1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_dinode.h" 31 #include "xfs_inode.h" 32 #include "xfs_inode_item.h" 33 #include "xfs_error.h" 34 #include "xfs_trace.h" 35 36 37 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 38 39 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 40 { 41 return container_of(lip, struct xfs_inode_log_item, ili_item); 42 } 43 44 45 /* 46 * This returns the number of iovecs needed to log the given inode item. 47 * 48 * We need one iovec for the inode log format structure, one for the 49 * inode core, and possibly one for the inode data/extents/b-tree root 50 * and one for the inode attribute data/extents/b-tree root. 51 */ 52 STATIC uint 53 xfs_inode_item_size( 54 struct xfs_log_item *lip) 55 { 56 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 57 struct xfs_inode *ip = iip->ili_inode; 58 uint nvecs = 2; 59 60 /* 61 * Only log the data/extents/b-tree root if there is something 62 * left to log. 63 */ 64 iip->ili_format.ilf_fields |= XFS_ILOG_CORE; 65 66 switch (ip->i_d.di_format) { 67 case XFS_DINODE_FMT_EXTENTS: 68 iip->ili_format.ilf_fields &= 69 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 70 XFS_ILOG_DEV | XFS_ILOG_UUID); 71 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) && 72 (ip->i_d.di_nextents > 0) && 73 (ip->i_df.if_bytes > 0)) { 74 ASSERT(ip->i_df.if_u1.if_extents != NULL); 75 nvecs++; 76 } else { 77 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT; 78 } 79 break; 80 81 case XFS_DINODE_FMT_BTREE: 82 ASSERT(ip->i_df.if_ext_max == 83 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t)); 84 iip->ili_format.ilf_fields &= 85 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | 86 XFS_ILOG_DEV | XFS_ILOG_UUID); 87 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) && 88 (ip->i_df.if_broot_bytes > 0)) { 89 ASSERT(ip->i_df.if_broot != NULL); 90 nvecs++; 91 } else { 92 ASSERT(!(iip->ili_format.ilf_fields & 93 XFS_ILOG_DBROOT)); 94 #ifdef XFS_TRANS_DEBUG 95 if (iip->ili_root_size > 0) { 96 ASSERT(iip->ili_root_size == 97 ip->i_df.if_broot_bytes); 98 ASSERT(memcmp(iip->ili_orig_root, 99 ip->i_df.if_broot, 100 iip->ili_root_size) == 0); 101 } else { 102 ASSERT(ip->i_df.if_broot_bytes == 0); 103 } 104 #endif 105 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT; 106 } 107 break; 108 109 case XFS_DINODE_FMT_LOCAL: 110 iip->ili_format.ilf_fields &= 111 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | 112 XFS_ILOG_DEV | XFS_ILOG_UUID); 113 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) && 114 (ip->i_df.if_bytes > 0)) { 115 ASSERT(ip->i_df.if_u1.if_data != NULL); 116 ASSERT(ip->i_d.di_size > 0); 117 nvecs++; 118 } else { 119 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA; 120 } 121 break; 122 123 case XFS_DINODE_FMT_DEV: 124 iip->ili_format.ilf_fields &= 125 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 126 XFS_ILOG_DEXT | XFS_ILOG_UUID); 127 break; 128 129 case XFS_DINODE_FMT_UUID: 130 iip->ili_format.ilf_fields &= 131 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 132 XFS_ILOG_DEXT | XFS_ILOG_DEV); 133 break; 134 135 default: 136 ASSERT(0); 137 break; 138 } 139 140 /* 141 * If there are no attributes associated with this file, 142 * then there cannot be anything more to log. 143 * Clear all attribute-related log flags. 144 */ 145 if (!XFS_IFORK_Q(ip)) { 146 iip->ili_format.ilf_fields &= 147 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 148 return nvecs; 149 } 150 151 /* 152 * Log any necessary attribute data. 153 */ 154 switch (ip->i_d.di_aformat) { 155 case XFS_DINODE_FMT_EXTENTS: 156 iip->ili_format.ilf_fields &= 157 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 158 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) && 159 (ip->i_d.di_anextents > 0) && 160 (ip->i_afp->if_bytes > 0)) { 161 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 162 nvecs++; 163 } else { 164 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT; 165 } 166 break; 167 168 case XFS_DINODE_FMT_BTREE: 169 iip->ili_format.ilf_fields &= 170 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 171 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) && 172 (ip->i_afp->if_broot_bytes > 0)) { 173 ASSERT(ip->i_afp->if_broot != NULL); 174 nvecs++; 175 } else { 176 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT; 177 } 178 break; 179 180 case XFS_DINODE_FMT_LOCAL: 181 iip->ili_format.ilf_fields &= 182 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 183 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) && 184 (ip->i_afp->if_bytes > 0)) { 185 ASSERT(ip->i_afp->if_u1.if_data != NULL); 186 nvecs++; 187 } else { 188 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA; 189 } 190 break; 191 192 default: 193 ASSERT(0); 194 break; 195 } 196 197 return nvecs; 198 } 199 200 /* 201 * xfs_inode_item_format_extents - convert in-core extents to on-disk form 202 * 203 * For either the data or attr fork in extent format, we need to endian convert 204 * the in-core extent as we place them into the on-disk inode. In this case, we 205 * need to do this conversion before we write the extents into the log. Because 206 * we don't have the disk inode to write into here, we allocate a buffer and 207 * format the extents into it via xfs_iextents_copy(). We free the buffer in 208 * the unlock routine after the copy for the log has been made. 209 * 210 * In the case of the data fork, the in-core and on-disk fork sizes can be 211 * different due to delayed allocation extents. We only log on-disk extents 212 * here, so always use the physical fork size to determine the size of the 213 * buffer we need to allocate. 214 */ 215 STATIC void 216 xfs_inode_item_format_extents( 217 struct xfs_inode *ip, 218 struct xfs_log_iovec *vecp, 219 int whichfork, 220 int type) 221 { 222 xfs_bmbt_rec_t *ext_buffer; 223 224 ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP); 225 if (whichfork == XFS_DATA_FORK) 226 ip->i_itemp->ili_extents_buf = ext_buffer; 227 else 228 ip->i_itemp->ili_aextents_buf = ext_buffer; 229 230 vecp->i_addr = ext_buffer; 231 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork); 232 vecp->i_type = type; 233 } 234 235 /* 236 * This is called to fill in the vector of log iovecs for the 237 * given inode log item. It fills the first item with an inode 238 * log format structure, the second with the on-disk inode structure, 239 * and a possible third and/or fourth with the inode data/extents/b-tree 240 * root and inode attributes data/extents/b-tree root. 241 */ 242 STATIC void 243 xfs_inode_item_format( 244 struct xfs_log_item *lip, 245 struct xfs_log_iovec *vecp) 246 { 247 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 248 struct xfs_inode *ip = iip->ili_inode; 249 uint nvecs; 250 size_t data_bytes; 251 xfs_mount_t *mp; 252 253 vecp->i_addr = &iip->ili_format; 254 vecp->i_len = sizeof(xfs_inode_log_format_t); 255 vecp->i_type = XLOG_REG_TYPE_IFORMAT; 256 vecp++; 257 nvecs = 1; 258 259 /* 260 * Clear i_update_core if the timestamps (or any other 261 * non-transactional modification) need flushing/logging 262 * and we're about to log them with the rest of the core. 263 * 264 * This is the same logic as xfs_iflush() but this code can't 265 * run at the same time as xfs_iflush because we're in commit 266 * processing here and so we have the inode lock held in 267 * exclusive mode. Although it doesn't really matter 268 * for the timestamps if both routines were to grab the 269 * timestamps or not. That would be ok. 270 * 271 * We clear i_update_core before copying out the data. 272 * This is for coordination with our timestamp updates 273 * that don't hold the inode lock. They will always 274 * update the timestamps BEFORE setting i_update_core, 275 * so if we clear i_update_core after they set it we 276 * are guaranteed to see their updates to the timestamps 277 * either here. Likewise, if they set it after we clear it 278 * here, we'll see it either on the next commit of this 279 * inode or the next time the inode gets flushed via 280 * xfs_iflush(). This depends on strongly ordered memory 281 * semantics, but we have that. We use the SYNCHRONIZE 282 * macro to make sure that the compiler does not reorder 283 * the i_update_core access below the data copy below. 284 */ 285 if (ip->i_update_core) { 286 ip->i_update_core = 0; 287 SYNCHRONIZE(); 288 } 289 290 /* 291 * Make sure to get the latest timestamps from the Linux inode. 292 */ 293 xfs_synchronize_times(ip); 294 295 vecp->i_addr = &ip->i_d; 296 vecp->i_len = sizeof(struct xfs_icdinode); 297 vecp->i_type = XLOG_REG_TYPE_ICORE; 298 vecp++; 299 nvecs++; 300 iip->ili_format.ilf_fields |= XFS_ILOG_CORE; 301 302 /* 303 * If this is really an old format inode, then we need to 304 * log it as such. This means that we have to copy the link 305 * count from the new field to the old. We don't have to worry 306 * about the new fields, because nothing trusts them as long as 307 * the old inode version number is there. If the superblock already 308 * has a new version number, then we don't bother converting back. 309 */ 310 mp = ip->i_mount; 311 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 312 if (ip->i_d.di_version == 1) { 313 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 314 /* 315 * Convert it back. 316 */ 317 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 318 ip->i_d.di_onlink = ip->i_d.di_nlink; 319 } else { 320 /* 321 * The superblock version has already been bumped, 322 * so just make the conversion to the new inode 323 * format permanent. 324 */ 325 ip->i_d.di_version = 2; 326 ip->i_d.di_onlink = 0; 327 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 328 } 329 } 330 331 switch (ip->i_d.di_format) { 332 case XFS_DINODE_FMT_EXTENTS: 333 ASSERT(!(iip->ili_format.ilf_fields & 334 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 335 XFS_ILOG_DEV | XFS_ILOG_UUID))); 336 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) { 337 ASSERT(ip->i_df.if_bytes > 0); 338 ASSERT(ip->i_df.if_u1.if_extents != NULL); 339 ASSERT(ip->i_d.di_nextents > 0); 340 ASSERT(iip->ili_extents_buf == NULL); 341 ASSERT((ip->i_df.if_bytes / 342 (uint)sizeof(xfs_bmbt_rec_t)) > 0); 343 #ifdef XFS_NATIVE_HOST 344 if (ip->i_d.di_nextents == ip->i_df.if_bytes / 345 (uint)sizeof(xfs_bmbt_rec_t)) { 346 /* 347 * There are no delayed allocation 348 * extents, so just point to the 349 * real extents array. 350 */ 351 vecp->i_addr = ip->i_df.if_u1.if_extents; 352 vecp->i_len = ip->i_df.if_bytes; 353 vecp->i_type = XLOG_REG_TYPE_IEXT; 354 } else 355 #endif 356 { 357 xfs_inode_item_format_extents(ip, vecp, 358 XFS_DATA_FORK, XLOG_REG_TYPE_IEXT); 359 } 360 ASSERT(vecp->i_len <= ip->i_df.if_bytes); 361 iip->ili_format.ilf_dsize = vecp->i_len; 362 vecp++; 363 nvecs++; 364 } 365 break; 366 367 case XFS_DINODE_FMT_BTREE: 368 ASSERT(!(iip->ili_format.ilf_fields & 369 (XFS_ILOG_DDATA | XFS_ILOG_DEXT | 370 XFS_ILOG_DEV | XFS_ILOG_UUID))); 371 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) { 372 ASSERT(ip->i_df.if_broot_bytes > 0); 373 ASSERT(ip->i_df.if_broot != NULL); 374 vecp->i_addr = ip->i_df.if_broot; 375 vecp->i_len = ip->i_df.if_broot_bytes; 376 vecp->i_type = XLOG_REG_TYPE_IBROOT; 377 vecp++; 378 nvecs++; 379 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes; 380 } 381 break; 382 383 case XFS_DINODE_FMT_LOCAL: 384 ASSERT(!(iip->ili_format.ilf_fields & 385 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | 386 XFS_ILOG_DEV | XFS_ILOG_UUID))); 387 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) { 388 ASSERT(ip->i_df.if_bytes > 0); 389 ASSERT(ip->i_df.if_u1.if_data != NULL); 390 ASSERT(ip->i_d.di_size > 0); 391 392 vecp->i_addr = ip->i_df.if_u1.if_data; 393 /* 394 * Round i_bytes up to a word boundary. 395 * The underlying memory is guaranteed to 396 * to be there by xfs_idata_realloc(). 397 */ 398 data_bytes = roundup(ip->i_df.if_bytes, 4); 399 ASSERT((ip->i_df.if_real_bytes == 0) || 400 (ip->i_df.if_real_bytes == data_bytes)); 401 vecp->i_len = (int)data_bytes; 402 vecp->i_type = XLOG_REG_TYPE_ILOCAL; 403 vecp++; 404 nvecs++; 405 iip->ili_format.ilf_dsize = (unsigned)data_bytes; 406 } 407 break; 408 409 case XFS_DINODE_FMT_DEV: 410 ASSERT(!(iip->ili_format.ilf_fields & 411 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | 412 XFS_ILOG_DDATA | XFS_ILOG_UUID))); 413 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 414 iip->ili_format.ilf_u.ilfu_rdev = 415 ip->i_df.if_u2.if_rdev; 416 } 417 break; 418 419 case XFS_DINODE_FMT_UUID: 420 ASSERT(!(iip->ili_format.ilf_fields & 421 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | 422 XFS_ILOG_DDATA | XFS_ILOG_DEV))); 423 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 424 iip->ili_format.ilf_u.ilfu_uuid = 425 ip->i_df.if_u2.if_uuid; 426 } 427 break; 428 429 default: 430 ASSERT(0); 431 break; 432 } 433 434 /* 435 * If there are no attributes associated with the file, 436 * then we're done. 437 * Assert that no attribute-related log flags are set. 438 */ 439 if (!XFS_IFORK_Q(ip)) { 440 ASSERT(nvecs == lip->li_desc->lid_size); 441 iip->ili_format.ilf_size = nvecs; 442 ASSERT(!(iip->ili_format.ilf_fields & 443 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); 444 return; 445 } 446 447 switch (ip->i_d.di_aformat) { 448 case XFS_DINODE_FMT_EXTENTS: 449 ASSERT(!(iip->ili_format.ilf_fields & 450 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT))); 451 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) { 452 #ifdef DEBUG 453 int nrecs = ip->i_afp->if_bytes / 454 (uint)sizeof(xfs_bmbt_rec_t); 455 ASSERT(nrecs > 0); 456 ASSERT(nrecs == ip->i_d.di_anextents); 457 ASSERT(ip->i_afp->if_bytes > 0); 458 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 459 ASSERT(ip->i_d.di_anextents > 0); 460 #endif 461 #ifdef XFS_NATIVE_HOST 462 /* 463 * There are not delayed allocation extents 464 * for attributes, so just point at the array. 465 */ 466 vecp->i_addr = ip->i_afp->if_u1.if_extents; 467 vecp->i_len = ip->i_afp->if_bytes; 468 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT; 469 #else 470 ASSERT(iip->ili_aextents_buf == NULL); 471 xfs_inode_item_format_extents(ip, vecp, 472 XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT); 473 #endif 474 iip->ili_format.ilf_asize = vecp->i_len; 475 vecp++; 476 nvecs++; 477 } 478 break; 479 480 case XFS_DINODE_FMT_BTREE: 481 ASSERT(!(iip->ili_format.ilf_fields & 482 (XFS_ILOG_ADATA | XFS_ILOG_AEXT))); 483 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) { 484 ASSERT(ip->i_afp->if_broot_bytes > 0); 485 ASSERT(ip->i_afp->if_broot != NULL); 486 vecp->i_addr = ip->i_afp->if_broot; 487 vecp->i_len = ip->i_afp->if_broot_bytes; 488 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT; 489 vecp++; 490 nvecs++; 491 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes; 492 } 493 break; 494 495 case XFS_DINODE_FMT_LOCAL: 496 ASSERT(!(iip->ili_format.ilf_fields & 497 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); 498 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) { 499 ASSERT(ip->i_afp->if_bytes > 0); 500 ASSERT(ip->i_afp->if_u1.if_data != NULL); 501 502 vecp->i_addr = ip->i_afp->if_u1.if_data; 503 /* 504 * Round i_bytes up to a word boundary. 505 * The underlying memory is guaranteed to 506 * to be there by xfs_idata_realloc(). 507 */ 508 data_bytes = roundup(ip->i_afp->if_bytes, 4); 509 ASSERT((ip->i_afp->if_real_bytes == 0) || 510 (ip->i_afp->if_real_bytes == data_bytes)); 511 vecp->i_len = (int)data_bytes; 512 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL; 513 vecp++; 514 nvecs++; 515 iip->ili_format.ilf_asize = (unsigned)data_bytes; 516 } 517 break; 518 519 default: 520 ASSERT(0); 521 break; 522 } 523 524 ASSERT(nvecs == lip->li_desc->lid_size); 525 iip->ili_format.ilf_size = nvecs; 526 } 527 528 529 /* 530 * This is called to pin the inode associated with the inode log 531 * item in memory so it cannot be written out. 532 */ 533 STATIC void 534 xfs_inode_item_pin( 535 struct xfs_log_item *lip) 536 { 537 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 538 539 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 540 541 trace_xfs_inode_pin(ip, _RET_IP_); 542 atomic_inc(&ip->i_pincount); 543 } 544 545 546 /* 547 * This is called to unpin the inode associated with the inode log 548 * item which was previously pinned with a call to xfs_inode_item_pin(). 549 * 550 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 551 */ 552 STATIC void 553 xfs_inode_item_unpin( 554 struct xfs_log_item *lip, 555 int remove) 556 { 557 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 558 559 trace_xfs_inode_unpin(ip, _RET_IP_); 560 ASSERT(atomic_read(&ip->i_pincount) > 0); 561 if (atomic_dec_and_test(&ip->i_pincount)) 562 wake_up(&ip->i_ipin_wait); 563 } 564 565 /* 566 * This is called to attempt to lock the inode associated with this 567 * inode log item, in preparation for the push routine which does the actual 568 * iflush. Don't sleep on the inode lock or the flush lock. 569 * 570 * If the flush lock is already held, indicating that the inode has 571 * been or is in the process of being flushed, then (ideally) we'd like to 572 * see if the inode's buffer is still incore, and if so give it a nudge. 573 * We delay doing so until the pushbuf routine, though, to avoid holding 574 * the AIL lock across a call to the blackhole which is the buffer cache. 575 * Also we don't want to sleep in any device strategy routines, which can happen 576 * if we do the subsequent bawrite in here. 577 */ 578 STATIC uint 579 xfs_inode_item_trylock( 580 struct xfs_log_item *lip) 581 { 582 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 583 struct xfs_inode *ip = iip->ili_inode; 584 585 if (xfs_ipincount(ip) > 0) 586 return XFS_ITEM_PINNED; 587 588 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) 589 return XFS_ITEM_LOCKED; 590 591 if (!xfs_iflock_nowait(ip)) { 592 /* 593 * inode has already been flushed to the backing buffer, 594 * leave it locked in shared mode, pushbuf routine will 595 * unlock it. 596 */ 597 return XFS_ITEM_PUSHBUF; 598 } 599 600 /* Stale items should force out the iclog */ 601 if (ip->i_flags & XFS_ISTALE) { 602 xfs_ifunlock(ip); 603 /* 604 * we hold the AIL lock - notify the unlock routine of this 605 * so it doesn't try to get the lock again. 606 */ 607 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); 608 return XFS_ITEM_PINNED; 609 } 610 611 #ifdef DEBUG 612 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 613 ASSERT(iip->ili_format.ilf_fields != 0); 614 ASSERT(iip->ili_logged == 0); 615 ASSERT(lip->li_flags & XFS_LI_IN_AIL); 616 } 617 #endif 618 return XFS_ITEM_SUCCESS; 619 } 620 621 /* 622 * Unlock the inode associated with the inode log item. 623 * Clear the fields of the inode and inode log item that 624 * are specific to the current transaction. If the 625 * hold flags is set, do not unlock the inode. 626 */ 627 STATIC void 628 xfs_inode_item_unlock( 629 struct xfs_log_item *lip) 630 { 631 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 632 struct xfs_inode *ip = iip->ili_inode; 633 unsigned short lock_flags; 634 635 ASSERT(ip->i_itemp != NULL); 636 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 637 638 /* 639 * If the inode needed a separate buffer with which to log 640 * its extents, then free it now. 641 */ 642 if (iip->ili_extents_buf != NULL) { 643 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS); 644 ASSERT(ip->i_d.di_nextents > 0); 645 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT); 646 ASSERT(ip->i_df.if_bytes > 0); 647 kmem_free(iip->ili_extents_buf); 648 iip->ili_extents_buf = NULL; 649 } 650 if (iip->ili_aextents_buf != NULL) { 651 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS); 652 ASSERT(ip->i_d.di_anextents > 0); 653 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT); 654 ASSERT(ip->i_afp->if_bytes > 0); 655 kmem_free(iip->ili_aextents_buf); 656 iip->ili_aextents_buf = NULL; 657 } 658 659 lock_flags = iip->ili_lock_flags; 660 iip->ili_lock_flags = 0; 661 if (lock_flags) 662 xfs_iunlock(ip, lock_flags); 663 } 664 665 /* 666 * This is called to find out where the oldest active copy of the inode log 667 * item in the on disk log resides now that the last log write of it completed 668 * at the given lsn. Since we always re-log all dirty data in an inode, the 669 * latest copy in the on disk log is the only one that matters. Therefore, 670 * simply return the given lsn. 671 * 672 * If the inode has been marked stale because the cluster is being freed, we 673 * don't want to (re-)insert this inode into the AIL. There is a race condition 674 * where the cluster buffer may be unpinned before the inode is inserted into 675 * the AIL during transaction committed processing. If the buffer is unpinned 676 * before the inode item has been committed and inserted, then it is possible 677 * for the buffer to be written and IO completes before the inode is inserted 678 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 679 * AIL which will never get removed. It will, however, get reclaimed which 680 * triggers an assert in xfs_inode_free() complaining about freein an inode 681 * still in the AIL. 682 * 683 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 684 * transaction committed code knows that it does not need to do any further 685 * processing on the item. 686 */ 687 STATIC xfs_lsn_t 688 xfs_inode_item_committed( 689 struct xfs_log_item *lip, 690 xfs_lsn_t lsn) 691 { 692 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 693 struct xfs_inode *ip = iip->ili_inode; 694 695 if (xfs_iflags_test(ip, XFS_ISTALE)) { 696 xfs_inode_item_unpin(lip, 0); 697 return -1; 698 } 699 return lsn; 700 } 701 702 /* 703 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK 704 * failed to get the inode flush lock but did get the inode locked SHARED. 705 * Here we're trying to see if the inode buffer is incore, and if so whether it's 706 * marked delayed write. If that's the case, we'll promote it and that will 707 * allow the caller to write the buffer by triggering the xfsbufd to run. 708 */ 709 STATIC bool 710 xfs_inode_item_pushbuf( 711 struct xfs_log_item *lip) 712 { 713 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 714 struct xfs_inode *ip = iip->ili_inode; 715 struct xfs_buf *bp; 716 bool ret = true; 717 718 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED)); 719 720 /* 721 * If a flush is not in progress anymore, chances are that the 722 * inode was taken off the AIL. So, just get out. 723 */ 724 if (completion_done(&ip->i_flush) || 725 !(lip->li_flags & XFS_LI_IN_AIL)) { 726 xfs_iunlock(ip, XFS_ILOCK_SHARED); 727 return true; 728 } 729 730 bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno, 731 iip->ili_format.ilf_len, XBF_TRYLOCK); 732 733 xfs_iunlock(ip, XFS_ILOCK_SHARED); 734 if (!bp) 735 return true; 736 if (XFS_BUF_ISDELAYWRITE(bp)) 737 xfs_buf_delwri_promote(bp); 738 if (xfs_buf_ispinned(bp)) 739 ret = false; 740 xfs_buf_relse(bp); 741 return ret; 742 } 743 744 /* 745 * This is called to asynchronously write the inode associated with this 746 * inode log item out to disk. The inode will already have been locked by 747 * a successful call to xfs_inode_item_trylock(). 748 */ 749 STATIC void 750 xfs_inode_item_push( 751 struct xfs_log_item *lip) 752 { 753 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 754 struct xfs_inode *ip = iip->ili_inode; 755 756 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED)); 757 ASSERT(!completion_done(&ip->i_flush)); 758 759 /* 760 * Since we were able to lock the inode's flush lock and 761 * we found it on the AIL, the inode must be dirty. This 762 * is because the inode is removed from the AIL while still 763 * holding the flush lock in xfs_iflush_done(). Thus, if 764 * we found it in the AIL and were able to obtain the flush 765 * lock without sleeping, then there must not have been 766 * anyone in the process of flushing the inode. 767 */ 768 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || 769 iip->ili_format.ilf_fields != 0); 770 771 /* 772 * Push the inode to it's backing buffer. This will not remove the 773 * inode from the AIL - a further push will be required to trigger a 774 * buffer push. However, this allows all the dirty inodes to be pushed 775 * to the buffer before it is pushed to disk. The buffer IO completion 776 * will pull the inode from the AIL, mark it clean and unlock the flush 777 * lock. 778 */ 779 (void) xfs_iflush(ip, SYNC_TRYLOCK); 780 xfs_iunlock(ip, XFS_ILOCK_SHARED); 781 } 782 783 /* 784 * XXX rcc - this one really has to do something. Probably needs 785 * to stamp in a new field in the incore inode. 786 */ 787 STATIC void 788 xfs_inode_item_committing( 789 struct xfs_log_item *lip, 790 xfs_lsn_t lsn) 791 { 792 INODE_ITEM(lip)->ili_last_lsn = lsn; 793 } 794 795 /* 796 * This is the ops vector shared by all buf log items. 797 */ 798 static const struct xfs_item_ops xfs_inode_item_ops = { 799 .iop_size = xfs_inode_item_size, 800 .iop_format = xfs_inode_item_format, 801 .iop_pin = xfs_inode_item_pin, 802 .iop_unpin = xfs_inode_item_unpin, 803 .iop_trylock = xfs_inode_item_trylock, 804 .iop_unlock = xfs_inode_item_unlock, 805 .iop_committed = xfs_inode_item_committed, 806 .iop_push = xfs_inode_item_push, 807 .iop_pushbuf = xfs_inode_item_pushbuf, 808 .iop_committing = xfs_inode_item_committing 809 }; 810 811 812 /* 813 * Initialize the inode log item for a newly allocated (in-core) inode. 814 */ 815 void 816 xfs_inode_item_init( 817 struct xfs_inode *ip, 818 struct xfs_mount *mp) 819 { 820 struct xfs_inode_log_item *iip; 821 822 ASSERT(ip->i_itemp == NULL); 823 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); 824 825 iip->ili_inode = ip; 826 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 827 &xfs_inode_item_ops); 828 iip->ili_format.ilf_type = XFS_LI_INODE; 829 iip->ili_format.ilf_ino = ip->i_ino; 830 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno; 831 iip->ili_format.ilf_len = ip->i_imap.im_len; 832 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset; 833 } 834 835 /* 836 * Free the inode log item and any memory hanging off of it. 837 */ 838 void 839 xfs_inode_item_destroy( 840 xfs_inode_t *ip) 841 { 842 #ifdef XFS_TRANS_DEBUG 843 if (ip->i_itemp->ili_root_size != 0) { 844 kmem_free(ip->i_itemp->ili_orig_root); 845 } 846 #endif 847 kmem_zone_free(xfs_ili_zone, ip->i_itemp); 848 } 849 850 851 /* 852 * This is the inode flushing I/O completion routine. It is called 853 * from interrupt level when the buffer containing the inode is 854 * flushed to disk. It is responsible for removing the inode item 855 * from the AIL if it has not been re-logged, and unlocking the inode's 856 * flush lock. 857 * 858 * To reduce AIL lock traffic as much as possible, we scan the buffer log item 859 * list for other inodes that will run this function. We remove them from the 860 * buffer list so we can process all the inode IO completions in one AIL lock 861 * traversal. 862 */ 863 void 864 xfs_iflush_done( 865 struct xfs_buf *bp, 866 struct xfs_log_item *lip) 867 { 868 struct xfs_inode_log_item *iip; 869 struct xfs_log_item *blip; 870 struct xfs_log_item *next; 871 struct xfs_log_item *prev; 872 struct xfs_ail *ailp = lip->li_ailp; 873 int need_ail = 0; 874 875 /* 876 * Scan the buffer IO completions for other inodes being completed and 877 * attach them to the current inode log item. 878 */ 879 blip = bp->b_fspriv; 880 prev = NULL; 881 while (blip != NULL) { 882 if (lip->li_cb != xfs_iflush_done) { 883 prev = blip; 884 blip = blip->li_bio_list; 885 continue; 886 } 887 888 /* remove from list */ 889 next = blip->li_bio_list; 890 if (!prev) { 891 bp->b_fspriv = next; 892 } else { 893 prev->li_bio_list = next; 894 } 895 896 /* add to current list */ 897 blip->li_bio_list = lip->li_bio_list; 898 lip->li_bio_list = blip; 899 900 /* 901 * while we have the item, do the unlocked check for needing 902 * the AIL lock. 903 */ 904 iip = INODE_ITEM(blip); 905 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) 906 need_ail++; 907 908 blip = next; 909 } 910 911 /* make sure we capture the state of the initial inode. */ 912 iip = INODE_ITEM(lip); 913 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) 914 need_ail++; 915 916 /* 917 * We only want to pull the item from the AIL if it is 918 * actually there and its location in the log has not 919 * changed since we started the flush. Thus, we only bother 920 * if the ili_logged flag is set and the inode's lsn has not 921 * changed. First we check the lsn outside 922 * the lock since it's cheaper, and then we recheck while 923 * holding the lock before removing the inode from the AIL. 924 */ 925 if (need_ail) { 926 struct xfs_log_item *log_items[need_ail]; 927 int i = 0; 928 spin_lock(&ailp->xa_lock); 929 for (blip = lip; blip; blip = blip->li_bio_list) { 930 iip = INODE_ITEM(blip); 931 if (iip->ili_logged && 932 blip->li_lsn == iip->ili_flush_lsn) { 933 log_items[i++] = blip; 934 } 935 ASSERT(i <= need_ail); 936 } 937 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */ 938 xfs_trans_ail_delete_bulk(ailp, log_items, i); 939 } 940 941 942 /* 943 * clean up and unlock the flush lock now we are done. We can clear the 944 * ili_last_fields bits now that we know that the data corresponding to 945 * them is safely on disk. 946 */ 947 for (blip = lip; blip; blip = next) { 948 next = blip->li_bio_list; 949 blip->li_bio_list = NULL; 950 951 iip = INODE_ITEM(blip); 952 iip->ili_logged = 0; 953 iip->ili_last_fields = 0; 954 xfs_ifunlock(iip->ili_inode); 955 } 956 } 957 958 /* 959 * This is the inode flushing abort routine. It is called 960 * from xfs_iflush when the filesystem is shutting down to clean 961 * up the inode state. 962 * It is responsible for removing the inode item 963 * from the AIL if it has not been re-logged, and unlocking the inode's 964 * flush lock. 965 */ 966 void 967 xfs_iflush_abort( 968 xfs_inode_t *ip) 969 { 970 xfs_inode_log_item_t *iip = ip->i_itemp; 971 972 if (iip) { 973 struct xfs_ail *ailp = iip->ili_item.li_ailp; 974 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 975 spin_lock(&ailp->xa_lock); 976 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 977 /* xfs_trans_ail_delete() drops the AIL lock. */ 978 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip); 979 } else 980 spin_unlock(&ailp->xa_lock); 981 } 982 iip->ili_logged = 0; 983 /* 984 * Clear the ili_last_fields bits now that we know that the 985 * data corresponding to them is safely on disk. 986 */ 987 iip->ili_last_fields = 0; 988 /* 989 * Clear the inode logging fields so no more flushes are 990 * attempted. 991 */ 992 iip->ili_format.ilf_fields = 0; 993 } 994 /* 995 * Release the inode's flush lock since we're done with it. 996 */ 997 xfs_ifunlock(ip); 998 } 999 1000 void 1001 xfs_istale_done( 1002 struct xfs_buf *bp, 1003 struct xfs_log_item *lip) 1004 { 1005 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode); 1006 } 1007 1008 /* 1009 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions 1010 * (which can have different field alignments) to the native version 1011 */ 1012 int 1013 xfs_inode_item_format_convert( 1014 xfs_log_iovec_t *buf, 1015 xfs_inode_log_format_t *in_f) 1016 { 1017 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) { 1018 xfs_inode_log_format_32_t *in_f32 = buf->i_addr; 1019 1020 in_f->ilf_type = in_f32->ilf_type; 1021 in_f->ilf_size = in_f32->ilf_size; 1022 in_f->ilf_fields = in_f32->ilf_fields; 1023 in_f->ilf_asize = in_f32->ilf_asize; 1024 in_f->ilf_dsize = in_f32->ilf_dsize; 1025 in_f->ilf_ino = in_f32->ilf_ino; 1026 /* copy biggest field of ilf_u */ 1027 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 1028 in_f32->ilf_u.ilfu_uuid.__u_bits, 1029 sizeof(uuid_t)); 1030 in_f->ilf_blkno = in_f32->ilf_blkno; 1031 in_f->ilf_len = in_f32->ilf_len; 1032 in_f->ilf_boffset = in_f32->ilf_boffset; 1033 return 0; 1034 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){ 1035 xfs_inode_log_format_64_t *in_f64 = buf->i_addr; 1036 1037 in_f->ilf_type = in_f64->ilf_type; 1038 in_f->ilf_size = in_f64->ilf_size; 1039 in_f->ilf_fields = in_f64->ilf_fields; 1040 in_f->ilf_asize = in_f64->ilf_asize; 1041 in_f->ilf_dsize = in_f64->ilf_dsize; 1042 in_f->ilf_ino = in_f64->ilf_ino; 1043 /* copy biggest field of ilf_u */ 1044 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 1045 in_f64->ilf_u.ilfu_uuid.__u_bits, 1046 sizeof(uuid_t)); 1047 in_f->ilf_blkno = in_f64->ilf_blkno; 1048 in_f->ilf_len = in_f64->ilf_len; 1049 in_f->ilf_boffset = in_f64->ilf_boffset; 1050 return 0; 1051 } 1052 return EFSCORRUPTED; 1053 } 1054