1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_trace.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_buf_item.h" 19 #include "xfs_log.h" 20 #include "xfs_log_priv.h" 21 #include "xfs_error.h" 22 23 #include <linux/iversion.h> 24 25 struct kmem_cache *xfs_ili_cache; /* inode log item */ 26 27 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 28 { 29 return container_of(lip, struct xfs_inode_log_item, ili_item); 30 } 31 32 static uint64_t 33 xfs_inode_item_sort( 34 struct xfs_log_item *lip) 35 { 36 return INODE_ITEM(lip)->ili_inode->i_ino; 37 } 38 39 /* 40 * Prior to finally logging the inode, we have to ensure that all the 41 * per-modification inode state changes are applied. This includes VFS inode 42 * state updates, format conversions, verifier state synchronisation and 43 * ensuring the inode buffer remains in memory whilst the inode is dirty. 44 * 45 * We have to be careful when we grab the inode cluster buffer due to lock 46 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item) 47 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is 48 * not locked until ->precommit, so it happens after everything else has been 49 * modified. 50 * 51 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we 52 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we 53 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because 54 * it can be called on a inode (e.g. via bumplink/droplink) before we take the 55 * AGF lock modifying directory blocks. 56 * 57 * Rather than force a complete rework of all the transactions to call 58 * xfs_trans_log_inode() once and once only at the end of every transaction, we 59 * move the pinning of the inode cluster buffer to a ->precommit operation. This 60 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it 61 * ensures that the inode cluster buffer locking is always done last in a 62 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode 63 * cluster buffer. 64 * 65 * If we return the inode number as the precommit sort key then we'll also 66 * guarantee that the order all inode cluster buffer locking is the same all the 67 * inodes and unlink items in the transaction. 68 */ 69 static int 70 xfs_inode_item_precommit( 71 struct xfs_trans *tp, 72 struct xfs_log_item *lip) 73 { 74 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 75 struct xfs_inode *ip = iip->ili_inode; 76 struct inode *inode = VFS_I(ip); 77 unsigned int flags = iip->ili_dirty_flags; 78 79 /* 80 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races 81 * don't matter - we either will need an extra transaction in 24 hours 82 * to log the timestamps, or will clear already cleared fields in the 83 * worst case. 84 */ 85 if (inode->i_state & I_DIRTY_TIME) { 86 spin_lock(&inode->i_lock); 87 inode->i_state &= ~I_DIRTY_TIME; 88 spin_unlock(&inode->i_lock); 89 } 90 91 /* 92 * If we're updating the inode core or the timestamps and it's possible 93 * to upgrade this inode to bigtime format, do so now. 94 */ 95 if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) && 96 xfs_has_bigtime(ip->i_mount) && 97 !xfs_inode_has_bigtime(ip)) { 98 ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME; 99 flags |= XFS_ILOG_CORE; 100 } 101 102 /* 103 * Inode verifiers do not check that the extent size hint is an integer 104 * multiple of the rt extent size on a directory with both rtinherit 105 * and extszinherit flags set. If we're logging a directory that is 106 * misconfigured in this way, clear the hint. 107 */ 108 if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) && 109 (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) && 110 (ip->i_extsize % ip->i_mount->m_sb.sb_rextsize) > 0) { 111 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 112 XFS_DIFLAG_EXTSZINHERIT); 113 ip->i_extsize = 0; 114 flags |= XFS_ILOG_CORE; 115 } 116 117 /* 118 * Record the specific change for fdatasync optimisation. This allows 119 * fdatasync to skip log forces for inodes that are only timestamp 120 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it 121 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking 122 * (ili_fields) correctly tracks that the version has changed. 123 */ 124 spin_lock(&iip->ili_lock); 125 iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION); 126 if (flags & XFS_ILOG_IVERSION) 127 flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE); 128 129 if (!iip->ili_item.li_buf) { 130 struct xfs_buf *bp; 131 int error; 132 133 /* 134 * We hold the ILOCK here, so this inode is not going to be 135 * flushed while we are here. Further, because there is no 136 * buffer attached to the item, we know that there is no IO in 137 * progress, so nothing will clear the ili_fields while we read 138 * in the buffer. Hence we can safely drop the spin lock and 139 * read the buffer knowing that the state will not change from 140 * here. 141 */ 142 spin_unlock(&iip->ili_lock); 143 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp); 144 if (error) 145 return error; 146 147 /* 148 * We need an explicit buffer reference for the log item but 149 * don't want the buffer to remain attached to the transaction. 150 * Hold the buffer but release the transaction reference once 151 * we've attached the inode log item to the buffer log item 152 * list. 153 */ 154 xfs_buf_hold(bp); 155 spin_lock(&iip->ili_lock); 156 iip->ili_item.li_buf = bp; 157 bp->b_flags |= _XBF_INODES; 158 list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list); 159 xfs_trans_brelse(tp, bp); 160 } 161 162 /* 163 * Always OR in the bits from the ili_last_fields field. This is to 164 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines 165 * in the eventual clearing of the ili_fields bits. See the big comment 166 * in xfs_iflush() for an explanation of this coordination mechanism. 167 */ 168 iip->ili_fields |= (flags | iip->ili_last_fields); 169 spin_unlock(&iip->ili_lock); 170 171 /* 172 * We are done with the log item transaction dirty state, so clear it so 173 * that it doesn't pollute future transactions. 174 */ 175 iip->ili_dirty_flags = 0; 176 return 0; 177 } 178 179 /* 180 * The logged size of an inode fork is always the current size of the inode 181 * fork. This means that when an inode fork is relogged, the size of the logged 182 * region is determined by the current state, not the combination of the 183 * previously logged state + the current state. This is different relogging 184 * behaviour to most other log items which will retain the size of the 185 * previously logged changes when smaller regions are relogged. 186 * 187 * Hence operations that remove data from the inode fork (e.g. shortform 188 * dir/attr remove, extent form extent removal, etc), the size of the relogged 189 * inode gets -smaller- rather than stays the same size as the previously logged 190 * size and this can result in the committing transaction reducing the amount of 191 * space being consumed by the CIL. 192 */ 193 STATIC void 194 xfs_inode_item_data_fork_size( 195 struct xfs_inode_log_item *iip, 196 int *nvecs, 197 int *nbytes) 198 { 199 struct xfs_inode *ip = iip->ili_inode; 200 201 switch (ip->i_df.if_format) { 202 case XFS_DINODE_FMT_EXTENTS: 203 if ((iip->ili_fields & XFS_ILOG_DEXT) && 204 ip->i_df.if_nextents > 0 && 205 ip->i_df.if_bytes > 0) { 206 /* worst case, doesn't subtract delalloc extents */ 207 *nbytes += xfs_inode_data_fork_size(ip); 208 *nvecs += 1; 209 } 210 break; 211 case XFS_DINODE_FMT_BTREE: 212 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 213 ip->i_df.if_broot_bytes > 0) { 214 *nbytes += ip->i_df.if_broot_bytes; 215 *nvecs += 1; 216 } 217 break; 218 case XFS_DINODE_FMT_LOCAL: 219 if ((iip->ili_fields & XFS_ILOG_DDATA) && 220 ip->i_df.if_bytes > 0) { 221 *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes); 222 *nvecs += 1; 223 } 224 break; 225 226 case XFS_DINODE_FMT_DEV: 227 break; 228 default: 229 ASSERT(0); 230 break; 231 } 232 } 233 234 STATIC void 235 xfs_inode_item_attr_fork_size( 236 struct xfs_inode_log_item *iip, 237 int *nvecs, 238 int *nbytes) 239 { 240 struct xfs_inode *ip = iip->ili_inode; 241 242 switch (ip->i_af.if_format) { 243 case XFS_DINODE_FMT_EXTENTS: 244 if ((iip->ili_fields & XFS_ILOG_AEXT) && 245 ip->i_af.if_nextents > 0 && 246 ip->i_af.if_bytes > 0) { 247 /* worst case, doesn't subtract unused space */ 248 *nbytes += xfs_inode_attr_fork_size(ip); 249 *nvecs += 1; 250 } 251 break; 252 case XFS_DINODE_FMT_BTREE: 253 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 254 ip->i_af.if_broot_bytes > 0) { 255 *nbytes += ip->i_af.if_broot_bytes; 256 *nvecs += 1; 257 } 258 break; 259 case XFS_DINODE_FMT_LOCAL: 260 if ((iip->ili_fields & XFS_ILOG_ADATA) && 261 ip->i_af.if_bytes > 0) { 262 *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes); 263 *nvecs += 1; 264 } 265 break; 266 default: 267 ASSERT(0); 268 break; 269 } 270 } 271 272 /* 273 * This returns the number of iovecs needed to log the given inode item. 274 * 275 * We need one iovec for the inode log format structure, one for the 276 * inode core, and possibly one for the inode data/extents/b-tree root 277 * and one for the inode attribute data/extents/b-tree root. 278 */ 279 STATIC void 280 xfs_inode_item_size( 281 struct xfs_log_item *lip, 282 int *nvecs, 283 int *nbytes) 284 { 285 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 286 struct xfs_inode *ip = iip->ili_inode; 287 288 *nvecs += 2; 289 *nbytes += sizeof(struct xfs_inode_log_format) + 290 xfs_log_dinode_size(ip->i_mount); 291 292 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 293 if (xfs_inode_has_attr_fork(ip)) 294 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 295 } 296 297 STATIC void 298 xfs_inode_item_format_data_fork( 299 struct xfs_inode_log_item *iip, 300 struct xfs_inode_log_format *ilf, 301 struct xfs_log_vec *lv, 302 struct xfs_log_iovec **vecp) 303 { 304 struct xfs_inode *ip = iip->ili_inode; 305 size_t data_bytes; 306 307 switch (ip->i_df.if_format) { 308 case XFS_DINODE_FMT_EXTENTS: 309 iip->ili_fields &= 310 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 311 312 if ((iip->ili_fields & XFS_ILOG_DEXT) && 313 ip->i_df.if_nextents > 0 && 314 ip->i_df.if_bytes > 0) { 315 struct xfs_bmbt_rec *p; 316 317 ASSERT(xfs_iext_count(&ip->i_df) > 0); 318 319 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 320 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 321 xlog_finish_iovec(lv, *vecp, data_bytes); 322 323 ASSERT(data_bytes <= ip->i_df.if_bytes); 324 325 ilf->ilf_dsize = data_bytes; 326 ilf->ilf_size++; 327 } else { 328 iip->ili_fields &= ~XFS_ILOG_DEXT; 329 } 330 break; 331 case XFS_DINODE_FMT_BTREE: 332 iip->ili_fields &= 333 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); 334 335 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 336 ip->i_df.if_broot_bytes > 0) { 337 ASSERT(ip->i_df.if_broot != NULL); 338 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 339 ip->i_df.if_broot, 340 ip->i_df.if_broot_bytes); 341 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 342 ilf->ilf_size++; 343 } else { 344 ASSERT(!(iip->ili_fields & 345 XFS_ILOG_DBROOT)); 346 iip->ili_fields &= ~XFS_ILOG_DBROOT; 347 } 348 break; 349 case XFS_DINODE_FMT_LOCAL: 350 iip->ili_fields &= 351 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 352 if ((iip->ili_fields & XFS_ILOG_DDATA) && 353 ip->i_df.if_bytes > 0) { 354 ASSERT(ip->i_df.if_u1.if_data != NULL); 355 ASSERT(ip->i_disk_size > 0); 356 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 357 ip->i_df.if_u1.if_data, 358 ip->i_df.if_bytes); 359 ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes; 360 ilf->ilf_size++; 361 } else { 362 iip->ili_fields &= ~XFS_ILOG_DDATA; 363 } 364 break; 365 case XFS_DINODE_FMT_DEV: 366 iip->ili_fields &= 367 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); 368 if (iip->ili_fields & XFS_ILOG_DEV) 369 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); 370 break; 371 default: 372 ASSERT(0); 373 break; 374 } 375 } 376 377 STATIC void 378 xfs_inode_item_format_attr_fork( 379 struct xfs_inode_log_item *iip, 380 struct xfs_inode_log_format *ilf, 381 struct xfs_log_vec *lv, 382 struct xfs_log_iovec **vecp) 383 { 384 struct xfs_inode *ip = iip->ili_inode; 385 size_t data_bytes; 386 387 switch (ip->i_af.if_format) { 388 case XFS_DINODE_FMT_EXTENTS: 389 iip->ili_fields &= 390 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 391 392 if ((iip->ili_fields & XFS_ILOG_AEXT) && 393 ip->i_af.if_nextents > 0 && 394 ip->i_af.if_bytes > 0) { 395 struct xfs_bmbt_rec *p; 396 397 ASSERT(xfs_iext_count(&ip->i_af) == 398 ip->i_af.if_nextents); 399 400 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 401 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 402 xlog_finish_iovec(lv, *vecp, data_bytes); 403 404 ilf->ilf_asize = data_bytes; 405 ilf->ilf_size++; 406 } else { 407 iip->ili_fields &= ~XFS_ILOG_AEXT; 408 } 409 break; 410 case XFS_DINODE_FMT_BTREE: 411 iip->ili_fields &= 412 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 413 414 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 415 ip->i_af.if_broot_bytes > 0) { 416 ASSERT(ip->i_af.if_broot != NULL); 417 418 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 419 ip->i_af.if_broot, 420 ip->i_af.if_broot_bytes); 421 ilf->ilf_asize = ip->i_af.if_broot_bytes; 422 ilf->ilf_size++; 423 } else { 424 iip->ili_fields &= ~XFS_ILOG_ABROOT; 425 } 426 break; 427 case XFS_DINODE_FMT_LOCAL: 428 iip->ili_fields &= 429 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 430 431 if ((iip->ili_fields & XFS_ILOG_ADATA) && 432 ip->i_af.if_bytes > 0) { 433 ASSERT(ip->i_af.if_u1.if_data != NULL); 434 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 435 ip->i_af.if_u1.if_data, 436 ip->i_af.if_bytes); 437 ilf->ilf_asize = (unsigned)ip->i_af.if_bytes; 438 ilf->ilf_size++; 439 } else { 440 iip->ili_fields &= ~XFS_ILOG_ADATA; 441 } 442 break; 443 default: 444 ASSERT(0); 445 break; 446 } 447 } 448 449 /* 450 * Convert an incore timestamp to a log timestamp. Note that the log format 451 * specifies host endian format! 452 */ 453 static inline xfs_log_timestamp_t 454 xfs_inode_to_log_dinode_ts( 455 struct xfs_inode *ip, 456 const struct timespec64 tv) 457 { 458 struct xfs_log_legacy_timestamp *lits; 459 xfs_log_timestamp_t its; 460 461 if (xfs_inode_has_bigtime(ip)) 462 return xfs_inode_encode_bigtime(tv); 463 464 lits = (struct xfs_log_legacy_timestamp *)&its; 465 lits->t_sec = tv.tv_sec; 466 lits->t_nsec = tv.tv_nsec; 467 468 return its; 469 } 470 471 /* 472 * The legacy DMAPI fields are only present in the on-disk and in-log inodes, 473 * but not in the in-memory one. But we are guaranteed to have an inode buffer 474 * in memory when logging an inode, so we can just copy it from the on-disk 475 * inode to the in-log inode here so that recovery of file system with these 476 * fields set to non-zero values doesn't lose them. For all other cases we zero 477 * the fields. 478 */ 479 static void 480 xfs_copy_dm_fields_to_log_dinode( 481 struct xfs_inode *ip, 482 struct xfs_log_dinode *to) 483 { 484 struct xfs_dinode *dip; 485 486 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf, 487 ip->i_imap.im_boffset); 488 489 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) { 490 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask); 491 to->di_dmstate = be16_to_cpu(dip->di_dmstate); 492 } else { 493 to->di_dmevmask = 0; 494 to->di_dmstate = 0; 495 } 496 } 497 498 static inline void 499 xfs_inode_to_log_dinode_iext_counters( 500 struct xfs_inode *ip, 501 struct xfs_log_dinode *to) 502 { 503 if (xfs_inode_has_large_extent_counts(ip)) { 504 to->di_big_nextents = xfs_ifork_nextents(&ip->i_df); 505 to->di_big_anextents = xfs_ifork_nextents(&ip->i_af); 506 to->di_nrext64_pad = 0; 507 } else { 508 to->di_nextents = xfs_ifork_nextents(&ip->i_df); 509 to->di_anextents = xfs_ifork_nextents(&ip->i_af); 510 } 511 } 512 513 static void 514 xfs_inode_to_log_dinode( 515 struct xfs_inode *ip, 516 struct xfs_log_dinode *to, 517 xfs_lsn_t lsn) 518 { 519 struct inode *inode = VFS_I(ip); 520 521 to->di_magic = XFS_DINODE_MAGIC; 522 to->di_format = xfs_ifork_format(&ip->i_df); 523 to->di_uid = i_uid_read(inode); 524 to->di_gid = i_gid_read(inode); 525 to->di_projid_lo = ip->i_projid & 0xffff; 526 to->di_projid_hi = ip->i_projid >> 16; 527 528 memset(to->di_pad3, 0, sizeof(to->di_pad3)); 529 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime); 530 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime); 531 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime); 532 to->di_nlink = inode->i_nlink; 533 to->di_gen = inode->i_generation; 534 to->di_mode = inode->i_mode; 535 536 to->di_size = ip->i_disk_size; 537 to->di_nblocks = ip->i_nblocks; 538 to->di_extsize = ip->i_extsize; 539 to->di_forkoff = ip->i_forkoff; 540 to->di_aformat = xfs_ifork_format(&ip->i_af); 541 to->di_flags = ip->i_diflags; 542 543 xfs_copy_dm_fields_to_log_dinode(ip, to); 544 545 /* log a dummy value to ensure log structure is fully initialised */ 546 to->di_next_unlinked = NULLAGINO; 547 548 if (xfs_has_v3inodes(ip->i_mount)) { 549 to->di_version = 3; 550 to->di_changecount = inode_peek_iversion(inode); 551 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime); 552 to->di_flags2 = ip->i_diflags2; 553 to->di_cowextsize = ip->i_cowextsize; 554 to->di_ino = ip->i_ino; 555 to->di_lsn = lsn; 556 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 557 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 558 to->di_v3_pad = 0; 559 } else { 560 to->di_version = 2; 561 to->di_flushiter = ip->i_flushiter; 562 memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad)); 563 } 564 565 xfs_inode_to_log_dinode_iext_counters(ip, to); 566 } 567 568 /* 569 * Format the inode core. Current timestamp data is only in the VFS inode 570 * fields, so we need to grab them from there. Hence rather than just copying 571 * the XFS inode core structure, format the fields directly into the iovec. 572 */ 573 static void 574 xfs_inode_item_format_core( 575 struct xfs_inode *ip, 576 struct xfs_log_vec *lv, 577 struct xfs_log_iovec **vecp) 578 { 579 struct xfs_log_dinode *dic; 580 581 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 582 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 583 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount)); 584 } 585 586 /* 587 * This is called to fill in the vector of log iovecs for the given inode 588 * log item. It fills the first item with an inode log format structure, 589 * the second with the on-disk inode structure, and a possible third and/or 590 * fourth with the inode data/extents/b-tree root and inode attributes 591 * data/extents/b-tree root. 592 * 593 * Note: Always use the 64 bit inode log format structure so we don't 594 * leave an uninitialised hole in the format item on 64 bit systems. Log 595 * recovery on 32 bit systems handles this just fine, so there's no reason 596 * for not using an initialising the properly padded structure all the time. 597 */ 598 STATIC void 599 xfs_inode_item_format( 600 struct xfs_log_item *lip, 601 struct xfs_log_vec *lv) 602 { 603 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 604 struct xfs_inode *ip = iip->ili_inode; 605 struct xfs_log_iovec *vecp = NULL; 606 struct xfs_inode_log_format *ilf; 607 608 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 609 ilf->ilf_type = XFS_LI_INODE; 610 ilf->ilf_ino = ip->i_ino; 611 ilf->ilf_blkno = ip->i_imap.im_blkno; 612 ilf->ilf_len = ip->i_imap.im_len; 613 ilf->ilf_boffset = ip->i_imap.im_boffset; 614 ilf->ilf_fields = XFS_ILOG_CORE; 615 ilf->ilf_size = 2; /* format + core */ 616 617 /* 618 * make sure we don't leak uninitialised data into the log in the case 619 * when we don't log every field in the inode. 620 */ 621 ilf->ilf_dsize = 0; 622 ilf->ilf_asize = 0; 623 ilf->ilf_pad = 0; 624 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); 625 626 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 627 628 xfs_inode_item_format_core(ip, lv, &vecp); 629 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 630 if (xfs_inode_has_attr_fork(ip)) { 631 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 632 } else { 633 iip->ili_fields &= 634 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 635 } 636 637 /* update the format with the exact fields we actually logged */ 638 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 639 } 640 641 /* 642 * This is called to pin the inode associated with the inode log 643 * item in memory so it cannot be written out. 644 */ 645 STATIC void 646 xfs_inode_item_pin( 647 struct xfs_log_item *lip) 648 { 649 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 650 651 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 652 ASSERT(lip->li_buf); 653 654 trace_xfs_inode_pin(ip, _RET_IP_); 655 atomic_inc(&ip->i_pincount); 656 } 657 658 659 /* 660 * This is called to unpin the inode associated with the inode log 661 * item which was previously pinned with a call to xfs_inode_item_pin(). 662 * 663 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 664 * 665 * Note that unpin can race with inode cluster buffer freeing marking the buffer 666 * stale. In that case, flush completions are run from the buffer unpin call, 667 * which may happen before the inode is unpinned. If we lose the race, there 668 * will be no buffer attached to the log item, but the inode will be marked 669 * XFS_ISTALE. 670 */ 671 STATIC void 672 xfs_inode_item_unpin( 673 struct xfs_log_item *lip, 674 int remove) 675 { 676 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 677 678 trace_xfs_inode_unpin(ip, _RET_IP_); 679 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE)); 680 ASSERT(atomic_read(&ip->i_pincount) > 0); 681 if (atomic_dec_and_test(&ip->i_pincount)) 682 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 683 } 684 685 STATIC uint 686 xfs_inode_item_push( 687 struct xfs_log_item *lip, 688 struct list_head *buffer_list) 689 __releases(&lip->li_ailp->ail_lock) 690 __acquires(&lip->li_ailp->ail_lock) 691 { 692 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 693 struct xfs_inode *ip = iip->ili_inode; 694 struct xfs_buf *bp = lip->li_buf; 695 uint rval = XFS_ITEM_SUCCESS; 696 int error; 697 698 if (!bp || (ip->i_flags & XFS_ISTALE)) { 699 /* 700 * Inode item/buffer is being aborted due to cluster 701 * buffer deletion. Trigger a log force to have that operation 702 * completed and items removed from the AIL before the next push 703 * attempt. 704 */ 705 return XFS_ITEM_PINNED; 706 } 707 708 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp)) 709 return XFS_ITEM_PINNED; 710 711 if (xfs_iflags_test(ip, XFS_IFLUSHING)) 712 return XFS_ITEM_FLUSHING; 713 714 if (!xfs_buf_trylock(bp)) 715 return XFS_ITEM_LOCKED; 716 717 spin_unlock(&lip->li_ailp->ail_lock); 718 719 /* 720 * We need to hold a reference for flushing the cluster buffer as it may 721 * fail the buffer without IO submission. In which case, we better get a 722 * reference for that completion because otherwise we don't get a 723 * reference for IO until we queue the buffer for delwri submission. 724 */ 725 xfs_buf_hold(bp); 726 error = xfs_iflush_cluster(bp); 727 if (!error) { 728 if (!xfs_buf_delwri_queue(bp, buffer_list)) 729 rval = XFS_ITEM_FLUSHING; 730 xfs_buf_relse(bp); 731 } else { 732 /* 733 * Release the buffer if we were unable to flush anything. On 734 * any other error, the buffer has already been released. 735 */ 736 if (error == -EAGAIN) 737 xfs_buf_relse(bp); 738 rval = XFS_ITEM_LOCKED; 739 } 740 741 spin_lock(&lip->li_ailp->ail_lock); 742 return rval; 743 } 744 745 /* 746 * Unlock the inode associated with the inode log item. 747 */ 748 STATIC void 749 xfs_inode_item_release( 750 struct xfs_log_item *lip) 751 { 752 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 753 struct xfs_inode *ip = iip->ili_inode; 754 unsigned short lock_flags; 755 756 ASSERT(ip->i_itemp != NULL); 757 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 758 759 lock_flags = iip->ili_lock_flags; 760 iip->ili_lock_flags = 0; 761 if (lock_flags) 762 xfs_iunlock(ip, lock_flags); 763 } 764 765 /* 766 * This is called to find out where the oldest active copy of the inode log 767 * item in the on disk log resides now that the last log write of it completed 768 * at the given lsn. Since we always re-log all dirty data in an inode, the 769 * latest copy in the on disk log is the only one that matters. Therefore, 770 * simply return the given lsn. 771 * 772 * If the inode has been marked stale because the cluster is being freed, we 773 * don't want to (re-)insert this inode into the AIL. There is a race condition 774 * where the cluster buffer may be unpinned before the inode is inserted into 775 * the AIL during transaction committed processing. If the buffer is unpinned 776 * before the inode item has been committed and inserted, then it is possible 777 * for the buffer to be written and IO completes before the inode is inserted 778 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 779 * AIL which will never get removed. It will, however, get reclaimed which 780 * triggers an assert in xfs_inode_free() complaining about freein an inode 781 * still in the AIL. 782 * 783 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 784 * transaction committed code knows that it does not need to do any further 785 * processing on the item. 786 */ 787 STATIC xfs_lsn_t 788 xfs_inode_item_committed( 789 struct xfs_log_item *lip, 790 xfs_lsn_t lsn) 791 { 792 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 793 struct xfs_inode *ip = iip->ili_inode; 794 795 if (xfs_iflags_test(ip, XFS_ISTALE)) { 796 xfs_inode_item_unpin(lip, 0); 797 return -1; 798 } 799 return lsn; 800 } 801 802 STATIC void 803 xfs_inode_item_committing( 804 struct xfs_log_item *lip, 805 xfs_csn_t seq) 806 { 807 INODE_ITEM(lip)->ili_commit_seq = seq; 808 return xfs_inode_item_release(lip); 809 } 810 811 static const struct xfs_item_ops xfs_inode_item_ops = { 812 .iop_sort = xfs_inode_item_sort, 813 .iop_precommit = xfs_inode_item_precommit, 814 .iop_size = xfs_inode_item_size, 815 .iop_format = xfs_inode_item_format, 816 .iop_pin = xfs_inode_item_pin, 817 .iop_unpin = xfs_inode_item_unpin, 818 .iop_release = xfs_inode_item_release, 819 .iop_committed = xfs_inode_item_committed, 820 .iop_push = xfs_inode_item_push, 821 .iop_committing = xfs_inode_item_committing, 822 }; 823 824 825 /* 826 * Initialize the inode log item for a newly allocated (in-core) inode. 827 */ 828 void 829 xfs_inode_item_init( 830 struct xfs_inode *ip, 831 struct xfs_mount *mp) 832 { 833 struct xfs_inode_log_item *iip; 834 835 ASSERT(ip->i_itemp == NULL); 836 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache, 837 GFP_KERNEL | __GFP_NOFAIL); 838 839 iip->ili_inode = ip; 840 spin_lock_init(&iip->ili_lock); 841 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 842 &xfs_inode_item_ops); 843 } 844 845 /* 846 * Free the inode log item and any memory hanging off of it. 847 */ 848 void 849 xfs_inode_item_destroy( 850 struct xfs_inode *ip) 851 { 852 struct xfs_inode_log_item *iip = ip->i_itemp; 853 854 ASSERT(iip->ili_item.li_buf == NULL); 855 856 ip->i_itemp = NULL; 857 kmem_free(iip->ili_item.li_lv_shadow); 858 kmem_cache_free(xfs_ili_cache, iip); 859 } 860 861 862 /* 863 * We only want to pull the item from the AIL if it is actually there 864 * and its location in the log has not changed since we started the 865 * flush. Thus, we only bother if the inode's lsn has not changed. 866 */ 867 static void 868 xfs_iflush_ail_updates( 869 struct xfs_ail *ailp, 870 struct list_head *list) 871 { 872 struct xfs_log_item *lip; 873 xfs_lsn_t tail_lsn = 0; 874 875 /* this is an opencoded batch version of xfs_trans_ail_delete */ 876 spin_lock(&ailp->ail_lock); 877 list_for_each_entry(lip, list, li_bio_list) { 878 xfs_lsn_t lsn; 879 880 clear_bit(XFS_LI_FAILED, &lip->li_flags); 881 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn) 882 continue; 883 884 /* 885 * dgc: Not sure how this happens, but it happens very 886 * occassionaly via generic/388. xfs_iflush_abort() also 887 * silently handles this same "under writeback but not in AIL at 888 * shutdown" condition via xfs_trans_ail_delete(). 889 */ 890 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) { 891 ASSERT(xlog_is_shutdown(lip->li_log)); 892 continue; 893 } 894 895 lsn = xfs_ail_delete_one(ailp, lip); 896 if (!tail_lsn && lsn) 897 tail_lsn = lsn; 898 } 899 xfs_ail_update_finish(ailp, tail_lsn); 900 } 901 902 /* 903 * Walk the list of inodes that have completed their IOs. If they are clean 904 * remove them from the list and dissociate them from the buffer. Buffers that 905 * are still dirty remain linked to the buffer and on the list. Caller must 906 * handle them appropriately. 907 */ 908 static void 909 xfs_iflush_finish( 910 struct xfs_buf *bp, 911 struct list_head *list) 912 { 913 struct xfs_log_item *lip, *n; 914 915 list_for_each_entry_safe(lip, n, list, li_bio_list) { 916 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 917 bool drop_buffer = false; 918 919 spin_lock(&iip->ili_lock); 920 921 /* 922 * Remove the reference to the cluster buffer if the inode is 923 * clean in memory and drop the buffer reference once we've 924 * dropped the locks we hold. 925 */ 926 ASSERT(iip->ili_item.li_buf == bp); 927 if (!iip->ili_fields) { 928 iip->ili_item.li_buf = NULL; 929 list_del_init(&lip->li_bio_list); 930 drop_buffer = true; 931 } 932 iip->ili_last_fields = 0; 933 iip->ili_flush_lsn = 0; 934 spin_unlock(&iip->ili_lock); 935 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING); 936 if (drop_buffer) 937 xfs_buf_rele(bp); 938 } 939 } 940 941 /* 942 * Inode buffer IO completion routine. It is responsible for removing inodes 943 * attached to the buffer from the AIL if they have not been re-logged and 944 * completing the inode flush. 945 */ 946 void 947 xfs_buf_inode_iodone( 948 struct xfs_buf *bp) 949 { 950 struct xfs_log_item *lip, *n; 951 LIST_HEAD(flushed_inodes); 952 LIST_HEAD(ail_updates); 953 954 /* 955 * Pull the attached inodes from the buffer one at a time and take the 956 * appropriate action on them. 957 */ 958 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 959 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 960 961 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) { 962 xfs_iflush_abort(iip->ili_inode); 963 continue; 964 } 965 if (!iip->ili_last_fields) 966 continue; 967 968 /* Do an unlocked check for needing the AIL lock. */ 969 if (iip->ili_flush_lsn == lip->li_lsn || 970 test_bit(XFS_LI_FAILED, &lip->li_flags)) 971 list_move_tail(&lip->li_bio_list, &ail_updates); 972 else 973 list_move_tail(&lip->li_bio_list, &flushed_inodes); 974 } 975 976 if (!list_empty(&ail_updates)) { 977 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates); 978 list_splice_tail(&ail_updates, &flushed_inodes); 979 } 980 981 xfs_iflush_finish(bp, &flushed_inodes); 982 if (!list_empty(&flushed_inodes)) 983 list_splice_tail(&flushed_inodes, &bp->b_li_list); 984 } 985 986 void 987 xfs_buf_inode_io_fail( 988 struct xfs_buf *bp) 989 { 990 struct xfs_log_item *lip; 991 992 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) 993 set_bit(XFS_LI_FAILED, &lip->li_flags); 994 } 995 996 /* 997 * Clear the inode logging fields so no more flushes are attempted. If we are 998 * on a buffer list, it is now safe to remove it because the buffer is 999 * guaranteed to be locked. The caller will drop the reference to the buffer 1000 * the log item held. 1001 */ 1002 static void 1003 xfs_iflush_abort_clean( 1004 struct xfs_inode_log_item *iip) 1005 { 1006 iip->ili_last_fields = 0; 1007 iip->ili_fields = 0; 1008 iip->ili_fsync_fields = 0; 1009 iip->ili_flush_lsn = 0; 1010 iip->ili_item.li_buf = NULL; 1011 list_del_init(&iip->ili_item.li_bio_list); 1012 } 1013 1014 /* 1015 * Abort flushing the inode from a context holding the cluster buffer locked. 1016 * 1017 * This is the normal runtime method of aborting writeback of an inode that is 1018 * attached to a cluster buffer. It occurs when the inode and the backing 1019 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster 1020 * flushing or buffer IO completion encounters a log shutdown situation. 1021 * 1022 * If we need to abort inode writeback and we don't already hold the buffer 1023 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be 1024 * necessary in a shutdown situation. 1025 */ 1026 void 1027 xfs_iflush_abort( 1028 struct xfs_inode *ip) 1029 { 1030 struct xfs_inode_log_item *iip = ip->i_itemp; 1031 struct xfs_buf *bp; 1032 1033 if (!iip) { 1034 /* clean inode, nothing to do */ 1035 xfs_iflags_clear(ip, XFS_IFLUSHING); 1036 return; 1037 } 1038 1039 /* 1040 * Remove the inode item from the AIL before we clear its internal 1041 * state. Whilst the inode is in the AIL, it should have a valid buffer 1042 * pointer for push operations to access - it is only safe to remove the 1043 * inode from the buffer once it has been removed from the AIL. 1044 * 1045 * We also clear the failed bit before removing the item from the AIL 1046 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer 1047 * references the inode item owns and needs to hold until we've fully 1048 * aborted the inode log item and detached it from the buffer. 1049 */ 1050 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags); 1051 xfs_trans_ail_delete(&iip->ili_item, 0); 1052 1053 /* 1054 * Grab the inode buffer so can we release the reference the inode log 1055 * item holds on it. 1056 */ 1057 spin_lock(&iip->ili_lock); 1058 bp = iip->ili_item.li_buf; 1059 xfs_iflush_abort_clean(iip); 1060 spin_unlock(&iip->ili_lock); 1061 1062 xfs_iflags_clear(ip, XFS_IFLUSHING); 1063 if (bp) 1064 xfs_buf_rele(bp); 1065 } 1066 1067 /* 1068 * Abort an inode flush in the case of a shutdown filesystem. This can be called 1069 * from anywhere with just an inode reference and does not require holding the 1070 * inode cluster buffer locked. If the inode is attached to a cluster buffer, 1071 * it will grab and lock it safely, then abort the inode flush. 1072 */ 1073 void 1074 xfs_iflush_shutdown_abort( 1075 struct xfs_inode *ip) 1076 { 1077 struct xfs_inode_log_item *iip = ip->i_itemp; 1078 struct xfs_buf *bp; 1079 1080 if (!iip) { 1081 /* clean inode, nothing to do */ 1082 xfs_iflags_clear(ip, XFS_IFLUSHING); 1083 return; 1084 } 1085 1086 spin_lock(&iip->ili_lock); 1087 bp = iip->ili_item.li_buf; 1088 if (!bp) { 1089 spin_unlock(&iip->ili_lock); 1090 xfs_iflush_abort(ip); 1091 return; 1092 } 1093 1094 /* 1095 * We have to take a reference to the buffer so that it doesn't get 1096 * freed when we drop the ili_lock and then wait to lock the buffer. 1097 * We'll clean up the extra reference after we pick up the ili_lock 1098 * again. 1099 */ 1100 xfs_buf_hold(bp); 1101 spin_unlock(&iip->ili_lock); 1102 xfs_buf_lock(bp); 1103 1104 spin_lock(&iip->ili_lock); 1105 if (!iip->ili_item.li_buf) { 1106 /* 1107 * Raced with another removal, hold the only reference 1108 * to bp now. Inode should not be in the AIL now, so just clean 1109 * up and return; 1110 */ 1111 ASSERT(list_empty(&iip->ili_item.li_bio_list)); 1112 ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)); 1113 xfs_iflush_abort_clean(iip); 1114 spin_unlock(&iip->ili_lock); 1115 xfs_iflags_clear(ip, XFS_IFLUSHING); 1116 xfs_buf_relse(bp); 1117 return; 1118 } 1119 1120 /* 1121 * Got two references to bp. The first will get dropped by 1122 * xfs_iflush_abort() when the item is removed from the buffer list, but 1123 * we can't drop our reference until _abort() returns because we have to 1124 * unlock the buffer as well. Hence we abort and then unlock and release 1125 * our reference to the buffer. 1126 */ 1127 ASSERT(iip->ili_item.li_buf == bp); 1128 spin_unlock(&iip->ili_lock); 1129 xfs_iflush_abort(ip); 1130 xfs_buf_relse(bp); 1131 } 1132 1133 1134 /* 1135 * convert an xfs_inode_log_format struct from the old 32 bit version 1136 * (which can have different field alignments) to the native 64 bit version 1137 */ 1138 int 1139 xfs_inode_item_format_convert( 1140 struct xfs_log_iovec *buf, 1141 struct xfs_inode_log_format *in_f) 1142 { 1143 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; 1144 1145 if (buf->i_len != sizeof(*in_f32)) { 1146 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 1147 return -EFSCORRUPTED; 1148 } 1149 1150 in_f->ilf_type = in_f32->ilf_type; 1151 in_f->ilf_size = in_f32->ilf_size; 1152 in_f->ilf_fields = in_f32->ilf_fields; 1153 in_f->ilf_asize = in_f32->ilf_asize; 1154 in_f->ilf_dsize = in_f32->ilf_dsize; 1155 in_f->ilf_ino = in_f32->ilf_ino; 1156 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); 1157 in_f->ilf_blkno = in_f32->ilf_blkno; 1158 in_f->ilf_len = in_f32->ilf_len; 1159 in_f->ilf_boffset = in_f32->ilf_boffset; 1160 return 0; 1161 } 1162