1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_trace.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_buf_item.h" 19 #include "xfs_log.h" 20 #include "xfs_log_priv.h" 21 #include "xfs_error.h" 22 #include "xfs_rtbitmap.h" 23 24 #include <linux/iversion.h> 25 26 struct kmem_cache *xfs_ili_cache; /* inode log item */ 27 28 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 29 { 30 return container_of(lip, struct xfs_inode_log_item, ili_item); 31 } 32 33 static uint64_t 34 xfs_inode_item_sort( 35 struct xfs_log_item *lip) 36 { 37 return INODE_ITEM(lip)->ili_inode->i_ino; 38 } 39 40 #ifdef DEBUG_EXPENSIVE 41 static void 42 xfs_inode_item_precommit_check( 43 struct xfs_inode *ip) 44 { 45 struct xfs_mount *mp = ip->i_mount; 46 struct xfs_dinode *dip; 47 xfs_failaddr_t fa; 48 49 dip = kzalloc(mp->m_sb.sb_inodesize, GFP_KERNEL | GFP_NOFS); 50 if (!dip) { 51 ASSERT(dip != NULL); 52 return; 53 } 54 55 xfs_inode_to_disk(ip, dip, 0); 56 xfs_dinode_calc_crc(mp, dip); 57 fa = xfs_dinode_verify(mp, ip->i_ino, dip); 58 if (fa) { 59 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 60 sizeof(*dip), fa); 61 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 62 ASSERT(fa == NULL); 63 } 64 kfree(dip); 65 } 66 #else 67 # define xfs_inode_item_precommit_check(ip) ((void)0) 68 #endif 69 70 /* 71 * Prior to finally logging the inode, we have to ensure that all the 72 * per-modification inode state changes are applied. This includes VFS inode 73 * state updates, format conversions, verifier state synchronisation and 74 * ensuring the inode buffer remains in memory whilst the inode is dirty. 75 * 76 * We have to be careful when we grab the inode cluster buffer due to lock 77 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item) 78 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is 79 * not locked until ->precommit, so it happens after everything else has been 80 * modified. 81 * 82 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we 83 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we 84 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because 85 * it can be called on a inode (e.g. via bumplink/droplink) before we take the 86 * AGF lock modifying directory blocks. 87 * 88 * Rather than force a complete rework of all the transactions to call 89 * xfs_trans_log_inode() once and once only at the end of every transaction, we 90 * move the pinning of the inode cluster buffer to a ->precommit operation. This 91 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it 92 * ensures that the inode cluster buffer locking is always done last in a 93 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode 94 * cluster buffer. 95 * 96 * If we return the inode number as the precommit sort key then we'll also 97 * guarantee that the order all inode cluster buffer locking is the same all the 98 * inodes and unlink items in the transaction. 99 */ 100 static int 101 xfs_inode_item_precommit( 102 struct xfs_trans *tp, 103 struct xfs_log_item *lip) 104 { 105 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 106 struct xfs_inode *ip = iip->ili_inode; 107 struct inode *inode = VFS_I(ip); 108 unsigned int flags = iip->ili_dirty_flags; 109 110 /* 111 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races 112 * don't matter - we either will need an extra transaction in 24 hours 113 * to log the timestamps, or will clear already cleared fields in the 114 * worst case. 115 */ 116 if (inode->i_state & I_DIRTY_TIME) { 117 spin_lock(&inode->i_lock); 118 inode->i_state &= ~I_DIRTY_TIME; 119 spin_unlock(&inode->i_lock); 120 } 121 122 /* 123 * If we're updating the inode core or the timestamps and it's possible 124 * to upgrade this inode to bigtime format, do so now. 125 */ 126 if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) && 127 xfs_has_bigtime(ip->i_mount) && 128 !xfs_inode_has_bigtime(ip)) { 129 ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME; 130 flags |= XFS_ILOG_CORE; 131 } 132 133 /* 134 * Inode verifiers do not check that the extent size hint is an integer 135 * multiple of the rt extent size on a directory with both rtinherit 136 * and extszinherit flags set. If we're logging a directory that is 137 * misconfigured in this way, clear the hint. 138 */ 139 if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) && 140 (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) && 141 xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) { 142 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 143 XFS_DIFLAG_EXTSZINHERIT); 144 ip->i_extsize = 0; 145 flags |= XFS_ILOG_CORE; 146 } 147 148 /* 149 * Record the specific change for fdatasync optimisation. This allows 150 * fdatasync to skip log forces for inodes that are only timestamp 151 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it 152 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking 153 * (ili_fields) correctly tracks that the version has changed. 154 */ 155 spin_lock(&iip->ili_lock); 156 iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION); 157 if (flags & XFS_ILOG_IVERSION) 158 flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE); 159 160 if (!iip->ili_item.li_buf) { 161 struct xfs_buf *bp; 162 int error; 163 164 /* 165 * We hold the ILOCK here, so this inode is not going to be 166 * flushed while we are here. Further, because there is no 167 * buffer attached to the item, we know that there is no IO in 168 * progress, so nothing will clear the ili_fields while we read 169 * in the buffer. Hence we can safely drop the spin lock and 170 * read the buffer knowing that the state will not change from 171 * here. 172 */ 173 spin_unlock(&iip->ili_lock); 174 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp); 175 if (error) 176 return error; 177 178 /* 179 * We need an explicit buffer reference for the log item but 180 * don't want the buffer to remain attached to the transaction. 181 * Hold the buffer but release the transaction reference once 182 * we've attached the inode log item to the buffer log item 183 * list. 184 */ 185 xfs_buf_hold(bp); 186 spin_lock(&iip->ili_lock); 187 iip->ili_item.li_buf = bp; 188 bp->b_flags |= _XBF_INODES; 189 list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list); 190 xfs_trans_brelse(tp, bp); 191 } 192 193 /* 194 * Always OR in the bits from the ili_last_fields field. This is to 195 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines 196 * in the eventual clearing of the ili_fields bits. See the big comment 197 * in xfs_iflush() for an explanation of this coordination mechanism. 198 */ 199 iip->ili_fields |= (flags | iip->ili_last_fields); 200 spin_unlock(&iip->ili_lock); 201 202 xfs_inode_item_precommit_check(ip); 203 204 /* 205 * We are done with the log item transaction dirty state, so clear it so 206 * that it doesn't pollute future transactions. 207 */ 208 iip->ili_dirty_flags = 0; 209 return 0; 210 } 211 212 /* 213 * The logged size of an inode fork is always the current size of the inode 214 * fork. This means that when an inode fork is relogged, the size of the logged 215 * region is determined by the current state, not the combination of the 216 * previously logged state + the current state. This is different relogging 217 * behaviour to most other log items which will retain the size of the 218 * previously logged changes when smaller regions are relogged. 219 * 220 * Hence operations that remove data from the inode fork (e.g. shortform 221 * dir/attr remove, extent form extent removal, etc), the size of the relogged 222 * inode gets -smaller- rather than stays the same size as the previously logged 223 * size and this can result in the committing transaction reducing the amount of 224 * space being consumed by the CIL. 225 */ 226 STATIC void 227 xfs_inode_item_data_fork_size( 228 struct xfs_inode_log_item *iip, 229 int *nvecs, 230 int *nbytes) 231 { 232 struct xfs_inode *ip = iip->ili_inode; 233 234 switch (ip->i_df.if_format) { 235 case XFS_DINODE_FMT_EXTENTS: 236 if ((iip->ili_fields & XFS_ILOG_DEXT) && 237 ip->i_df.if_nextents > 0 && 238 ip->i_df.if_bytes > 0) { 239 /* worst case, doesn't subtract delalloc extents */ 240 *nbytes += xfs_inode_data_fork_size(ip); 241 *nvecs += 1; 242 } 243 break; 244 case XFS_DINODE_FMT_BTREE: 245 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 246 ip->i_df.if_broot_bytes > 0) { 247 *nbytes += ip->i_df.if_broot_bytes; 248 *nvecs += 1; 249 } 250 break; 251 case XFS_DINODE_FMT_LOCAL: 252 if ((iip->ili_fields & XFS_ILOG_DDATA) && 253 ip->i_df.if_bytes > 0) { 254 *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes); 255 *nvecs += 1; 256 } 257 break; 258 259 case XFS_DINODE_FMT_DEV: 260 break; 261 default: 262 ASSERT(0); 263 break; 264 } 265 } 266 267 STATIC void 268 xfs_inode_item_attr_fork_size( 269 struct xfs_inode_log_item *iip, 270 int *nvecs, 271 int *nbytes) 272 { 273 struct xfs_inode *ip = iip->ili_inode; 274 275 switch (ip->i_af.if_format) { 276 case XFS_DINODE_FMT_EXTENTS: 277 if ((iip->ili_fields & XFS_ILOG_AEXT) && 278 ip->i_af.if_nextents > 0 && 279 ip->i_af.if_bytes > 0) { 280 /* worst case, doesn't subtract unused space */ 281 *nbytes += xfs_inode_attr_fork_size(ip); 282 *nvecs += 1; 283 } 284 break; 285 case XFS_DINODE_FMT_BTREE: 286 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 287 ip->i_af.if_broot_bytes > 0) { 288 *nbytes += ip->i_af.if_broot_bytes; 289 *nvecs += 1; 290 } 291 break; 292 case XFS_DINODE_FMT_LOCAL: 293 if ((iip->ili_fields & XFS_ILOG_ADATA) && 294 ip->i_af.if_bytes > 0) { 295 *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes); 296 *nvecs += 1; 297 } 298 break; 299 default: 300 ASSERT(0); 301 break; 302 } 303 } 304 305 /* 306 * This returns the number of iovecs needed to log the given inode item. 307 * 308 * We need one iovec for the inode log format structure, one for the 309 * inode core, and possibly one for the inode data/extents/b-tree root 310 * and one for the inode attribute data/extents/b-tree root. 311 */ 312 STATIC void 313 xfs_inode_item_size( 314 struct xfs_log_item *lip, 315 int *nvecs, 316 int *nbytes) 317 { 318 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 319 struct xfs_inode *ip = iip->ili_inode; 320 321 *nvecs += 2; 322 *nbytes += sizeof(struct xfs_inode_log_format) + 323 xfs_log_dinode_size(ip->i_mount); 324 325 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 326 if (xfs_inode_has_attr_fork(ip)) 327 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 328 } 329 330 STATIC void 331 xfs_inode_item_format_data_fork( 332 struct xfs_inode_log_item *iip, 333 struct xfs_inode_log_format *ilf, 334 struct xfs_log_vec *lv, 335 struct xfs_log_iovec **vecp) 336 { 337 struct xfs_inode *ip = iip->ili_inode; 338 size_t data_bytes; 339 340 switch (ip->i_df.if_format) { 341 case XFS_DINODE_FMT_EXTENTS: 342 iip->ili_fields &= 343 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 344 345 if ((iip->ili_fields & XFS_ILOG_DEXT) && 346 ip->i_df.if_nextents > 0 && 347 ip->i_df.if_bytes > 0) { 348 struct xfs_bmbt_rec *p; 349 350 ASSERT(xfs_iext_count(&ip->i_df) > 0); 351 352 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 353 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 354 xlog_finish_iovec(lv, *vecp, data_bytes); 355 356 ASSERT(data_bytes <= ip->i_df.if_bytes); 357 358 ilf->ilf_dsize = data_bytes; 359 ilf->ilf_size++; 360 } else { 361 iip->ili_fields &= ~XFS_ILOG_DEXT; 362 } 363 break; 364 case XFS_DINODE_FMT_BTREE: 365 iip->ili_fields &= 366 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); 367 368 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 369 ip->i_df.if_broot_bytes > 0) { 370 ASSERT(ip->i_df.if_broot != NULL); 371 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 372 ip->i_df.if_broot, 373 ip->i_df.if_broot_bytes); 374 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 375 ilf->ilf_size++; 376 } else { 377 ASSERT(!(iip->ili_fields & 378 XFS_ILOG_DBROOT)); 379 iip->ili_fields &= ~XFS_ILOG_DBROOT; 380 } 381 break; 382 case XFS_DINODE_FMT_LOCAL: 383 iip->ili_fields &= 384 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 385 if ((iip->ili_fields & XFS_ILOG_DDATA) && 386 ip->i_df.if_bytes > 0) { 387 ASSERT(ip->i_df.if_data != NULL); 388 ASSERT(ip->i_disk_size > 0); 389 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 390 ip->i_df.if_data, ip->i_df.if_bytes); 391 ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes; 392 ilf->ilf_size++; 393 } else { 394 iip->ili_fields &= ~XFS_ILOG_DDATA; 395 } 396 break; 397 case XFS_DINODE_FMT_DEV: 398 iip->ili_fields &= 399 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); 400 if (iip->ili_fields & XFS_ILOG_DEV) 401 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); 402 break; 403 default: 404 ASSERT(0); 405 break; 406 } 407 } 408 409 STATIC void 410 xfs_inode_item_format_attr_fork( 411 struct xfs_inode_log_item *iip, 412 struct xfs_inode_log_format *ilf, 413 struct xfs_log_vec *lv, 414 struct xfs_log_iovec **vecp) 415 { 416 struct xfs_inode *ip = iip->ili_inode; 417 size_t data_bytes; 418 419 switch (ip->i_af.if_format) { 420 case XFS_DINODE_FMT_EXTENTS: 421 iip->ili_fields &= 422 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 423 424 if ((iip->ili_fields & XFS_ILOG_AEXT) && 425 ip->i_af.if_nextents > 0 && 426 ip->i_af.if_bytes > 0) { 427 struct xfs_bmbt_rec *p; 428 429 ASSERT(xfs_iext_count(&ip->i_af) == 430 ip->i_af.if_nextents); 431 432 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 433 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 434 xlog_finish_iovec(lv, *vecp, data_bytes); 435 436 ilf->ilf_asize = data_bytes; 437 ilf->ilf_size++; 438 } else { 439 iip->ili_fields &= ~XFS_ILOG_AEXT; 440 } 441 break; 442 case XFS_DINODE_FMT_BTREE: 443 iip->ili_fields &= 444 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 445 446 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 447 ip->i_af.if_broot_bytes > 0) { 448 ASSERT(ip->i_af.if_broot != NULL); 449 450 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 451 ip->i_af.if_broot, 452 ip->i_af.if_broot_bytes); 453 ilf->ilf_asize = ip->i_af.if_broot_bytes; 454 ilf->ilf_size++; 455 } else { 456 iip->ili_fields &= ~XFS_ILOG_ABROOT; 457 } 458 break; 459 case XFS_DINODE_FMT_LOCAL: 460 iip->ili_fields &= 461 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 462 463 if ((iip->ili_fields & XFS_ILOG_ADATA) && 464 ip->i_af.if_bytes > 0) { 465 ASSERT(ip->i_af.if_data != NULL); 466 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 467 ip->i_af.if_data, ip->i_af.if_bytes); 468 ilf->ilf_asize = (unsigned)ip->i_af.if_bytes; 469 ilf->ilf_size++; 470 } else { 471 iip->ili_fields &= ~XFS_ILOG_ADATA; 472 } 473 break; 474 default: 475 ASSERT(0); 476 break; 477 } 478 } 479 480 /* 481 * Convert an incore timestamp to a log timestamp. Note that the log format 482 * specifies host endian format! 483 */ 484 static inline xfs_log_timestamp_t 485 xfs_inode_to_log_dinode_ts( 486 struct xfs_inode *ip, 487 const struct timespec64 tv) 488 { 489 struct xfs_log_legacy_timestamp *lits; 490 xfs_log_timestamp_t its; 491 492 if (xfs_inode_has_bigtime(ip)) 493 return xfs_inode_encode_bigtime(tv); 494 495 lits = (struct xfs_log_legacy_timestamp *)&its; 496 lits->t_sec = tv.tv_sec; 497 lits->t_nsec = tv.tv_nsec; 498 499 return its; 500 } 501 502 /* 503 * The legacy DMAPI fields are only present in the on-disk and in-log inodes, 504 * but not in the in-memory one. But we are guaranteed to have an inode buffer 505 * in memory when logging an inode, so we can just copy it from the on-disk 506 * inode to the in-log inode here so that recovery of file system with these 507 * fields set to non-zero values doesn't lose them. For all other cases we zero 508 * the fields. 509 */ 510 static void 511 xfs_copy_dm_fields_to_log_dinode( 512 struct xfs_inode *ip, 513 struct xfs_log_dinode *to) 514 { 515 struct xfs_dinode *dip; 516 517 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf, 518 ip->i_imap.im_boffset); 519 520 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) { 521 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask); 522 to->di_dmstate = be16_to_cpu(dip->di_dmstate); 523 } else { 524 to->di_dmevmask = 0; 525 to->di_dmstate = 0; 526 } 527 } 528 529 static inline void 530 xfs_inode_to_log_dinode_iext_counters( 531 struct xfs_inode *ip, 532 struct xfs_log_dinode *to) 533 { 534 if (xfs_inode_has_large_extent_counts(ip)) { 535 to->di_big_nextents = xfs_ifork_nextents(&ip->i_df); 536 to->di_big_anextents = xfs_ifork_nextents(&ip->i_af); 537 to->di_nrext64_pad = 0; 538 } else { 539 to->di_nextents = xfs_ifork_nextents(&ip->i_df); 540 to->di_anextents = xfs_ifork_nextents(&ip->i_af); 541 } 542 } 543 544 static void 545 xfs_inode_to_log_dinode( 546 struct xfs_inode *ip, 547 struct xfs_log_dinode *to, 548 xfs_lsn_t lsn) 549 { 550 struct inode *inode = VFS_I(ip); 551 552 to->di_magic = XFS_DINODE_MAGIC; 553 to->di_format = xfs_ifork_format(&ip->i_df); 554 to->di_uid = i_uid_read(inode); 555 to->di_gid = i_gid_read(inode); 556 to->di_projid_lo = ip->i_projid & 0xffff; 557 to->di_projid_hi = ip->i_projid >> 16; 558 559 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode)); 560 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode)); 561 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode)); 562 to->di_nlink = inode->i_nlink; 563 to->di_gen = inode->i_generation; 564 to->di_mode = inode->i_mode; 565 566 to->di_size = ip->i_disk_size; 567 to->di_nblocks = ip->i_nblocks; 568 to->di_extsize = ip->i_extsize; 569 to->di_forkoff = ip->i_forkoff; 570 to->di_aformat = xfs_ifork_format(&ip->i_af); 571 to->di_flags = ip->i_diflags; 572 573 xfs_copy_dm_fields_to_log_dinode(ip, to); 574 575 /* log a dummy value to ensure log structure is fully initialised */ 576 to->di_next_unlinked = NULLAGINO; 577 578 if (xfs_has_v3inodes(ip->i_mount)) { 579 to->di_version = 3; 580 to->di_changecount = inode_peek_iversion(inode); 581 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime); 582 to->di_flags2 = ip->i_diflags2; 583 to->di_cowextsize = ip->i_cowextsize; 584 to->di_ino = ip->i_ino; 585 to->di_lsn = lsn; 586 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 587 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 588 to->di_v3_pad = 0; 589 590 /* dummy value for initialisation */ 591 to->di_crc = 0; 592 593 if (xfs_is_metadir_inode(ip)) 594 to->di_metatype = ip->i_metatype; 595 else 596 to->di_metatype = 0; 597 } else { 598 to->di_version = 2; 599 to->di_flushiter = ip->i_flushiter; 600 memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad)); 601 to->di_metatype = 0; 602 } 603 604 xfs_inode_to_log_dinode_iext_counters(ip, to); 605 } 606 607 /* 608 * Format the inode core. Current timestamp data is only in the VFS inode 609 * fields, so we need to grab them from there. Hence rather than just copying 610 * the XFS inode core structure, format the fields directly into the iovec. 611 */ 612 static void 613 xfs_inode_item_format_core( 614 struct xfs_inode *ip, 615 struct xfs_log_vec *lv, 616 struct xfs_log_iovec **vecp) 617 { 618 struct xfs_log_dinode *dic; 619 620 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 621 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 622 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount)); 623 } 624 625 /* 626 * This is called to fill in the vector of log iovecs for the given inode 627 * log item. It fills the first item with an inode log format structure, 628 * the second with the on-disk inode structure, and a possible third and/or 629 * fourth with the inode data/extents/b-tree root and inode attributes 630 * data/extents/b-tree root. 631 * 632 * Note: Always use the 64 bit inode log format structure so we don't 633 * leave an uninitialised hole in the format item on 64 bit systems. Log 634 * recovery on 32 bit systems handles this just fine, so there's no reason 635 * for not using an initialising the properly padded structure all the time. 636 */ 637 STATIC void 638 xfs_inode_item_format( 639 struct xfs_log_item *lip, 640 struct xfs_log_vec *lv) 641 { 642 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 643 struct xfs_inode *ip = iip->ili_inode; 644 struct xfs_log_iovec *vecp = NULL; 645 struct xfs_inode_log_format *ilf; 646 647 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 648 ilf->ilf_type = XFS_LI_INODE; 649 ilf->ilf_ino = ip->i_ino; 650 ilf->ilf_blkno = ip->i_imap.im_blkno; 651 ilf->ilf_len = ip->i_imap.im_len; 652 ilf->ilf_boffset = ip->i_imap.im_boffset; 653 ilf->ilf_fields = XFS_ILOG_CORE; 654 ilf->ilf_size = 2; /* format + core */ 655 656 /* 657 * make sure we don't leak uninitialised data into the log in the case 658 * when we don't log every field in the inode. 659 */ 660 ilf->ilf_dsize = 0; 661 ilf->ilf_asize = 0; 662 ilf->ilf_pad = 0; 663 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); 664 665 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 666 667 xfs_inode_item_format_core(ip, lv, &vecp); 668 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 669 if (xfs_inode_has_attr_fork(ip)) { 670 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 671 } else { 672 iip->ili_fields &= 673 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 674 } 675 676 /* update the format with the exact fields we actually logged */ 677 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 678 } 679 680 /* 681 * This is called to pin the inode associated with the inode log 682 * item in memory so it cannot be written out. 683 */ 684 STATIC void 685 xfs_inode_item_pin( 686 struct xfs_log_item *lip) 687 { 688 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 689 690 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 691 ASSERT(lip->li_buf); 692 693 trace_xfs_inode_pin(ip, _RET_IP_); 694 atomic_inc(&ip->i_pincount); 695 } 696 697 698 /* 699 * This is called to unpin the inode associated with the inode log 700 * item which was previously pinned with a call to xfs_inode_item_pin(). 701 * 702 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 703 * 704 * Note that unpin can race with inode cluster buffer freeing marking the buffer 705 * stale. In that case, flush completions are run from the buffer unpin call, 706 * which may happen before the inode is unpinned. If we lose the race, there 707 * will be no buffer attached to the log item, but the inode will be marked 708 * XFS_ISTALE. 709 */ 710 STATIC void 711 xfs_inode_item_unpin( 712 struct xfs_log_item *lip, 713 int remove) 714 { 715 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 716 717 trace_xfs_inode_unpin(ip, _RET_IP_); 718 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE)); 719 ASSERT(atomic_read(&ip->i_pincount) > 0); 720 if (atomic_dec_and_test(&ip->i_pincount)) 721 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 722 } 723 724 STATIC uint 725 xfs_inode_item_push( 726 struct xfs_log_item *lip, 727 struct list_head *buffer_list) 728 __releases(&lip->li_ailp->ail_lock) 729 __acquires(&lip->li_ailp->ail_lock) 730 { 731 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 732 struct xfs_inode *ip = iip->ili_inode; 733 struct xfs_buf *bp = lip->li_buf; 734 uint rval = XFS_ITEM_SUCCESS; 735 int error; 736 737 if (!bp || (ip->i_flags & XFS_ISTALE)) { 738 /* 739 * Inode item/buffer is being aborted due to cluster 740 * buffer deletion. Trigger a log force to have that operation 741 * completed and items removed from the AIL before the next push 742 * attempt. 743 */ 744 return XFS_ITEM_PINNED; 745 } 746 747 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp)) 748 return XFS_ITEM_PINNED; 749 750 if (xfs_iflags_test(ip, XFS_IFLUSHING)) 751 return XFS_ITEM_FLUSHING; 752 753 if (!xfs_buf_trylock(bp)) 754 return XFS_ITEM_LOCKED; 755 756 spin_unlock(&lip->li_ailp->ail_lock); 757 758 /* 759 * We need to hold a reference for flushing the cluster buffer as it may 760 * fail the buffer without IO submission. In which case, we better get a 761 * reference for that completion because otherwise we don't get a 762 * reference for IO until we queue the buffer for delwri submission. 763 */ 764 xfs_buf_hold(bp); 765 error = xfs_iflush_cluster(bp); 766 if (!error) { 767 if (!xfs_buf_delwri_queue(bp, buffer_list)) 768 rval = XFS_ITEM_FLUSHING; 769 xfs_buf_relse(bp); 770 } else { 771 /* 772 * Release the buffer if we were unable to flush anything. On 773 * any other error, the buffer has already been released. 774 */ 775 if (error == -EAGAIN) 776 xfs_buf_relse(bp); 777 rval = XFS_ITEM_LOCKED; 778 } 779 780 spin_lock(&lip->li_ailp->ail_lock); 781 return rval; 782 } 783 784 /* 785 * Unlock the inode associated with the inode log item. 786 */ 787 STATIC void 788 xfs_inode_item_release( 789 struct xfs_log_item *lip) 790 { 791 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 792 struct xfs_inode *ip = iip->ili_inode; 793 unsigned short lock_flags; 794 795 ASSERT(ip->i_itemp != NULL); 796 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 797 798 lock_flags = iip->ili_lock_flags; 799 iip->ili_lock_flags = 0; 800 if (lock_flags) 801 xfs_iunlock(ip, lock_flags); 802 } 803 804 /* 805 * This is called to find out where the oldest active copy of the inode log 806 * item in the on disk log resides now that the last log write of it completed 807 * at the given lsn. Since we always re-log all dirty data in an inode, the 808 * latest copy in the on disk log is the only one that matters. Therefore, 809 * simply return the given lsn. 810 * 811 * If the inode has been marked stale because the cluster is being freed, we 812 * don't want to (re-)insert this inode into the AIL. There is a race condition 813 * where the cluster buffer may be unpinned before the inode is inserted into 814 * the AIL during transaction committed processing. If the buffer is unpinned 815 * before the inode item has been committed and inserted, then it is possible 816 * for the buffer to be written and IO completes before the inode is inserted 817 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 818 * AIL which will never get removed. It will, however, get reclaimed which 819 * triggers an assert in xfs_inode_free() complaining about freein an inode 820 * still in the AIL. 821 * 822 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 823 * transaction committed code knows that it does not need to do any further 824 * processing on the item. 825 */ 826 STATIC xfs_lsn_t 827 xfs_inode_item_committed( 828 struct xfs_log_item *lip, 829 xfs_lsn_t lsn) 830 { 831 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 832 struct xfs_inode *ip = iip->ili_inode; 833 834 if (xfs_iflags_test(ip, XFS_ISTALE)) { 835 xfs_inode_item_unpin(lip, 0); 836 return -1; 837 } 838 return lsn; 839 } 840 841 STATIC void 842 xfs_inode_item_committing( 843 struct xfs_log_item *lip, 844 xfs_csn_t seq) 845 { 846 INODE_ITEM(lip)->ili_commit_seq = seq; 847 return xfs_inode_item_release(lip); 848 } 849 850 static const struct xfs_item_ops xfs_inode_item_ops = { 851 .iop_sort = xfs_inode_item_sort, 852 .iop_precommit = xfs_inode_item_precommit, 853 .iop_size = xfs_inode_item_size, 854 .iop_format = xfs_inode_item_format, 855 .iop_pin = xfs_inode_item_pin, 856 .iop_unpin = xfs_inode_item_unpin, 857 .iop_release = xfs_inode_item_release, 858 .iop_committed = xfs_inode_item_committed, 859 .iop_push = xfs_inode_item_push, 860 .iop_committing = xfs_inode_item_committing, 861 }; 862 863 864 /* 865 * Initialize the inode log item for a newly allocated (in-core) inode. 866 */ 867 void 868 xfs_inode_item_init( 869 struct xfs_inode *ip, 870 struct xfs_mount *mp) 871 { 872 struct xfs_inode_log_item *iip; 873 874 ASSERT(ip->i_itemp == NULL); 875 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache, 876 GFP_KERNEL | __GFP_NOFAIL); 877 878 iip->ili_inode = ip; 879 spin_lock_init(&iip->ili_lock); 880 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 881 &xfs_inode_item_ops); 882 } 883 884 /* 885 * Free the inode log item and any memory hanging off of it. 886 */ 887 void 888 xfs_inode_item_destroy( 889 struct xfs_inode *ip) 890 { 891 struct xfs_inode_log_item *iip = ip->i_itemp; 892 893 ASSERT(iip->ili_item.li_buf == NULL); 894 895 ip->i_itemp = NULL; 896 kvfree(iip->ili_item.li_lv_shadow); 897 kmem_cache_free(xfs_ili_cache, iip); 898 } 899 900 901 /* 902 * We only want to pull the item from the AIL if it is actually there 903 * and its location in the log has not changed since we started the 904 * flush. Thus, we only bother if the inode's lsn has not changed. 905 */ 906 static void 907 xfs_iflush_ail_updates( 908 struct xfs_ail *ailp, 909 struct list_head *list) 910 { 911 struct xfs_log_item *lip; 912 xfs_lsn_t tail_lsn = 0; 913 914 /* this is an opencoded batch version of xfs_trans_ail_delete */ 915 spin_lock(&ailp->ail_lock); 916 list_for_each_entry(lip, list, li_bio_list) { 917 xfs_lsn_t lsn; 918 919 clear_bit(XFS_LI_FAILED, &lip->li_flags); 920 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn) 921 continue; 922 923 /* 924 * dgc: Not sure how this happens, but it happens very 925 * occassionaly via generic/388. xfs_iflush_abort() also 926 * silently handles this same "under writeback but not in AIL at 927 * shutdown" condition via xfs_trans_ail_delete(). 928 */ 929 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) { 930 ASSERT(xlog_is_shutdown(lip->li_log)); 931 continue; 932 } 933 934 lsn = xfs_ail_delete_one(ailp, lip); 935 if (!tail_lsn && lsn) 936 tail_lsn = lsn; 937 } 938 xfs_ail_update_finish(ailp, tail_lsn); 939 } 940 941 /* 942 * Walk the list of inodes that have completed their IOs. If they are clean 943 * remove them from the list and dissociate them from the buffer. Buffers that 944 * are still dirty remain linked to the buffer and on the list. Caller must 945 * handle them appropriately. 946 */ 947 static void 948 xfs_iflush_finish( 949 struct xfs_buf *bp, 950 struct list_head *list) 951 { 952 struct xfs_log_item *lip, *n; 953 954 list_for_each_entry_safe(lip, n, list, li_bio_list) { 955 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 956 bool drop_buffer = false; 957 958 spin_lock(&iip->ili_lock); 959 960 /* 961 * Remove the reference to the cluster buffer if the inode is 962 * clean in memory and drop the buffer reference once we've 963 * dropped the locks we hold. 964 */ 965 ASSERT(iip->ili_item.li_buf == bp); 966 if (!iip->ili_fields) { 967 iip->ili_item.li_buf = NULL; 968 list_del_init(&lip->li_bio_list); 969 drop_buffer = true; 970 } 971 iip->ili_last_fields = 0; 972 iip->ili_flush_lsn = 0; 973 clear_bit(XFS_LI_FLUSHING, &lip->li_flags); 974 spin_unlock(&iip->ili_lock); 975 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING); 976 if (drop_buffer) 977 xfs_buf_rele(bp); 978 } 979 } 980 981 /* 982 * Inode buffer IO completion routine. It is responsible for removing inodes 983 * attached to the buffer from the AIL if they have not been re-logged and 984 * completing the inode flush. 985 */ 986 void 987 xfs_buf_inode_iodone( 988 struct xfs_buf *bp) 989 { 990 struct xfs_log_item *lip, *n; 991 LIST_HEAD(flushed_inodes); 992 LIST_HEAD(ail_updates); 993 994 /* 995 * Pull the attached inodes from the buffer one at a time and take the 996 * appropriate action on them. 997 */ 998 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 999 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 1000 1001 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) { 1002 xfs_iflush_abort(iip->ili_inode); 1003 continue; 1004 } 1005 if (!iip->ili_last_fields) 1006 continue; 1007 1008 /* Do an unlocked check for needing the AIL lock. */ 1009 if (iip->ili_flush_lsn == lip->li_lsn || 1010 test_bit(XFS_LI_FAILED, &lip->li_flags)) 1011 list_move_tail(&lip->li_bio_list, &ail_updates); 1012 else 1013 list_move_tail(&lip->li_bio_list, &flushed_inodes); 1014 } 1015 1016 if (!list_empty(&ail_updates)) { 1017 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates); 1018 list_splice_tail(&ail_updates, &flushed_inodes); 1019 } 1020 1021 xfs_iflush_finish(bp, &flushed_inodes); 1022 if (!list_empty(&flushed_inodes)) 1023 list_splice_tail(&flushed_inodes, &bp->b_li_list); 1024 } 1025 1026 void 1027 xfs_buf_inode_io_fail( 1028 struct xfs_buf *bp) 1029 { 1030 struct xfs_log_item *lip; 1031 1032 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { 1033 set_bit(XFS_LI_FAILED, &lip->li_flags); 1034 clear_bit(XFS_LI_FLUSHING, &lip->li_flags); 1035 } 1036 } 1037 1038 /* 1039 * Clear the inode logging fields so no more flushes are attempted. If we are 1040 * on a buffer list, it is now safe to remove it because the buffer is 1041 * guaranteed to be locked. The caller will drop the reference to the buffer 1042 * the log item held. 1043 */ 1044 static void 1045 xfs_iflush_abort_clean( 1046 struct xfs_inode_log_item *iip) 1047 { 1048 iip->ili_last_fields = 0; 1049 iip->ili_fields = 0; 1050 iip->ili_fsync_fields = 0; 1051 iip->ili_flush_lsn = 0; 1052 iip->ili_item.li_buf = NULL; 1053 list_del_init(&iip->ili_item.li_bio_list); 1054 clear_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags); 1055 } 1056 1057 /* 1058 * Abort flushing the inode from a context holding the cluster buffer locked. 1059 * 1060 * This is the normal runtime method of aborting writeback of an inode that is 1061 * attached to a cluster buffer. It occurs when the inode and the backing 1062 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster 1063 * flushing or buffer IO completion encounters a log shutdown situation. 1064 * 1065 * If we need to abort inode writeback and we don't already hold the buffer 1066 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be 1067 * necessary in a shutdown situation. 1068 */ 1069 void 1070 xfs_iflush_abort( 1071 struct xfs_inode *ip) 1072 { 1073 struct xfs_inode_log_item *iip = ip->i_itemp; 1074 struct xfs_buf *bp; 1075 1076 if (!iip) { 1077 /* clean inode, nothing to do */ 1078 xfs_iflags_clear(ip, XFS_IFLUSHING); 1079 return; 1080 } 1081 1082 /* 1083 * Remove the inode item from the AIL before we clear its internal 1084 * state. Whilst the inode is in the AIL, it should have a valid buffer 1085 * pointer for push operations to access - it is only safe to remove the 1086 * inode from the buffer once it has been removed from the AIL. 1087 * 1088 * We also clear the failed bit before removing the item from the AIL 1089 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer 1090 * references the inode item owns and needs to hold until we've fully 1091 * aborted the inode log item and detached it from the buffer. 1092 */ 1093 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags); 1094 xfs_trans_ail_delete(&iip->ili_item, 0); 1095 1096 /* 1097 * Grab the inode buffer so can we release the reference the inode log 1098 * item holds on it. 1099 */ 1100 spin_lock(&iip->ili_lock); 1101 bp = iip->ili_item.li_buf; 1102 xfs_iflush_abort_clean(iip); 1103 spin_unlock(&iip->ili_lock); 1104 1105 xfs_iflags_clear(ip, XFS_IFLUSHING); 1106 if (bp) 1107 xfs_buf_rele(bp); 1108 } 1109 1110 /* 1111 * Abort an inode flush in the case of a shutdown filesystem. This can be called 1112 * from anywhere with just an inode reference and does not require holding the 1113 * inode cluster buffer locked. If the inode is attached to a cluster buffer, 1114 * it will grab and lock it safely, then abort the inode flush. 1115 */ 1116 void 1117 xfs_iflush_shutdown_abort( 1118 struct xfs_inode *ip) 1119 { 1120 struct xfs_inode_log_item *iip = ip->i_itemp; 1121 struct xfs_buf *bp; 1122 1123 if (!iip) { 1124 /* clean inode, nothing to do */ 1125 xfs_iflags_clear(ip, XFS_IFLUSHING); 1126 return; 1127 } 1128 1129 spin_lock(&iip->ili_lock); 1130 bp = iip->ili_item.li_buf; 1131 if (!bp) { 1132 spin_unlock(&iip->ili_lock); 1133 xfs_iflush_abort(ip); 1134 return; 1135 } 1136 1137 /* 1138 * We have to take a reference to the buffer so that it doesn't get 1139 * freed when we drop the ili_lock and then wait to lock the buffer. 1140 * We'll clean up the extra reference after we pick up the ili_lock 1141 * again. 1142 */ 1143 xfs_buf_hold(bp); 1144 spin_unlock(&iip->ili_lock); 1145 xfs_buf_lock(bp); 1146 1147 spin_lock(&iip->ili_lock); 1148 if (!iip->ili_item.li_buf) { 1149 /* 1150 * Raced with another removal, hold the only reference 1151 * to bp now. Inode should not be in the AIL now, so just clean 1152 * up and return; 1153 */ 1154 ASSERT(list_empty(&iip->ili_item.li_bio_list)); 1155 ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)); 1156 xfs_iflush_abort_clean(iip); 1157 spin_unlock(&iip->ili_lock); 1158 xfs_iflags_clear(ip, XFS_IFLUSHING); 1159 xfs_buf_relse(bp); 1160 return; 1161 } 1162 1163 /* 1164 * Got two references to bp. The first will get dropped by 1165 * xfs_iflush_abort() when the item is removed from the buffer list, but 1166 * we can't drop our reference until _abort() returns because we have to 1167 * unlock the buffer as well. Hence we abort and then unlock and release 1168 * our reference to the buffer. 1169 */ 1170 ASSERT(iip->ili_item.li_buf == bp); 1171 spin_unlock(&iip->ili_lock); 1172 xfs_iflush_abort(ip); 1173 xfs_buf_relse(bp); 1174 } 1175 1176 1177 /* 1178 * convert an xfs_inode_log_format struct from the old 32 bit version 1179 * (which can have different field alignments) to the native 64 bit version 1180 */ 1181 int 1182 xfs_inode_item_format_convert( 1183 struct xfs_log_iovec *buf, 1184 struct xfs_inode_log_format *in_f) 1185 { 1186 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; 1187 1188 if (buf->i_len != sizeof(*in_f32)) { 1189 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 1190 return -EFSCORRUPTED; 1191 } 1192 1193 in_f->ilf_type = in_f32->ilf_type; 1194 in_f->ilf_size = in_f32->ilf_size; 1195 in_f->ilf_fields = in_f32->ilf_fields; 1196 in_f->ilf_asize = in_f32->ilf_asize; 1197 in_f->ilf_dsize = in_f32->ilf_dsize; 1198 in_f->ilf_ino = in_f32->ilf_ino; 1199 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); 1200 in_f->ilf_blkno = in_f32->ilf_blkno; 1201 in_f->ilf_len = in_f32->ilf_len; 1202 in_f->ilf_boffset = in_f32->ilf_boffset; 1203 return 0; 1204 } 1205