xref: /linux/fs/xfs/xfs_inode_item.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_dinode.h"
31 #include "xfs_inode.h"
32 #include "xfs_inode_item.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
35 
36 
37 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
38 
39 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
40 {
41 	return container_of(lip, struct xfs_inode_log_item, ili_item);
42 }
43 
44 
45 /*
46  * This returns the number of iovecs needed to log the given inode item.
47  *
48  * We need one iovec for the inode log format structure, one for the
49  * inode core, and possibly one for the inode data/extents/b-tree root
50  * and one for the inode attribute data/extents/b-tree root.
51  */
52 STATIC uint
53 xfs_inode_item_size(
54 	struct xfs_log_item	*lip)
55 {
56 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
57 	struct xfs_inode	*ip = iip->ili_inode;
58 	uint			nvecs = 2;
59 
60 	/*
61 	 * Only log the data/extents/b-tree root if there is something
62 	 * left to log.
63 	 */
64 	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
65 
66 	switch (ip->i_d.di_format) {
67 	case XFS_DINODE_FMT_EXTENTS:
68 		iip->ili_format.ilf_fields &=
69 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
70 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
71 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
72 		    (ip->i_d.di_nextents > 0) &&
73 		    (ip->i_df.if_bytes > 0)) {
74 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
75 			nvecs++;
76 		} else {
77 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
78 		}
79 		break;
80 
81 	case XFS_DINODE_FMT_BTREE:
82 		ASSERT(ip->i_df.if_ext_max ==
83 		       XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
84 		iip->ili_format.ilf_fields &=
85 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
86 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
87 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
88 		    (ip->i_df.if_broot_bytes > 0)) {
89 			ASSERT(ip->i_df.if_broot != NULL);
90 			nvecs++;
91 		} else {
92 			ASSERT(!(iip->ili_format.ilf_fields &
93 				 XFS_ILOG_DBROOT));
94 #ifdef XFS_TRANS_DEBUG
95 			if (iip->ili_root_size > 0) {
96 				ASSERT(iip->ili_root_size ==
97 				       ip->i_df.if_broot_bytes);
98 				ASSERT(memcmp(iip->ili_orig_root,
99 					    ip->i_df.if_broot,
100 					    iip->ili_root_size) == 0);
101 			} else {
102 				ASSERT(ip->i_df.if_broot_bytes == 0);
103 			}
104 #endif
105 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
106 		}
107 		break;
108 
109 	case XFS_DINODE_FMT_LOCAL:
110 		iip->ili_format.ilf_fields &=
111 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
112 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
113 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
114 		    (ip->i_df.if_bytes > 0)) {
115 			ASSERT(ip->i_df.if_u1.if_data != NULL);
116 			ASSERT(ip->i_d.di_size > 0);
117 			nvecs++;
118 		} else {
119 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
120 		}
121 		break;
122 
123 	case XFS_DINODE_FMT_DEV:
124 		iip->ili_format.ilf_fields &=
125 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
126 			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
127 		break;
128 
129 	case XFS_DINODE_FMT_UUID:
130 		iip->ili_format.ilf_fields &=
131 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
132 			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
133 		break;
134 
135 	default:
136 		ASSERT(0);
137 		break;
138 	}
139 
140 	/*
141 	 * If there are no attributes associated with this file,
142 	 * then there cannot be anything more to log.
143 	 * Clear all attribute-related log flags.
144 	 */
145 	if (!XFS_IFORK_Q(ip)) {
146 		iip->ili_format.ilf_fields &=
147 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
148 		return nvecs;
149 	}
150 
151 	/*
152 	 * Log any necessary attribute data.
153 	 */
154 	switch (ip->i_d.di_aformat) {
155 	case XFS_DINODE_FMT_EXTENTS:
156 		iip->ili_format.ilf_fields &=
157 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
158 		if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
159 		    (ip->i_d.di_anextents > 0) &&
160 		    (ip->i_afp->if_bytes > 0)) {
161 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
162 			nvecs++;
163 		} else {
164 			iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
165 		}
166 		break;
167 
168 	case XFS_DINODE_FMT_BTREE:
169 		iip->ili_format.ilf_fields &=
170 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
171 		if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
172 		    (ip->i_afp->if_broot_bytes > 0)) {
173 			ASSERT(ip->i_afp->if_broot != NULL);
174 			nvecs++;
175 		} else {
176 			iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
177 		}
178 		break;
179 
180 	case XFS_DINODE_FMT_LOCAL:
181 		iip->ili_format.ilf_fields &=
182 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
183 		if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
184 		    (ip->i_afp->if_bytes > 0)) {
185 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
186 			nvecs++;
187 		} else {
188 			iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
189 		}
190 		break;
191 
192 	default:
193 		ASSERT(0);
194 		break;
195 	}
196 
197 	return nvecs;
198 }
199 
200 /*
201  * xfs_inode_item_format_extents - convert in-core extents to on-disk form
202  *
203  * For either the data or attr fork in extent format, we need to endian convert
204  * the in-core extent as we place them into the on-disk inode. In this case, we
205  * need to do this conversion before we write the extents into the log. Because
206  * we don't have the disk inode to write into here, we allocate a buffer and
207  * format the extents into it via xfs_iextents_copy(). We free the buffer in
208  * the unlock routine after the copy for the log has been made.
209  *
210  * In the case of the data fork, the in-core and on-disk fork sizes can be
211  * different due to delayed allocation extents. We only log on-disk extents
212  * here, so always use the physical fork size to determine the size of the
213  * buffer we need to allocate.
214  */
215 STATIC void
216 xfs_inode_item_format_extents(
217 	struct xfs_inode	*ip,
218 	struct xfs_log_iovec	*vecp,
219 	int			whichfork,
220 	int			type)
221 {
222 	xfs_bmbt_rec_t		*ext_buffer;
223 
224 	ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
225 	if (whichfork == XFS_DATA_FORK)
226 		ip->i_itemp->ili_extents_buf = ext_buffer;
227 	else
228 		ip->i_itemp->ili_aextents_buf = ext_buffer;
229 
230 	vecp->i_addr = ext_buffer;
231 	vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
232 	vecp->i_type = type;
233 }
234 
235 /*
236  * This is called to fill in the vector of log iovecs for the
237  * given inode log item.  It fills the first item with an inode
238  * log format structure, the second with the on-disk inode structure,
239  * and a possible third and/or fourth with the inode data/extents/b-tree
240  * root and inode attributes data/extents/b-tree root.
241  */
242 STATIC void
243 xfs_inode_item_format(
244 	struct xfs_log_item	*lip,
245 	struct xfs_log_iovec	*vecp)
246 {
247 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
248 	struct xfs_inode	*ip = iip->ili_inode;
249 	uint			nvecs;
250 	size_t			data_bytes;
251 	xfs_mount_t		*mp;
252 
253 	vecp->i_addr = &iip->ili_format;
254 	vecp->i_len  = sizeof(xfs_inode_log_format_t);
255 	vecp->i_type = XLOG_REG_TYPE_IFORMAT;
256 	vecp++;
257 	nvecs	     = 1;
258 
259 	/*
260 	 * Clear i_update_core if the timestamps (or any other
261 	 * non-transactional modification) need flushing/logging
262 	 * and we're about to log them with the rest of the core.
263 	 *
264 	 * This is the same logic as xfs_iflush() but this code can't
265 	 * run at the same time as xfs_iflush because we're in commit
266 	 * processing here and so we have the inode lock held in
267 	 * exclusive mode.  Although it doesn't really matter
268 	 * for the timestamps if both routines were to grab the
269 	 * timestamps or not.  That would be ok.
270 	 *
271 	 * We clear i_update_core before copying out the data.
272 	 * This is for coordination with our timestamp updates
273 	 * that don't hold the inode lock. They will always
274 	 * update the timestamps BEFORE setting i_update_core,
275 	 * so if we clear i_update_core after they set it we
276 	 * are guaranteed to see their updates to the timestamps
277 	 * either here.  Likewise, if they set it after we clear it
278 	 * here, we'll see it either on the next commit of this
279 	 * inode or the next time the inode gets flushed via
280 	 * xfs_iflush().  This depends on strongly ordered memory
281 	 * semantics, but we have that.  We use the SYNCHRONIZE
282 	 * macro to make sure that the compiler does not reorder
283 	 * the i_update_core access below the data copy below.
284 	 */
285 	if (ip->i_update_core)  {
286 		ip->i_update_core = 0;
287 		SYNCHRONIZE();
288 	}
289 
290 	/*
291 	 * Make sure to get the latest timestamps from the Linux inode.
292 	 */
293 	xfs_synchronize_times(ip);
294 
295 	vecp->i_addr = &ip->i_d;
296 	vecp->i_len  = sizeof(struct xfs_icdinode);
297 	vecp->i_type = XLOG_REG_TYPE_ICORE;
298 	vecp++;
299 	nvecs++;
300 	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
301 
302 	/*
303 	 * If this is really an old format inode, then we need to
304 	 * log it as such.  This means that we have to copy the link
305 	 * count from the new field to the old.  We don't have to worry
306 	 * about the new fields, because nothing trusts them as long as
307 	 * the old inode version number is there.  If the superblock already
308 	 * has a new version number, then we don't bother converting back.
309 	 */
310 	mp = ip->i_mount;
311 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
312 	if (ip->i_d.di_version == 1) {
313 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
314 			/*
315 			 * Convert it back.
316 			 */
317 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
318 			ip->i_d.di_onlink = ip->i_d.di_nlink;
319 		} else {
320 			/*
321 			 * The superblock version has already been bumped,
322 			 * so just make the conversion to the new inode
323 			 * format permanent.
324 			 */
325 			ip->i_d.di_version = 2;
326 			ip->i_d.di_onlink = 0;
327 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
328 		}
329 	}
330 
331 	switch (ip->i_d.di_format) {
332 	case XFS_DINODE_FMT_EXTENTS:
333 		ASSERT(!(iip->ili_format.ilf_fields &
334 			 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
335 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
336 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
337 			ASSERT(ip->i_df.if_bytes > 0);
338 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
339 			ASSERT(ip->i_d.di_nextents > 0);
340 			ASSERT(iip->ili_extents_buf == NULL);
341 			ASSERT((ip->i_df.if_bytes /
342 				(uint)sizeof(xfs_bmbt_rec_t)) > 0);
343 #ifdef XFS_NATIVE_HOST
344                        if (ip->i_d.di_nextents == ip->i_df.if_bytes /
345                                                (uint)sizeof(xfs_bmbt_rec_t)) {
346 				/*
347 				 * There are no delayed allocation
348 				 * extents, so just point to the
349 				 * real extents array.
350 				 */
351 				vecp->i_addr = ip->i_df.if_u1.if_extents;
352 				vecp->i_len = ip->i_df.if_bytes;
353 				vecp->i_type = XLOG_REG_TYPE_IEXT;
354 			} else
355 #endif
356 			{
357 				xfs_inode_item_format_extents(ip, vecp,
358 					XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
359 			}
360 			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
361 			iip->ili_format.ilf_dsize = vecp->i_len;
362 			vecp++;
363 			nvecs++;
364 		}
365 		break;
366 
367 	case XFS_DINODE_FMT_BTREE:
368 		ASSERT(!(iip->ili_format.ilf_fields &
369 			 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
370 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
371 		if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
372 			ASSERT(ip->i_df.if_broot_bytes > 0);
373 			ASSERT(ip->i_df.if_broot != NULL);
374 			vecp->i_addr = ip->i_df.if_broot;
375 			vecp->i_len = ip->i_df.if_broot_bytes;
376 			vecp->i_type = XLOG_REG_TYPE_IBROOT;
377 			vecp++;
378 			nvecs++;
379 			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
380 		}
381 		break;
382 
383 	case XFS_DINODE_FMT_LOCAL:
384 		ASSERT(!(iip->ili_format.ilf_fields &
385 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
386 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
387 		if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
388 			ASSERT(ip->i_df.if_bytes > 0);
389 			ASSERT(ip->i_df.if_u1.if_data != NULL);
390 			ASSERT(ip->i_d.di_size > 0);
391 
392 			vecp->i_addr = ip->i_df.if_u1.if_data;
393 			/*
394 			 * Round i_bytes up to a word boundary.
395 			 * The underlying memory is guaranteed to
396 			 * to be there by xfs_idata_realloc().
397 			 */
398 			data_bytes = roundup(ip->i_df.if_bytes, 4);
399 			ASSERT((ip->i_df.if_real_bytes == 0) ||
400 			       (ip->i_df.if_real_bytes == data_bytes));
401 			vecp->i_len = (int)data_bytes;
402 			vecp->i_type = XLOG_REG_TYPE_ILOCAL;
403 			vecp++;
404 			nvecs++;
405 			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
406 		}
407 		break;
408 
409 	case XFS_DINODE_FMT_DEV:
410 		ASSERT(!(iip->ili_format.ilf_fields &
411 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
412 			  XFS_ILOG_DDATA | XFS_ILOG_UUID)));
413 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
414 			iip->ili_format.ilf_u.ilfu_rdev =
415 				ip->i_df.if_u2.if_rdev;
416 		}
417 		break;
418 
419 	case XFS_DINODE_FMT_UUID:
420 		ASSERT(!(iip->ili_format.ilf_fields &
421 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
422 			  XFS_ILOG_DDATA | XFS_ILOG_DEV)));
423 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
424 			iip->ili_format.ilf_u.ilfu_uuid =
425 				ip->i_df.if_u2.if_uuid;
426 		}
427 		break;
428 
429 	default:
430 		ASSERT(0);
431 		break;
432 	}
433 
434 	/*
435 	 * If there are no attributes associated with the file,
436 	 * then we're done.
437 	 * Assert that no attribute-related log flags are set.
438 	 */
439 	if (!XFS_IFORK_Q(ip)) {
440 		ASSERT(nvecs == lip->li_desc->lid_size);
441 		iip->ili_format.ilf_size = nvecs;
442 		ASSERT(!(iip->ili_format.ilf_fields &
443 			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
444 		return;
445 	}
446 
447 	switch (ip->i_d.di_aformat) {
448 	case XFS_DINODE_FMT_EXTENTS:
449 		ASSERT(!(iip->ili_format.ilf_fields &
450 			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
451 		if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
452 #ifdef DEBUG
453 			int nrecs = ip->i_afp->if_bytes /
454 				(uint)sizeof(xfs_bmbt_rec_t);
455 			ASSERT(nrecs > 0);
456 			ASSERT(nrecs == ip->i_d.di_anextents);
457 			ASSERT(ip->i_afp->if_bytes > 0);
458 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
459 			ASSERT(ip->i_d.di_anextents > 0);
460 #endif
461 #ifdef XFS_NATIVE_HOST
462 			/*
463 			 * There are not delayed allocation extents
464 			 * for attributes, so just point at the array.
465 			 */
466 			vecp->i_addr = ip->i_afp->if_u1.if_extents;
467 			vecp->i_len = ip->i_afp->if_bytes;
468 			vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
469 #else
470 			ASSERT(iip->ili_aextents_buf == NULL);
471 			xfs_inode_item_format_extents(ip, vecp,
472 					XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
473 #endif
474 			iip->ili_format.ilf_asize = vecp->i_len;
475 			vecp++;
476 			nvecs++;
477 		}
478 		break;
479 
480 	case XFS_DINODE_FMT_BTREE:
481 		ASSERT(!(iip->ili_format.ilf_fields &
482 			 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
483 		if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
484 			ASSERT(ip->i_afp->if_broot_bytes > 0);
485 			ASSERT(ip->i_afp->if_broot != NULL);
486 			vecp->i_addr = ip->i_afp->if_broot;
487 			vecp->i_len = ip->i_afp->if_broot_bytes;
488 			vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
489 			vecp++;
490 			nvecs++;
491 			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
492 		}
493 		break;
494 
495 	case XFS_DINODE_FMT_LOCAL:
496 		ASSERT(!(iip->ili_format.ilf_fields &
497 			 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
498 		if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
499 			ASSERT(ip->i_afp->if_bytes > 0);
500 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
501 
502 			vecp->i_addr = ip->i_afp->if_u1.if_data;
503 			/*
504 			 * Round i_bytes up to a word boundary.
505 			 * The underlying memory is guaranteed to
506 			 * to be there by xfs_idata_realloc().
507 			 */
508 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
509 			ASSERT((ip->i_afp->if_real_bytes == 0) ||
510 			       (ip->i_afp->if_real_bytes == data_bytes));
511 			vecp->i_len = (int)data_bytes;
512 			vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
513 			vecp++;
514 			nvecs++;
515 			iip->ili_format.ilf_asize = (unsigned)data_bytes;
516 		}
517 		break;
518 
519 	default:
520 		ASSERT(0);
521 		break;
522 	}
523 
524 	ASSERT(nvecs == lip->li_desc->lid_size);
525 	iip->ili_format.ilf_size = nvecs;
526 }
527 
528 
529 /*
530  * This is called to pin the inode associated with the inode log
531  * item in memory so it cannot be written out.
532  */
533 STATIC void
534 xfs_inode_item_pin(
535 	struct xfs_log_item	*lip)
536 {
537 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
538 
539 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
540 
541 	trace_xfs_inode_pin(ip, _RET_IP_);
542 	atomic_inc(&ip->i_pincount);
543 }
544 
545 
546 /*
547  * This is called to unpin the inode associated with the inode log
548  * item which was previously pinned with a call to xfs_inode_item_pin().
549  *
550  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
551  */
552 STATIC void
553 xfs_inode_item_unpin(
554 	struct xfs_log_item	*lip,
555 	int			remove)
556 {
557 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
558 
559 	trace_xfs_inode_unpin(ip, _RET_IP_);
560 	ASSERT(atomic_read(&ip->i_pincount) > 0);
561 	if (atomic_dec_and_test(&ip->i_pincount))
562 		wake_up(&ip->i_ipin_wait);
563 }
564 
565 /*
566  * This is called to attempt to lock the inode associated with this
567  * inode log item, in preparation for the push routine which does the actual
568  * iflush.  Don't sleep on the inode lock or the flush lock.
569  *
570  * If the flush lock is already held, indicating that the inode has
571  * been or is in the process of being flushed, then (ideally) we'd like to
572  * see if the inode's buffer is still incore, and if so give it a nudge.
573  * We delay doing so until the pushbuf routine, though, to avoid holding
574  * the AIL lock across a call to the blackhole which is the buffer cache.
575  * Also we don't want to sleep in any device strategy routines, which can happen
576  * if we do the subsequent bawrite in here.
577  */
578 STATIC uint
579 xfs_inode_item_trylock(
580 	struct xfs_log_item	*lip)
581 {
582 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
583 	struct xfs_inode	*ip = iip->ili_inode;
584 
585 	if (xfs_ipincount(ip) > 0)
586 		return XFS_ITEM_PINNED;
587 
588 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
589 		return XFS_ITEM_LOCKED;
590 
591 	if (!xfs_iflock_nowait(ip)) {
592 		/*
593 		 * inode has already been flushed to the backing buffer,
594 		 * leave it locked in shared mode, pushbuf routine will
595 		 * unlock it.
596 		 */
597 		return XFS_ITEM_PUSHBUF;
598 	}
599 
600 	/* Stale items should force out the iclog */
601 	if (ip->i_flags & XFS_ISTALE) {
602 		xfs_ifunlock(ip);
603 		/*
604 		 * we hold the AIL lock - notify the unlock routine of this
605 		 * so it doesn't try to get the lock again.
606 		 */
607 		xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
608 		return XFS_ITEM_PINNED;
609 	}
610 
611 #ifdef DEBUG
612 	if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
613 		ASSERT(iip->ili_format.ilf_fields != 0);
614 		ASSERT(iip->ili_logged == 0);
615 		ASSERT(lip->li_flags & XFS_LI_IN_AIL);
616 	}
617 #endif
618 	return XFS_ITEM_SUCCESS;
619 }
620 
621 /*
622  * Unlock the inode associated with the inode log item.
623  * Clear the fields of the inode and inode log item that
624  * are specific to the current transaction.  If the
625  * hold flags is set, do not unlock the inode.
626  */
627 STATIC void
628 xfs_inode_item_unlock(
629 	struct xfs_log_item	*lip)
630 {
631 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
632 	struct xfs_inode	*ip = iip->ili_inode;
633 	unsigned short		lock_flags;
634 
635 	ASSERT(ip->i_itemp != NULL);
636 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
637 
638 	/*
639 	 * If the inode needed a separate buffer with which to log
640 	 * its extents, then free it now.
641 	 */
642 	if (iip->ili_extents_buf != NULL) {
643 		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
644 		ASSERT(ip->i_d.di_nextents > 0);
645 		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
646 		ASSERT(ip->i_df.if_bytes > 0);
647 		kmem_free(iip->ili_extents_buf);
648 		iip->ili_extents_buf = NULL;
649 	}
650 	if (iip->ili_aextents_buf != NULL) {
651 		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
652 		ASSERT(ip->i_d.di_anextents > 0);
653 		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
654 		ASSERT(ip->i_afp->if_bytes > 0);
655 		kmem_free(iip->ili_aextents_buf);
656 		iip->ili_aextents_buf = NULL;
657 	}
658 
659 	lock_flags = iip->ili_lock_flags;
660 	iip->ili_lock_flags = 0;
661 	if (lock_flags)
662 		xfs_iunlock(ip, lock_flags);
663 }
664 
665 /*
666  * This is called to find out where the oldest active copy of the inode log
667  * item in the on disk log resides now that the last log write of it completed
668  * at the given lsn.  Since we always re-log all dirty data in an inode, the
669  * latest copy in the on disk log is the only one that matters.  Therefore,
670  * simply return the given lsn.
671  *
672  * If the inode has been marked stale because the cluster is being freed, we
673  * don't want to (re-)insert this inode into the AIL. There is a race condition
674  * where the cluster buffer may be unpinned before the inode is inserted into
675  * the AIL during transaction committed processing. If the buffer is unpinned
676  * before the inode item has been committed and inserted, then it is possible
677  * for the buffer to be written and IO completes before the inode is inserted
678  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
679  * AIL which will never get removed. It will, however, get reclaimed which
680  * triggers an assert in xfs_inode_free() complaining about freein an inode
681  * still in the AIL.
682  *
683  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
684  * transaction committed code knows that it does not need to do any further
685  * processing on the item.
686  */
687 STATIC xfs_lsn_t
688 xfs_inode_item_committed(
689 	struct xfs_log_item	*lip,
690 	xfs_lsn_t		lsn)
691 {
692 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
693 	struct xfs_inode	*ip = iip->ili_inode;
694 
695 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
696 		xfs_inode_item_unpin(lip, 0);
697 		return -1;
698 	}
699 	return lsn;
700 }
701 
702 /*
703  * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
704  * failed to get the inode flush lock but did get the inode locked SHARED.
705  * Here we're trying to see if the inode buffer is incore, and if so whether it's
706  * marked delayed write. If that's the case, we'll promote it and that will
707  * allow the caller to write the buffer by triggering the xfsbufd to run.
708  */
709 STATIC bool
710 xfs_inode_item_pushbuf(
711 	struct xfs_log_item	*lip)
712 {
713 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
714 	struct xfs_inode	*ip = iip->ili_inode;
715 	struct xfs_buf		*bp;
716 	bool			ret = true;
717 
718 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
719 
720 	/*
721 	 * If a flush is not in progress anymore, chances are that the
722 	 * inode was taken off the AIL. So, just get out.
723 	 */
724 	if (completion_done(&ip->i_flush) ||
725 	    !(lip->li_flags & XFS_LI_IN_AIL)) {
726 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
727 		return true;
728 	}
729 
730 	bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
731 			iip->ili_format.ilf_len, XBF_TRYLOCK);
732 
733 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
734 	if (!bp)
735 		return true;
736 	if (XFS_BUF_ISDELAYWRITE(bp))
737 		xfs_buf_delwri_promote(bp);
738 	if (xfs_buf_ispinned(bp))
739 		ret = false;
740 	xfs_buf_relse(bp);
741 	return ret;
742 }
743 
744 /*
745  * This is called to asynchronously write the inode associated with this
746  * inode log item out to disk. The inode will already have been locked by
747  * a successful call to xfs_inode_item_trylock().
748  */
749 STATIC void
750 xfs_inode_item_push(
751 	struct xfs_log_item	*lip)
752 {
753 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
754 	struct xfs_inode	*ip = iip->ili_inode;
755 
756 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
757 	ASSERT(!completion_done(&ip->i_flush));
758 
759 	/*
760 	 * Since we were able to lock the inode's flush lock and
761 	 * we found it on the AIL, the inode must be dirty.  This
762 	 * is because the inode is removed from the AIL while still
763 	 * holding the flush lock in xfs_iflush_done().  Thus, if
764 	 * we found it in the AIL and were able to obtain the flush
765 	 * lock without sleeping, then there must not have been
766 	 * anyone in the process of flushing the inode.
767 	 */
768 	ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
769 	       iip->ili_format.ilf_fields != 0);
770 
771 	/*
772 	 * Push the inode to it's backing buffer. This will not remove the
773 	 * inode from the AIL - a further push will be required to trigger a
774 	 * buffer push. However, this allows all the dirty inodes to be pushed
775 	 * to the buffer before it is pushed to disk. The buffer IO completion
776 	 * will pull the inode from the AIL, mark it clean and unlock the flush
777 	 * lock.
778 	 */
779 	(void) xfs_iflush(ip, SYNC_TRYLOCK);
780 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
781 }
782 
783 /*
784  * XXX rcc - this one really has to do something.  Probably needs
785  * to stamp in a new field in the incore inode.
786  */
787 STATIC void
788 xfs_inode_item_committing(
789 	struct xfs_log_item	*lip,
790 	xfs_lsn_t		lsn)
791 {
792 	INODE_ITEM(lip)->ili_last_lsn = lsn;
793 }
794 
795 /*
796  * This is the ops vector shared by all buf log items.
797  */
798 static const struct xfs_item_ops xfs_inode_item_ops = {
799 	.iop_size	= xfs_inode_item_size,
800 	.iop_format	= xfs_inode_item_format,
801 	.iop_pin	= xfs_inode_item_pin,
802 	.iop_unpin	= xfs_inode_item_unpin,
803 	.iop_trylock	= xfs_inode_item_trylock,
804 	.iop_unlock	= xfs_inode_item_unlock,
805 	.iop_committed	= xfs_inode_item_committed,
806 	.iop_push	= xfs_inode_item_push,
807 	.iop_pushbuf	= xfs_inode_item_pushbuf,
808 	.iop_committing = xfs_inode_item_committing
809 };
810 
811 
812 /*
813  * Initialize the inode log item for a newly allocated (in-core) inode.
814  */
815 void
816 xfs_inode_item_init(
817 	struct xfs_inode	*ip,
818 	struct xfs_mount	*mp)
819 {
820 	struct xfs_inode_log_item *iip;
821 
822 	ASSERT(ip->i_itemp == NULL);
823 	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
824 
825 	iip->ili_inode = ip;
826 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
827 						&xfs_inode_item_ops);
828 	iip->ili_format.ilf_type = XFS_LI_INODE;
829 	iip->ili_format.ilf_ino = ip->i_ino;
830 	iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
831 	iip->ili_format.ilf_len = ip->i_imap.im_len;
832 	iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
833 }
834 
835 /*
836  * Free the inode log item and any memory hanging off of it.
837  */
838 void
839 xfs_inode_item_destroy(
840 	xfs_inode_t	*ip)
841 {
842 #ifdef XFS_TRANS_DEBUG
843 	if (ip->i_itemp->ili_root_size != 0) {
844 		kmem_free(ip->i_itemp->ili_orig_root);
845 	}
846 #endif
847 	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
848 }
849 
850 
851 /*
852  * This is the inode flushing I/O completion routine.  It is called
853  * from interrupt level when the buffer containing the inode is
854  * flushed to disk.  It is responsible for removing the inode item
855  * from the AIL if it has not been re-logged, and unlocking the inode's
856  * flush lock.
857  *
858  * To reduce AIL lock traffic as much as possible, we scan the buffer log item
859  * list for other inodes that will run this function. We remove them from the
860  * buffer list so we can process all the inode IO completions in one AIL lock
861  * traversal.
862  */
863 void
864 xfs_iflush_done(
865 	struct xfs_buf		*bp,
866 	struct xfs_log_item	*lip)
867 {
868 	struct xfs_inode_log_item *iip;
869 	struct xfs_log_item	*blip;
870 	struct xfs_log_item	*next;
871 	struct xfs_log_item	*prev;
872 	struct xfs_ail		*ailp = lip->li_ailp;
873 	int			need_ail = 0;
874 
875 	/*
876 	 * Scan the buffer IO completions for other inodes being completed and
877 	 * attach them to the current inode log item.
878 	 */
879 	blip = bp->b_fspriv;
880 	prev = NULL;
881 	while (blip != NULL) {
882 		if (lip->li_cb != xfs_iflush_done) {
883 			prev = blip;
884 			blip = blip->li_bio_list;
885 			continue;
886 		}
887 
888 		/* remove from list */
889 		next = blip->li_bio_list;
890 		if (!prev) {
891 			bp->b_fspriv = next;
892 		} else {
893 			prev->li_bio_list = next;
894 		}
895 
896 		/* add to current list */
897 		blip->li_bio_list = lip->li_bio_list;
898 		lip->li_bio_list = blip;
899 
900 		/*
901 		 * while we have the item, do the unlocked check for needing
902 		 * the AIL lock.
903 		 */
904 		iip = INODE_ITEM(blip);
905 		if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
906 			need_ail++;
907 
908 		blip = next;
909 	}
910 
911 	/* make sure we capture the state of the initial inode. */
912 	iip = INODE_ITEM(lip);
913 	if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
914 		need_ail++;
915 
916 	/*
917 	 * We only want to pull the item from the AIL if it is
918 	 * actually there and its location in the log has not
919 	 * changed since we started the flush.  Thus, we only bother
920 	 * if the ili_logged flag is set and the inode's lsn has not
921 	 * changed.  First we check the lsn outside
922 	 * the lock since it's cheaper, and then we recheck while
923 	 * holding the lock before removing the inode from the AIL.
924 	 */
925 	if (need_ail) {
926 		struct xfs_log_item *log_items[need_ail];
927 		int i = 0;
928 		spin_lock(&ailp->xa_lock);
929 		for (blip = lip; blip; blip = blip->li_bio_list) {
930 			iip = INODE_ITEM(blip);
931 			if (iip->ili_logged &&
932 			    blip->li_lsn == iip->ili_flush_lsn) {
933 				log_items[i++] = blip;
934 			}
935 			ASSERT(i <= need_ail);
936 		}
937 		/* xfs_trans_ail_delete_bulk() drops the AIL lock. */
938 		xfs_trans_ail_delete_bulk(ailp, log_items, i);
939 	}
940 
941 
942 	/*
943 	 * clean up and unlock the flush lock now we are done. We can clear the
944 	 * ili_last_fields bits now that we know that the data corresponding to
945 	 * them is safely on disk.
946 	 */
947 	for (blip = lip; blip; blip = next) {
948 		next = blip->li_bio_list;
949 		blip->li_bio_list = NULL;
950 
951 		iip = INODE_ITEM(blip);
952 		iip->ili_logged = 0;
953 		iip->ili_last_fields = 0;
954 		xfs_ifunlock(iip->ili_inode);
955 	}
956 }
957 
958 /*
959  * This is the inode flushing abort routine.  It is called
960  * from xfs_iflush when the filesystem is shutting down to clean
961  * up the inode state.
962  * It is responsible for removing the inode item
963  * from the AIL if it has not been re-logged, and unlocking the inode's
964  * flush lock.
965  */
966 void
967 xfs_iflush_abort(
968 	xfs_inode_t		*ip)
969 {
970 	xfs_inode_log_item_t	*iip = ip->i_itemp;
971 
972 	if (iip) {
973 		struct xfs_ail	*ailp = iip->ili_item.li_ailp;
974 		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
975 			spin_lock(&ailp->xa_lock);
976 			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
977 				/* xfs_trans_ail_delete() drops the AIL lock. */
978 				xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
979 			} else
980 				spin_unlock(&ailp->xa_lock);
981 		}
982 		iip->ili_logged = 0;
983 		/*
984 		 * Clear the ili_last_fields bits now that we know that the
985 		 * data corresponding to them is safely on disk.
986 		 */
987 		iip->ili_last_fields = 0;
988 		/*
989 		 * Clear the inode logging fields so no more flushes are
990 		 * attempted.
991 		 */
992 		iip->ili_format.ilf_fields = 0;
993 	}
994 	/*
995 	 * Release the inode's flush lock since we're done with it.
996 	 */
997 	xfs_ifunlock(ip);
998 }
999 
1000 void
1001 xfs_istale_done(
1002 	struct xfs_buf		*bp,
1003 	struct xfs_log_item	*lip)
1004 {
1005 	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
1006 }
1007 
1008 /*
1009  * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1010  * (which can have different field alignments) to the native version
1011  */
1012 int
1013 xfs_inode_item_format_convert(
1014 	xfs_log_iovec_t		*buf,
1015 	xfs_inode_log_format_t	*in_f)
1016 {
1017 	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1018 		xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
1019 
1020 		in_f->ilf_type = in_f32->ilf_type;
1021 		in_f->ilf_size = in_f32->ilf_size;
1022 		in_f->ilf_fields = in_f32->ilf_fields;
1023 		in_f->ilf_asize = in_f32->ilf_asize;
1024 		in_f->ilf_dsize = in_f32->ilf_dsize;
1025 		in_f->ilf_ino = in_f32->ilf_ino;
1026 		/* copy biggest field of ilf_u */
1027 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1028 		       in_f32->ilf_u.ilfu_uuid.__u_bits,
1029 		       sizeof(uuid_t));
1030 		in_f->ilf_blkno = in_f32->ilf_blkno;
1031 		in_f->ilf_len = in_f32->ilf_len;
1032 		in_f->ilf_boffset = in_f32->ilf_boffset;
1033 		return 0;
1034 	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1035 		xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
1036 
1037 		in_f->ilf_type = in_f64->ilf_type;
1038 		in_f->ilf_size = in_f64->ilf_size;
1039 		in_f->ilf_fields = in_f64->ilf_fields;
1040 		in_f->ilf_asize = in_f64->ilf_asize;
1041 		in_f->ilf_dsize = in_f64->ilf_dsize;
1042 		in_f->ilf_ino = in_f64->ilf_ino;
1043 		/* copy biggest field of ilf_u */
1044 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1045 		       in_f64->ilf_u.ilfu_uuid.__u_bits,
1046 		       sizeof(uuid_t));
1047 		in_f->ilf_blkno = in_f64->ilf_blkno;
1048 		in_f->ilf_len = in_f64->ilf_len;
1049 		in_f->ilf_boffset = in_f64->ilf_boffset;
1050 		return 0;
1051 	}
1052 	return EFSCORRUPTED;
1053 }
1054