xref: /linux/fs/xfs/xfs_inode_item.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_buf_item.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_btree.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_rw.h"
43 
44 
45 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
46 
47 /*
48  * This returns the number of iovecs needed to log the given inode item.
49  *
50  * We need one iovec for the inode log format structure, one for the
51  * inode core, and possibly one for the inode data/extents/b-tree root
52  * and one for the inode attribute data/extents/b-tree root.
53  */
54 STATIC uint
55 xfs_inode_item_size(
56 	xfs_inode_log_item_t	*iip)
57 {
58 	uint		nvecs;
59 	xfs_inode_t	*ip;
60 
61 	ip = iip->ili_inode;
62 	nvecs = 2;
63 
64 	/*
65 	 * Only log the data/extents/b-tree root if there is something
66 	 * left to log.
67 	 */
68 	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
69 
70 	switch (ip->i_d.di_format) {
71 	case XFS_DINODE_FMT_EXTENTS:
72 		iip->ili_format.ilf_fields &=
73 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
74 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
75 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
76 		    (ip->i_d.di_nextents > 0) &&
77 		    (ip->i_df.if_bytes > 0)) {
78 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
79 			nvecs++;
80 		} else {
81 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
82 		}
83 		break;
84 
85 	case XFS_DINODE_FMT_BTREE:
86 		ASSERT(ip->i_df.if_ext_max ==
87 		       XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
88 		iip->ili_format.ilf_fields &=
89 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
90 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
91 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
92 		    (ip->i_df.if_broot_bytes > 0)) {
93 			ASSERT(ip->i_df.if_broot != NULL);
94 			nvecs++;
95 		} else {
96 			ASSERT(!(iip->ili_format.ilf_fields &
97 				 XFS_ILOG_DBROOT));
98 #ifdef XFS_TRANS_DEBUG
99 			if (iip->ili_root_size > 0) {
100 				ASSERT(iip->ili_root_size ==
101 				       ip->i_df.if_broot_bytes);
102 				ASSERT(memcmp(iip->ili_orig_root,
103 					    ip->i_df.if_broot,
104 					    iip->ili_root_size) == 0);
105 			} else {
106 				ASSERT(ip->i_df.if_broot_bytes == 0);
107 			}
108 #endif
109 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
110 		}
111 		break;
112 
113 	case XFS_DINODE_FMT_LOCAL:
114 		iip->ili_format.ilf_fields &=
115 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
116 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
117 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
118 		    (ip->i_df.if_bytes > 0)) {
119 			ASSERT(ip->i_df.if_u1.if_data != NULL);
120 			ASSERT(ip->i_d.di_size > 0);
121 			nvecs++;
122 		} else {
123 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
124 		}
125 		break;
126 
127 	case XFS_DINODE_FMT_DEV:
128 		iip->ili_format.ilf_fields &=
129 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
130 			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
131 		break;
132 
133 	case XFS_DINODE_FMT_UUID:
134 		iip->ili_format.ilf_fields &=
135 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
136 			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
137 		break;
138 
139 	default:
140 		ASSERT(0);
141 		break;
142 	}
143 
144 	/*
145 	 * If there are no attributes associated with this file,
146 	 * then there cannot be anything more to log.
147 	 * Clear all attribute-related log flags.
148 	 */
149 	if (!XFS_IFORK_Q(ip)) {
150 		iip->ili_format.ilf_fields &=
151 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
152 		return nvecs;
153 	}
154 
155 	/*
156 	 * Log any necessary attribute data.
157 	 */
158 	switch (ip->i_d.di_aformat) {
159 	case XFS_DINODE_FMT_EXTENTS:
160 		iip->ili_format.ilf_fields &=
161 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
162 		if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
163 		    (ip->i_d.di_anextents > 0) &&
164 		    (ip->i_afp->if_bytes > 0)) {
165 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
166 			nvecs++;
167 		} else {
168 			iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
169 		}
170 		break;
171 
172 	case XFS_DINODE_FMT_BTREE:
173 		iip->ili_format.ilf_fields &=
174 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
175 		if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
176 		    (ip->i_afp->if_broot_bytes > 0)) {
177 			ASSERT(ip->i_afp->if_broot != NULL);
178 			nvecs++;
179 		} else {
180 			iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
181 		}
182 		break;
183 
184 	case XFS_DINODE_FMT_LOCAL:
185 		iip->ili_format.ilf_fields &=
186 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
187 		if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
188 		    (ip->i_afp->if_bytes > 0)) {
189 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
190 			nvecs++;
191 		} else {
192 			iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
193 		}
194 		break;
195 
196 	default:
197 		ASSERT(0);
198 		break;
199 	}
200 
201 	return nvecs;
202 }
203 
204 /*
205  * This is called to fill in the vector of log iovecs for the
206  * given inode log item.  It fills the first item with an inode
207  * log format structure, the second with the on-disk inode structure,
208  * and a possible third and/or fourth with the inode data/extents/b-tree
209  * root and inode attributes data/extents/b-tree root.
210  */
211 STATIC void
212 xfs_inode_item_format(
213 	xfs_inode_log_item_t	*iip,
214 	xfs_log_iovec_t		*log_vector)
215 {
216 	uint			nvecs;
217 	xfs_log_iovec_t		*vecp;
218 	xfs_inode_t		*ip;
219 	size_t			data_bytes;
220 	xfs_bmbt_rec_t		*ext_buffer;
221 	int			nrecs;
222 	xfs_mount_t		*mp;
223 
224 	ip = iip->ili_inode;
225 	vecp = log_vector;
226 
227 	vecp->i_addr = (xfs_caddr_t)&iip->ili_format;
228 	vecp->i_len  = sizeof(xfs_inode_log_format_t);
229 	XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT);
230 	vecp++;
231 	nvecs	     = 1;
232 
233 	/*
234 	 * Clear i_update_core if the timestamps (or any other
235 	 * non-transactional modification) need flushing/logging
236 	 * and we're about to log them with the rest of the core.
237 	 *
238 	 * This is the same logic as xfs_iflush() but this code can't
239 	 * run at the same time as xfs_iflush because we're in commit
240 	 * processing here and so we have the inode lock held in
241 	 * exclusive mode.  Although it doesn't really matter
242 	 * for the timestamps if both routines were to grab the
243 	 * timestamps or not.  That would be ok.
244 	 *
245 	 * We clear i_update_core before copying out the data.
246 	 * This is for coordination with our timestamp updates
247 	 * that don't hold the inode lock. They will always
248 	 * update the timestamps BEFORE setting i_update_core,
249 	 * so if we clear i_update_core after they set it we
250 	 * are guaranteed to see their updates to the timestamps
251 	 * either here.  Likewise, if they set it after we clear it
252 	 * here, we'll see it either on the next commit of this
253 	 * inode or the next time the inode gets flushed via
254 	 * xfs_iflush().  This depends on strongly ordered memory
255 	 * semantics, but we have that.  We use the SYNCHRONIZE
256 	 * macro to make sure that the compiler does not reorder
257 	 * the i_update_core access below the data copy below.
258 	 */
259 	if (ip->i_update_core)  {
260 		ip->i_update_core = 0;
261 		SYNCHRONIZE();
262 	}
263 
264 	/*
265 	 * We don't have to worry about re-ordering here because
266 	 * the update_size field is protected by the inode lock
267 	 * and we have that held in exclusive mode.
268 	 */
269 	if (ip->i_update_size)
270 		ip->i_update_size = 0;
271 
272 	/*
273 	 * Make sure to get the latest atime from the Linux inode.
274 	 */
275 	xfs_synchronize_atime(ip);
276 
277 	vecp->i_addr = (xfs_caddr_t)&ip->i_d;
278 	vecp->i_len  = sizeof(xfs_dinode_core_t);
279 	XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE);
280 	vecp++;
281 	nvecs++;
282 	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
283 
284 	/*
285 	 * If this is really an old format inode, then we need to
286 	 * log it as such.  This means that we have to copy the link
287 	 * count from the new field to the old.  We don't have to worry
288 	 * about the new fields, because nothing trusts them as long as
289 	 * the old inode version number is there.  If the superblock already
290 	 * has a new version number, then we don't bother converting back.
291 	 */
292 	mp = ip->i_mount;
293 	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
294 	       XFS_SB_VERSION_HASNLINK(&mp->m_sb));
295 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
296 		if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
297 			/*
298 			 * Convert it back.
299 			 */
300 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
301 			ip->i_d.di_onlink = ip->i_d.di_nlink;
302 		} else {
303 			/*
304 			 * The superblock version has already been bumped,
305 			 * so just make the conversion to the new inode
306 			 * format permanent.
307 			 */
308 			ip->i_d.di_version = XFS_DINODE_VERSION_2;
309 			ip->i_d.di_onlink = 0;
310 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
311 		}
312 	}
313 
314 	switch (ip->i_d.di_format) {
315 	case XFS_DINODE_FMT_EXTENTS:
316 		ASSERT(!(iip->ili_format.ilf_fields &
317 			 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
318 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
319 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
320 			ASSERT(ip->i_df.if_bytes > 0);
321 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
322 			ASSERT(ip->i_d.di_nextents > 0);
323 			ASSERT(iip->ili_extents_buf == NULL);
324 			nrecs = ip->i_df.if_bytes /
325 				(uint)sizeof(xfs_bmbt_rec_t);
326 			ASSERT(nrecs > 0);
327 #ifdef XFS_NATIVE_HOST
328 			if (nrecs == ip->i_d.di_nextents) {
329 				/*
330 				 * There are no delayed allocation
331 				 * extents, so just point to the
332 				 * real extents array.
333 				 */
334 				vecp->i_addr =
335 					(char *)(ip->i_df.if_u1.if_extents);
336 				vecp->i_len = ip->i_df.if_bytes;
337 				XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
338 			} else
339 #endif
340 			{
341 				/*
342 				 * There are delayed allocation extents
343 				 * in the inode, or we need to convert
344 				 * the extents to on disk format.
345 				 * Use xfs_iextents_copy()
346 				 * to copy only the real extents into
347 				 * a separate buffer.  We'll free the
348 				 * buffer in the unlock routine.
349 				 */
350 				ext_buffer = kmem_alloc(ip->i_df.if_bytes,
351 					KM_SLEEP);
352 				iip->ili_extents_buf = ext_buffer;
353 				vecp->i_addr = (xfs_caddr_t)ext_buffer;
354 				vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
355 						XFS_DATA_FORK);
356 				XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
357 			}
358 			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
359 			iip->ili_format.ilf_dsize = vecp->i_len;
360 			vecp++;
361 			nvecs++;
362 		}
363 		break;
364 
365 	case XFS_DINODE_FMT_BTREE:
366 		ASSERT(!(iip->ili_format.ilf_fields &
367 			 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
368 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
369 		if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
370 			ASSERT(ip->i_df.if_broot_bytes > 0);
371 			ASSERT(ip->i_df.if_broot != NULL);
372 			vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot;
373 			vecp->i_len = ip->i_df.if_broot_bytes;
374 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT);
375 			vecp++;
376 			nvecs++;
377 			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
378 		}
379 		break;
380 
381 	case XFS_DINODE_FMT_LOCAL:
382 		ASSERT(!(iip->ili_format.ilf_fields &
383 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
384 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
385 		if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
386 			ASSERT(ip->i_df.if_bytes > 0);
387 			ASSERT(ip->i_df.if_u1.if_data != NULL);
388 			ASSERT(ip->i_d.di_size > 0);
389 
390 			vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data;
391 			/*
392 			 * Round i_bytes up to a word boundary.
393 			 * The underlying memory is guaranteed to
394 			 * to be there by xfs_idata_realloc().
395 			 */
396 			data_bytes = roundup(ip->i_df.if_bytes, 4);
397 			ASSERT((ip->i_df.if_real_bytes == 0) ||
398 			       (ip->i_df.if_real_bytes == data_bytes));
399 			vecp->i_len = (int)data_bytes;
400 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL);
401 			vecp++;
402 			nvecs++;
403 			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
404 		}
405 		break;
406 
407 	case XFS_DINODE_FMT_DEV:
408 		ASSERT(!(iip->ili_format.ilf_fields &
409 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
410 			  XFS_ILOG_DDATA | XFS_ILOG_UUID)));
411 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
412 			iip->ili_format.ilf_u.ilfu_rdev =
413 				ip->i_df.if_u2.if_rdev;
414 		}
415 		break;
416 
417 	case XFS_DINODE_FMT_UUID:
418 		ASSERT(!(iip->ili_format.ilf_fields &
419 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
420 			  XFS_ILOG_DDATA | XFS_ILOG_DEV)));
421 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
422 			iip->ili_format.ilf_u.ilfu_uuid =
423 				ip->i_df.if_u2.if_uuid;
424 		}
425 		break;
426 
427 	default:
428 		ASSERT(0);
429 		break;
430 	}
431 
432 	/*
433 	 * If there are no attributes associated with the file,
434 	 * then we're done.
435 	 * Assert that no attribute-related log flags are set.
436 	 */
437 	if (!XFS_IFORK_Q(ip)) {
438 		ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
439 		iip->ili_format.ilf_size = nvecs;
440 		ASSERT(!(iip->ili_format.ilf_fields &
441 			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
442 		return;
443 	}
444 
445 	switch (ip->i_d.di_aformat) {
446 	case XFS_DINODE_FMT_EXTENTS:
447 		ASSERT(!(iip->ili_format.ilf_fields &
448 			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
449 		if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
450 			ASSERT(ip->i_afp->if_bytes > 0);
451 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
452 			ASSERT(ip->i_d.di_anextents > 0);
453 #ifdef DEBUG
454 			nrecs = ip->i_afp->if_bytes /
455 				(uint)sizeof(xfs_bmbt_rec_t);
456 #endif
457 			ASSERT(nrecs > 0);
458 			ASSERT(nrecs == ip->i_d.di_anextents);
459 #ifdef XFS_NATIVE_HOST
460 			/*
461 			 * There are not delayed allocation extents
462 			 * for attributes, so just point at the array.
463 			 */
464 			vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents);
465 			vecp->i_len = ip->i_afp->if_bytes;
466 #else
467 			ASSERT(iip->ili_aextents_buf == NULL);
468 			/*
469 			 * Need to endian flip before logging
470 			 */
471 			ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
472 				KM_SLEEP);
473 			iip->ili_aextents_buf = ext_buffer;
474 			vecp->i_addr = (xfs_caddr_t)ext_buffer;
475 			vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
476 					XFS_ATTR_FORK);
477 #endif
478 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT);
479 			iip->ili_format.ilf_asize = vecp->i_len;
480 			vecp++;
481 			nvecs++;
482 		}
483 		break;
484 
485 	case XFS_DINODE_FMT_BTREE:
486 		ASSERT(!(iip->ili_format.ilf_fields &
487 			 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
488 		if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
489 			ASSERT(ip->i_afp->if_broot_bytes > 0);
490 			ASSERT(ip->i_afp->if_broot != NULL);
491 			vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot;
492 			vecp->i_len = ip->i_afp->if_broot_bytes;
493 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT);
494 			vecp++;
495 			nvecs++;
496 			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
497 		}
498 		break;
499 
500 	case XFS_DINODE_FMT_LOCAL:
501 		ASSERT(!(iip->ili_format.ilf_fields &
502 			 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
503 		if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
504 			ASSERT(ip->i_afp->if_bytes > 0);
505 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
506 
507 			vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data;
508 			/*
509 			 * Round i_bytes up to a word boundary.
510 			 * The underlying memory is guaranteed to
511 			 * to be there by xfs_idata_realloc().
512 			 */
513 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
514 			ASSERT((ip->i_afp->if_real_bytes == 0) ||
515 			       (ip->i_afp->if_real_bytes == data_bytes));
516 			vecp->i_len = (int)data_bytes;
517 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL);
518 			vecp++;
519 			nvecs++;
520 			iip->ili_format.ilf_asize = (unsigned)data_bytes;
521 		}
522 		break;
523 
524 	default:
525 		ASSERT(0);
526 		break;
527 	}
528 
529 	ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
530 	iip->ili_format.ilf_size = nvecs;
531 }
532 
533 
534 /*
535  * This is called to pin the inode associated with the inode log
536  * item in memory so it cannot be written out.  Do this by calling
537  * xfs_ipin() to bump the pin count in the inode while holding the
538  * inode pin lock.
539  */
540 STATIC void
541 xfs_inode_item_pin(
542 	xfs_inode_log_item_t	*iip)
543 {
544 	ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE));
545 	xfs_ipin(iip->ili_inode);
546 }
547 
548 
549 /*
550  * This is called to unpin the inode associated with the inode log
551  * item which was previously pinned with a call to xfs_inode_item_pin().
552  * Just call xfs_iunpin() on the inode to do this.
553  */
554 /* ARGSUSED */
555 STATIC void
556 xfs_inode_item_unpin(
557 	xfs_inode_log_item_t	*iip,
558 	int			stale)
559 {
560 	xfs_iunpin(iip->ili_inode);
561 }
562 
563 /* ARGSUSED */
564 STATIC void
565 xfs_inode_item_unpin_remove(
566 	xfs_inode_log_item_t	*iip,
567 	xfs_trans_t		*tp)
568 {
569 	xfs_iunpin(iip->ili_inode);
570 }
571 
572 /*
573  * This is called to attempt to lock the inode associated with this
574  * inode log item, in preparation for the push routine which does the actual
575  * iflush.  Don't sleep on the inode lock or the flush lock.
576  *
577  * If the flush lock is already held, indicating that the inode has
578  * been or is in the process of being flushed, then (ideally) we'd like to
579  * see if the inode's buffer is still incore, and if so give it a nudge.
580  * We delay doing so until the pushbuf routine, though, to avoid holding
581  * the AIL lock across a call to the blackhole which is the buffer cache.
582  * Also we don't want to sleep in any device strategy routines, which can happen
583  * if we do the subsequent bawrite in here.
584  */
585 STATIC uint
586 xfs_inode_item_trylock(
587 	xfs_inode_log_item_t	*iip)
588 {
589 	register xfs_inode_t	*ip;
590 
591 	ip = iip->ili_inode;
592 
593 	if (xfs_ipincount(ip) > 0) {
594 		return XFS_ITEM_PINNED;
595 	}
596 
597 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
598 		return XFS_ITEM_LOCKED;
599 	}
600 
601 	if (!xfs_iflock_nowait(ip)) {
602 		/*
603 		 * If someone else isn't already trying to push the inode
604 		 * buffer, we get to do it.
605 		 */
606 		if (iip->ili_pushbuf_flag == 0) {
607 			iip->ili_pushbuf_flag = 1;
608 #ifdef DEBUG
609 			iip->ili_push_owner = current_pid();
610 #endif
611 			/*
612 			 * Inode is left locked in shared mode.
613 			 * Pushbuf routine gets to unlock it.
614 			 */
615 			return XFS_ITEM_PUSHBUF;
616 		} else {
617 			/*
618 			 * We hold the AIL_LOCK, so we must specify the
619 			 * NONOTIFY flag so that we won't double trip.
620 			 */
621 			xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
622 			return XFS_ITEM_FLUSHING;
623 		}
624 		/* NOTREACHED */
625 	}
626 
627 	/* Stale items should force out the iclog */
628 	if (ip->i_flags & XFS_ISTALE) {
629 		xfs_ifunlock(ip);
630 		xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
631 		return XFS_ITEM_PINNED;
632 	}
633 
634 #ifdef DEBUG
635 	if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
636 		ASSERT(iip->ili_format.ilf_fields != 0);
637 		ASSERT(iip->ili_logged == 0);
638 		ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL);
639 	}
640 #endif
641 	return XFS_ITEM_SUCCESS;
642 }
643 
644 /*
645  * Unlock the inode associated with the inode log item.
646  * Clear the fields of the inode and inode log item that
647  * are specific to the current transaction.  If the
648  * hold flags is set, do not unlock the inode.
649  */
650 STATIC void
651 xfs_inode_item_unlock(
652 	xfs_inode_log_item_t	*iip)
653 {
654 	uint		hold;
655 	uint		iolocked;
656 	uint		lock_flags;
657 	xfs_inode_t	*ip;
658 
659 	ASSERT(iip != NULL);
660 	ASSERT(iip->ili_inode->i_itemp != NULL);
661 	ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE));
662 	ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
663 		  XFS_ILI_IOLOCKED_EXCL)) ||
664 	       ismrlocked(&(iip->ili_inode->i_iolock), MR_UPDATE));
665 	ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
666 		  XFS_ILI_IOLOCKED_SHARED)) ||
667 	       ismrlocked(&(iip->ili_inode->i_iolock), MR_ACCESS));
668 	/*
669 	 * Clear the transaction pointer in the inode.
670 	 */
671 	ip = iip->ili_inode;
672 	ip->i_transp = NULL;
673 
674 	/*
675 	 * If the inode needed a separate buffer with which to log
676 	 * its extents, then free it now.
677 	 */
678 	if (iip->ili_extents_buf != NULL) {
679 		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
680 		ASSERT(ip->i_d.di_nextents > 0);
681 		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
682 		ASSERT(ip->i_df.if_bytes > 0);
683 		kmem_free(iip->ili_extents_buf, ip->i_df.if_bytes);
684 		iip->ili_extents_buf = NULL;
685 	}
686 	if (iip->ili_aextents_buf != NULL) {
687 		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
688 		ASSERT(ip->i_d.di_anextents > 0);
689 		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
690 		ASSERT(ip->i_afp->if_bytes > 0);
691 		kmem_free(iip->ili_aextents_buf, ip->i_afp->if_bytes);
692 		iip->ili_aextents_buf = NULL;
693 	}
694 
695 	/*
696 	 * Figure out if we should unlock the inode or not.
697 	 */
698 	hold = iip->ili_flags & XFS_ILI_HOLD;
699 
700 	/*
701 	 * Before clearing out the flags, remember whether we
702 	 * are holding the inode's IO lock.
703 	 */
704 	iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY;
705 
706 	/*
707 	 * Clear out the fields of the inode log item particular
708 	 * to the current transaction.
709 	 */
710 	iip->ili_ilock_recur = 0;
711 	iip->ili_iolock_recur = 0;
712 	iip->ili_flags = 0;
713 
714 	/*
715 	 * Unlock the inode if XFS_ILI_HOLD was not set.
716 	 */
717 	if (!hold) {
718 		lock_flags = XFS_ILOCK_EXCL;
719 		if (iolocked & XFS_ILI_IOLOCKED_EXCL) {
720 			lock_flags |= XFS_IOLOCK_EXCL;
721 		} else if (iolocked & XFS_ILI_IOLOCKED_SHARED) {
722 			lock_flags |= XFS_IOLOCK_SHARED;
723 		}
724 		xfs_iput(iip->ili_inode, lock_flags);
725 	}
726 }
727 
728 /*
729  * This is called to find out where the oldest active copy of the
730  * inode log item in the on disk log resides now that the last log
731  * write of it completed at the given lsn.  Since we always re-log
732  * all dirty data in an inode, the latest copy in the on disk log
733  * is the only one that matters.  Therefore, simply return the
734  * given lsn.
735  */
736 /*ARGSUSED*/
737 STATIC xfs_lsn_t
738 xfs_inode_item_committed(
739 	xfs_inode_log_item_t	*iip,
740 	xfs_lsn_t		lsn)
741 {
742 	return (lsn);
743 }
744 
745 /*
746  * The transaction with the inode locked has aborted.  The inode
747  * must not be dirty within the transaction (unless we're forcibly
748  * shutting down).  We simply unlock just as if the transaction
749  * had been cancelled.
750  */
751 STATIC void
752 xfs_inode_item_abort(
753 	xfs_inode_log_item_t	*iip)
754 {
755 	xfs_inode_item_unlock(iip);
756 	return;
757 }
758 
759 
760 /*
761  * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
762  * failed to get the inode flush lock but did get the inode locked SHARED.
763  * Here we're trying to see if the inode buffer is incore, and if so whether it's
764  * marked delayed write. If that's the case, we'll initiate a bawrite on that
765  * buffer to expedite the process.
766  *
767  * We aren't holding the AIL_LOCK (or the flush lock) when this gets called,
768  * so it is inherently race-y.
769  */
770 STATIC void
771 xfs_inode_item_pushbuf(
772 	xfs_inode_log_item_t	*iip)
773 {
774 	xfs_inode_t	*ip;
775 	xfs_mount_t	*mp;
776 	xfs_buf_t	*bp;
777 	uint		dopush;
778 
779 	ip = iip->ili_inode;
780 
781 	ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));
782 
783 	/*
784 	 * The ili_pushbuf_flag keeps others from
785 	 * trying to duplicate our effort.
786 	 */
787 	ASSERT(iip->ili_pushbuf_flag != 0);
788 	ASSERT(iip->ili_push_owner == current_pid());
789 
790 	/*
791 	 * If flushlock isn't locked anymore, chances are that the
792 	 * inode flush completed and the inode was taken off the AIL.
793 	 * So, just get out.
794 	 */
795 	if (!issemalocked(&(ip->i_flock)) ||
796 	    ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
797 		iip->ili_pushbuf_flag = 0;
798 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
799 		return;
800 	}
801 
802 	mp = ip->i_mount;
803 	bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
804 		    iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);
805 
806 	if (bp != NULL) {
807 		if (XFS_BUF_ISDELAYWRITE(bp)) {
808 			/*
809 			 * We were racing with iflush because we don't hold
810 			 * the AIL_LOCK or the flush lock. However, at this point,
811 			 * we have the buffer, and we know that it's dirty.
812 			 * So, it's possible that iflush raced with us, and
813 			 * this item is already taken off the AIL.
814 			 * If not, we can flush it async.
815 			 */
816 			dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) &&
817 				  issemalocked(&(ip->i_flock)));
818 			iip->ili_pushbuf_flag = 0;
819 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
820 			xfs_buftrace("INODE ITEM PUSH", bp);
821 			if (XFS_BUF_ISPINNED(bp)) {
822 				xfs_log_force(mp, (xfs_lsn_t)0,
823 					      XFS_LOG_FORCE);
824 			}
825 			if (dopush) {
826 				xfs_bawrite(mp, bp);
827 			} else {
828 				xfs_buf_relse(bp);
829 			}
830 		} else {
831 			iip->ili_pushbuf_flag = 0;
832 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
833 			xfs_buf_relse(bp);
834 		}
835 		return;
836 	}
837 	/*
838 	 * We have to be careful about resetting pushbuf flag too early (above).
839 	 * Even though in theory we can do it as soon as we have the buflock,
840 	 * we don't want others to be doing work needlessly. They'll come to
841 	 * this function thinking that pushing the buffer is their
842 	 * responsibility only to find that the buffer is still locked by
843 	 * another doing the same thing
844 	 */
845 	iip->ili_pushbuf_flag = 0;
846 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
847 	return;
848 }
849 
850 
851 /*
852  * This is called to asynchronously write the inode associated with this
853  * inode log item out to disk. The inode will already have been locked by
854  * a successful call to xfs_inode_item_trylock().
855  */
856 STATIC void
857 xfs_inode_item_push(
858 	xfs_inode_log_item_t	*iip)
859 {
860 	xfs_inode_t	*ip;
861 
862 	ip = iip->ili_inode;
863 
864 	ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));
865 	ASSERT(issemalocked(&(ip->i_flock)));
866 	/*
867 	 * Since we were able to lock the inode's flush lock and
868 	 * we found it on the AIL, the inode must be dirty.  This
869 	 * is because the inode is removed from the AIL while still
870 	 * holding the flush lock in xfs_iflush_done().  Thus, if
871 	 * we found it in the AIL and were able to obtain the flush
872 	 * lock without sleeping, then there must not have been
873 	 * anyone in the process of flushing the inode.
874 	 */
875 	ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
876 	       iip->ili_format.ilf_fields != 0);
877 
878 	/*
879 	 * Write out the inode.  The completion routine ('iflush_done') will
880 	 * pull it from the AIL, mark it clean, unlock the flush lock.
881 	 */
882 	(void) xfs_iflush(ip, XFS_IFLUSH_ASYNC);
883 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
884 
885 	return;
886 }
887 
888 /*
889  * XXX rcc - this one really has to do something.  Probably needs
890  * to stamp in a new field in the incore inode.
891  */
892 /* ARGSUSED */
893 STATIC void
894 xfs_inode_item_committing(
895 	xfs_inode_log_item_t	*iip,
896 	xfs_lsn_t		lsn)
897 {
898 	iip->ili_last_lsn = lsn;
899 	return;
900 }
901 
902 /*
903  * This is the ops vector shared by all buf log items.
904  */
905 STATIC struct xfs_item_ops xfs_inode_item_ops = {
906 	.iop_size	= (uint(*)(xfs_log_item_t*))xfs_inode_item_size,
907 	.iop_format	= (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
908 					xfs_inode_item_format,
909 	.iop_pin	= (void(*)(xfs_log_item_t*))xfs_inode_item_pin,
910 	.iop_unpin	= (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin,
911 	.iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
912 					xfs_inode_item_unpin_remove,
913 	.iop_trylock	= (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock,
914 	.iop_unlock	= (void(*)(xfs_log_item_t*))xfs_inode_item_unlock,
915 	.iop_committed	= (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
916 					xfs_inode_item_committed,
917 	.iop_push	= (void(*)(xfs_log_item_t*))xfs_inode_item_push,
918 	.iop_abort	= (void(*)(xfs_log_item_t*))xfs_inode_item_abort,
919 	.iop_pushbuf	= (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf,
920 	.iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
921 					xfs_inode_item_committing
922 };
923 
924 
925 /*
926  * Initialize the inode log item for a newly allocated (in-core) inode.
927  */
928 void
929 xfs_inode_item_init(
930 	xfs_inode_t	*ip,
931 	xfs_mount_t	*mp)
932 {
933 	xfs_inode_log_item_t	*iip;
934 
935 	ASSERT(ip->i_itemp == NULL);
936 	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
937 
938 	iip->ili_item.li_type = XFS_LI_INODE;
939 	iip->ili_item.li_ops = &xfs_inode_item_ops;
940 	iip->ili_item.li_mountp = mp;
941 	iip->ili_inode = ip;
942 
943 	/*
944 	   We have zeroed memory. No need ...
945 	   iip->ili_extents_buf = NULL;
946 	   iip->ili_pushbuf_flag = 0;
947 	 */
948 
949 	iip->ili_format.ilf_type = XFS_LI_INODE;
950 	iip->ili_format.ilf_ino = ip->i_ino;
951 	iip->ili_format.ilf_blkno = ip->i_blkno;
952 	iip->ili_format.ilf_len = ip->i_len;
953 	iip->ili_format.ilf_boffset = ip->i_boffset;
954 }
955 
956 /*
957  * Free the inode log item and any memory hanging off of it.
958  */
959 void
960 xfs_inode_item_destroy(
961 	xfs_inode_t	*ip)
962 {
963 #ifdef XFS_TRANS_DEBUG
964 	if (ip->i_itemp->ili_root_size != 0) {
965 		kmem_free(ip->i_itemp->ili_orig_root,
966 			  ip->i_itemp->ili_root_size);
967 	}
968 #endif
969 	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
970 }
971 
972 
973 /*
974  * This is the inode flushing I/O completion routine.  It is called
975  * from interrupt level when the buffer containing the inode is
976  * flushed to disk.  It is responsible for removing the inode item
977  * from the AIL if it has not been re-logged, and unlocking the inode's
978  * flush lock.
979  */
980 /*ARGSUSED*/
981 void
982 xfs_iflush_done(
983 	xfs_buf_t		*bp,
984 	xfs_inode_log_item_t	*iip)
985 {
986 	xfs_inode_t	*ip;
987 	SPLDECL(s);
988 
989 	ip = iip->ili_inode;
990 
991 	/*
992 	 * We only want to pull the item from the AIL if it is
993 	 * actually there and its location in the log has not
994 	 * changed since we started the flush.  Thus, we only bother
995 	 * if the ili_logged flag is set and the inode's lsn has not
996 	 * changed.  First we check the lsn outside
997 	 * the lock since it's cheaper, and then we recheck while
998 	 * holding the lock before removing the inode from the AIL.
999 	 */
1000 	if (iip->ili_logged &&
1001 	    (iip->ili_item.li_lsn == iip->ili_flush_lsn)) {
1002 		AIL_LOCK(ip->i_mount, s);
1003 		if (iip->ili_item.li_lsn == iip->ili_flush_lsn) {
1004 			/*
1005 			 * xfs_trans_delete_ail() drops the AIL lock.
1006 			 */
1007 			xfs_trans_delete_ail(ip->i_mount,
1008 					     (xfs_log_item_t*)iip, s);
1009 		} else {
1010 			AIL_UNLOCK(ip->i_mount, s);
1011 		}
1012 	}
1013 
1014 	iip->ili_logged = 0;
1015 
1016 	/*
1017 	 * Clear the ili_last_fields bits now that we know that the
1018 	 * data corresponding to them is safely on disk.
1019 	 */
1020 	iip->ili_last_fields = 0;
1021 
1022 	/*
1023 	 * Release the inode's flush lock since we're done with it.
1024 	 */
1025 	xfs_ifunlock(ip);
1026 
1027 	return;
1028 }
1029 
1030 /*
1031  * This is the inode flushing abort routine.  It is called
1032  * from xfs_iflush when the filesystem is shutting down to clean
1033  * up the inode state.
1034  * It is responsible for removing the inode item
1035  * from the AIL if it has not been re-logged, and unlocking the inode's
1036  * flush lock.
1037  */
1038 void
1039 xfs_iflush_abort(
1040 	xfs_inode_t		*ip)
1041 {
1042 	xfs_inode_log_item_t	*iip;
1043 	xfs_mount_t		*mp;
1044 	SPLDECL(s);
1045 
1046 	iip = ip->i_itemp;
1047 	mp = ip->i_mount;
1048 	if (iip) {
1049 		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1050 			AIL_LOCK(mp, s);
1051 			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1052 				/*
1053 				 * xfs_trans_delete_ail() drops the AIL lock.
1054 				 */
1055 				xfs_trans_delete_ail(mp, (xfs_log_item_t *)iip,
1056 					s);
1057 			} else
1058 				AIL_UNLOCK(mp, s);
1059 		}
1060 		iip->ili_logged = 0;
1061 		/*
1062 		 * Clear the ili_last_fields bits now that we know that the
1063 		 * data corresponding to them is safely on disk.
1064 		 */
1065 		iip->ili_last_fields = 0;
1066 		/*
1067 		 * Clear the inode logging fields so no more flushes are
1068 		 * attempted.
1069 		 */
1070 		iip->ili_format.ilf_fields = 0;
1071 	}
1072 	/*
1073 	 * Release the inode's flush lock since we're done with it.
1074 	 */
1075 	xfs_ifunlock(ip);
1076 }
1077 
1078 void
1079 xfs_istale_done(
1080 	xfs_buf_t		*bp,
1081 	xfs_inode_log_item_t	*iip)
1082 {
1083 	xfs_iflush_abort(iip->ili_inode);
1084 }
1085 
1086 /*
1087  * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1088  * (which can have different field alignments) to the native version
1089  */
1090 int
1091 xfs_inode_item_format_convert(
1092 	xfs_log_iovec_t		*buf,
1093 	xfs_inode_log_format_t	*in_f)
1094 {
1095 	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1096 		xfs_inode_log_format_32_t *in_f32;
1097 
1098 		in_f32 = (xfs_inode_log_format_32_t *)buf->i_addr;
1099 		in_f->ilf_type = in_f32->ilf_type;
1100 		in_f->ilf_size = in_f32->ilf_size;
1101 		in_f->ilf_fields = in_f32->ilf_fields;
1102 		in_f->ilf_asize = in_f32->ilf_asize;
1103 		in_f->ilf_dsize = in_f32->ilf_dsize;
1104 		in_f->ilf_ino = in_f32->ilf_ino;
1105 		/* copy biggest field of ilf_u */
1106 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1107 		       in_f32->ilf_u.ilfu_uuid.__u_bits,
1108 		       sizeof(uuid_t));
1109 		in_f->ilf_blkno = in_f32->ilf_blkno;
1110 		in_f->ilf_len = in_f32->ilf_len;
1111 		in_f->ilf_boffset = in_f32->ilf_boffset;
1112 		return 0;
1113 	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1114 		xfs_inode_log_format_64_t *in_f64;
1115 
1116 		in_f64 = (xfs_inode_log_format_64_t *)buf->i_addr;
1117 		in_f->ilf_type = in_f64->ilf_type;
1118 		in_f->ilf_size = in_f64->ilf_size;
1119 		in_f->ilf_fields = in_f64->ilf_fields;
1120 		in_f->ilf_asize = in_f64->ilf_asize;
1121 		in_f->ilf_dsize = in_f64->ilf_dsize;
1122 		in_f->ilf_ino = in_f64->ilf_ino;
1123 		/* copy biggest field of ilf_u */
1124 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1125 		       in_f64->ilf_u.ilfu_uuid.__u_bits,
1126 		       sizeof(uuid_t));
1127 		in_f->ilf_blkno = in_f64->ilf_blkno;
1128 		in_f->ilf_len = in_f64->ilf_len;
1129 		in_f->ilf_boffset = in_f64->ilf_boffset;
1130 		return 0;
1131 	}
1132 	return EFSCORRUPTED;
1133 }
1134