1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap_btree.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_errortag.h" 20 #include "xfs_error.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_space.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_iomap.h" 25 #include "xfs_trace.h" 26 #include "xfs_quota.h" 27 #include "xfs_dquot_item.h" 28 #include "xfs_dquot.h" 29 #include "xfs_reflink.h" 30 31 32 #define XFS_WRITEIO_ALIGN(mp,off) (((off) >> mp->m_writeio_log) \ 33 << mp->m_writeio_log) 34 35 static int 36 xfs_alert_fsblock_zero( 37 xfs_inode_t *ip, 38 xfs_bmbt_irec_t *imap) 39 { 40 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO, 41 "Access to block zero in inode %llu " 42 "start_block: %llx start_off: %llx " 43 "blkcnt: %llx extent-state: %x", 44 (unsigned long long)ip->i_ino, 45 (unsigned long long)imap->br_startblock, 46 (unsigned long long)imap->br_startoff, 47 (unsigned long long)imap->br_blockcount, 48 imap->br_state); 49 return -EFSCORRUPTED; 50 } 51 52 int 53 xfs_bmbt_to_iomap( 54 struct xfs_inode *ip, 55 struct iomap *iomap, 56 struct xfs_bmbt_irec *imap, 57 u16 flags) 58 { 59 struct xfs_mount *mp = ip->i_mount; 60 61 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) 62 return xfs_alert_fsblock_zero(ip, imap); 63 64 if (imap->br_startblock == HOLESTARTBLOCK) { 65 iomap->addr = IOMAP_NULL_ADDR; 66 iomap->type = IOMAP_HOLE; 67 } else if (imap->br_startblock == DELAYSTARTBLOCK || 68 isnullstartblock(imap->br_startblock)) { 69 iomap->addr = IOMAP_NULL_ADDR; 70 iomap->type = IOMAP_DELALLOC; 71 } else { 72 iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock)); 73 if (imap->br_state == XFS_EXT_UNWRITTEN) 74 iomap->type = IOMAP_UNWRITTEN; 75 else 76 iomap->type = IOMAP_MAPPED; 77 } 78 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff); 79 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount); 80 iomap->bdev = xfs_find_bdev_for_inode(VFS_I(ip)); 81 iomap->dax_dev = xfs_find_daxdev_for_inode(VFS_I(ip)); 82 iomap->flags = flags; 83 84 if (xfs_ipincount(ip) && 85 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 86 iomap->flags |= IOMAP_F_DIRTY; 87 return 0; 88 } 89 90 static void 91 xfs_hole_to_iomap( 92 struct xfs_inode *ip, 93 struct iomap *iomap, 94 xfs_fileoff_t offset_fsb, 95 xfs_fileoff_t end_fsb) 96 { 97 iomap->addr = IOMAP_NULL_ADDR; 98 iomap->type = IOMAP_HOLE; 99 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb); 100 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb); 101 iomap->bdev = xfs_find_bdev_for_inode(VFS_I(ip)); 102 iomap->dax_dev = xfs_find_daxdev_for_inode(VFS_I(ip)); 103 } 104 105 xfs_extlen_t 106 xfs_eof_alignment( 107 struct xfs_inode *ip, 108 xfs_extlen_t extsize) 109 { 110 struct xfs_mount *mp = ip->i_mount; 111 xfs_extlen_t align = 0; 112 113 if (!XFS_IS_REALTIME_INODE(ip)) { 114 /* 115 * Round up the allocation request to a stripe unit 116 * (m_dalign) boundary if the file size is >= stripe unit 117 * size, and we are allocating past the allocation eof. 118 * 119 * If mounted with the "-o swalloc" option the alignment is 120 * increased from the strip unit size to the stripe width. 121 */ 122 if (mp->m_swidth && (mp->m_flags & XFS_MOUNT_SWALLOC)) 123 align = mp->m_swidth; 124 else if (mp->m_dalign) 125 align = mp->m_dalign; 126 127 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align)) 128 align = 0; 129 } 130 131 /* 132 * Always round up the allocation request to an extent boundary 133 * (when file on a real-time subvolume or has di_extsize hint). 134 */ 135 if (extsize) { 136 if (align) 137 align = roundup_64(align, extsize); 138 else 139 align = extsize; 140 } 141 142 return align; 143 } 144 145 STATIC int 146 xfs_iomap_eof_align_last_fsb( 147 struct xfs_inode *ip, 148 xfs_extlen_t extsize, 149 xfs_fileoff_t *last_fsb) 150 { 151 xfs_extlen_t align = xfs_eof_alignment(ip, extsize); 152 153 if (align) { 154 xfs_fileoff_t new_last_fsb = roundup_64(*last_fsb, align); 155 int eof, error; 156 157 error = xfs_bmap_eof(ip, new_last_fsb, XFS_DATA_FORK, &eof); 158 if (error) 159 return error; 160 if (eof) 161 *last_fsb = new_last_fsb; 162 } 163 return 0; 164 } 165 166 int 167 xfs_iomap_write_direct( 168 xfs_inode_t *ip, 169 xfs_off_t offset, 170 size_t count, 171 xfs_bmbt_irec_t *imap, 172 int nmaps) 173 { 174 xfs_mount_t *mp = ip->i_mount; 175 xfs_fileoff_t offset_fsb; 176 xfs_fileoff_t last_fsb; 177 xfs_filblks_t count_fsb, resaligned; 178 xfs_extlen_t extsz; 179 int nimaps; 180 int quota_flag; 181 int rt; 182 xfs_trans_t *tp; 183 uint qblocks, resblks, resrtextents; 184 int error; 185 int lockmode; 186 int bmapi_flags = XFS_BMAPI_PREALLOC; 187 uint tflags = 0; 188 189 rt = XFS_IS_REALTIME_INODE(ip); 190 extsz = xfs_get_extsz_hint(ip); 191 lockmode = XFS_ILOCK_SHARED; /* locked by caller */ 192 193 ASSERT(xfs_isilocked(ip, lockmode)); 194 195 offset_fsb = XFS_B_TO_FSBT(mp, offset); 196 last_fsb = XFS_B_TO_FSB(mp, ((xfs_ufsize_t)(offset + count))); 197 if ((offset + count) > XFS_ISIZE(ip)) { 198 /* 199 * Assert that the in-core extent list is present since this can 200 * call xfs_iread_extents() and we only have the ilock shared. 201 * This should be safe because the lock was held around a bmapi 202 * call in the caller and we only need it to access the in-core 203 * list. 204 */ 205 ASSERT(XFS_IFORK_PTR(ip, XFS_DATA_FORK)->if_flags & 206 XFS_IFEXTENTS); 207 error = xfs_iomap_eof_align_last_fsb(ip, extsz, &last_fsb); 208 if (error) 209 goto out_unlock; 210 } else { 211 if (nmaps && (imap->br_startblock == HOLESTARTBLOCK)) 212 last_fsb = min(last_fsb, (xfs_fileoff_t) 213 imap->br_blockcount + 214 imap->br_startoff); 215 } 216 count_fsb = last_fsb - offset_fsb; 217 ASSERT(count_fsb > 0); 218 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb, extsz); 219 220 if (unlikely(rt)) { 221 resrtextents = qblocks = resaligned; 222 resrtextents /= mp->m_sb.sb_rextsize; 223 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 224 quota_flag = XFS_QMOPT_RES_RTBLKS; 225 } else { 226 resrtextents = 0; 227 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 228 quota_flag = XFS_QMOPT_RES_REGBLKS; 229 } 230 231 /* 232 * Drop the shared lock acquired by the caller, attach the dquot if 233 * necessary and move on to transaction setup. 234 */ 235 xfs_iunlock(ip, lockmode); 236 error = xfs_qm_dqattach(ip); 237 if (error) 238 return error; 239 240 /* 241 * For DAX, we do not allocate unwritten extents, but instead we zero 242 * the block before we commit the transaction. Ideally we'd like to do 243 * this outside the transaction context, but if we commit and then crash 244 * we may not have zeroed the blocks and this will be exposed on 245 * recovery of the allocation. Hence we must zero before commit. 246 * 247 * Further, if we are mapping unwritten extents here, we need to zero 248 * and convert them to written so that we don't need an unwritten extent 249 * callback for DAX. This also means that we need to be able to dip into 250 * the reserve block pool for bmbt block allocation if there is no space 251 * left but we need to do unwritten extent conversion. 252 */ 253 if (IS_DAX(VFS_I(ip))) { 254 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO; 255 if (imap->br_state == XFS_EXT_UNWRITTEN) { 256 tflags |= XFS_TRANS_RESERVE; 257 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 258 } 259 } 260 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, resrtextents, 261 tflags, &tp); 262 if (error) 263 return error; 264 265 lockmode = XFS_ILOCK_EXCL; 266 xfs_ilock(ip, lockmode); 267 268 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 0, quota_flag); 269 if (error) 270 goto out_trans_cancel; 271 272 xfs_trans_ijoin(tp, ip, 0); 273 274 /* 275 * From this point onwards we overwrite the imap pointer that the 276 * caller gave to us. 277 */ 278 nimaps = 1; 279 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, 280 bmapi_flags, resblks, imap, &nimaps); 281 if (error) 282 goto out_res_cancel; 283 284 /* 285 * Complete the transaction 286 */ 287 error = xfs_trans_commit(tp); 288 if (error) 289 goto out_unlock; 290 291 /* 292 * Copy any maps to caller's array and return any error. 293 */ 294 if (nimaps == 0) { 295 error = -ENOSPC; 296 goto out_unlock; 297 } 298 299 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) 300 error = xfs_alert_fsblock_zero(ip, imap); 301 302 out_unlock: 303 xfs_iunlock(ip, lockmode); 304 return error; 305 306 out_res_cancel: 307 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag); 308 out_trans_cancel: 309 xfs_trans_cancel(tp); 310 goto out_unlock; 311 } 312 313 STATIC bool 314 xfs_quota_need_throttle( 315 struct xfs_inode *ip, 316 int type, 317 xfs_fsblock_t alloc_blocks) 318 { 319 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 320 321 if (!dq || !xfs_this_quota_on(ip->i_mount, type)) 322 return false; 323 324 /* no hi watermark, no throttle */ 325 if (!dq->q_prealloc_hi_wmark) 326 return false; 327 328 /* under the lo watermark, no throttle */ 329 if (dq->q_res_bcount + alloc_blocks < dq->q_prealloc_lo_wmark) 330 return false; 331 332 return true; 333 } 334 335 STATIC void 336 xfs_quota_calc_throttle( 337 struct xfs_inode *ip, 338 int type, 339 xfs_fsblock_t *qblocks, 340 int *qshift, 341 int64_t *qfreesp) 342 { 343 int64_t freesp; 344 int shift = 0; 345 struct xfs_dquot *dq = xfs_inode_dquot(ip, type); 346 347 /* no dq, or over hi wmark, squash the prealloc completely */ 348 if (!dq || dq->q_res_bcount >= dq->q_prealloc_hi_wmark) { 349 *qblocks = 0; 350 *qfreesp = 0; 351 return; 352 } 353 354 freesp = dq->q_prealloc_hi_wmark - dq->q_res_bcount; 355 if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) { 356 shift = 2; 357 if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT]) 358 shift += 2; 359 if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT]) 360 shift += 2; 361 } 362 363 if (freesp < *qfreesp) 364 *qfreesp = freesp; 365 366 /* only overwrite the throttle values if we are more aggressive */ 367 if ((freesp >> shift) < (*qblocks >> *qshift)) { 368 *qblocks = freesp; 369 *qshift = shift; 370 } 371 } 372 373 /* 374 * If we are doing a write at the end of the file and there are no allocations 375 * past this one, then extend the allocation out to the file system's write 376 * iosize. 377 * 378 * If we don't have a user specified preallocation size, dynamically increase 379 * the preallocation size as the size of the file grows. Cap the maximum size 380 * at a single extent or less if the filesystem is near full. The closer the 381 * filesystem is to full, the smaller the maximum prealocation. 382 * 383 * As an exception we don't do any preallocation at all if the file is smaller 384 * than the minimum preallocation and we are using the default dynamic 385 * preallocation scheme, as it is likely this is the only write to the file that 386 * is going to be done. 387 * 388 * We clean up any extra space left over when the file is closed in 389 * xfs_inactive(). 390 */ 391 STATIC xfs_fsblock_t 392 xfs_iomap_prealloc_size( 393 struct xfs_inode *ip, 394 int whichfork, 395 loff_t offset, 396 loff_t count, 397 struct xfs_iext_cursor *icur) 398 { 399 struct xfs_mount *mp = ip->i_mount; 400 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 401 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 402 struct xfs_bmbt_irec prev; 403 int shift = 0; 404 int64_t freesp; 405 xfs_fsblock_t qblocks; 406 int qshift = 0; 407 xfs_fsblock_t alloc_blocks = 0; 408 409 if (offset + count <= XFS_ISIZE(ip)) 410 return 0; 411 412 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE) && 413 (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_writeio_blocks))) 414 return 0; 415 416 /* 417 * If an explicit allocsize is set, the file is small, or we 418 * are writing behind a hole, then use the minimum prealloc: 419 */ 420 if ((mp->m_flags & XFS_MOUNT_DFLT_IOSIZE) || 421 XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) || 422 !xfs_iext_peek_prev_extent(ifp, icur, &prev) || 423 prev.br_startoff + prev.br_blockcount < offset_fsb) 424 return mp->m_writeio_blocks; 425 426 /* 427 * Determine the initial size of the preallocation. We are beyond the 428 * current EOF here, but we need to take into account whether this is 429 * a sparse write or an extending write when determining the 430 * preallocation size. Hence we need to look up the extent that ends 431 * at the current write offset and use the result to determine the 432 * preallocation size. 433 * 434 * If the extent is a hole, then preallocation is essentially disabled. 435 * Otherwise we take the size of the preceding data extent as the basis 436 * for the preallocation size. If the size of the extent is greater than 437 * half the maximum extent length, then use the current offset as the 438 * basis. This ensures that for large files the preallocation size 439 * always extends to MAXEXTLEN rather than falling short due to things 440 * like stripe unit/width alignment of real extents. 441 */ 442 if (prev.br_blockcount <= (MAXEXTLEN >> 1)) 443 alloc_blocks = prev.br_blockcount << 1; 444 else 445 alloc_blocks = XFS_B_TO_FSB(mp, offset); 446 if (!alloc_blocks) 447 goto check_writeio; 448 qblocks = alloc_blocks; 449 450 /* 451 * MAXEXTLEN is not a power of two value but we round the prealloc down 452 * to the nearest power of two value after throttling. To prevent the 453 * round down from unconditionally reducing the maximum supported prealloc 454 * size, we round up first, apply appropriate throttling, round down and 455 * cap the value to MAXEXTLEN. 456 */ 457 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(MAXEXTLEN), 458 alloc_blocks); 459 460 freesp = percpu_counter_read_positive(&mp->m_fdblocks); 461 if (freesp < mp->m_low_space[XFS_LOWSP_5_PCNT]) { 462 shift = 2; 463 if (freesp < mp->m_low_space[XFS_LOWSP_4_PCNT]) 464 shift++; 465 if (freesp < mp->m_low_space[XFS_LOWSP_3_PCNT]) 466 shift++; 467 if (freesp < mp->m_low_space[XFS_LOWSP_2_PCNT]) 468 shift++; 469 if (freesp < mp->m_low_space[XFS_LOWSP_1_PCNT]) 470 shift++; 471 } 472 473 /* 474 * Check each quota to cap the prealloc size, provide a shift value to 475 * throttle with and adjust amount of available space. 476 */ 477 if (xfs_quota_need_throttle(ip, XFS_DQ_USER, alloc_blocks)) 478 xfs_quota_calc_throttle(ip, XFS_DQ_USER, &qblocks, &qshift, 479 &freesp); 480 if (xfs_quota_need_throttle(ip, XFS_DQ_GROUP, alloc_blocks)) 481 xfs_quota_calc_throttle(ip, XFS_DQ_GROUP, &qblocks, &qshift, 482 &freesp); 483 if (xfs_quota_need_throttle(ip, XFS_DQ_PROJ, alloc_blocks)) 484 xfs_quota_calc_throttle(ip, XFS_DQ_PROJ, &qblocks, &qshift, 485 &freesp); 486 487 /* 488 * The final prealloc size is set to the minimum of free space available 489 * in each of the quotas and the overall filesystem. 490 * 491 * The shift throttle value is set to the maximum value as determined by 492 * the global low free space values and per-quota low free space values. 493 */ 494 alloc_blocks = min(alloc_blocks, qblocks); 495 shift = max(shift, qshift); 496 497 if (shift) 498 alloc_blocks >>= shift; 499 /* 500 * rounddown_pow_of_two() returns an undefined result if we pass in 501 * alloc_blocks = 0. 502 */ 503 if (alloc_blocks) 504 alloc_blocks = rounddown_pow_of_two(alloc_blocks); 505 if (alloc_blocks > MAXEXTLEN) 506 alloc_blocks = MAXEXTLEN; 507 508 /* 509 * If we are still trying to allocate more space than is 510 * available, squash the prealloc hard. This can happen if we 511 * have a large file on a small filesystem and the above 512 * lowspace thresholds are smaller than MAXEXTLEN. 513 */ 514 while (alloc_blocks && alloc_blocks >= freesp) 515 alloc_blocks >>= 4; 516 check_writeio: 517 if (alloc_blocks < mp->m_writeio_blocks) 518 alloc_blocks = mp->m_writeio_blocks; 519 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift, 520 mp->m_writeio_blocks); 521 return alloc_blocks; 522 } 523 524 static int 525 xfs_file_iomap_begin_delay( 526 struct inode *inode, 527 loff_t offset, 528 loff_t count, 529 unsigned flags, 530 struct iomap *iomap) 531 { 532 struct xfs_inode *ip = XFS_I(inode); 533 struct xfs_mount *mp = ip->i_mount; 534 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 535 xfs_fileoff_t maxbytes_fsb = 536 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 537 xfs_fileoff_t end_fsb; 538 struct xfs_bmbt_irec imap, cmap; 539 struct xfs_iext_cursor icur, ccur; 540 xfs_fsblock_t prealloc_blocks = 0; 541 bool eof = false, cow_eof = false, shared = false; 542 u16 iomap_flags = 0; 543 int whichfork = XFS_DATA_FORK; 544 int error = 0; 545 546 ASSERT(!XFS_IS_REALTIME_INODE(ip)); 547 ASSERT(!xfs_get_extsz_hint(ip)); 548 549 xfs_ilock(ip, XFS_ILOCK_EXCL); 550 551 if (unlikely(XFS_TEST_ERROR( 552 (XFS_IFORK_FORMAT(ip, XFS_DATA_FORK) != XFS_DINODE_FMT_EXTENTS && 553 XFS_IFORK_FORMAT(ip, XFS_DATA_FORK) != XFS_DINODE_FMT_BTREE), 554 mp, XFS_ERRTAG_BMAPIFORMAT))) { 555 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp); 556 error = -EFSCORRUPTED; 557 goto out_unlock; 558 } 559 560 XFS_STATS_INC(mp, xs_blk_mapw); 561 562 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) { 563 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 564 if (error) 565 goto out_unlock; 566 } 567 568 end_fsb = min(XFS_B_TO_FSB(mp, offset + count), maxbytes_fsb); 569 570 /* 571 * Search the data fork fork first to look up our source mapping. We 572 * always need the data fork map, as we have to return it to the 573 * iomap code so that the higher level write code can read data in to 574 * perform read-modify-write cycles for unaligned writes. 575 */ 576 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap); 577 if (eof) 578 imap.br_startoff = end_fsb; /* fake hole until the end */ 579 580 /* We never need to allocate blocks for zeroing a hole. */ 581 if ((flags & IOMAP_ZERO) && imap.br_startoff > offset_fsb) { 582 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff); 583 goto out_unlock; 584 } 585 586 /* 587 * Search the COW fork extent list even if we did not find a data fork 588 * extent. This serves two purposes: first this implements the 589 * speculative preallocation using cowextsize, so that we also unshare 590 * block adjacent to shared blocks instead of just the shared blocks 591 * themselves. Second the lookup in the extent list is generally faster 592 * than going out to the shared extent tree. 593 */ 594 if (xfs_is_cow_inode(ip)) { 595 if (!ip->i_cowfp) { 596 ASSERT(!xfs_is_reflink_inode(ip)); 597 xfs_ifork_init_cow(ip); 598 } 599 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, 600 &ccur, &cmap); 601 if (!cow_eof && cmap.br_startoff <= offset_fsb) { 602 trace_xfs_reflink_cow_found(ip, &cmap); 603 whichfork = XFS_COW_FORK; 604 goto done; 605 } 606 } 607 608 if (imap.br_startoff <= offset_fsb) { 609 /* 610 * For reflink files we may need a delalloc reservation when 611 * overwriting shared extents. This includes zeroing of 612 * existing extents that contain data. 613 */ 614 if (!xfs_is_cow_inode(ip) || 615 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) { 616 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 617 &imap); 618 goto done; 619 } 620 621 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); 622 623 /* Trim the mapping to the nearest shared extent boundary. */ 624 error = xfs_inode_need_cow(ip, &imap, &shared); 625 if (error) 626 goto out_unlock; 627 628 /* Not shared? Just report the (potentially capped) extent. */ 629 if (!shared) { 630 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, 631 &imap); 632 goto done; 633 } 634 635 /* 636 * Fork all the shared blocks from our write offset until the 637 * end of the extent. 638 */ 639 whichfork = XFS_COW_FORK; 640 end_fsb = imap.br_startoff + imap.br_blockcount; 641 } else { 642 /* 643 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES 644 * pages to keep the chunks of work done where somewhat 645 * symmetric with the work writeback does. This is a completely 646 * arbitrary number pulled out of thin air. 647 * 648 * Note that the values needs to be less than 32-bits wide until 649 * the lower level functions are updated. 650 */ 651 count = min_t(loff_t, count, 1024 * PAGE_SIZE); 652 end_fsb = min(XFS_B_TO_FSB(mp, offset + count), maxbytes_fsb); 653 654 if (xfs_is_always_cow_inode(ip)) 655 whichfork = XFS_COW_FORK; 656 } 657 658 error = xfs_qm_dqattach_locked(ip, false); 659 if (error) 660 goto out_unlock; 661 662 if (eof) { 663 prealloc_blocks = xfs_iomap_prealloc_size(ip, whichfork, offset, 664 count, &icur); 665 if (prealloc_blocks) { 666 xfs_extlen_t align; 667 xfs_off_t end_offset; 668 xfs_fileoff_t p_end_fsb; 669 670 end_offset = XFS_WRITEIO_ALIGN(mp, offset + count - 1); 671 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) + 672 prealloc_blocks; 673 674 align = xfs_eof_alignment(ip, 0); 675 if (align) 676 p_end_fsb = roundup_64(p_end_fsb, align); 677 678 p_end_fsb = min(p_end_fsb, maxbytes_fsb); 679 ASSERT(p_end_fsb > offset_fsb); 680 prealloc_blocks = p_end_fsb - end_fsb; 681 } 682 } 683 684 retry: 685 error = xfs_bmapi_reserve_delalloc(ip, whichfork, offset_fsb, 686 end_fsb - offset_fsb, prealloc_blocks, 687 whichfork == XFS_DATA_FORK ? &imap : &cmap, 688 whichfork == XFS_DATA_FORK ? &icur : &ccur, 689 whichfork == XFS_DATA_FORK ? eof : cow_eof); 690 switch (error) { 691 case 0: 692 break; 693 case -ENOSPC: 694 case -EDQUOT: 695 /* retry without any preallocation */ 696 trace_xfs_delalloc_enospc(ip, offset, count); 697 if (prealloc_blocks) { 698 prealloc_blocks = 0; 699 goto retry; 700 } 701 /*FALLTHRU*/ 702 default: 703 goto out_unlock; 704 } 705 706 /* 707 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch 708 * them out if the write happens to fail. 709 */ 710 if (whichfork == XFS_DATA_FORK) { 711 iomap_flags |= IOMAP_F_NEW; 712 trace_xfs_iomap_alloc(ip, offset, count, whichfork, &imap); 713 } else { 714 trace_xfs_iomap_alloc(ip, offset, count, whichfork, &cmap); 715 } 716 done: 717 if (whichfork == XFS_COW_FORK) { 718 if (imap.br_startoff > offset_fsb) { 719 xfs_trim_extent(&cmap, offset_fsb, 720 imap.br_startoff - offset_fsb); 721 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, 722 IOMAP_F_SHARED); 723 goto out_unlock; 724 } 725 /* ensure we only report blocks we have a reservation for */ 726 xfs_trim_extent(&imap, cmap.br_startoff, cmap.br_blockcount); 727 shared = true; 728 } 729 if (shared) 730 iomap_flags |= IOMAP_F_SHARED; 731 error = xfs_bmbt_to_iomap(ip, iomap, &imap, iomap_flags); 732 out_unlock: 733 xfs_iunlock(ip, XFS_ILOCK_EXCL); 734 return error; 735 } 736 737 int 738 xfs_iomap_write_unwritten( 739 xfs_inode_t *ip, 740 xfs_off_t offset, 741 xfs_off_t count, 742 bool update_isize) 743 { 744 xfs_mount_t *mp = ip->i_mount; 745 xfs_fileoff_t offset_fsb; 746 xfs_filblks_t count_fsb; 747 xfs_filblks_t numblks_fsb; 748 int nimaps; 749 xfs_trans_t *tp; 750 xfs_bmbt_irec_t imap; 751 struct inode *inode = VFS_I(ip); 752 xfs_fsize_t i_size; 753 uint resblks; 754 int error; 755 756 trace_xfs_unwritten_convert(ip, offset, count); 757 758 offset_fsb = XFS_B_TO_FSBT(mp, offset); 759 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 760 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb); 761 762 /* 763 * Reserve enough blocks in this transaction for two complete extent 764 * btree splits. We may be converting the middle part of an unwritten 765 * extent and in this case we will insert two new extents in the btree 766 * each of which could cause a full split. 767 * 768 * This reservation amount will be used in the first call to 769 * xfs_bmbt_split() to select an AG with enough space to satisfy the 770 * rest of the operation. 771 */ 772 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; 773 774 do { 775 /* 776 * Set up a transaction to convert the range of extents 777 * from unwritten to real. Do allocations in a loop until 778 * we have covered the range passed in. 779 * 780 * Note that we can't risk to recursing back into the filesystem 781 * here as we might be asked to write out the same inode that we 782 * complete here and might deadlock on the iolock. 783 */ 784 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 785 XFS_TRANS_RESERVE, &tp); 786 if (error) 787 return error; 788 789 xfs_ilock(ip, XFS_ILOCK_EXCL); 790 xfs_trans_ijoin(tp, ip, 0); 791 792 /* 793 * Modify the unwritten extent state of the buffer. 794 */ 795 nimaps = 1; 796 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, 797 XFS_BMAPI_CONVERT, resblks, &imap, 798 &nimaps); 799 if (error) 800 goto error_on_bmapi_transaction; 801 802 /* 803 * Log the updated inode size as we go. We have to be careful 804 * to only log it up to the actual write offset if it is 805 * halfway into a block. 806 */ 807 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb); 808 if (i_size > offset + count) 809 i_size = offset + count; 810 if (update_isize && i_size > i_size_read(inode)) 811 i_size_write(inode, i_size); 812 i_size = xfs_new_eof(ip, i_size); 813 if (i_size) { 814 ip->i_d.di_size = i_size; 815 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 816 } 817 818 error = xfs_trans_commit(tp); 819 xfs_iunlock(ip, XFS_ILOCK_EXCL); 820 if (error) 821 return error; 822 823 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) 824 return xfs_alert_fsblock_zero(ip, &imap); 825 826 if ((numblks_fsb = imap.br_blockcount) == 0) { 827 /* 828 * The numblks_fsb value should always get 829 * smaller, otherwise the loop is stuck. 830 */ 831 ASSERT(imap.br_blockcount); 832 break; 833 } 834 offset_fsb += numblks_fsb; 835 count_fsb -= numblks_fsb; 836 } while (count_fsb > 0); 837 838 return 0; 839 840 error_on_bmapi_transaction: 841 xfs_trans_cancel(tp); 842 xfs_iunlock(ip, XFS_ILOCK_EXCL); 843 return error; 844 } 845 846 static inline bool 847 imap_needs_alloc( 848 struct inode *inode, 849 struct xfs_bmbt_irec *imap, 850 int nimaps) 851 { 852 return !nimaps || 853 imap->br_startblock == HOLESTARTBLOCK || 854 imap->br_startblock == DELAYSTARTBLOCK || 855 (IS_DAX(inode) && imap->br_state == XFS_EXT_UNWRITTEN); 856 } 857 858 static inline bool 859 needs_cow_for_zeroing( 860 struct xfs_bmbt_irec *imap, 861 int nimaps) 862 { 863 return nimaps && 864 imap->br_startblock != HOLESTARTBLOCK && 865 imap->br_state != XFS_EXT_UNWRITTEN; 866 } 867 868 static int 869 xfs_ilock_for_iomap( 870 struct xfs_inode *ip, 871 unsigned flags, 872 unsigned *lockmode) 873 { 874 unsigned mode = XFS_ILOCK_SHARED; 875 bool is_write = flags & (IOMAP_WRITE | IOMAP_ZERO); 876 877 /* 878 * COW writes may allocate delalloc space or convert unwritten COW 879 * extents, so we need to make sure to take the lock exclusively here. 880 */ 881 if (xfs_is_cow_inode(ip) && is_write) { 882 /* 883 * FIXME: It could still overwrite on unshared extents and not 884 * need allocation. 885 */ 886 if (flags & IOMAP_NOWAIT) 887 return -EAGAIN; 888 mode = XFS_ILOCK_EXCL; 889 } 890 891 /* 892 * Extents not yet cached requires exclusive access, don't block. This 893 * is an opencoded xfs_ilock_data_map_shared() call but with 894 * non-blocking behaviour. 895 */ 896 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) { 897 if (flags & IOMAP_NOWAIT) 898 return -EAGAIN; 899 mode = XFS_ILOCK_EXCL; 900 } 901 902 relock: 903 if (flags & IOMAP_NOWAIT) { 904 if (!xfs_ilock_nowait(ip, mode)) 905 return -EAGAIN; 906 } else { 907 xfs_ilock(ip, mode); 908 } 909 910 /* 911 * The reflink iflag could have changed since the earlier unlocked 912 * check, so if we got ILOCK_SHARED for a write and but we're now a 913 * reflink inode we have to switch to ILOCK_EXCL and relock. 914 */ 915 if (mode == XFS_ILOCK_SHARED && is_write && xfs_is_cow_inode(ip)) { 916 xfs_iunlock(ip, mode); 917 mode = XFS_ILOCK_EXCL; 918 goto relock; 919 } 920 921 *lockmode = mode; 922 return 0; 923 } 924 925 static int 926 xfs_file_iomap_begin( 927 struct inode *inode, 928 loff_t offset, 929 loff_t length, 930 unsigned flags, 931 struct iomap *iomap, 932 struct iomap *srcmap) 933 { 934 struct xfs_inode *ip = XFS_I(inode); 935 struct xfs_mount *mp = ip->i_mount; 936 struct xfs_bmbt_irec imap; 937 xfs_fileoff_t offset_fsb, end_fsb; 938 int nimaps = 1, error = 0; 939 bool shared = false; 940 u16 iomap_flags = 0; 941 unsigned lockmode; 942 943 if (XFS_FORCED_SHUTDOWN(mp)) 944 return -EIO; 945 946 if ((flags & (IOMAP_WRITE | IOMAP_ZERO)) && !(flags & IOMAP_DIRECT) && 947 !IS_DAX(inode) && !xfs_get_extsz_hint(ip)) { 948 /* Reserve delalloc blocks for regular writeback. */ 949 return xfs_file_iomap_begin_delay(inode, offset, length, flags, 950 iomap); 951 } 952 953 /* 954 * Lock the inode in the manner required for the specified operation and 955 * check for as many conditions that would result in blocking as 956 * possible. This removes most of the non-blocking checks from the 957 * mapping code below. 958 */ 959 error = xfs_ilock_for_iomap(ip, flags, &lockmode); 960 if (error) 961 return error; 962 963 ASSERT(offset <= mp->m_super->s_maxbytes); 964 if (offset > mp->m_super->s_maxbytes - length) 965 length = mp->m_super->s_maxbytes - offset; 966 offset_fsb = XFS_B_TO_FSBT(mp, offset); 967 end_fsb = XFS_B_TO_FSB(mp, offset + length); 968 969 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 970 &nimaps, 0); 971 if (error) 972 goto out_unlock; 973 974 if (flags & IOMAP_REPORT) { 975 /* Trim the mapping to the nearest shared extent boundary. */ 976 error = xfs_reflink_trim_around_shared(ip, &imap, &shared); 977 if (error) 978 goto out_unlock; 979 } 980 981 /* Non-modifying mapping requested, so we are done */ 982 if (!(flags & (IOMAP_WRITE | IOMAP_ZERO))) 983 goto out_found; 984 985 /* 986 * Break shared extents if necessary. Checks for non-blocking IO have 987 * been done up front, so we don't need to do them here. 988 */ 989 if (xfs_is_cow_inode(ip)) { 990 struct xfs_bmbt_irec cmap; 991 bool directio = (flags & IOMAP_DIRECT); 992 993 /* if zeroing doesn't need COW allocation, then we are done. */ 994 if ((flags & IOMAP_ZERO) && 995 !needs_cow_for_zeroing(&imap, nimaps)) 996 goto out_found; 997 998 /* may drop and re-acquire the ilock */ 999 cmap = imap; 1000 error = xfs_reflink_allocate_cow(ip, &cmap, &shared, &lockmode, 1001 directio); 1002 if (error) 1003 goto out_unlock; 1004 1005 /* 1006 * For buffered writes we need to report the address of the 1007 * previous block (if there was any) so that the higher level 1008 * write code can perform read-modify-write operations; we 1009 * won't need the CoW fork mapping until writeback. For direct 1010 * I/O, which must be block aligned, we need to report the 1011 * newly allocated address. If the data fork has a hole, copy 1012 * the COW fork mapping to avoid allocating to the data fork. 1013 */ 1014 if (directio || imap.br_startblock == HOLESTARTBLOCK) 1015 imap = cmap; 1016 1017 end_fsb = imap.br_startoff + imap.br_blockcount; 1018 length = XFS_FSB_TO_B(mp, end_fsb) - offset; 1019 } 1020 1021 /* Don't need to allocate over holes when doing zeroing operations. */ 1022 if (flags & IOMAP_ZERO) 1023 goto out_found; 1024 1025 if (!imap_needs_alloc(inode, &imap, nimaps)) 1026 goto out_found; 1027 1028 /* If nowait is set bail since we are going to make allocations. */ 1029 if (flags & IOMAP_NOWAIT) { 1030 error = -EAGAIN; 1031 goto out_unlock; 1032 } 1033 1034 /* 1035 * We cap the maximum length we map to a sane size to keep the chunks 1036 * of work done where somewhat symmetric with the work writeback does. 1037 * This is a completely arbitrary number pulled out of thin air as a 1038 * best guess for initial testing. 1039 * 1040 * Note that the values needs to be less than 32-bits wide until the 1041 * lower level functions are updated. 1042 */ 1043 length = min_t(loff_t, length, 1024 * PAGE_SIZE); 1044 1045 /* 1046 * xfs_iomap_write_direct() expects the shared lock. It is unlocked on 1047 * return. 1048 */ 1049 if (lockmode == XFS_ILOCK_EXCL) 1050 xfs_ilock_demote(ip, lockmode); 1051 error = xfs_iomap_write_direct(ip, offset, length, &imap, 1052 nimaps); 1053 if (error) 1054 return error; 1055 1056 iomap_flags |= IOMAP_F_NEW; 1057 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap); 1058 1059 out_finish: 1060 /* 1061 * Writes that span EOF might trigger an IO size update on completion, 1062 * so consider them to be dirty for the purposes of O_DSYNC even if 1063 * there is no other metadata changes pending or have been made here. 1064 */ 1065 if ((flags & IOMAP_WRITE) && offset + length > i_size_read(inode)) 1066 iomap_flags |= IOMAP_F_DIRTY; 1067 if (shared) 1068 iomap_flags |= IOMAP_F_SHARED; 1069 return xfs_bmbt_to_iomap(ip, iomap, &imap, iomap_flags); 1070 1071 out_found: 1072 ASSERT(nimaps); 1073 xfs_iunlock(ip, lockmode); 1074 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); 1075 goto out_finish; 1076 1077 out_unlock: 1078 xfs_iunlock(ip, lockmode); 1079 return error; 1080 } 1081 1082 static int 1083 xfs_file_iomap_end_delalloc( 1084 struct xfs_inode *ip, 1085 loff_t offset, 1086 loff_t length, 1087 ssize_t written, 1088 struct iomap *iomap) 1089 { 1090 struct xfs_mount *mp = ip->i_mount; 1091 xfs_fileoff_t start_fsb; 1092 xfs_fileoff_t end_fsb; 1093 int error = 0; 1094 1095 /* 1096 * Behave as if the write failed if drop writes is enabled. Set the NEW 1097 * flag to force delalloc cleanup. 1098 */ 1099 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_DROP_WRITES)) { 1100 iomap->flags |= IOMAP_F_NEW; 1101 written = 0; 1102 } 1103 1104 /* 1105 * start_fsb refers to the first unused block after a short write. If 1106 * nothing was written, round offset down to point at the first block in 1107 * the range. 1108 */ 1109 if (unlikely(!written)) 1110 start_fsb = XFS_B_TO_FSBT(mp, offset); 1111 else 1112 start_fsb = XFS_B_TO_FSB(mp, offset + written); 1113 end_fsb = XFS_B_TO_FSB(mp, offset + length); 1114 1115 /* 1116 * Trim delalloc blocks if they were allocated by this write and we 1117 * didn't manage to write the whole range. 1118 * 1119 * We don't need to care about racing delalloc as we hold i_mutex 1120 * across the reserve/allocate/unreserve calls. If there are delalloc 1121 * blocks in the range, they are ours. 1122 */ 1123 if ((iomap->flags & IOMAP_F_NEW) && start_fsb < end_fsb) { 1124 truncate_pagecache_range(VFS_I(ip), XFS_FSB_TO_B(mp, start_fsb), 1125 XFS_FSB_TO_B(mp, end_fsb) - 1); 1126 1127 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1128 end_fsb - start_fsb); 1129 if (error && !XFS_FORCED_SHUTDOWN(mp)) { 1130 xfs_alert(mp, "%s: unable to clean up ino %lld", 1131 __func__, ip->i_ino); 1132 return error; 1133 } 1134 } 1135 1136 return 0; 1137 } 1138 1139 static int 1140 xfs_file_iomap_end( 1141 struct inode *inode, 1142 loff_t offset, 1143 loff_t length, 1144 ssize_t written, 1145 unsigned flags, 1146 struct iomap *iomap) 1147 { 1148 if ((flags & IOMAP_WRITE) && iomap->type == IOMAP_DELALLOC) 1149 return xfs_file_iomap_end_delalloc(XFS_I(inode), offset, 1150 length, written, iomap); 1151 return 0; 1152 } 1153 1154 const struct iomap_ops xfs_iomap_ops = { 1155 .iomap_begin = xfs_file_iomap_begin, 1156 .iomap_end = xfs_file_iomap_end, 1157 }; 1158 1159 static int 1160 xfs_seek_iomap_begin( 1161 struct inode *inode, 1162 loff_t offset, 1163 loff_t length, 1164 unsigned flags, 1165 struct iomap *iomap, 1166 struct iomap *srcmap) 1167 { 1168 struct xfs_inode *ip = XFS_I(inode); 1169 struct xfs_mount *mp = ip->i_mount; 1170 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1171 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1172 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF; 1173 struct xfs_iext_cursor icur; 1174 struct xfs_bmbt_irec imap, cmap; 1175 int error = 0; 1176 unsigned lockmode; 1177 1178 if (XFS_FORCED_SHUTDOWN(mp)) 1179 return -EIO; 1180 1181 lockmode = xfs_ilock_data_map_shared(ip); 1182 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) { 1183 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); 1184 if (error) 1185 goto out_unlock; 1186 } 1187 1188 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) { 1189 /* 1190 * If we found a data extent we are done. 1191 */ 1192 if (imap.br_startoff <= offset_fsb) 1193 goto done; 1194 data_fsb = imap.br_startoff; 1195 } else { 1196 /* 1197 * Fake a hole until the end of the file. 1198 */ 1199 data_fsb = min(XFS_B_TO_FSB(mp, offset + length), 1200 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); 1201 } 1202 1203 /* 1204 * If a COW fork extent covers the hole, report it - capped to the next 1205 * data fork extent: 1206 */ 1207 if (xfs_inode_has_cow_data(ip) && 1208 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap)) 1209 cow_fsb = cmap.br_startoff; 1210 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 1211 if (data_fsb < cow_fsb + cmap.br_blockcount) 1212 end_fsb = min(end_fsb, data_fsb); 1213 xfs_trim_extent(&cmap, offset_fsb, end_fsb); 1214 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, IOMAP_F_SHARED); 1215 /* 1216 * This is a COW extent, so we must probe the page cache 1217 * because there could be dirty page cache being backed 1218 * by this extent. 1219 */ 1220 iomap->type = IOMAP_UNWRITTEN; 1221 goto out_unlock; 1222 } 1223 1224 /* 1225 * Else report a hole, capped to the next found data or COW extent. 1226 */ 1227 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb) 1228 imap.br_blockcount = cow_fsb - offset_fsb; 1229 else 1230 imap.br_blockcount = data_fsb - offset_fsb; 1231 imap.br_startoff = offset_fsb; 1232 imap.br_startblock = HOLESTARTBLOCK; 1233 imap.br_state = XFS_EXT_NORM; 1234 done: 1235 xfs_trim_extent(&imap, offset_fsb, end_fsb); 1236 error = xfs_bmbt_to_iomap(ip, iomap, &imap, 0); 1237 out_unlock: 1238 xfs_iunlock(ip, lockmode); 1239 return error; 1240 } 1241 1242 const struct iomap_ops xfs_seek_iomap_ops = { 1243 .iomap_begin = xfs_seek_iomap_begin, 1244 }; 1245 1246 static int 1247 xfs_xattr_iomap_begin( 1248 struct inode *inode, 1249 loff_t offset, 1250 loff_t length, 1251 unsigned flags, 1252 struct iomap *iomap, 1253 struct iomap *srcmap) 1254 { 1255 struct xfs_inode *ip = XFS_I(inode); 1256 struct xfs_mount *mp = ip->i_mount; 1257 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 1258 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); 1259 struct xfs_bmbt_irec imap; 1260 int nimaps = 1, error = 0; 1261 unsigned lockmode; 1262 1263 if (XFS_FORCED_SHUTDOWN(mp)) 1264 return -EIO; 1265 1266 lockmode = xfs_ilock_attr_map_shared(ip); 1267 1268 /* if there are no attribute fork or extents, return ENOENT */ 1269 if (!XFS_IFORK_Q(ip) || !ip->i_d.di_anextents) { 1270 error = -ENOENT; 1271 goto out_unlock; 1272 } 1273 1274 ASSERT(ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL); 1275 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 1276 &nimaps, XFS_BMAPI_ATTRFORK); 1277 out_unlock: 1278 xfs_iunlock(ip, lockmode); 1279 1280 if (error) 1281 return error; 1282 ASSERT(nimaps); 1283 return xfs_bmbt_to_iomap(ip, iomap, &imap, 0); 1284 } 1285 1286 const struct iomap_ops xfs_xattr_iomap_ops = { 1287 .iomap_begin = xfs_xattr_iomap_begin, 1288 }; 1289