1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_buf_item.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_dir2.h" 29 #include "xfs_dmapi.h" 30 #include "xfs_mount.h" 31 #include "xfs_trans_priv.h" 32 #include "xfs_bmap_btree.h" 33 #include "xfs_alloc_btree.h" 34 #include "xfs_ialloc_btree.h" 35 #include "xfs_dir2_sf.h" 36 #include "xfs_attr_sf.h" 37 #include "xfs_dinode.h" 38 #include "xfs_inode.h" 39 #include "xfs_inode_item.h" 40 #include "xfs_btree.h" 41 #include "xfs_ialloc.h" 42 #include "xfs_rw.h" 43 44 45 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 46 47 /* 48 * This returns the number of iovecs needed to log the given inode item. 49 * 50 * We need one iovec for the inode log format structure, one for the 51 * inode core, and possibly one for the inode data/extents/b-tree root 52 * and one for the inode attribute data/extents/b-tree root. 53 */ 54 STATIC uint 55 xfs_inode_item_size( 56 xfs_inode_log_item_t *iip) 57 { 58 uint nvecs; 59 xfs_inode_t *ip; 60 61 ip = iip->ili_inode; 62 nvecs = 2; 63 64 /* 65 * Only log the data/extents/b-tree root if there is something 66 * left to log. 67 */ 68 iip->ili_format.ilf_fields |= XFS_ILOG_CORE; 69 70 switch (ip->i_d.di_format) { 71 case XFS_DINODE_FMT_EXTENTS: 72 iip->ili_format.ilf_fields &= 73 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 74 XFS_ILOG_DEV | XFS_ILOG_UUID); 75 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) && 76 (ip->i_d.di_nextents > 0) && 77 (ip->i_df.if_bytes > 0)) { 78 ASSERT(ip->i_df.if_u1.if_extents != NULL); 79 nvecs++; 80 } else { 81 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT; 82 } 83 break; 84 85 case XFS_DINODE_FMT_BTREE: 86 ASSERT(ip->i_df.if_ext_max == 87 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t)); 88 iip->ili_format.ilf_fields &= 89 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | 90 XFS_ILOG_DEV | XFS_ILOG_UUID); 91 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) && 92 (ip->i_df.if_broot_bytes > 0)) { 93 ASSERT(ip->i_df.if_broot != NULL); 94 nvecs++; 95 } else { 96 ASSERT(!(iip->ili_format.ilf_fields & 97 XFS_ILOG_DBROOT)); 98 #ifdef XFS_TRANS_DEBUG 99 if (iip->ili_root_size > 0) { 100 ASSERT(iip->ili_root_size == 101 ip->i_df.if_broot_bytes); 102 ASSERT(memcmp(iip->ili_orig_root, 103 ip->i_df.if_broot, 104 iip->ili_root_size) == 0); 105 } else { 106 ASSERT(ip->i_df.if_broot_bytes == 0); 107 } 108 #endif 109 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT; 110 } 111 break; 112 113 case XFS_DINODE_FMT_LOCAL: 114 iip->ili_format.ilf_fields &= 115 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | 116 XFS_ILOG_DEV | XFS_ILOG_UUID); 117 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) && 118 (ip->i_df.if_bytes > 0)) { 119 ASSERT(ip->i_df.if_u1.if_data != NULL); 120 ASSERT(ip->i_d.di_size > 0); 121 nvecs++; 122 } else { 123 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA; 124 } 125 break; 126 127 case XFS_DINODE_FMT_DEV: 128 iip->ili_format.ilf_fields &= 129 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 130 XFS_ILOG_DEXT | XFS_ILOG_UUID); 131 break; 132 133 case XFS_DINODE_FMT_UUID: 134 iip->ili_format.ilf_fields &= 135 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 136 XFS_ILOG_DEXT | XFS_ILOG_DEV); 137 break; 138 139 default: 140 ASSERT(0); 141 break; 142 } 143 144 /* 145 * If there are no attributes associated with this file, 146 * then there cannot be anything more to log. 147 * Clear all attribute-related log flags. 148 */ 149 if (!XFS_IFORK_Q(ip)) { 150 iip->ili_format.ilf_fields &= 151 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 152 return nvecs; 153 } 154 155 /* 156 * Log any necessary attribute data. 157 */ 158 switch (ip->i_d.di_aformat) { 159 case XFS_DINODE_FMT_EXTENTS: 160 iip->ili_format.ilf_fields &= 161 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 162 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) && 163 (ip->i_d.di_anextents > 0) && 164 (ip->i_afp->if_bytes > 0)) { 165 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 166 nvecs++; 167 } else { 168 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT; 169 } 170 break; 171 172 case XFS_DINODE_FMT_BTREE: 173 iip->ili_format.ilf_fields &= 174 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 175 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) && 176 (ip->i_afp->if_broot_bytes > 0)) { 177 ASSERT(ip->i_afp->if_broot != NULL); 178 nvecs++; 179 } else { 180 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT; 181 } 182 break; 183 184 case XFS_DINODE_FMT_LOCAL: 185 iip->ili_format.ilf_fields &= 186 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 187 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) && 188 (ip->i_afp->if_bytes > 0)) { 189 ASSERT(ip->i_afp->if_u1.if_data != NULL); 190 nvecs++; 191 } else { 192 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA; 193 } 194 break; 195 196 default: 197 ASSERT(0); 198 break; 199 } 200 201 return nvecs; 202 } 203 204 /* 205 * This is called to fill in the vector of log iovecs for the 206 * given inode log item. It fills the first item with an inode 207 * log format structure, the second with the on-disk inode structure, 208 * and a possible third and/or fourth with the inode data/extents/b-tree 209 * root and inode attributes data/extents/b-tree root. 210 */ 211 STATIC void 212 xfs_inode_item_format( 213 xfs_inode_log_item_t *iip, 214 xfs_log_iovec_t *log_vector) 215 { 216 uint nvecs; 217 xfs_log_iovec_t *vecp; 218 xfs_inode_t *ip; 219 size_t data_bytes; 220 xfs_bmbt_rec_t *ext_buffer; 221 int nrecs; 222 xfs_mount_t *mp; 223 224 ip = iip->ili_inode; 225 vecp = log_vector; 226 227 vecp->i_addr = (xfs_caddr_t)&iip->ili_format; 228 vecp->i_len = sizeof(xfs_inode_log_format_t); 229 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT); 230 vecp++; 231 nvecs = 1; 232 233 /* 234 * Clear i_update_core if the timestamps (or any other 235 * non-transactional modification) need flushing/logging 236 * and we're about to log them with the rest of the core. 237 * 238 * This is the same logic as xfs_iflush() but this code can't 239 * run at the same time as xfs_iflush because we're in commit 240 * processing here and so we have the inode lock held in 241 * exclusive mode. Although it doesn't really matter 242 * for the timestamps if both routines were to grab the 243 * timestamps or not. That would be ok. 244 * 245 * We clear i_update_core before copying out the data. 246 * This is for coordination with our timestamp updates 247 * that don't hold the inode lock. They will always 248 * update the timestamps BEFORE setting i_update_core, 249 * so if we clear i_update_core after they set it we 250 * are guaranteed to see their updates to the timestamps 251 * either here. Likewise, if they set it after we clear it 252 * here, we'll see it either on the next commit of this 253 * inode or the next time the inode gets flushed via 254 * xfs_iflush(). This depends on strongly ordered memory 255 * semantics, but we have that. We use the SYNCHRONIZE 256 * macro to make sure that the compiler does not reorder 257 * the i_update_core access below the data copy below. 258 */ 259 if (ip->i_update_core) { 260 ip->i_update_core = 0; 261 SYNCHRONIZE(); 262 } 263 264 /* 265 * We don't have to worry about re-ordering here because 266 * the update_size field is protected by the inode lock 267 * and we have that held in exclusive mode. 268 */ 269 if (ip->i_update_size) 270 ip->i_update_size = 0; 271 272 /* 273 * Make sure to get the latest atime from the Linux inode. 274 */ 275 xfs_synchronize_atime(ip); 276 277 vecp->i_addr = (xfs_caddr_t)&ip->i_d; 278 vecp->i_len = sizeof(xfs_dinode_core_t); 279 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE); 280 vecp++; 281 nvecs++; 282 iip->ili_format.ilf_fields |= XFS_ILOG_CORE; 283 284 /* 285 * If this is really an old format inode, then we need to 286 * log it as such. This means that we have to copy the link 287 * count from the new field to the old. We don't have to worry 288 * about the new fields, because nothing trusts them as long as 289 * the old inode version number is there. If the superblock already 290 * has a new version number, then we don't bother converting back. 291 */ 292 mp = ip->i_mount; 293 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || 294 XFS_SB_VERSION_HASNLINK(&mp->m_sb)); 295 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 296 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { 297 /* 298 * Convert it back. 299 */ 300 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 301 ip->i_d.di_onlink = ip->i_d.di_nlink; 302 } else { 303 /* 304 * The superblock version has already been bumped, 305 * so just make the conversion to the new inode 306 * format permanent. 307 */ 308 ip->i_d.di_version = XFS_DINODE_VERSION_2; 309 ip->i_d.di_onlink = 0; 310 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 311 } 312 } 313 314 switch (ip->i_d.di_format) { 315 case XFS_DINODE_FMT_EXTENTS: 316 ASSERT(!(iip->ili_format.ilf_fields & 317 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 318 XFS_ILOG_DEV | XFS_ILOG_UUID))); 319 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) { 320 ASSERT(ip->i_df.if_bytes > 0); 321 ASSERT(ip->i_df.if_u1.if_extents != NULL); 322 ASSERT(ip->i_d.di_nextents > 0); 323 ASSERT(iip->ili_extents_buf == NULL); 324 nrecs = ip->i_df.if_bytes / 325 (uint)sizeof(xfs_bmbt_rec_t); 326 ASSERT(nrecs > 0); 327 #ifdef XFS_NATIVE_HOST 328 if (nrecs == ip->i_d.di_nextents) { 329 /* 330 * There are no delayed allocation 331 * extents, so just point to the 332 * real extents array. 333 */ 334 vecp->i_addr = 335 (char *)(ip->i_df.if_u1.if_extents); 336 vecp->i_len = ip->i_df.if_bytes; 337 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT); 338 } else 339 #endif 340 { 341 /* 342 * There are delayed allocation extents 343 * in the inode, or we need to convert 344 * the extents to on disk format. 345 * Use xfs_iextents_copy() 346 * to copy only the real extents into 347 * a separate buffer. We'll free the 348 * buffer in the unlock routine. 349 */ 350 ext_buffer = kmem_alloc(ip->i_df.if_bytes, 351 KM_SLEEP); 352 iip->ili_extents_buf = ext_buffer; 353 vecp->i_addr = (xfs_caddr_t)ext_buffer; 354 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, 355 XFS_DATA_FORK); 356 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT); 357 } 358 ASSERT(vecp->i_len <= ip->i_df.if_bytes); 359 iip->ili_format.ilf_dsize = vecp->i_len; 360 vecp++; 361 nvecs++; 362 } 363 break; 364 365 case XFS_DINODE_FMT_BTREE: 366 ASSERT(!(iip->ili_format.ilf_fields & 367 (XFS_ILOG_DDATA | XFS_ILOG_DEXT | 368 XFS_ILOG_DEV | XFS_ILOG_UUID))); 369 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) { 370 ASSERT(ip->i_df.if_broot_bytes > 0); 371 ASSERT(ip->i_df.if_broot != NULL); 372 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot; 373 vecp->i_len = ip->i_df.if_broot_bytes; 374 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT); 375 vecp++; 376 nvecs++; 377 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes; 378 } 379 break; 380 381 case XFS_DINODE_FMT_LOCAL: 382 ASSERT(!(iip->ili_format.ilf_fields & 383 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | 384 XFS_ILOG_DEV | XFS_ILOG_UUID))); 385 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) { 386 ASSERT(ip->i_df.if_bytes > 0); 387 ASSERT(ip->i_df.if_u1.if_data != NULL); 388 ASSERT(ip->i_d.di_size > 0); 389 390 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data; 391 /* 392 * Round i_bytes up to a word boundary. 393 * The underlying memory is guaranteed to 394 * to be there by xfs_idata_realloc(). 395 */ 396 data_bytes = roundup(ip->i_df.if_bytes, 4); 397 ASSERT((ip->i_df.if_real_bytes == 0) || 398 (ip->i_df.if_real_bytes == data_bytes)); 399 vecp->i_len = (int)data_bytes; 400 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL); 401 vecp++; 402 nvecs++; 403 iip->ili_format.ilf_dsize = (unsigned)data_bytes; 404 } 405 break; 406 407 case XFS_DINODE_FMT_DEV: 408 ASSERT(!(iip->ili_format.ilf_fields & 409 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | 410 XFS_ILOG_DDATA | XFS_ILOG_UUID))); 411 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 412 iip->ili_format.ilf_u.ilfu_rdev = 413 ip->i_df.if_u2.if_rdev; 414 } 415 break; 416 417 case XFS_DINODE_FMT_UUID: 418 ASSERT(!(iip->ili_format.ilf_fields & 419 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | 420 XFS_ILOG_DDATA | XFS_ILOG_DEV))); 421 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 422 iip->ili_format.ilf_u.ilfu_uuid = 423 ip->i_df.if_u2.if_uuid; 424 } 425 break; 426 427 default: 428 ASSERT(0); 429 break; 430 } 431 432 /* 433 * If there are no attributes associated with the file, 434 * then we're done. 435 * Assert that no attribute-related log flags are set. 436 */ 437 if (!XFS_IFORK_Q(ip)) { 438 ASSERT(nvecs == iip->ili_item.li_desc->lid_size); 439 iip->ili_format.ilf_size = nvecs; 440 ASSERT(!(iip->ili_format.ilf_fields & 441 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); 442 return; 443 } 444 445 switch (ip->i_d.di_aformat) { 446 case XFS_DINODE_FMT_EXTENTS: 447 ASSERT(!(iip->ili_format.ilf_fields & 448 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT))); 449 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) { 450 ASSERT(ip->i_afp->if_bytes > 0); 451 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 452 ASSERT(ip->i_d.di_anextents > 0); 453 #ifdef DEBUG 454 nrecs = ip->i_afp->if_bytes / 455 (uint)sizeof(xfs_bmbt_rec_t); 456 #endif 457 ASSERT(nrecs > 0); 458 ASSERT(nrecs == ip->i_d.di_anextents); 459 #ifdef XFS_NATIVE_HOST 460 /* 461 * There are not delayed allocation extents 462 * for attributes, so just point at the array. 463 */ 464 vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents); 465 vecp->i_len = ip->i_afp->if_bytes; 466 #else 467 ASSERT(iip->ili_aextents_buf == NULL); 468 /* 469 * Need to endian flip before logging 470 */ 471 ext_buffer = kmem_alloc(ip->i_afp->if_bytes, 472 KM_SLEEP); 473 iip->ili_aextents_buf = ext_buffer; 474 vecp->i_addr = (xfs_caddr_t)ext_buffer; 475 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, 476 XFS_ATTR_FORK); 477 #endif 478 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT); 479 iip->ili_format.ilf_asize = vecp->i_len; 480 vecp++; 481 nvecs++; 482 } 483 break; 484 485 case XFS_DINODE_FMT_BTREE: 486 ASSERT(!(iip->ili_format.ilf_fields & 487 (XFS_ILOG_ADATA | XFS_ILOG_AEXT))); 488 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) { 489 ASSERT(ip->i_afp->if_broot_bytes > 0); 490 ASSERT(ip->i_afp->if_broot != NULL); 491 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot; 492 vecp->i_len = ip->i_afp->if_broot_bytes; 493 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT); 494 vecp++; 495 nvecs++; 496 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes; 497 } 498 break; 499 500 case XFS_DINODE_FMT_LOCAL: 501 ASSERT(!(iip->ili_format.ilf_fields & 502 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); 503 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) { 504 ASSERT(ip->i_afp->if_bytes > 0); 505 ASSERT(ip->i_afp->if_u1.if_data != NULL); 506 507 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data; 508 /* 509 * Round i_bytes up to a word boundary. 510 * The underlying memory is guaranteed to 511 * to be there by xfs_idata_realloc(). 512 */ 513 data_bytes = roundup(ip->i_afp->if_bytes, 4); 514 ASSERT((ip->i_afp->if_real_bytes == 0) || 515 (ip->i_afp->if_real_bytes == data_bytes)); 516 vecp->i_len = (int)data_bytes; 517 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL); 518 vecp++; 519 nvecs++; 520 iip->ili_format.ilf_asize = (unsigned)data_bytes; 521 } 522 break; 523 524 default: 525 ASSERT(0); 526 break; 527 } 528 529 ASSERT(nvecs == iip->ili_item.li_desc->lid_size); 530 iip->ili_format.ilf_size = nvecs; 531 } 532 533 534 /* 535 * This is called to pin the inode associated with the inode log 536 * item in memory so it cannot be written out. Do this by calling 537 * xfs_ipin() to bump the pin count in the inode while holding the 538 * inode pin lock. 539 */ 540 STATIC void 541 xfs_inode_item_pin( 542 xfs_inode_log_item_t *iip) 543 { 544 ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE)); 545 xfs_ipin(iip->ili_inode); 546 } 547 548 549 /* 550 * This is called to unpin the inode associated with the inode log 551 * item which was previously pinned with a call to xfs_inode_item_pin(). 552 * Just call xfs_iunpin() on the inode to do this. 553 */ 554 /* ARGSUSED */ 555 STATIC void 556 xfs_inode_item_unpin( 557 xfs_inode_log_item_t *iip, 558 int stale) 559 { 560 xfs_iunpin(iip->ili_inode); 561 } 562 563 /* ARGSUSED */ 564 STATIC void 565 xfs_inode_item_unpin_remove( 566 xfs_inode_log_item_t *iip, 567 xfs_trans_t *tp) 568 { 569 xfs_iunpin(iip->ili_inode); 570 } 571 572 /* 573 * This is called to attempt to lock the inode associated with this 574 * inode log item, in preparation for the push routine which does the actual 575 * iflush. Don't sleep on the inode lock or the flush lock. 576 * 577 * If the flush lock is already held, indicating that the inode has 578 * been or is in the process of being flushed, then (ideally) we'd like to 579 * see if the inode's buffer is still incore, and if so give it a nudge. 580 * We delay doing so until the pushbuf routine, though, to avoid holding 581 * the AIL lock across a call to the blackhole which is the buffer cache. 582 * Also we don't want to sleep in any device strategy routines, which can happen 583 * if we do the subsequent bawrite in here. 584 */ 585 STATIC uint 586 xfs_inode_item_trylock( 587 xfs_inode_log_item_t *iip) 588 { 589 register xfs_inode_t *ip; 590 591 ip = iip->ili_inode; 592 593 if (xfs_ipincount(ip) > 0) { 594 return XFS_ITEM_PINNED; 595 } 596 597 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 598 return XFS_ITEM_LOCKED; 599 } 600 601 if (!xfs_iflock_nowait(ip)) { 602 /* 603 * If someone else isn't already trying to push the inode 604 * buffer, we get to do it. 605 */ 606 if (iip->ili_pushbuf_flag == 0) { 607 iip->ili_pushbuf_flag = 1; 608 #ifdef DEBUG 609 iip->ili_push_owner = current_pid(); 610 #endif 611 /* 612 * Inode is left locked in shared mode. 613 * Pushbuf routine gets to unlock it. 614 */ 615 return XFS_ITEM_PUSHBUF; 616 } else { 617 /* 618 * We hold the AIL_LOCK, so we must specify the 619 * NONOTIFY flag so that we won't double trip. 620 */ 621 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); 622 return XFS_ITEM_FLUSHING; 623 } 624 /* NOTREACHED */ 625 } 626 627 /* Stale items should force out the iclog */ 628 if (ip->i_flags & XFS_ISTALE) { 629 xfs_ifunlock(ip); 630 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); 631 return XFS_ITEM_PINNED; 632 } 633 634 #ifdef DEBUG 635 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 636 ASSERT(iip->ili_format.ilf_fields != 0); 637 ASSERT(iip->ili_logged == 0); 638 ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL); 639 } 640 #endif 641 return XFS_ITEM_SUCCESS; 642 } 643 644 /* 645 * Unlock the inode associated with the inode log item. 646 * Clear the fields of the inode and inode log item that 647 * are specific to the current transaction. If the 648 * hold flags is set, do not unlock the inode. 649 */ 650 STATIC void 651 xfs_inode_item_unlock( 652 xfs_inode_log_item_t *iip) 653 { 654 uint hold; 655 uint iolocked; 656 uint lock_flags; 657 xfs_inode_t *ip; 658 659 ASSERT(iip != NULL); 660 ASSERT(iip->ili_inode->i_itemp != NULL); 661 ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE)); 662 ASSERT((!(iip->ili_inode->i_itemp->ili_flags & 663 XFS_ILI_IOLOCKED_EXCL)) || 664 ismrlocked(&(iip->ili_inode->i_iolock), MR_UPDATE)); 665 ASSERT((!(iip->ili_inode->i_itemp->ili_flags & 666 XFS_ILI_IOLOCKED_SHARED)) || 667 ismrlocked(&(iip->ili_inode->i_iolock), MR_ACCESS)); 668 /* 669 * Clear the transaction pointer in the inode. 670 */ 671 ip = iip->ili_inode; 672 ip->i_transp = NULL; 673 674 /* 675 * If the inode needed a separate buffer with which to log 676 * its extents, then free it now. 677 */ 678 if (iip->ili_extents_buf != NULL) { 679 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS); 680 ASSERT(ip->i_d.di_nextents > 0); 681 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT); 682 ASSERT(ip->i_df.if_bytes > 0); 683 kmem_free(iip->ili_extents_buf, ip->i_df.if_bytes); 684 iip->ili_extents_buf = NULL; 685 } 686 if (iip->ili_aextents_buf != NULL) { 687 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS); 688 ASSERT(ip->i_d.di_anextents > 0); 689 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT); 690 ASSERT(ip->i_afp->if_bytes > 0); 691 kmem_free(iip->ili_aextents_buf, ip->i_afp->if_bytes); 692 iip->ili_aextents_buf = NULL; 693 } 694 695 /* 696 * Figure out if we should unlock the inode or not. 697 */ 698 hold = iip->ili_flags & XFS_ILI_HOLD; 699 700 /* 701 * Before clearing out the flags, remember whether we 702 * are holding the inode's IO lock. 703 */ 704 iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY; 705 706 /* 707 * Clear out the fields of the inode log item particular 708 * to the current transaction. 709 */ 710 iip->ili_ilock_recur = 0; 711 iip->ili_iolock_recur = 0; 712 iip->ili_flags = 0; 713 714 /* 715 * Unlock the inode if XFS_ILI_HOLD was not set. 716 */ 717 if (!hold) { 718 lock_flags = XFS_ILOCK_EXCL; 719 if (iolocked & XFS_ILI_IOLOCKED_EXCL) { 720 lock_flags |= XFS_IOLOCK_EXCL; 721 } else if (iolocked & XFS_ILI_IOLOCKED_SHARED) { 722 lock_flags |= XFS_IOLOCK_SHARED; 723 } 724 xfs_iput(iip->ili_inode, lock_flags); 725 } 726 } 727 728 /* 729 * This is called to find out where the oldest active copy of the 730 * inode log item in the on disk log resides now that the last log 731 * write of it completed at the given lsn. Since we always re-log 732 * all dirty data in an inode, the latest copy in the on disk log 733 * is the only one that matters. Therefore, simply return the 734 * given lsn. 735 */ 736 /*ARGSUSED*/ 737 STATIC xfs_lsn_t 738 xfs_inode_item_committed( 739 xfs_inode_log_item_t *iip, 740 xfs_lsn_t lsn) 741 { 742 return (lsn); 743 } 744 745 /* 746 * The transaction with the inode locked has aborted. The inode 747 * must not be dirty within the transaction (unless we're forcibly 748 * shutting down). We simply unlock just as if the transaction 749 * had been cancelled. 750 */ 751 STATIC void 752 xfs_inode_item_abort( 753 xfs_inode_log_item_t *iip) 754 { 755 xfs_inode_item_unlock(iip); 756 return; 757 } 758 759 760 /* 761 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK 762 * failed to get the inode flush lock but did get the inode locked SHARED. 763 * Here we're trying to see if the inode buffer is incore, and if so whether it's 764 * marked delayed write. If that's the case, we'll initiate a bawrite on that 765 * buffer to expedite the process. 766 * 767 * We aren't holding the AIL_LOCK (or the flush lock) when this gets called, 768 * so it is inherently race-y. 769 */ 770 STATIC void 771 xfs_inode_item_pushbuf( 772 xfs_inode_log_item_t *iip) 773 { 774 xfs_inode_t *ip; 775 xfs_mount_t *mp; 776 xfs_buf_t *bp; 777 uint dopush; 778 779 ip = iip->ili_inode; 780 781 ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS)); 782 783 /* 784 * The ili_pushbuf_flag keeps others from 785 * trying to duplicate our effort. 786 */ 787 ASSERT(iip->ili_pushbuf_flag != 0); 788 ASSERT(iip->ili_push_owner == current_pid()); 789 790 /* 791 * If flushlock isn't locked anymore, chances are that the 792 * inode flush completed and the inode was taken off the AIL. 793 * So, just get out. 794 */ 795 if (!issemalocked(&(ip->i_flock)) || 796 ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) { 797 iip->ili_pushbuf_flag = 0; 798 xfs_iunlock(ip, XFS_ILOCK_SHARED); 799 return; 800 } 801 802 mp = ip->i_mount; 803 bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno, 804 iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK); 805 806 if (bp != NULL) { 807 if (XFS_BUF_ISDELAYWRITE(bp)) { 808 /* 809 * We were racing with iflush because we don't hold 810 * the AIL_LOCK or the flush lock. However, at this point, 811 * we have the buffer, and we know that it's dirty. 812 * So, it's possible that iflush raced with us, and 813 * this item is already taken off the AIL. 814 * If not, we can flush it async. 815 */ 816 dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) && 817 issemalocked(&(ip->i_flock))); 818 iip->ili_pushbuf_flag = 0; 819 xfs_iunlock(ip, XFS_ILOCK_SHARED); 820 xfs_buftrace("INODE ITEM PUSH", bp); 821 if (XFS_BUF_ISPINNED(bp)) { 822 xfs_log_force(mp, (xfs_lsn_t)0, 823 XFS_LOG_FORCE); 824 } 825 if (dopush) { 826 xfs_bawrite(mp, bp); 827 } else { 828 xfs_buf_relse(bp); 829 } 830 } else { 831 iip->ili_pushbuf_flag = 0; 832 xfs_iunlock(ip, XFS_ILOCK_SHARED); 833 xfs_buf_relse(bp); 834 } 835 return; 836 } 837 /* 838 * We have to be careful about resetting pushbuf flag too early (above). 839 * Even though in theory we can do it as soon as we have the buflock, 840 * we don't want others to be doing work needlessly. They'll come to 841 * this function thinking that pushing the buffer is their 842 * responsibility only to find that the buffer is still locked by 843 * another doing the same thing 844 */ 845 iip->ili_pushbuf_flag = 0; 846 xfs_iunlock(ip, XFS_ILOCK_SHARED); 847 return; 848 } 849 850 851 /* 852 * This is called to asynchronously write the inode associated with this 853 * inode log item out to disk. The inode will already have been locked by 854 * a successful call to xfs_inode_item_trylock(). 855 */ 856 STATIC void 857 xfs_inode_item_push( 858 xfs_inode_log_item_t *iip) 859 { 860 xfs_inode_t *ip; 861 862 ip = iip->ili_inode; 863 864 ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS)); 865 ASSERT(issemalocked(&(ip->i_flock))); 866 /* 867 * Since we were able to lock the inode's flush lock and 868 * we found it on the AIL, the inode must be dirty. This 869 * is because the inode is removed from the AIL while still 870 * holding the flush lock in xfs_iflush_done(). Thus, if 871 * we found it in the AIL and were able to obtain the flush 872 * lock without sleeping, then there must not have been 873 * anyone in the process of flushing the inode. 874 */ 875 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || 876 iip->ili_format.ilf_fields != 0); 877 878 /* 879 * Write out the inode. The completion routine ('iflush_done') will 880 * pull it from the AIL, mark it clean, unlock the flush lock. 881 */ 882 (void) xfs_iflush(ip, XFS_IFLUSH_ASYNC); 883 xfs_iunlock(ip, XFS_ILOCK_SHARED); 884 885 return; 886 } 887 888 /* 889 * XXX rcc - this one really has to do something. Probably needs 890 * to stamp in a new field in the incore inode. 891 */ 892 /* ARGSUSED */ 893 STATIC void 894 xfs_inode_item_committing( 895 xfs_inode_log_item_t *iip, 896 xfs_lsn_t lsn) 897 { 898 iip->ili_last_lsn = lsn; 899 return; 900 } 901 902 /* 903 * This is the ops vector shared by all buf log items. 904 */ 905 STATIC struct xfs_item_ops xfs_inode_item_ops = { 906 .iop_size = (uint(*)(xfs_log_item_t*))xfs_inode_item_size, 907 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) 908 xfs_inode_item_format, 909 .iop_pin = (void(*)(xfs_log_item_t*))xfs_inode_item_pin, 910 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin, 911 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*)) 912 xfs_inode_item_unpin_remove, 913 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock, 914 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_inode_item_unlock, 915 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) 916 xfs_inode_item_committed, 917 .iop_push = (void(*)(xfs_log_item_t*))xfs_inode_item_push, 918 .iop_abort = (void(*)(xfs_log_item_t*))xfs_inode_item_abort, 919 .iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf, 920 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) 921 xfs_inode_item_committing 922 }; 923 924 925 /* 926 * Initialize the inode log item for a newly allocated (in-core) inode. 927 */ 928 void 929 xfs_inode_item_init( 930 xfs_inode_t *ip, 931 xfs_mount_t *mp) 932 { 933 xfs_inode_log_item_t *iip; 934 935 ASSERT(ip->i_itemp == NULL); 936 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); 937 938 iip->ili_item.li_type = XFS_LI_INODE; 939 iip->ili_item.li_ops = &xfs_inode_item_ops; 940 iip->ili_item.li_mountp = mp; 941 iip->ili_inode = ip; 942 943 /* 944 We have zeroed memory. No need ... 945 iip->ili_extents_buf = NULL; 946 iip->ili_pushbuf_flag = 0; 947 */ 948 949 iip->ili_format.ilf_type = XFS_LI_INODE; 950 iip->ili_format.ilf_ino = ip->i_ino; 951 iip->ili_format.ilf_blkno = ip->i_blkno; 952 iip->ili_format.ilf_len = ip->i_len; 953 iip->ili_format.ilf_boffset = ip->i_boffset; 954 } 955 956 /* 957 * Free the inode log item and any memory hanging off of it. 958 */ 959 void 960 xfs_inode_item_destroy( 961 xfs_inode_t *ip) 962 { 963 #ifdef XFS_TRANS_DEBUG 964 if (ip->i_itemp->ili_root_size != 0) { 965 kmem_free(ip->i_itemp->ili_orig_root, 966 ip->i_itemp->ili_root_size); 967 } 968 #endif 969 kmem_zone_free(xfs_ili_zone, ip->i_itemp); 970 } 971 972 973 /* 974 * This is the inode flushing I/O completion routine. It is called 975 * from interrupt level when the buffer containing the inode is 976 * flushed to disk. It is responsible for removing the inode item 977 * from the AIL if it has not been re-logged, and unlocking the inode's 978 * flush lock. 979 */ 980 /*ARGSUSED*/ 981 void 982 xfs_iflush_done( 983 xfs_buf_t *bp, 984 xfs_inode_log_item_t *iip) 985 { 986 xfs_inode_t *ip; 987 SPLDECL(s); 988 989 ip = iip->ili_inode; 990 991 /* 992 * We only want to pull the item from the AIL if it is 993 * actually there and its location in the log has not 994 * changed since we started the flush. Thus, we only bother 995 * if the ili_logged flag is set and the inode's lsn has not 996 * changed. First we check the lsn outside 997 * the lock since it's cheaper, and then we recheck while 998 * holding the lock before removing the inode from the AIL. 999 */ 1000 if (iip->ili_logged && 1001 (iip->ili_item.li_lsn == iip->ili_flush_lsn)) { 1002 AIL_LOCK(ip->i_mount, s); 1003 if (iip->ili_item.li_lsn == iip->ili_flush_lsn) { 1004 /* 1005 * xfs_trans_delete_ail() drops the AIL lock. 1006 */ 1007 xfs_trans_delete_ail(ip->i_mount, 1008 (xfs_log_item_t*)iip, s); 1009 } else { 1010 AIL_UNLOCK(ip->i_mount, s); 1011 } 1012 } 1013 1014 iip->ili_logged = 0; 1015 1016 /* 1017 * Clear the ili_last_fields bits now that we know that the 1018 * data corresponding to them is safely on disk. 1019 */ 1020 iip->ili_last_fields = 0; 1021 1022 /* 1023 * Release the inode's flush lock since we're done with it. 1024 */ 1025 xfs_ifunlock(ip); 1026 1027 return; 1028 } 1029 1030 /* 1031 * This is the inode flushing abort routine. It is called 1032 * from xfs_iflush when the filesystem is shutting down to clean 1033 * up the inode state. 1034 * It is responsible for removing the inode item 1035 * from the AIL if it has not been re-logged, and unlocking the inode's 1036 * flush lock. 1037 */ 1038 void 1039 xfs_iflush_abort( 1040 xfs_inode_t *ip) 1041 { 1042 xfs_inode_log_item_t *iip; 1043 xfs_mount_t *mp; 1044 SPLDECL(s); 1045 1046 iip = ip->i_itemp; 1047 mp = ip->i_mount; 1048 if (iip) { 1049 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 1050 AIL_LOCK(mp, s); 1051 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 1052 /* 1053 * xfs_trans_delete_ail() drops the AIL lock. 1054 */ 1055 xfs_trans_delete_ail(mp, (xfs_log_item_t *)iip, 1056 s); 1057 } else 1058 AIL_UNLOCK(mp, s); 1059 } 1060 iip->ili_logged = 0; 1061 /* 1062 * Clear the ili_last_fields bits now that we know that the 1063 * data corresponding to them is safely on disk. 1064 */ 1065 iip->ili_last_fields = 0; 1066 /* 1067 * Clear the inode logging fields so no more flushes are 1068 * attempted. 1069 */ 1070 iip->ili_format.ilf_fields = 0; 1071 } 1072 /* 1073 * Release the inode's flush lock since we're done with it. 1074 */ 1075 xfs_ifunlock(ip); 1076 } 1077 1078 void 1079 xfs_istale_done( 1080 xfs_buf_t *bp, 1081 xfs_inode_log_item_t *iip) 1082 { 1083 xfs_iflush_abort(iip->ili_inode); 1084 } 1085 1086 /* 1087 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions 1088 * (which can have different field alignments) to the native version 1089 */ 1090 int 1091 xfs_inode_item_format_convert( 1092 xfs_log_iovec_t *buf, 1093 xfs_inode_log_format_t *in_f) 1094 { 1095 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) { 1096 xfs_inode_log_format_32_t *in_f32; 1097 1098 in_f32 = (xfs_inode_log_format_32_t *)buf->i_addr; 1099 in_f->ilf_type = in_f32->ilf_type; 1100 in_f->ilf_size = in_f32->ilf_size; 1101 in_f->ilf_fields = in_f32->ilf_fields; 1102 in_f->ilf_asize = in_f32->ilf_asize; 1103 in_f->ilf_dsize = in_f32->ilf_dsize; 1104 in_f->ilf_ino = in_f32->ilf_ino; 1105 /* copy biggest field of ilf_u */ 1106 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 1107 in_f32->ilf_u.ilfu_uuid.__u_bits, 1108 sizeof(uuid_t)); 1109 in_f->ilf_blkno = in_f32->ilf_blkno; 1110 in_f->ilf_len = in_f32->ilf_len; 1111 in_f->ilf_boffset = in_f32->ilf_boffset; 1112 return 0; 1113 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){ 1114 xfs_inode_log_format_64_t *in_f64; 1115 1116 in_f64 = (xfs_inode_log_format_64_t *)buf->i_addr; 1117 in_f->ilf_type = in_f64->ilf_type; 1118 in_f->ilf_size = in_f64->ilf_size; 1119 in_f->ilf_fields = in_f64->ilf_fields; 1120 in_f->ilf_asize = in_f64->ilf_asize; 1121 in_f->ilf_dsize = in_f64->ilf_dsize; 1122 in_f->ilf_ino = in_f64->ilf_ino; 1123 /* copy biggest field of ilf_u */ 1124 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 1125 in_f64->ilf_u.ilfu_uuid.__u_bits, 1126 sizeof(uuid_t)); 1127 in_f->ilf_blkno = in_f64->ilf_blkno; 1128 in_f->ilf_len = in_f64->ilf_len; 1129 in_f->ilf_boffset = in_f64->ilf_boffset; 1130 return 0; 1131 } 1132 return EFSCORRUPTED; 1133 } 1134