 936 return error; 937 938 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap); 939 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 940 iomap_flags | IOMAP_F_NEW, seq); 941 942 out_found_cow: 943 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount); 944 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap); 945 if (imap.br_startblock != HOLESTARTBLOCK) { 946 seq = xfs_iomap_inode_sequence(ip, 0); 947 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq); 948 if (error) 949 goto out_unlock; 950 } 951 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); 952 xfs_iunlock(ip, lockmode); 953 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq); 954 955 out_unlock: 956 if (lockmode) 957 xfs_iunlock(ip, lockmode); 958 return error; 959 } 960 961 const struct iomap_ops xfs_direct_write_iomap_ops = { 962 .iomap_begin = xfs_direct_write_iomap_begin, 963 }; 964 965 static int 966 xfs_dax_write_iomap_end( 967 struct inode *inode, 968 loff_t pos, 969 loff_t length, 970 ssize_t written, 971 unsigned flags, 972 struct iomap *iomap) 973 { 974 struct xfs_inode *ip = XFS_I(inode); 975 976 if (!xfs_is_cow_inode(ip)) 977 return 0; 978 979 if (!written) { 980 xfs_reflink_cancel_cow_range(ip, pos, length, true); 981 return 0; 982 } 983 984 return xfs_reflink_end_cow(ip, pos, written); 985 } 986 987 const struct iomap_ops xfs_dax_write_iomap_ops = { 988 .iomap_begin = xfs_direct_write_iomap_begin, 989 .iomap_end = xfs_dax_write_iomap_end, 990 }; 991 992 static int 993 xfs_buffered_write_iomap_begin( 994 struct inode *inode, 995 loff_t offset, 996 loff_t count, 997 unsigned flags, 998 struct iomap *iomap, 999 struct iomap *srcmap) 1000 { 1001 struct xfs_inode *ip = XFS_I(inode); 1002 struct xfs_mount *mp = ip->i_mount; 1003 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1004 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count); 1005 struct xfs_bmbt_irec imap, cmap; 1006 struct xfs_iext_cursor icur, ccur; 1007 xfs_fsblock_t prealloc_blocks = 0; 1008 bool eof = false, cow_eof = false, shared = false; 1009 int allocfork = XFS_DATA_FORK; 1010 int error = 0; 1011 unsigned int lockmode = XFS_ILOCK_EXCL; 1012 unsigned int iomap_flags = 0; 1013 u64 seq; 1014 1015 if (xfs_is_shutdown(mp)) 1016 return -EIO; 1017 1018 /* we can't use delayed allocations when using extent size hints */ 1019 if (xfs_get_extsz_hint(ip)) 1020 return xfs_direct_write_iomap_begin(inode, offset, count, 1021 flags, iomap, srcmap); 1022 1023 error = xfs_qm_dqattach(ip); 1024 if (error) 1025 return error; 1026 1027 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 1028 if (error) 1029 return error; 1030 1031 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) || 1032 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) { 1033 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 1034 error = -EFSCORRUPTED; 1035 goto out_unlock; 1036 } 1037 1038 XFS_STATS_INC(mp, xs_blk_mapw); 1039 1040 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 1041 if (error) 1042 goto out_unlock; 1043 1044 /* 1045 * Search the data fork first to look up our source mapping. We 1046 * always need the data fork map, as we have to return it to the 1047 * iomap code so that the higher level write code can read data in to 1048 * perform read-modify-write cycles for unaligned writes. 1049 */ 1050 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap); 1051 if (eof) 1052 imap.br_startoff = end_fsb; /* fake hole until the end */ 1053 1054 /* We never need to allocate blocks for zeroing or unsharing a hole. */ 1055 if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) && 1056 imap.br_startoff > offset_fsb) { 1057 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff); 1058 goto out_unlock; 1059 } 1060 1061 /* 1062 * For zeroing, trim a delalloc extent that extends beyond the EOF 1063 * block. If it starts beyond the EOF block, convert it to an 1064 * unwritten extent. 1065 */ 1066 if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb && 1067 isnullstartblock(imap.br_startblock)) { 1068 xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip)); 1069 1070 if (offset_fsb >= eof_fsb) 1071 goto convert_delay; 1072 if (end_fsb > eof_fsb) { 1073 end_fsb = eof_fsb; 1074 xfs_trim_extent(&imap, offset_fsb, 1075 end_fsb - offset_fsb); 1076 } 1077 } 1078 1079 /* 1080 * Search the COW fork extent list even if we did not find a data fork 1081 * extent. This serves two purposes: first this implements the 1082 * speculative preallocation using cowextsize, so that we also unshare 1083 * block adjacent to shared blocks instead of just the shared blocks 1084 * themselves. Second the lookup in the extent list is generally faster 1085 * than going out to the shared extent tree. 1086 */ 1087 if (xfs_is_cow_inode(ip)) { 1088 if (!ip->i_cowfp) { 1089 ASSERT(!xfs_is_reflink_inode(ip)); 1090 xfs_ifork_init_cow(ip); 1091 } 1092 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, 1093 &ccur, &cmap); 1094 if (!cow_eof && cmap.br_startoff <= offset_fsb) { 1095 trace_xfs_reflink_cow_found(ip, &cmap); 1096 goto found_cow; 1097 } 1098 } 1099 1100 if (imap.br_startoff <= offset_fsb) { 1101 /* 1102 * For reflink files we may need a delalloc reservation when 1103 * overwriting shared extents. This includes zeroing of 1104 * existing extents that contain data. 1105 */ 1106 if (!xfs_is_cow_inode(ip) || 1107 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) { 1108 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 1109 &imap); 1110 goto found_imap; 1111 } 1112 1113 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); 1114 1115 /* Trim the mapping to the nearest shared extent boundary. */ 1116 error = xfs_bmap_trim_cow(ip, &imap, &shared); 1117 if (error) 1118 goto out_unlock; 1119 1120 /* Not shared? Just report the (potentially capped) extent. */ 1121 if (!shared) { 1122 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 1123 &imap); 1124 goto found_imap; 1125 } 1126 1127 /* 1128 * Fork all the shared blocks from our write offset until the 1129 * end of the extent. 1130 */ 1131 allocfork = XFS_COW_FORK; 1132 end_fsb = imap.br_startoff + imap.br_blockcount; 1133 } else { 1134 /* 1135 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES 1136 * pages to keep the chunks of work done where somewhat 1137 * symmetric with the work writeback does. This is a completely 1138 * arbitrary number pulled out of thin air. 1139 * 1140 * Note that the values needs to be less than 32-bits wide until 1141 * the lower level functions are updated. 1142 */ 1143 count = min_t(loff_t, count, 1024 * PAGE_SIZE); 1144 end_fsb = xfs_iomap_end_fsb(mp, offset, count); 1145 1146 if (xfs_is_always_cow_inode(ip)) 1147 allocfork = XFS_COW_FORK; 1148 } 1149 1150 if (eof && offset + count > XFS_ISIZE(ip)) { 1151 /* 1152 * Determine the initial size of the preallocation. 1153 * We clean up any extra preallocation when the file is closed. 1154 */ 1155 if (xfs_has_allocsize(mp)) 1156 prealloc_blocks = mp->m_allocsize_blocks; 1157 else if (allocfork == XFS_DATA_FORK) 1158 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork, 1159 offset, count, &icur); 1160 else 1161 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork, 1162 offset, count, &ccur); 1163 if (prealloc_blocks) { 1164 xfs_extlen_t align; 1165 xfs_off_t end_offset; 1166 xfs_fileoff_t p_end_fsb; 1167 1168 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1); 1169 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) + 1170 prealloc_blocks; 1171 1172 align = xfs_eof_alignment(ip); 1173 if (align) 1174 p_end_fsb = roundup_64(p_end_fsb, align); 1175 1176 p_end_fsb = min(p_end_fsb, 1177 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); 1178 ASSERT(p_end_fsb > offset_fsb); 1179 prealloc_blocks = p_end_fsb - end_fsb; 1180 } 1181 } 1182 1183 /* 1184 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch 1185 * them out if the write happens to fail. 1186 */ 1187 iomap_flags |= IOMAP_F_NEW; 1188 if (allocfork == XFS_COW_FORK) { 1189 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb, 1190 end_fsb - offset_fsb, prealloc_blocks, &cmap, 1191 &ccur, cow_eof); 1192 if (error) 1193 goto out_unlock; 1194 1195 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap); 1196 goto found_cow; 1197 } 1198 1199 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb, 1200 end_fsb - offset_fsb, prealloc_blocks, &imap, &icur, 1201 eof); 1202 if (error) 1203 goto out_unlock; 1204 1205 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap); 1206 found_imap: 1207 seq = xfs_iomap_inode_sequence(ip, iomap_flags); 1208 xfs_iunlock(ip, lockmode); 1209 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq); 1210 1211 convert_delay: 1212 xfs_iunlock(ip, lockmode); 1213 truncate_pagecache(inode, offset); 1214 error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset, 1215 iomap, NULL); 1216 if (error) 1217 return error; 1218 1219 trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap); 1220 return 0; 1221 1222 found_cow: 1223 if (imap.br_startoff <= offset_fsb) { 1224 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, 1225 xfs_iomap_inode_sequence(ip, 0)); 1226 if (error) 1227 goto out_unlock; 1228 } else { 1229 xfs_trim_extent(&cmap, offset_fsb, 1230 imap.br_startoff - offset_fsb); 1231 } 1232 1233 iomap_flags |= IOMAP_F_SHARED; 1234 seq = xfs_iomap_inode_sequence(ip, iomap_flags); 1235 xfs_iunlock(ip, lockmode); 1236 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, iomap_flags, seq); 1237 1238 out_unlock: 1239 xfs_iunlock(ip, lockmode); 1240 return error; 1241 } 1242 1243 static void 1244 xfs_buffered_write_delalloc_punch( 1245 struct inode *inode, 1246 loff_t offset, 1247 loff_t length, 1248 struct iomap *iomap) 1249 { 1250 xfs_bmap_punch_delalloc_range(XFS_I(inode), 1251 (iomap->flags & IOMAP_F_SHARED) ? 1252 XFS_COW_FORK : XFS_DATA_FORK, 1253 offset, offset + length); 1254 } 1255 1256 static int 1257 xfs_buffered_write_iomap_end( 1258 struct inode *inode, 1259 loff_t offset, 1260 loff_t length, 1261 ssize_t written, 1262 unsigned flags, 1263 struct iomap *iomap) 1264 { 1265 loff_t start_byte, end_byte; 1266 1267 /* If we didn't reserve the blocks, we're not allowed to punch them. */ 1268 if (iomap->type != IOMAP_DELALLOC || !(iomap->flags & IOMAP_F_NEW)) 1269 return 0; 1270 1271 /* 1272 * iomap_page_mkwrite() will never fail in a way that requires delalloc 1273 * extents that it allocated to be revoked. Hence never try to release 1274 * them here. 1275 */ 1276 if (flags & IOMAP_FAULT) 1277 return 0; 1278 1279 /* Nothing to do if we've written the entire delalloc extent */ 1280 start_byte = iomap_last_written_block(inode, offset, written); 1281 end_byte = round_up(offset + length, i_blocksize(inode)); 1282 if (start_byte >= end_byte) 1283 return 0; 1284 1285 /* For zeroing operations the callers already hold invalidate_lock. */ 1286 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) { 1287 rwsem_assert_held_write(&inode->i_mapping->invalidate_lock); 1288 iomap_write_delalloc_release(inode, start_byte, end_byte, flags, 1289 iomap, xfs_buffered_write_delalloc_punch); 1290 } else { 1291 filemap_invalidate_lock(inode->i_mapping); 1292 iomap_write_delalloc_release(inode, start_byte, end_byte, flags, 1293 iomap, xfs_buffered_write_delalloc_punch); 1294 filemap_invalidate_unlock(inode->i_mapping); 1295 } 1296 1297 return 0; 1298 } 1299 1300 const struct iomap_ops xfs_buffered_write_iomap_ops = { 1301 .iomap_begin = xfs_buffered_write_iomap_begin, 1302 .iomap_end = xfs_buffered_write_iomap_end, 1303 }; 1304 1305 static int 1306 xfs_read_iomap_begin( 1307 struct inode *inode, 1308 loff_t offset, 1309 loff_t length, 1310 unsigned flags, 1311 struct iomap *iomap, 1312 struct iomap *srcmap) 1313 { 1314 struct xfs_inode *ip = XFS_I(inode); 1315 struct xfs_mount *mp = ip->i_mount; 1316 struct xfs_bmbt_irec imap; 1317 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1318 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length); 1319 int nimaps = 1, error = 0; 1320 bool shared = false; 1321 unsigned int lockmode = XFS_ILOCK_SHARED; 1322 u64 seq; 1323 1324 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO))); 1325 1326 if (xfs_is_shutdown(mp)) 1327 return -EIO; 1328 1329 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 1330 if (error) 1331 return error; 1332 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 1333 &nimaps, 0); 1334 if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode))) 1335 error = xfs_reflink_trim_around_shared(ip, &imap, &shared); 1336 seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0); 1337 xfs_iunlock(ip, lockmode); 1338 1339 if (error) 1340 return error; 1341 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); 1342 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 1343 shared ? IOMAP_F_SHARED : 0, seq); 1344 } 1345 1346 const struct iomap_ops xfs_read_iomap_ops = { 1347 .iomap_begin = xfs_read_iomap_begin, 1348 }; 1349 1350 static int 1351 xfs_seek_iomap_begin( 1352 struct inode *inode, 1353 loff_t offset, 1354 loff_t length, 1355 unsigned flags, 1356 struct iomap *iomap, 1357 struct iomap *srcmap) 1358 { 1359 struct xfs_inode *ip = XFS_I(inode); 1360 struct xfs_mount *mp = ip->i_mount; 1361 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1362 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1363 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF; 1364 struct xfs_iext_cursor icur; 1365 struct xfs_bmbt_irec imap, cmap; 1366 int error = 0; 1367 unsigned lockmode; 1368 u64 seq; 1369 1370 if (xfs_is_shutdown(mp)) 1371 return -EIO; 1372 1373 lockmode = xfs_ilock_data_map_shared(ip); 1374 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 1375 if (error) 1376 goto out_unlock; 1377 1378 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) { 1379 /* 1380 * If we found a data extent we are done. 1381 */ 1382 if (imap.br_startoff <= offset_fsb) 1383 goto done; 1384 data_fsb = imap.br_startoff; 1385 } else { 1386 /* 1387 * Fake a hole until the end of the file. 1388 */ 1389 data_fsb = xfs_iomap_end_fsb(mp, offset, length); 1390 } 1391 1392 /* 1393 * If a COW fork extent covers the hole, report it - capped to the next 1394 * data fork extent: 1395 */ 1396 if (xfs_inode_has_cow_data(ip) && 1397 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap)) 1398 cow_fsb = cmap.br_startoff; 1399 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 1400 if (data_fsb < cow_fsb + cmap.br_blockcount) 1401 end_fsb = min(end_fsb, data_fsb); 1402 xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb); 1403 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); 1404 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 1405 IOMAP_F_SHARED, seq); 1406 /* 1407 * This is a COW extent, so we must probe the page cache 1408 * because there could be dirty page cache being backed 1409 * by this extent. 1410 */ 1411 iomap->type = IOMAP_UNWRITTEN; 1412 goto out_unlock; 1413 } 1414 1415 /* 1416 * Else report a hole, capped to the next found data or COW extent. 1417 */ 1418 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb) 1419 imap.br_blockcount = cow_fsb - offset_fsb; 1420 else 1421 imap.br_blockcount = data_fsb - offset_fsb; 1422 imap.br_startoff = offset_fsb; 1423 imap.br_startblock = HOLESTARTBLOCK; 1424 imap.br_state = XFS_EXT_NORM; 1425 done: 1426 seq = xfs_iomap_inode_sequence(ip, 0); 1427 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); 1428 error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq); 1429 out_unlock: 1430 xfs_iunlock(ip, lockmode); 1431 return error; 1432 } 1433 1434 const struct iomap_ops xfs_seek_iomap_ops = { 1435 .iomap_begin = xfs_seek_iomap_begin, 1436 }; 1437 1438 static int 1439 xfs_xattr_iomap_begin( 1440 struct inode *inode, 1441 loff_t offset, 1442 loff_t length, 1443 unsigned flags, 1444 struct iomap *iomap, 1445 struct iomap *srcmap) 1446 { 1447 struct xfs_inode *ip = XFS_I(inode); 1448 struct xfs_mount *mp = ip->i_mount; 1449 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1450 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1451 struct xfs_bmbt_irec imap; 1452 int nimaps = 1, error = 0; 1453 unsigned lockmode; 1454 int seq; 1455 1456 if (xfs_is_shutdown(mp)) 1457 return -EIO; 1458 1459 lockmode = xfs_ilock_attr_map_shared(ip); 1460 1461 /* if there are no attribute fork or extents, return ENOENT */ 1462 if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) { 1463 error = -ENOENT; 1464 goto out_unlock; 1465 } 1466 1467 ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL); 1468 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 1469 &nimaps, XFS_BMAPI_ATTRFORK); 1470 out_unlock: 1471 1472 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR); 1473 xfs_iunlock(ip, lockmode); 1474 1475 if (error) 1476 return error; 1477 ASSERT(nimaps); 1478 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq); 1479 } 1480 1481 const struct iomap_ops xfs_xattr_iomap_ops = { 1482 .iomap_begin = xfs_xattr_iomap_begin, 1483 }; 1484 1485 int 1486 xfs_zero_range( 1487 struct xfs_inode *ip, 1488 loff_t pos, 1489 loff_t len, 1490 bool *did_zero) 1491 { 1492 struct inode *inode = VFS_I(ip); 1493 1494 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL); 1495 1496 if (IS_DAX(inode)) 1497 return dax_zero_range(inode, pos, len, did_zero, 1498 &xfs_dax_write_iomap_ops); 1499 return iomap_zero_range(inode, pos, len, did_zero, 1500 &xfs_buffered_write_iomap_ops); 1501 } 1502 1503 int 1504 xfs_truncate_page( 1505 struct xfs_inode *ip, 1506 loff_t pos, 1507 bool *did_zero) 1508 { 1509 struct inode *inode = VFS_I(ip); 1510 1511 if (IS_DAX(inode)) 1512 return dax_truncate_page(inode, pos, did_zero, 1513 &xfs_dax_write_iomap_ops); 1514 return iomap_truncate_page(inode, pos, did_zero, 1515 &xfs_buffered_write_iomap_ops); 1516 } 1517