xref: /linux/fs/xfs/xfs_iomap.c (revision 680e6ffa15103ab610c0fc1241d2f98c801b13e2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  * All Rights Reserved.
6  */
7 #include <linux/iomap.h>
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_btree.h"
18 #include "xfs_bmap_btree.h"
19 #include "xfs_bmap.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_errortag.h"
22 #include "xfs_error.h"
23 #include "xfs_trans.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_inode_item.h"
26 #include "xfs_iomap.h"
27 #include "xfs_trace.h"
28 #include "xfs_icache.h"
29 #include "xfs_quota.h"
30 #include "xfs_dquot_item.h"
31 #include "xfs_dquot.h"
32 #include "xfs_reflink.h"
33 
34 
35 #define XFS_WRITEIO_ALIGN(mp,off)	(((off) >> mp->m_writeio_log) \
36 						<< mp->m_writeio_log)
37 
38 static int
39 xfs_alert_fsblock_zero(
40 	xfs_inode_t	*ip,
41 	xfs_bmbt_irec_t	*imap)
42 {
43 	xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
44 			"Access to block zero in inode %llu "
45 			"start_block: %llx start_off: %llx "
46 			"blkcnt: %llx extent-state: %x",
47 		(unsigned long long)ip->i_ino,
48 		(unsigned long long)imap->br_startblock,
49 		(unsigned long long)imap->br_startoff,
50 		(unsigned long long)imap->br_blockcount,
51 		imap->br_state);
52 	return -EFSCORRUPTED;
53 }
54 
55 int
56 xfs_bmbt_to_iomap(
57 	struct xfs_inode	*ip,
58 	struct iomap		*iomap,
59 	struct xfs_bmbt_irec	*imap,
60 	bool			shared)
61 {
62 	struct xfs_mount	*mp = ip->i_mount;
63 
64 	if (unlikely(!imap->br_startblock && !XFS_IS_REALTIME_INODE(ip)))
65 		return xfs_alert_fsblock_zero(ip, imap);
66 
67 	if (imap->br_startblock == HOLESTARTBLOCK) {
68 		iomap->addr = IOMAP_NULL_ADDR;
69 		iomap->type = IOMAP_HOLE;
70 	} else if (imap->br_startblock == DELAYSTARTBLOCK ||
71 		   isnullstartblock(imap->br_startblock)) {
72 		iomap->addr = IOMAP_NULL_ADDR;
73 		iomap->type = IOMAP_DELALLOC;
74 	} else {
75 		iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock));
76 		if (imap->br_state == XFS_EXT_UNWRITTEN)
77 			iomap->type = IOMAP_UNWRITTEN;
78 		else
79 			iomap->type = IOMAP_MAPPED;
80 	}
81 	iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
82 	iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
83 	iomap->bdev = xfs_find_bdev_for_inode(VFS_I(ip));
84 	iomap->dax_dev = xfs_find_daxdev_for_inode(VFS_I(ip));
85 
86 	if (xfs_ipincount(ip) &&
87 	    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
88 		iomap->flags |= IOMAP_F_DIRTY;
89 	if (shared)
90 		iomap->flags |= IOMAP_F_SHARED;
91 	return 0;
92 }
93 
94 static void
95 xfs_hole_to_iomap(
96 	struct xfs_inode	*ip,
97 	struct iomap		*iomap,
98 	xfs_fileoff_t		offset_fsb,
99 	xfs_fileoff_t		end_fsb)
100 {
101 	iomap->addr = IOMAP_NULL_ADDR;
102 	iomap->type = IOMAP_HOLE;
103 	iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
104 	iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
105 	iomap->bdev = xfs_find_bdev_for_inode(VFS_I(ip));
106 	iomap->dax_dev = xfs_find_daxdev_for_inode(VFS_I(ip));
107 }
108 
109 xfs_extlen_t
110 xfs_eof_alignment(
111 	struct xfs_inode	*ip,
112 	xfs_extlen_t		extsize)
113 {
114 	struct xfs_mount	*mp = ip->i_mount;
115 	xfs_extlen_t		align = 0;
116 
117 	if (!XFS_IS_REALTIME_INODE(ip)) {
118 		/*
119 		 * Round up the allocation request to a stripe unit
120 		 * (m_dalign) boundary if the file size is >= stripe unit
121 		 * size, and we are allocating past the allocation eof.
122 		 *
123 		 * If mounted with the "-o swalloc" option the alignment is
124 		 * increased from the strip unit size to the stripe width.
125 		 */
126 		if (mp->m_swidth && (mp->m_flags & XFS_MOUNT_SWALLOC))
127 			align = mp->m_swidth;
128 		else if (mp->m_dalign)
129 			align = mp->m_dalign;
130 
131 		if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
132 			align = 0;
133 	}
134 
135 	/*
136 	 * Always round up the allocation request to an extent boundary
137 	 * (when file on a real-time subvolume or has di_extsize hint).
138 	 */
139 	if (extsize) {
140 		if (align)
141 			align = roundup_64(align, extsize);
142 		else
143 			align = extsize;
144 	}
145 
146 	return align;
147 }
148 
149 STATIC int
150 xfs_iomap_eof_align_last_fsb(
151 	struct xfs_inode	*ip,
152 	xfs_extlen_t		extsize,
153 	xfs_fileoff_t		*last_fsb)
154 {
155 	xfs_extlen_t		align = xfs_eof_alignment(ip, extsize);
156 
157 	if (align) {
158 		xfs_fileoff_t	new_last_fsb = roundup_64(*last_fsb, align);
159 		int		eof, error;
160 
161 		error = xfs_bmap_eof(ip, new_last_fsb, XFS_DATA_FORK, &eof);
162 		if (error)
163 			return error;
164 		if (eof)
165 			*last_fsb = new_last_fsb;
166 	}
167 	return 0;
168 }
169 
170 int
171 xfs_iomap_write_direct(
172 	xfs_inode_t	*ip,
173 	xfs_off_t	offset,
174 	size_t		count,
175 	xfs_bmbt_irec_t *imap,
176 	int		nmaps)
177 {
178 	xfs_mount_t	*mp = ip->i_mount;
179 	xfs_fileoff_t	offset_fsb;
180 	xfs_fileoff_t	last_fsb;
181 	xfs_filblks_t	count_fsb, resaligned;
182 	xfs_extlen_t	extsz;
183 	int		nimaps;
184 	int		quota_flag;
185 	int		rt;
186 	xfs_trans_t	*tp;
187 	uint		qblocks, resblks, resrtextents;
188 	int		error;
189 	int		lockmode;
190 	int		bmapi_flags = XFS_BMAPI_PREALLOC;
191 	uint		tflags = 0;
192 
193 	rt = XFS_IS_REALTIME_INODE(ip);
194 	extsz = xfs_get_extsz_hint(ip);
195 	lockmode = XFS_ILOCK_SHARED;	/* locked by caller */
196 
197 	ASSERT(xfs_isilocked(ip, lockmode));
198 
199 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
200 	last_fsb = XFS_B_TO_FSB(mp, ((xfs_ufsize_t)(offset + count)));
201 	if ((offset + count) > XFS_ISIZE(ip)) {
202 		/*
203 		 * Assert that the in-core extent list is present since this can
204 		 * call xfs_iread_extents() and we only have the ilock shared.
205 		 * This should be safe because the lock was held around a bmapi
206 		 * call in the caller and we only need it to access the in-core
207 		 * list.
208 		 */
209 		ASSERT(XFS_IFORK_PTR(ip, XFS_DATA_FORK)->if_flags &
210 								XFS_IFEXTENTS);
211 		error = xfs_iomap_eof_align_last_fsb(ip, extsz, &last_fsb);
212 		if (error)
213 			goto out_unlock;
214 	} else {
215 		if (nmaps && (imap->br_startblock == HOLESTARTBLOCK))
216 			last_fsb = min(last_fsb, (xfs_fileoff_t)
217 					imap->br_blockcount +
218 					imap->br_startoff);
219 	}
220 	count_fsb = last_fsb - offset_fsb;
221 	ASSERT(count_fsb > 0);
222 	resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb, extsz);
223 
224 	if (unlikely(rt)) {
225 		resrtextents = qblocks = resaligned;
226 		resrtextents /= mp->m_sb.sb_rextsize;
227 		resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
228 		quota_flag = XFS_QMOPT_RES_RTBLKS;
229 	} else {
230 		resrtextents = 0;
231 		resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
232 		quota_flag = XFS_QMOPT_RES_REGBLKS;
233 	}
234 
235 	/*
236 	 * Drop the shared lock acquired by the caller, attach the dquot if
237 	 * necessary and move on to transaction setup.
238 	 */
239 	xfs_iunlock(ip, lockmode);
240 	error = xfs_qm_dqattach(ip);
241 	if (error)
242 		return error;
243 
244 	/*
245 	 * For DAX, we do not allocate unwritten extents, but instead we zero
246 	 * the block before we commit the transaction.  Ideally we'd like to do
247 	 * this outside the transaction context, but if we commit and then crash
248 	 * we may not have zeroed the blocks and this will be exposed on
249 	 * recovery of the allocation. Hence we must zero before commit.
250 	 *
251 	 * Further, if we are mapping unwritten extents here, we need to zero
252 	 * and convert them to written so that we don't need an unwritten extent
253 	 * callback for DAX. This also means that we need to be able to dip into
254 	 * the reserve block pool for bmbt block allocation if there is no space
255 	 * left but we need to do unwritten extent conversion.
256 	 */
257 	if (IS_DAX(VFS_I(ip))) {
258 		bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
259 		if (imap->br_state == XFS_EXT_UNWRITTEN) {
260 			tflags |= XFS_TRANS_RESERVE;
261 			resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
262 		}
263 	}
264 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, resrtextents,
265 			tflags, &tp);
266 	if (error)
267 		return error;
268 
269 	lockmode = XFS_ILOCK_EXCL;
270 	xfs_ilock(ip, lockmode);
271 
272 	error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 0, quota_flag);
273 	if (error)
274 		goto out_trans_cancel;
275 
276 	xfs_trans_ijoin(tp, ip, 0);
277 
278 	/*
279 	 * From this point onwards we overwrite the imap pointer that the
280 	 * caller gave to us.
281 	 */
282 	nimaps = 1;
283 	error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
284 				bmapi_flags, resblks, imap, &nimaps);
285 	if (error)
286 		goto out_res_cancel;
287 
288 	/*
289 	 * Complete the transaction
290 	 */
291 	error = xfs_trans_commit(tp);
292 	if (error)
293 		goto out_unlock;
294 
295 	/*
296 	 * Copy any maps to caller's array and return any error.
297 	 */
298 	if (nimaps == 0) {
299 		error = -ENOSPC;
300 		goto out_unlock;
301 	}
302 
303 	if (!(imap->br_startblock || XFS_IS_REALTIME_INODE(ip)))
304 		error = xfs_alert_fsblock_zero(ip, imap);
305 
306 out_unlock:
307 	xfs_iunlock(ip, lockmode);
308 	return error;
309 
310 out_res_cancel:
311 	xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
312 out_trans_cancel:
313 	xfs_trans_cancel(tp);
314 	goto out_unlock;
315 }
316 
317 STATIC bool
318 xfs_quota_need_throttle(
319 	struct xfs_inode *ip,
320 	int type,
321 	xfs_fsblock_t alloc_blocks)
322 {
323 	struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
324 
325 	if (!dq || !xfs_this_quota_on(ip->i_mount, type))
326 		return false;
327 
328 	/* no hi watermark, no throttle */
329 	if (!dq->q_prealloc_hi_wmark)
330 		return false;
331 
332 	/* under the lo watermark, no throttle */
333 	if (dq->q_res_bcount + alloc_blocks < dq->q_prealloc_lo_wmark)
334 		return false;
335 
336 	return true;
337 }
338 
339 STATIC void
340 xfs_quota_calc_throttle(
341 	struct xfs_inode *ip,
342 	int type,
343 	xfs_fsblock_t *qblocks,
344 	int *qshift,
345 	int64_t	*qfreesp)
346 {
347 	int64_t freesp;
348 	int shift = 0;
349 	struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
350 
351 	/* no dq, or over hi wmark, squash the prealloc completely */
352 	if (!dq || dq->q_res_bcount >= dq->q_prealloc_hi_wmark) {
353 		*qblocks = 0;
354 		*qfreesp = 0;
355 		return;
356 	}
357 
358 	freesp = dq->q_prealloc_hi_wmark - dq->q_res_bcount;
359 	if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) {
360 		shift = 2;
361 		if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT])
362 			shift += 2;
363 		if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT])
364 			shift += 2;
365 	}
366 
367 	if (freesp < *qfreesp)
368 		*qfreesp = freesp;
369 
370 	/* only overwrite the throttle values if we are more aggressive */
371 	if ((freesp >> shift) < (*qblocks >> *qshift)) {
372 		*qblocks = freesp;
373 		*qshift = shift;
374 	}
375 }
376 
377 /*
378  * If we are doing a write at the end of the file and there are no allocations
379  * past this one, then extend the allocation out to the file system's write
380  * iosize.
381  *
382  * If we don't have a user specified preallocation size, dynamically increase
383  * the preallocation size as the size of the file grows.  Cap the maximum size
384  * at a single extent or less if the filesystem is near full. The closer the
385  * filesystem is to full, the smaller the maximum prealocation.
386  *
387  * As an exception we don't do any preallocation at all if the file is smaller
388  * than the minimum preallocation and we are using the default dynamic
389  * preallocation scheme, as it is likely this is the only write to the file that
390  * is going to be done.
391  *
392  * We clean up any extra space left over when the file is closed in
393  * xfs_inactive().
394  */
395 STATIC xfs_fsblock_t
396 xfs_iomap_prealloc_size(
397 	struct xfs_inode	*ip,
398 	int			whichfork,
399 	loff_t			offset,
400 	loff_t			count,
401 	struct xfs_iext_cursor	*icur)
402 {
403 	struct xfs_mount	*mp = ip->i_mount;
404 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
405 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
406 	struct xfs_bmbt_irec	prev;
407 	int			shift = 0;
408 	int64_t			freesp;
409 	xfs_fsblock_t		qblocks;
410 	int			qshift = 0;
411 	xfs_fsblock_t		alloc_blocks = 0;
412 
413 	if (offset + count <= XFS_ISIZE(ip))
414 		return 0;
415 
416 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE) &&
417 	    (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_writeio_blocks)))
418 		return 0;
419 
420 	/*
421 	 * If an explicit allocsize is set, the file is small, or we
422 	 * are writing behind a hole, then use the minimum prealloc:
423 	 */
424 	if ((mp->m_flags & XFS_MOUNT_DFLT_IOSIZE) ||
425 	    XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
426 	    !xfs_iext_peek_prev_extent(ifp, icur, &prev) ||
427 	    prev.br_startoff + prev.br_blockcount < offset_fsb)
428 		return mp->m_writeio_blocks;
429 
430 	/*
431 	 * Determine the initial size of the preallocation. We are beyond the
432 	 * current EOF here, but we need to take into account whether this is
433 	 * a sparse write or an extending write when determining the
434 	 * preallocation size.  Hence we need to look up the extent that ends
435 	 * at the current write offset and use the result to determine the
436 	 * preallocation size.
437 	 *
438 	 * If the extent is a hole, then preallocation is essentially disabled.
439 	 * Otherwise we take the size of the preceding data extent as the basis
440 	 * for the preallocation size. If the size of the extent is greater than
441 	 * half the maximum extent length, then use the current offset as the
442 	 * basis. This ensures that for large files the preallocation size
443 	 * always extends to MAXEXTLEN rather than falling short due to things
444 	 * like stripe unit/width alignment of real extents.
445 	 */
446 	if (prev.br_blockcount <= (MAXEXTLEN >> 1))
447 		alloc_blocks = prev.br_blockcount << 1;
448 	else
449 		alloc_blocks = XFS_B_TO_FSB(mp, offset);
450 	if (!alloc_blocks)
451 		goto check_writeio;
452 	qblocks = alloc_blocks;
453 
454 	/*
455 	 * MAXEXTLEN is not a power of two value but we round the prealloc down
456 	 * to the nearest power of two value after throttling. To prevent the
457 	 * round down from unconditionally reducing the maximum supported prealloc
458 	 * size, we round up first, apply appropriate throttling, round down and
459 	 * cap the value to MAXEXTLEN.
460 	 */
461 	alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(MAXEXTLEN),
462 				       alloc_blocks);
463 
464 	freesp = percpu_counter_read_positive(&mp->m_fdblocks);
465 	if (freesp < mp->m_low_space[XFS_LOWSP_5_PCNT]) {
466 		shift = 2;
467 		if (freesp < mp->m_low_space[XFS_LOWSP_4_PCNT])
468 			shift++;
469 		if (freesp < mp->m_low_space[XFS_LOWSP_3_PCNT])
470 			shift++;
471 		if (freesp < mp->m_low_space[XFS_LOWSP_2_PCNT])
472 			shift++;
473 		if (freesp < mp->m_low_space[XFS_LOWSP_1_PCNT])
474 			shift++;
475 	}
476 
477 	/*
478 	 * Check each quota to cap the prealloc size, provide a shift value to
479 	 * throttle with and adjust amount of available space.
480 	 */
481 	if (xfs_quota_need_throttle(ip, XFS_DQ_USER, alloc_blocks))
482 		xfs_quota_calc_throttle(ip, XFS_DQ_USER, &qblocks, &qshift,
483 					&freesp);
484 	if (xfs_quota_need_throttle(ip, XFS_DQ_GROUP, alloc_blocks))
485 		xfs_quota_calc_throttle(ip, XFS_DQ_GROUP, &qblocks, &qshift,
486 					&freesp);
487 	if (xfs_quota_need_throttle(ip, XFS_DQ_PROJ, alloc_blocks))
488 		xfs_quota_calc_throttle(ip, XFS_DQ_PROJ, &qblocks, &qshift,
489 					&freesp);
490 
491 	/*
492 	 * The final prealloc size is set to the minimum of free space available
493 	 * in each of the quotas and the overall filesystem.
494 	 *
495 	 * The shift throttle value is set to the maximum value as determined by
496 	 * the global low free space values and per-quota low free space values.
497 	 */
498 	alloc_blocks = min(alloc_blocks, qblocks);
499 	shift = max(shift, qshift);
500 
501 	if (shift)
502 		alloc_blocks >>= shift;
503 	/*
504 	 * rounddown_pow_of_two() returns an undefined result if we pass in
505 	 * alloc_blocks = 0.
506 	 */
507 	if (alloc_blocks)
508 		alloc_blocks = rounddown_pow_of_two(alloc_blocks);
509 	if (alloc_blocks > MAXEXTLEN)
510 		alloc_blocks = MAXEXTLEN;
511 
512 	/*
513 	 * If we are still trying to allocate more space than is
514 	 * available, squash the prealloc hard. This can happen if we
515 	 * have a large file on a small filesystem and the above
516 	 * lowspace thresholds are smaller than MAXEXTLEN.
517 	 */
518 	while (alloc_blocks && alloc_blocks >= freesp)
519 		alloc_blocks >>= 4;
520 check_writeio:
521 	if (alloc_blocks < mp->m_writeio_blocks)
522 		alloc_blocks = mp->m_writeio_blocks;
523 	trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
524 				      mp->m_writeio_blocks);
525 	return alloc_blocks;
526 }
527 
528 static int
529 xfs_file_iomap_begin_delay(
530 	struct inode		*inode,
531 	loff_t			offset,
532 	loff_t			count,
533 	unsigned		flags,
534 	struct iomap		*iomap)
535 {
536 	struct xfs_inode	*ip = XFS_I(inode);
537 	struct xfs_mount	*mp = ip->i_mount;
538 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
539 	xfs_fileoff_t		maxbytes_fsb =
540 		XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
541 	xfs_fileoff_t		end_fsb;
542 	struct xfs_bmbt_irec	imap, cmap;
543 	struct xfs_iext_cursor	icur, ccur;
544 	xfs_fsblock_t		prealloc_blocks = 0;
545 	bool			eof = false, cow_eof = false, shared = false;
546 	int			whichfork = XFS_DATA_FORK;
547 	int			error = 0;
548 
549 	ASSERT(!XFS_IS_REALTIME_INODE(ip));
550 	ASSERT(!xfs_get_extsz_hint(ip));
551 
552 	xfs_ilock(ip, XFS_ILOCK_EXCL);
553 
554 	if (unlikely(XFS_TEST_ERROR(
555 	    (XFS_IFORK_FORMAT(ip, XFS_DATA_FORK) != XFS_DINODE_FMT_EXTENTS &&
556 	     XFS_IFORK_FORMAT(ip, XFS_DATA_FORK) != XFS_DINODE_FMT_BTREE),
557 	     mp, XFS_ERRTAG_BMAPIFORMAT))) {
558 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
559 		error = -EFSCORRUPTED;
560 		goto out_unlock;
561 	}
562 
563 	XFS_STATS_INC(mp, xs_blk_mapw);
564 
565 	if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) {
566 		error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
567 		if (error)
568 			goto out_unlock;
569 	}
570 
571 	end_fsb = min(XFS_B_TO_FSB(mp, offset + count), maxbytes_fsb);
572 
573 	/*
574 	 * Search the data fork fork first to look up our source mapping.  We
575 	 * always need the data fork map, as we have to return it to the
576 	 * iomap code so that the higher level write code can read data in to
577 	 * perform read-modify-write cycles for unaligned writes.
578 	 */
579 	eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
580 	if (eof)
581 		imap.br_startoff = end_fsb; /* fake hole until the end */
582 
583 	/* We never need to allocate blocks for zeroing a hole. */
584 	if ((flags & IOMAP_ZERO) && imap.br_startoff > offset_fsb) {
585 		xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
586 		goto out_unlock;
587 	}
588 
589 	/*
590 	 * Search the COW fork extent list even if we did not find a data fork
591 	 * extent.  This serves two purposes: first this implements the
592 	 * speculative preallocation using cowextsize, so that we also unshare
593 	 * block adjacent to shared blocks instead of just the shared blocks
594 	 * themselves.  Second the lookup in the extent list is generally faster
595 	 * than going out to the shared extent tree.
596 	 */
597 	if (xfs_is_cow_inode(ip)) {
598 		if (!ip->i_cowfp) {
599 			ASSERT(!xfs_is_reflink_inode(ip));
600 			xfs_ifork_init_cow(ip);
601 		}
602 		cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
603 				&ccur, &cmap);
604 		if (!cow_eof && cmap.br_startoff <= offset_fsb) {
605 			trace_xfs_reflink_cow_found(ip, &cmap);
606 			whichfork = XFS_COW_FORK;
607 			goto done;
608 		}
609 	}
610 
611 	if (imap.br_startoff <= offset_fsb) {
612 		/*
613 		 * For reflink files we may need a delalloc reservation when
614 		 * overwriting shared extents.   This includes zeroing of
615 		 * existing extents that contain data.
616 		 */
617 		if (!xfs_is_cow_inode(ip) ||
618 		    ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
619 			trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
620 					&imap);
621 			goto done;
622 		}
623 
624 		xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
625 
626 		/* Trim the mapping to the nearest shared extent boundary. */
627 		error = xfs_inode_need_cow(ip, &imap, &shared);
628 		if (error)
629 			goto out_unlock;
630 
631 		/* Not shared?  Just report the (potentially capped) extent. */
632 		if (!shared) {
633 			trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
634 					&imap);
635 			goto done;
636 		}
637 
638 		/*
639 		 * Fork all the shared blocks from our write offset until the
640 		 * end of the extent.
641 		 */
642 		whichfork = XFS_COW_FORK;
643 		end_fsb = imap.br_startoff + imap.br_blockcount;
644 	} else {
645 		/*
646 		 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES
647 		 * pages to keep the chunks of work done where somewhat
648 		 * symmetric with the work writeback does.  This is a completely
649 		 * arbitrary number pulled out of thin air.
650 		 *
651 		 * Note that the values needs to be less than 32-bits wide until
652 		 * the lower level functions are updated.
653 		 */
654 		count = min_t(loff_t, count, 1024 * PAGE_SIZE);
655 		end_fsb = min(XFS_B_TO_FSB(mp, offset + count), maxbytes_fsb);
656 
657 		if (xfs_is_always_cow_inode(ip))
658 			whichfork = XFS_COW_FORK;
659 	}
660 
661 	error = xfs_qm_dqattach_locked(ip, false);
662 	if (error)
663 		goto out_unlock;
664 
665 	if (eof) {
666 		prealloc_blocks = xfs_iomap_prealloc_size(ip, whichfork, offset,
667 				count, &icur);
668 		if (prealloc_blocks) {
669 			xfs_extlen_t	align;
670 			xfs_off_t	end_offset;
671 			xfs_fileoff_t	p_end_fsb;
672 
673 			end_offset = XFS_WRITEIO_ALIGN(mp, offset + count - 1);
674 			p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
675 					prealloc_blocks;
676 
677 			align = xfs_eof_alignment(ip, 0);
678 			if (align)
679 				p_end_fsb = roundup_64(p_end_fsb, align);
680 
681 			p_end_fsb = min(p_end_fsb, maxbytes_fsb);
682 			ASSERT(p_end_fsb > offset_fsb);
683 			prealloc_blocks = p_end_fsb - end_fsb;
684 		}
685 	}
686 
687 retry:
688 	error = xfs_bmapi_reserve_delalloc(ip, whichfork, offset_fsb,
689 			end_fsb - offset_fsb, prealloc_blocks,
690 			whichfork == XFS_DATA_FORK ? &imap : &cmap,
691 			whichfork == XFS_DATA_FORK ? &icur : &ccur,
692 			whichfork == XFS_DATA_FORK ? eof : cow_eof);
693 	switch (error) {
694 	case 0:
695 		break;
696 	case -ENOSPC:
697 	case -EDQUOT:
698 		/* retry without any preallocation */
699 		trace_xfs_delalloc_enospc(ip, offset, count);
700 		if (prealloc_blocks) {
701 			prealloc_blocks = 0;
702 			goto retry;
703 		}
704 		/*FALLTHRU*/
705 	default:
706 		goto out_unlock;
707 	}
708 
709 	/*
710 	 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
711 	 * them out if the write happens to fail.
712 	 */
713 	iomap->flags |= IOMAP_F_NEW;
714 	trace_xfs_iomap_alloc(ip, offset, count, whichfork,
715 			whichfork == XFS_DATA_FORK ? &imap : &cmap);
716 done:
717 	if (whichfork == XFS_COW_FORK) {
718 		if (imap.br_startoff > offset_fsb) {
719 			xfs_trim_extent(&cmap, offset_fsb,
720 					imap.br_startoff - offset_fsb);
721 			error = xfs_bmbt_to_iomap(ip, iomap, &cmap, true);
722 			goto out_unlock;
723 		}
724 		/* ensure we only report blocks we have a reservation for */
725 		xfs_trim_extent(&imap, cmap.br_startoff, cmap.br_blockcount);
726 		shared = true;
727 	}
728 	error = xfs_bmbt_to_iomap(ip, iomap, &imap, shared);
729 out_unlock:
730 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
731 	return error;
732 }
733 
734 int
735 xfs_iomap_write_unwritten(
736 	xfs_inode_t	*ip,
737 	xfs_off_t	offset,
738 	xfs_off_t	count,
739 	bool		update_isize)
740 {
741 	xfs_mount_t	*mp = ip->i_mount;
742 	xfs_fileoff_t	offset_fsb;
743 	xfs_filblks_t	count_fsb;
744 	xfs_filblks_t	numblks_fsb;
745 	int		nimaps;
746 	xfs_trans_t	*tp;
747 	xfs_bmbt_irec_t imap;
748 	struct inode	*inode = VFS_I(ip);
749 	xfs_fsize_t	i_size;
750 	uint		resblks;
751 	int		error;
752 
753 	trace_xfs_unwritten_convert(ip, offset, count);
754 
755 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
756 	count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
757 	count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
758 
759 	/*
760 	 * Reserve enough blocks in this transaction for two complete extent
761 	 * btree splits.  We may be converting the middle part of an unwritten
762 	 * extent and in this case we will insert two new extents in the btree
763 	 * each of which could cause a full split.
764 	 *
765 	 * This reservation amount will be used in the first call to
766 	 * xfs_bmbt_split() to select an AG with enough space to satisfy the
767 	 * rest of the operation.
768 	 */
769 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
770 
771 	do {
772 		/*
773 		 * Set up a transaction to convert the range of extents
774 		 * from unwritten to real. Do allocations in a loop until
775 		 * we have covered the range passed in.
776 		 *
777 		 * Note that we can't risk to recursing back into the filesystem
778 		 * here as we might be asked to write out the same inode that we
779 		 * complete here and might deadlock on the iolock.
780 		 */
781 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
782 				XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
783 		if (error)
784 			return error;
785 
786 		xfs_ilock(ip, XFS_ILOCK_EXCL);
787 		xfs_trans_ijoin(tp, ip, 0);
788 
789 		/*
790 		 * Modify the unwritten extent state of the buffer.
791 		 */
792 		nimaps = 1;
793 		error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
794 					XFS_BMAPI_CONVERT, resblks, &imap,
795 					&nimaps);
796 		if (error)
797 			goto error_on_bmapi_transaction;
798 
799 		/*
800 		 * Log the updated inode size as we go.  We have to be careful
801 		 * to only log it up to the actual write offset if it is
802 		 * halfway into a block.
803 		 */
804 		i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
805 		if (i_size > offset + count)
806 			i_size = offset + count;
807 		if (update_isize && i_size > i_size_read(inode))
808 			i_size_write(inode, i_size);
809 		i_size = xfs_new_eof(ip, i_size);
810 		if (i_size) {
811 			ip->i_d.di_size = i_size;
812 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
813 		}
814 
815 		error = xfs_trans_commit(tp);
816 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
817 		if (error)
818 			return error;
819 
820 		if (!(imap.br_startblock || XFS_IS_REALTIME_INODE(ip)))
821 			return xfs_alert_fsblock_zero(ip, &imap);
822 
823 		if ((numblks_fsb = imap.br_blockcount) == 0) {
824 			/*
825 			 * The numblks_fsb value should always get
826 			 * smaller, otherwise the loop is stuck.
827 			 */
828 			ASSERT(imap.br_blockcount);
829 			break;
830 		}
831 		offset_fsb += numblks_fsb;
832 		count_fsb -= numblks_fsb;
833 	} while (count_fsb > 0);
834 
835 	return 0;
836 
837 error_on_bmapi_transaction:
838 	xfs_trans_cancel(tp);
839 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
840 	return error;
841 }
842 
843 static inline bool
844 imap_needs_alloc(
845 	struct inode		*inode,
846 	struct xfs_bmbt_irec	*imap,
847 	int			nimaps)
848 {
849 	return !nimaps ||
850 		imap->br_startblock == HOLESTARTBLOCK ||
851 		imap->br_startblock == DELAYSTARTBLOCK ||
852 		(IS_DAX(inode) && imap->br_state == XFS_EXT_UNWRITTEN);
853 }
854 
855 static inline bool
856 needs_cow_for_zeroing(
857 	struct xfs_bmbt_irec	*imap,
858 	int			nimaps)
859 {
860 	return nimaps &&
861 		imap->br_startblock != HOLESTARTBLOCK &&
862 		imap->br_state != XFS_EXT_UNWRITTEN;
863 }
864 
865 static int
866 xfs_ilock_for_iomap(
867 	struct xfs_inode	*ip,
868 	unsigned		flags,
869 	unsigned		*lockmode)
870 {
871 	unsigned		mode = XFS_ILOCK_SHARED;
872 	bool			is_write = flags & (IOMAP_WRITE | IOMAP_ZERO);
873 
874 	/*
875 	 * COW writes may allocate delalloc space or convert unwritten COW
876 	 * extents, so we need to make sure to take the lock exclusively here.
877 	 */
878 	if (xfs_is_cow_inode(ip) && is_write) {
879 		/*
880 		 * FIXME: It could still overwrite on unshared extents and not
881 		 * need allocation.
882 		 */
883 		if (flags & IOMAP_NOWAIT)
884 			return -EAGAIN;
885 		mode = XFS_ILOCK_EXCL;
886 	}
887 
888 	/*
889 	 * Extents not yet cached requires exclusive access, don't block.  This
890 	 * is an opencoded xfs_ilock_data_map_shared() call but with
891 	 * non-blocking behaviour.
892 	 */
893 	if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) {
894 		if (flags & IOMAP_NOWAIT)
895 			return -EAGAIN;
896 		mode = XFS_ILOCK_EXCL;
897 	}
898 
899 relock:
900 	if (flags & IOMAP_NOWAIT) {
901 		if (!xfs_ilock_nowait(ip, mode))
902 			return -EAGAIN;
903 	} else {
904 		xfs_ilock(ip, mode);
905 	}
906 
907 	/*
908 	 * The reflink iflag could have changed since the earlier unlocked
909 	 * check, so if we got ILOCK_SHARED for a write and but we're now a
910 	 * reflink inode we have to switch to ILOCK_EXCL and relock.
911 	 */
912 	if (mode == XFS_ILOCK_SHARED && is_write && xfs_is_cow_inode(ip)) {
913 		xfs_iunlock(ip, mode);
914 		mode = XFS_ILOCK_EXCL;
915 		goto relock;
916 	}
917 
918 	*lockmode = mode;
919 	return 0;
920 }
921 
922 static int
923 xfs_file_iomap_begin(
924 	struct inode		*inode,
925 	loff_t			offset,
926 	loff_t			length,
927 	unsigned		flags,
928 	struct iomap		*iomap)
929 {
930 	struct xfs_inode	*ip = XFS_I(inode);
931 	struct xfs_mount	*mp = ip->i_mount;
932 	struct xfs_bmbt_irec	imap;
933 	xfs_fileoff_t		offset_fsb, end_fsb;
934 	int			nimaps = 1, error = 0;
935 	bool			shared = false;
936 	unsigned		lockmode;
937 
938 	if (XFS_FORCED_SHUTDOWN(mp))
939 		return -EIO;
940 
941 	if ((flags & (IOMAP_WRITE | IOMAP_ZERO)) && !(flags & IOMAP_DIRECT) &&
942 			!IS_DAX(inode) && !xfs_get_extsz_hint(ip)) {
943 		/* Reserve delalloc blocks for regular writeback. */
944 		return xfs_file_iomap_begin_delay(inode, offset, length, flags,
945 				iomap);
946 	}
947 
948 	/*
949 	 * Lock the inode in the manner required for the specified operation and
950 	 * check for as many conditions that would result in blocking as
951 	 * possible. This removes most of the non-blocking checks from the
952 	 * mapping code below.
953 	 */
954 	error = xfs_ilock_for_iomap(ip, flags, &lockmode);
955 	if (error)
956 		return error;
957 
958 	ASSERT(offset <= mp->m_super->s_maxbytes);
959 	if (offset > mp->m_super->s_maxbytes - length)
960 		length = mp->m_super->s_maxbytes - offset;
961 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
962 	end_fsb = XFS_B_TO_FSB(mp, offset + length);
963 
964 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
965 			       &nimaps, 0);
966 	if (error)
967 		goto out_unlock;
968 
969 	if (flags & IOMAP_REPORT) {
970 		/* Trim the mapping to the nearest shared extent boundary. */
971 		error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
972 		if (error)
973 			goto out_unlock;
974 	}
975 
976 	/* Non-modifying mapping requested, so we are done */
977 	if (!(flags & (IOMAP_WRITE | IOMAP_ZERO)))
978 		goto out_found;
979 
980 	/*
981 	 * Break shared extents if necessary. Checks for non-blocking IO have
982 	 * been done up front, so we don't need to do them here.
983 	 */
984 	if (xfs_is_cow_inode(ip)) {
985 		struct xfs_bmbt_irec	cmap;
986 		bool			directio = (flags & IOMAP_DIRECT);
987 
988 		/* if zeroing doesn't need COW allocation, then we are done. */
989 		if ((flags & IOMAP_ZERO) &&
990 		    !needs_cow_for_zeroing(&imap, nimaps))
991 			goto out_found;
992 
993 		/* may drop and re-acquire the ilock */
994 		cmap = imap;
995 		error = xfs_reflink_allocate_cow(ip, &cmap, &shared, &lockmode,
996 				directio);
997 		if (error)
998 			goto out_unlock;
999 
1000 		/*
1001 		 * For buffered writes we need to report the address of the
1002 		 * previous block (if there was any) so that the higher level
1003 		 * write code can perform read-modify-write operations; we
1004 		 * won't need the CoW fork mapping until writeback.  For direct
1005 		 * I/O, which must be block aligned, we need to report the
1006 		 * newly allocated address.  If the data fork has a hole, copy
1007 		 * the COW fork mapping to avoid allocating to the data fork.
1008 		 */
1009 		if (directio || imap.br_startblock == HOLESTARTBLOCK)
1010 			imap = cmap;
1011 
1012 		end_fsb = imap.br_startoff + imap.br_blockcount;
1013 		length = XFS_FSB_TO_B(mp, end_fsb) - offset;
1014 	}
1015 
1016 	/* Don't need to allocate over holes when doing zeroing operations. */
1017 	if (flags & IOMAP_ZERO)
1018 		goto out_found;
1019 
1020 	if (!imap_needs_alloc(inode, &imap, nimaps))
1021 		goto out_found;
1022 
1023 	/* If nowait is set bail since we are going to make allocations. */
1024 	if (flags & IOMAP_NOWAIT) {
1025 		error = -EAGAIN;
1026 		goto out_unlock;
1027 	}
1028 
1029 	/*
1030 	 * We cap the maximum length we map to a sane size  to keep the chunks
1031 	 * of work done where somewhat symmetric with the work writeback does.
1032 	 * This is a completely arbitrary number pulled out of thin air as a
1033 	 * best guess for initial testing.
1034 	 *
1035 	 * Note that the values needs to be less than 32-bits wide until the
1036 	 * lower level functions are updated.
1037 	 */
1038 	length = min_t(loff_t, length, 1024 * PAGE_SIZE);
1039 
1040 	/*
1041 	 * xfs_iomap_write_direct() expects the shared lock. It is unlocked on
1042 	 * return.
1043 	 */
1044 	if (lockmode == XFS_ILOCK_EXCL)
1045 		xfs_ilock_demote(ip, lockmode);
1046 	error = xfs_iomap_write_direct(ip, offset, length, &imap,
1047 			nimaps);
1048 	if (error)
1049 		return error;
1050 
1051 	iomap->flags |= IOMAP_F_NEW;
1052 	trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
1053 
1054 out_finish:
1055 	return xfs_bmbt_to_iomap(ip, iomap, &imap, shared);
1056 
1057 out_found:
1058 	ASSERT(nimaps);
1059 	xfs_iunlock(ip, lockmode);
1060 	trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
1061 	goto out_finish;
1062 
1063 out_unlock:
1064 	xfs_iunlock(ip, lockmode);
1065 	return error;
1066 }
1067 
1068 static int
1069 xfs_file_iomap_end_delalloc(
1070 	struct xfs_inode	*ip,
1071 	loff_t			offset,
1072 	loff_t			length,
1073 	ssize_t			written,
1074 	struct iomap		*iomap)
1075 {
1076 	struct xfs_mount	*mp = ip->i_mount;
1077 	xfs_fileoff_t		start_fsb;
1078 	xfs_fileoff_t		end_fsb;
1079 	int			error = 0;
1080 
1081 	/*
1082 	 * Behave as if the write failed if drop writes is enabled. Set the NEW
1083 	 * flag to force delalloc cleanup.
1084 	 */
1085 	if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_DROP_WRITES)) {
1086 		iomap->flags |= IOMAP_F_NEW;
1087 		written = 0;
1088 	}
1089 
1090 	/*
1091 	 * start_fsb refers to the first unused block after a short write. If
1092 	 * nothing was written, round offset down to point at the first block in
1093 	 * the range.
1094 	 */
1095 	if (unlikely(!written))
1096 		start_fsb = XFS_B_TO_FSBT(mp, offset);
1097 	else
1098 		start_fsb = XFS_B_TO_FSB(mp, offset + written);
1099 	end_fsb = XFS_B_TO_FSB(mp, offset + length);
1100 
1101 	/*
1102 	 * Trim delalloc blocks if they were allocated by this write and we
1103 	 * didn't manage to write the whole range.
1104 	 *
1105 	 * We don't need to care about racing delalloc as we hold i_mutex
1106 	 * across the reserve/allocate/unreserve calls. If there are delalloc
1107 	 * blocks in the range, they are ours.
1108 	 */
1109 	if ((iomap->flags & IOMAP_F_NEW) && start_fsb < end_fsb) {
1110 		truncate_pagecache_range(VFS_I(ip), XFS_FSB_TO_B(mp, start_fsb),
1111 					 XFS_FSB_TO_B(mp, end_fsb) - 1);
1112 
1113 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1114 					       end_fsb - start_fsb);
1115 		if (error && !XFS_FORCED_SHUTDOWN(mp)) {
1116 			xfs_alert(mp, "%s: unable to clean up ino %lld",
1117 				__func__, ip->i_ino);
1118 			return error;
1119 		}
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 static int
1126 xfs_file_iomap_end(
1127 	struct inode		*inode,
1128 	loff_t			offset,
1129 	loff_t			length,
1130 	ssize_t			written,
1131 	unsigned		flags,
1132 	struct iomap		*iomap)
1133 {
1134 	if ((flags & IOMAP_WRITE) && iomap->type == IOMAP_DELALLOC)
1135 		return xfs_file_iomap_end_delalloc(XFS_I(inode), offset,
1136 				length, written, iomap);
1137 	return 0;
1138 }
1139 
1140 const struct iomap_ops xfs_iomap_ops = {
1141 	.iomap_begin		= xfs_file_iomap_begin,
1142 	.iomap_end		= xfs_file_iomap_end,
1143 };
1144 
1145 static int
1146 xfs_seek_iomap_begin(
1147 	struct inode		*inode,
1148 	loff_t			offset,
1149 	loff_t			length,
1150 	unsigned		flags,
1151 	struct iomap		*iomap)
1152 {
1153 	struct xfs_inode	*ip = XFS_I(inode);
1154 	struct xfs_mount	*mp = ip->i_mount;
1155 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
1156 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + length);
1157 	xfs_fileoff_t		cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
1158 	struct xfs_iext_cursor	icur;
1159 	struct xfs_bmbt_irec	imap, cmap;
1160 	int			error = 0;
1161 	unsigned		lockmode;
1162 
1163 	if (XFS_FORCED_SHUTDOWN(mp))
1164 		return -EIO;
1165 
1166 	lockmode = xfs_ilock_data_map_shared(ip);
1167 	if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) {
1168 		error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1169 		if (error)
1170 			goto out_unlock;
1171 	}
1172 
1173 	if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
1174 		/*
1175 		 * If we found a data extent we are done.
1176 		 */
1177 		if (imap.br_startoff <= offset_fsb)
1178 			goto done;
1179 		data_fsb = imap.br_startoff;
1180 	} else {
1181 		/*
1182 		 * Fake a hole until the end of the file.
1183 		 */
1184 		data_fsb = min(XFS_B_TO_FSB(mp, offset + length),
1185 			       XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
1186 	}
1187 
1188 	/*
1189 	 * If a COW fork extent covers the hole, report it - capped to the next
1190 	 * data fork extent:
1191 	 */
1192 	if (xfs_inode_has_cow_data(ip) &&
1193 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1194 		cow_fsb = cmap.br_startoff;
1195 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
1196 		if (data_fsb < cow_fsb + cmap.br_blockcount)
1197 			end_fsb = min(end_fsb, data_fsb);
1198 		xfs_trim_extent(&cmap, offset_fsb, end_fsb);
1199 		error = xfs_bmbt_to_iomap(ip, iomap, &cmap, true);
1200 		/*
1201 		 * This is a COW extent, so we must probe the page cache
1202 		 * because there could be dirty page cache being backed
1203 		 * by this extent.
1204 		 */
1205 		iomap->type = IOMAP_UNWRITTEN;
1206 		goto out_unlock;
1207 	}
1208 
1209 	/*
1210 	 * Else report a hole, capped to the next found data or COW extent.
1211 	 */
1212 	if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
1213 		imap.br_blockcount = cow_fsb - offset_fsb;
1214 	else
1215 		imap.br_blockcount = data_fsb - offset_fsb;
1216 	imap.br_startoff = offset_fsb;
1217 	imap.br_startblock = HOLESTARTBLOCK;
1218 	imap.br_state = XFS_EXT_NORM;
1219 done:
1220 	xfs_trim_extent(&imap, offset_fsb, end_fsb);
1221 	error = xfs_bmbt_to_iomap(ip, iomap, &imap, false);
1222 out_unlock:
1223 	xfs_iunlock(ip, lockmode);
1224 	return error;
1225 }
1226 
1227 const struct iomap_ops xfs_seek_iomap_ops = {
1228 	.iomap_begin		= xfs_seek_iomap_begin,
1229 };
1230 
1231 static int
1232 xfs_xattr_iomap_begin(
1233 	struct inode		*inode,
1234 	loff_t			offset,
1235 	loff_t			length,
1236 	unsigned		flags,
1237 	struct iomap		*iomap)
1238 {
1239 	struct xfs_inode	*ip = XFS_I(inode);
1240 	struct xfs_mount	*mp = ip->i_mount;
1241 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
1242 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + length);
1243 	struct xfs_bmbt_irec	imap;
1244 	int			nimaps = 1, error = 0;
1245 	unsigned		lockmode;
1246 
1247 	if (XFS_FORCED_SHUTDOWN(mp))
1248 		return -EIO;
1249 
1250 	lockmode = xfs_ilock_attr_map_shared(ip);
1251 
1252 	/* if there are no attribute fork or extents, return ENOENT */
1253 	if (!XFS_IFORK_Q(ip) || !ip->i_d.di_anextents) {
1254 		error = -ENOENT;
1255 		goto out_unlock;
1256 	}
1257 
1258 	ASSERT(ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL);
1259 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1260 			       &nimaps, XFS_BMAPI_ATTRFORK);
1261 out_unlock:
1262 	xfs_iunlock(ip, lockmode);
1263 
1264 	if (error)
1265 		return error;
1266 	ASSERT(nimaps);
1267 	return xfs_bmbt_to_iomap(ip, iomap, &imap, false);
1268 }
1269 
1270 const struct iomap_ops xfs_xattr_iomap_ops = {
1271 	.iomap_begin		= xfs_xattr_iomap_begin,
1272 };
1273