xref: /linux/fs/xfs/xfs_inode_item.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 #include "xfs_log_priv.h"
21 #include "xfs_error.h"
22 #include "xfs_rtbitmap.h"
23 
24 #include <linux/iversion.h>
25 
26 struct kmem_cache	*xfs_ili_cache;		/* inode log item */
27 
28 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
29 {
30 	return container_of(lip, struct xfs_inode_log_item, ili_item);
31 }
32 
33 static uint64_t
34 xfs_inode_item_sort(
35 	struct xfs_log_item	*lip)
36 {
37 	return INODE_ITEM(lip)->ili_inode->i_ino;
38 }
39 
40 /*
41  * Prior to finally logging the inode, we have to ensure that all the
42  * per-modification inode state changes are applied. This includes VFS inode
43  * state updates, format conversions, verifier state synchronisation and
44  * ensuring the inode buffer remains in memory whilst the inode is dirty.
45  *
46  * We have to be careful when we grab the inode cluster buffer due to lock
47  * ordering constraints. The unlinked inode modifications (xfs_iunlink_item)
48  * require AGI -> inode cluster buffer lock order. The inode cluster buffer is
49  * not locked until ->precommit, so it happens after everything else has been
50  * modified.
51  *
52  * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we
53  * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we
54  * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because
55  * it can be called on a inode (e.g. via bumplink/droplink) before we take the
56  * AGF lock modifying directory blocks.
57  *
58  * Rather than force a complete rework of all the transactions to call
59  * xfs_trans_log_inode() once and once only at the end of every transaction, we
60  * move the pinning of the inode cluster buffer to a ->precommit operation. This
61  * matches how the xfs_iunlink_item locks the inode cluster buffer, and it
62  * ensures that the inode cluster buffer locking is always done last in a
63  * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode
64  * cluster buffer.
65  *
66  * If we return the inode number as the precommit sort key then we'll also
67  * guarantee that the order all inode cluster buffer locking is the same all the
68  * inodes and unlink items in the transaction.
69  */
70 static int
71 xfs_inode_item_precommit(
72 	struct xfs_trans	*tp,
73 	struct xfs_log_item	*lip)
74 {
75 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
76 	struct xfs_inode	*ip = iip->ili_inode;
77 	struct inode		*inode = VFS_I(ip);
78 	unsigned int		flags = iip->ili_dirty_flags;
79 
80 	/*
81 	 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races
82 	 * don't matter - we either will need an extra transaction in 24 hours
83 	 * to log the timestamps, or will clear already cleared fields in the
84 	 * worst case.
85 	 */
86 	if (inode->i_state & I_DIRTY_TIME) {
87 		spin_lock(&inode->i_lock);
88 		inode->i_state &= ~I_DIRTY_TIME;
89 		spin_unlock(&inode->i_lock);
90 	}
91 
92 	/*
93 	 * If we're updating the inode core or the timestamps and it's possible
94 	 * to upgrade this inode to bigtime format, do so now.
95 	 */
96 	if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) &&
97 	    xfs_has_bigtime(ip->i_mount) &&
98 	    !xfs_inode_has_bigtime(ip)) {
99 		ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME;
100 		flags |= XFS_ILOG_CORE;
101 	}
102 
103 	/*
104 	 * Inode verifiers do not check that the extent size hint is an integer
105 	 * multiple of the rt extent size on a directory with both rtinherit
106 	 * and extszinherit flags set.  If we're logging a directory that is
107 	 * misconfigured in this way, clear the hint.
108 	 */
109 	if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
110 	    (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) &&
111 	    xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) {
112 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
113 				   XFS_DIFLAG_EXTSZINHERIT);
114 		ip->i_extsize = 0;
115 		flags |= XFS_ILOG_CORE;
116 	}
117 
118 	/*
119 	 * Record the specific change for fdatasync optimisation. This allows
120 	 * fdatasync to skip log forces for inodes that are only timestamp
121 	 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it
122 	 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking
123 	 * (ili_fields) correctly tracks that the version has changed.
124 	 */
125 	spin_lock(&iip->ili_lock);
126 	iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION);
127 	if (flags & XFS_ILOG_IVERSION)
128 		flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE);
129 
130 	if (!iip->ili_item.li_buf) {
131 		struct xfs_buf	*bp;
132 		int		error;
133 
134 		/*
135 		 * We hold the ILOCK here, so this inode is not going to be
136 		 * flushed while we are here. Further, because there is no
137 		 * buffer attached to the item, we know that there is no IO in
138 		 * progress, so nothing will clear the ili_fields while we read
139 		 * in the buffer. Hence we can safely drop the spin lock and
140 		 * read the buffer knowing that the state will not change from
141 		 * here.
142 		 */
143 		spin_unlock(&iip->ili_lock);
144 		error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp);
145 		if (error)
146 			return error;
147 
148 		/*
149 		 * We need an explicit buffer reference for the log item but
150 		 * don't want the buffer to remain attached to the transaction.
151 		 * Hold the buffer but release the transaction reference once
152 		 * we've attached the inode log item to the buffer log item
153 		 * list.
154 		 */
155 		xfs_buf_hold(bp);
156 		spin_lock(&iip->ili_lock);
157 		iip->ili_item.li_buf = bp;
158 		bp->b_flags |= _XBF_INODES;
159 		list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list);
160 		xfs_trans_brelse(tp, bp);
161 	}
162 
163 	/*
164 	 * Always OR in the bits from the ili_last_fields field.  This is to
165 	 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
166 	 * in the eventual clearing of the ili_fields bits.  See the big comment
167 	 * in xfs_iflush() for an explanation of this coordination mechanism.
168 	 */
169 	iip->ili_fields |= (flags | iip->ili_last_fields);
170 	spin_unlock(&iip->ili_lock);
171 
172 	/*
173 	 * We are done with the log item transaction dirty state, so clear it so
174 	 * that it doesn't pollute future transactions.
175 	 */
176 	iip->ili_dirty_flags = 0;
177 	return 0;
178 }
179 
180 /*
181  * The logged size of an inode fork is always the current size of the inode
182  * fork. This means that when an inode fork is relogged, the size of the logged
183  * region is determined by the current state, not the combination of the
184  * previously logged state + the current state. This is different relogging
185  * behaviour to most other log items which will retain the size of the
186  * previously logged changes when smaller regions are relogged.
187  *
188  * Hence operations that remove data from the inode fork (e.g. shortform
189  * dir/attr remove, extent form extent removal, etc), the size of the relogged
190  * inode gets -smaller- rather than stays the same size as the previously logged
191  * size and this can result in the committing transaction reducing the amount of
192  * space being consumed by the CIL.
193  */
194 STATIC void
195 xfs_inode_item_data_fork_size(
196 	struct xfs_inode_log_item *iip,
197 	int			*nvecs,
198 	int			*nbytes)
199 {
200 	struct xfs_inode	*ip = iip->ili_inode;
201 
202 	switch (ip->i_df.if_format) {
203 	case XFS_DINODE_FMT_EXTENTS:
204 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
205 		    ip->i_df.if_nextents > 0 &&
206 		    ip->i_df.if_bytes > 0) {
207 			/* worst case, doesn't subtract delalloc extents */
208 			*nbytes += xfs_inode_data_fork_size(ip);
209 			*nvecs += 1;
210 		}
211 		break;
212 	case XFS_DINODE_FMT_BTREE:
213 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
214 		    ip->i_df.if_broot_bytes > 0) {
215 			*nbytes += ip->i_df.if_broot_bytes;
216 			*nvecs += 1;
217 		}
218 		break;
219 	case XFS_DINODE_FMT_LOCAL:
220 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
221 		    ip->i_df.if_bytes > 0) {
222 			*nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
223 			*nvecs += 1;
224 		}
225 		break;
226 
227 	case XFS_DINODE_FMT_DEV:
228 		break;
229 	default:
230 		ASSERT(0);
231 		break;
232 	}
233 }
234 
235 STATIC void
236 xfs_inode_item_attr_fork_size(
237 	struct xfs_inode_log_item *iip,
238 	int			*nvecs,
239 	int			*nbytes)
240 {
241 	struct xfs_inode	*ip = iip->ili_inode;
242 
243 	switch (ip->i_af.if_format) {
244 	case XFS_DINODE_FMT_EXTENTS:
245 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
246 		    ip->i_af.if_nextents > 0 &&
247 		    ip->i_af.if_bytes > 0) {
248 			/* worst case, doesn't subtract unused space */
249 			*nbytes += xfs_inode_attr_fork_size(ip);
250 			*nvecs += 1;
251 		}
252 		break;
253 	case XFS_DINODE_FMT_BTREE:
254 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
255 		    ip->i_af.if_broot_bytes > 0) {
256 			*nbytes += ip->i_af.if_broot_bytes;
257 			*nvecs += 1;
258 		}
259 		break;
260 	case XFS_DINODE_FMT_LOCAL:
261 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
262 		    ip->i_af.if_bytes > 0) {
263 			*nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
264 			*nvecs += 1;
265 		}
266 		break;
267 	default:
268 		ASSERT(0);
269 		break;
270 	}
271 }
272 
273 /*
274  * This returns the number of iovecs needed to log the given inode item.
275  *
276  * We need one iovec for the inode log format structure, one for the
277  * inode core, and possibly one for the inode data/extents/b-tree root
278  * and one for the inode attribute data/extents/b-tree root.
279  */
280 STATIC void
281 xfs_inode_item_size(
282 	struct xfs_log_item	*lip,
283 	int			*nvecs,
284 	int			*nbytes)
285 {
286 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
287 	struct xfs_inode	*ip = iip->ili_inode;
288 
289 	*nvecs += 2;
290 	*nbytes += sizeof(struct xfs_inode_log_format) +
291 		   xfs_log_dinode_size(ip->i_mount);
292 
293 	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
294 	if (xfs_inode_has_attr_fork(ip))
295 		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
296 }
297 
298 STATIC void
299 xfs_inode_item_format_data_fork(
300 	struct xfs_inode_log_item *iip,
301 	struct xfs_inode_log_format *ilf,
302 	struct xfs_log_vec	*lv,
303 	struct xfs_log_iovec	**vecp)
304 {
305 	struct xfs_inode	*ip = iip->ili_inode;
306 	size_t			data_bytes;
307 
308 	switch (ip->i_df.if_format) {
309 	case XFS_DINODE_FMT_EXTENTS:
310 		iip->ili_fields &=
311 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
312 
313 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
314 		    ip->i_df.if_nextents > 0 &&
315 		    ip->i_df.if_bytes > 0) {
316 			struct xfs_bmbt_rec *p;
317 
318 			ASSERT(xfs_iext_count(&ip->i_df) > 0);
319 
320 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
321 			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
322 			xlog_finish_iovec(lv, *vecp, data_bytes);
323 
324 			ASSERT(data_bytes <= ip->i_df.if_bytes);
325 
326 			ilf->ilf_dsize = data_bytes;
327 			ilf->ilf_size++;
328 		} else {
329 			iip->ili_fields &= ~XFS_ILOG_DEXT;
330 		}
331 		break;
332 	case XFS_DINODE_FMT_BTREE:
333 		iip->ili_fields &=
334 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
335 
336 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
337 		    ip->i_df.if_broot_bytes > 0) {
338 			ASSERT(ip->i_df.if_broot != NULL);
339 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
340 					ip->i_df.if_broot,
341 					ip->i_df.if_broot_bytes);
342 			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
343 			ilf->ilf_size++;
344 		} else {
345 			ASSERT(!(iip->ili_fields &
346 				 XFS_ILOG_DBROOT));
347 			iip->ili_fields &= ~XFS_ILOG_DBROOT;
348 		}
349 		break;
350 	case XFS_DINODE_FMT_LOCAL:
351 		iip->ili_fields &=
352 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
353 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
354 		    ip->i_df.if_bytes > 0) {
355 			ASSERT(ip->i_df.if_data != NULL);
356 			ASSERT(ip->i_disk_size > 0);
357 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
358 					ip->i_df.if_data, ip->i_df.if_bytes);
359 			ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
360 			ilf->ilf_size++;
361 		} else {
362 			iip->ili_fields &= ~XFS_ILOG_DDATA;
363 		}
364 		break;
365 	case XFS_DINODE_FMT_DEV:
366 		iip->ili_fields &=
367 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
368 		if (iip->ili_fields & XFS_ILOG_DEV)
369 			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
370 		break;
371 	default:
372 		ASSERT(0);
373 		break;
374 	}
375 }
376 
377 STATIC void
378 xfs_inode_item_format_attr_fork(
379 	struct xfs_inode_log_item *iip,
380 	struct xfs_inode_log_format *ilf,
381 	struct xfs_log_vec	*lv,
382 	struct xfs_log_iovec	**vecp)
383 {
384 	struct xfs_inode	*ip = iip->ili_inode;
385 	size_t			data_bytes;
386 
387 	switch (ip->i_af.if_format) {
388 	case XFS_DINODE_FMT_EXTENTS:
389 		iip->ili_fields &=
390 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
391 
392 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
393 		    ip->i_af.if_nextents > 0 &&
394 		    ip->i_af.if_bytes > 0) {
395 			struct xfs_bmbt_rec *p;
396 
397 			ASSERT(xfs_iext_count(&ip->i_af) ==
398 				ip->i_af.if_nextents);
399 
400 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
401 			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
402 			xlog_finish_iovec(lv, *vecp, data_bytes);
403 
404 			ilf->ilf_asize = data_bytes;
405 			ilf->ilf_size++;
406 		} else {
407 			iip->ili_fields &= ~XFS_ILOG_AEXT;
408 		}
409 		break;
410 	case XFS_DINODE_FMT_BTREE:
411 		iip->ili_fields &=
412 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
413 
414 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
415 		    ip->i_af.if_broot_bytes > 0) {
416 			ASSERT(ip->i_af.if_broot != NULL);
417 
418 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
419 					ip->i_af.if_broot,
420 					ip->i_af.if_broot_bytes);
421 			ilf->ilf_asize = ip->i_af.if_broot_bytes;
422 			ilf->ilf_size++;
423 		} else {
424 			iip->ili_fields &= ~XFS_ILOG_ABROOT;
425 		}
426 		break;
427 	case XFS_DINODE_FMT_LOCAL:
428 		iip->ili_fields &=
429 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
430 
431 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
432 		    ip->i_af.if_bytes > 0) {
433 			ASSERT(ip->i_af.if_data != NULL);
434 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
435 					ip->i_af.if_data, ip->i_af.if_bytes);
436 			ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
437 			ilf->ilf_size++;
438 		} else {
439 			iip->ili_fields &= ~XFS_ILOG_ADATA;
440 		}
441 		break;
442 	default:
443 		ASSERT(0);
444 		break;
445 	}
446 }
447 
448 /*
449  * Convert an incore timestamp to a log timestamp.  Note that the log format
450  * specifies host endian format!
451  */
452 static inline xfs_log_timestamp_t
453 xfs_inode_to_log_dinode_ts(
454 	struct xfs_inode		*ip,
455 	const struct timespec64		tv)
456 {
457 	struct xfs_log_legacy_timestamp	*lits;
458 	xfs_log_timestamp_t		its;
459 
460 	if (xfs_inode_has_bigtime(ip))
461 		return xfs_inode_encode_bigtime(tv);
462 
463 	lits = (struct xfs_log_legacy_timestamp *)&its;
464 	lits->t_sec = tv.tv_sec;
465 	lits->t_nsec = tv.tv_nsec;
466 
467 	return its;
468 }
469 
470 /*
471  * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
472  * but not in the in-memory one.  But we are guaranteed to have an inode buffer
473  * in memory when logging an inode, so we can just copy it from the on-disk
474  * inode to the in-log inode here so that recovery of file system with these
475  * fields set to non-zero values doesn't lose them.  For all other cases we zero
476  * the fields.
477  */
478 static void
479 xfs_copy_dm_fields_to_log_dinode(
480 	struct xfs_inode	*ip,
481 	struct xfs_log_dinode	*to)
482 {
483 	struct xfs_dinode	*dip;
484 
485 	dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
486 			     ip->i_imap.im_boffset);
487 
488 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
489 		to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
490 		to->di_dmstate = be16_to_cpu(dip->di_dmstate);
491 	} else {
492 		to->di_dmevmask = 0;
493 		to->di_dmstate = 0;
494 	}
495 }
496 
497 static inline void
498 xfs_inode_to_log_dinode_iext_counters(
499 	struct xfs_inode	*ip,
500 	struct xfs_log_dinode	*to)
501 {
502 	if (xfs_inode_has_large_extent_counts(ip)) {
503 		to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
504 		to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
505 		to->di_nrext64_pad = 0;
506 	} else {
507 		to->di_nextents = xfs_ifork_nextents(&ip->i_df);
508 		to->di_anextents = xfs_ifork_nextents(&ip->i_af);
509 	}
510 }
511 
512 static void
513 xfs_inode_to_log_dinode(
514 	struct xfs_inode	*ip,
515 	struct xfs_log_dinode	*to,
516 	xfs_lsn_t		lsn)
517 {
518 	struct inode		*inode = VFS_I(ip);
519 
520 	to->di_magic = XFS_DINODE_MAGIC;
521 	to->di_format = xfs_ifork_format(&ip->i_df);
522 	to->di_uid = i_uid_read(inode);
523 	to->di_gid = i_gid_read(inode);
524 	to->di_projid_lo = ip->i_projid & 0xffff;
525 	to->di_projid_hi = ip->i_projid >> 16;
526 
527 	memset(to->di_pad3, 0, sizeof(to->di_pad3));
528 	to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode));
529 	to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode));
530 	to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode));
531 	to->di_nlink = inode->i_nlink;
532 	to->di_gen = inode->i_generation;
533 	to->di_mode = inode->i_mode;
534 
535 	to->di_size = ip->i_disk_size;
536 	to->di_nblocks = ip->i_nblocks;
537 	to->di_extsize = ip->i_extsize;
538 	to->di_forkoff = ip->i_forkoff;
539 	to->di_aformat = xfs_ifork_format(&ip->i_af);
540 	to->di_flags = ip->i_diflags;
541 
542 	xfs_copy_dm_fields_to_log_dinode(ip, to);
543 
544 	/* log a dummy value to ensure log structure is fully initialised */
545 	to->di_next_unlinked = NULLAGINO;
546 
547 	if (xfs_has_v3inodes(ip->i_mount)) {
548 		to->di_version = 3;
549 		to->di_changecount = inode_peek_iversion(inode);
550 		to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
551 		to->di_flags2 = ip->i_diflags2;
552 		to->di_cowextsize = ip->i_cowextsize;
553 		to->di_ino = ip->i_ino;
554 		to->di_lsn = lsn;
555 		memset(to->di_pad2, 0, sizeof(to->di_pad2));
556 		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
557 		to->di_v3_pad = 0;
558 
559 		/* dummy value for initialisation */
560 		to->di_crc = 0;
561 	} else {
562 		to->di_version = 2;
563 		to->di_flushiter = ip->i_flushiter;
564 		memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
565 	}
566 
567 	xfs_inode_to_log_dinode_iext_counters(ip, to);
568 }
569 
570 /*
571  * Format the inode core. Current timestamp data is only in the VFS inode
572  * fields, so we need to grab them from there. Hence rather than just copying
573  * the XFS inode core structure, format the fields directly into the iovec.
574  */
575 static void
576 xfs_inode_item_format_core(
577 	struct xfs_inode	*ip,
578 	struct xfs_log_vec	*lv,
579 	struct xfs_log_iovec	**vecp)
580 {
581 	struct xfs_log_dinode	*dic;
582 
583 	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
584 	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
585 	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
586 }
587 
588 /*
589  * This is called to fill in the vector of log iovecs for the given inode
590  * log item.  It fills the first item with an inode log format structure,
591  * the second with the on-disk inode structure, and a possible third and/or
592  * fourth with the inode data/extents/b-tree root and inode attributes
593  * data/extents/b-tree root.
594  *
595  * Note: Always use the 64 bit inode log format structure so we don't
596  * leave an uninitialised hole in the format item on 64 bit systems. Log
597  * recovery on 32 bit systems handles this just fine, so there's no reason
598  * for not using an initialising the properly padded structure all the time.
599  */
600 STATIC void
601 xfs_inode_item_format(
602 	struct xfs_log_item	*lip,
603 	struct xfs_log_vec	*lv)
604 {
605 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
606 	struct xfs_inode	*ip = iip->ili_inode;
607 	struct xfs_log_iovec	*vecp = NULL;
608 	struct xfs_inode_log_format *ilf;
609 
610 	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
611 	ilf->ilf_type = XFS_LI_INODE;
612 	ilf->ilf_ino = ip->i_ino;
613 	ilf->ilf_blkno = ip->i_imap.im_blkno;
614 	ilf->ilf_len = ip->i_imap.im_len;
615 	ilf->ilf_boffset = ip->i_imap.im_boffset;
616 	ilf->ilf_fields = XFS_ILOG_CORE;
617 	ilf->ilf_size = 2; /* format + core */
618 
619 	/*
620 	 * make sure we don't leak uninitialised data into the log in the case
621 	 * when we don't log every field in the inode.
622 	 */
623 	ilf->ilf_dsize = 0;
624 	ilf->ilf_asize = 0;
625 	ilf->ilf_pad = 0;
626 	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
627 
628 	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
629 
630 	xfs_inode_item_format_core(ip, lv, &vecp);
631 	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
632 	if (xfs_inode_has_attr_fork(ip)) {
633 		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
634 	} else {
635 		iip->ili_fields &=
636 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
637 	}
638 
639 	/* update the format with the exact fields we actually logged */
640 	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
641 }
642 
643 /*
644  * This is called to pin the inode associated with the inode log
645  * item in memory so it cannot be written out.
646  */
647 STATIC void
648 xfs_inode_item_pin(
649 	struct xfs_log_item	*lip)
650 {
651 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
652 
653 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
654 	ASSERT(lip->li_buf);
655 
656 	trace_xfs_inode_pin(ip, _RET_IP_);
657 	atomic_inc(&ip->i_pincount);
658 }
659 
660 
661 /*
662  * This is called to unpin the inode associated with the inode log
663  * item which was previously pinned with a call to xfs_inode_item_pin().
664  *
665  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
666  *
667  * Note that unpin can race with inode cluster buffer freeing marking the buffer
668  * stale. In that case, flush completions are run from the buffer unpin call,
669  * which may happen before the inode is unpinned. If we lose the race, there
670  * will be no buffer attached to the log item, but the inode will be marked
671  * XFS_ISTALE.
672  */
673 STATIC void
674 xfs_inode_item_unpin(
675 	struct xfs_log_item	*lip,
676 	int			remove)
677 {
678 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
679 
680 	trace_xfs_inode_unpin(ip, _RET_IP_);
681 	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
682 	ASSERT(atomic_read(&ip->i_pincount) > 0);
683 	if (atomic_dec_and_test(&ip->i_pincount))
684 		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
685 }
686 
687 STATIC uint
688 xfs_inode_item_push(
689 	struct xfs_log_item	*lip,
690 	struct list_head	*buffer_list)
691 		__releases(&lip->li_ailp->ail_lock)
692 		__acquires(&lip->li_ailp->ail_lock)
693 {
694 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
695 	struct xfs_inode	*ip = iip->ili_inode;
696 	struct xfs_buf		*bp = lip->li_buf;
697 	uint			rval = XFS_ITEM_SUCCESS;
698 	int			error;
699 
700 	if (!bp || (ip->i_flags & XFS_ISTALE)) {
701 		/*
702 		 * Inode item/buffer is being aborted due to cluster
703 		 * buffer deletion. Trigger a log force to have that operation
704 		 * completed and items removed from the AIL before the next push
705 		 * attempt.
706 		 */
707 		return XFS_ITEM_PINNED;
708 	}
709 
710 	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
711 		return XFS_ITEM_PINNED;
712 
713 	if (xfs_iflags_test(ip, XFS_IFLUSHING))
714 		return XFS_ITEM_FLUSHING;
715 
716 	if (!xfs_buf_trylock(bp))
717 		return XFS_ITEM_LOCKED;
718 
719 	spin_unlock(&lip->li_ailp->ail_lock);
720 
721 	/*
722 	 * We need to hold a reference for flushing the cluster buffer as it may
723 	 * fail the buffer without IO submission. In which case, we better get a
724 	 * reference for that completion because otherwise we don't get a
725 	 * reference for IO until we queue the buffer for delwri submission.
726 	 */
727 	xfs_buf_hold(bp);
728 	error = xfs_iflush_cluster(bp);
729 	if (!error) {
730 		if (!xfs_buf_delwri_queue(bp, buffer_list))
731 			rval = XFS_ITEM_FLUSHING;
732 		xfs_buf_relse(bp);
733 	} else {
734 		/*
735 		 * Release the buffer if we were unable to flush anything. On
736 		 * any other error, the buffer has already been released.
737 		 */
738 		if (error == -EAGAIN)
739 			xfs_buf_relse(bp);
740 		rval = XFS_ITEM_LOCKED;
741 	}
742 
743 	spin_lock(&lip->li_ailp->ail_lock);
744 	return rval;
745 }
746 
747 /*
748  * Unlock the inode associated with the inode log item.
749  */
750 STATIC void
751 xfs_inode_item_release(
752 	struct xfs_log_item	*lip)
753 {
754 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
755 	struct xfs_inode	*ip = iip->ili_inode;
756 	unsigned short		lock_flags;
757 
758 	ASSERT(ip->i_itemp != NULL);
759 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
760 
761 	lock_flags = iip->ili_lock_flags;
762 	iip->ili_lock_flags = 0;
763 	if (lock_flags)
764 		xfs_iunlock(ip, lock_flags);
765 }
766 
767 /*
768  * This is called to find out where the oldest active copy of the inode log
769  * item in the on disk log resides now that the last log write of it completed
770  * at the given lsn.  Since we always re-log all dirty data in an inode, the
771  * latest copy in the on disk log is the only one that matters.  Therefore,
772  * simply return the given lsn.
773  *
774  * If the inode has been marked stale because the cluster is being freed, we
775  * don't want to (re-)insert this inode into the AIL. There is a race condition
776  * where the cluster buffer may be unpinned before the inode is inserted into
777  * the AIL during transaction committed processing. If the buffer is unpinned
778  * before the inode item has been committed and inserted, then it is possible
779  * for the buffer to be written and IO completes before the inode is inserted
780  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
781  * AIL which will never get removed. It will, however, get reclaimed which
782  * triggers an assert in xfs_inode_free() complaining about freein an inode
783  * still in the AIL.
784  *
785  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
786  * transaction committed code knows that it does not need to do any further
787  * processing on the item.
788  */
789 STATIC xfs_lsn_t
790 xfs_inode_item_committed(
791 	struct xfs_log_item	*lip,
792 	xfs_lsn_t		lsn)
793 {
794 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
795 	struct xfs_inode	*ip = iip->ili_inode;
796 
797 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
798 		xfs_inode_item_unpin(lip, 0);
799 		return -1;
800 	}
801 	return lsn;
802 }
803 
804 STATIC void
805 xfs_inode_item_committing(
806 	struct xfs_log_item	*lip,
807 	xfs_csn_t		seq)
808 {
809 	INODE_ITEM(lip)->ili_commit_seq = seq;
810 	return xfs_inode_item_release(lip);
811 }
812 
813 static const struct xfs_item_ops xfs_inode_item_ops = {
814 	.iop_sort	= xfs_inode_item_sort,
815 	.iop_precommit	= xfs_inode_item_precommit,
816 	.iop_size	= xfs_inode_item_size,
817 	.iop_format	= xfs_inode_item_format,
818 	.iop_pin	= xfs_inode_item_pin,
819 	.iop_unpin	= xfs_inode_item_unpin,
820 	.iop_release	= xfs_inode_item_release,
821 	.iop_committed	= xfs_inode_item_committed,
822 	.iop_push	= xfs_inode_item_push,
823 	.iop_committing	= xfs_inode_item_committing,
824 };
825 
826 
827 /*
828  * Initialize the inode log item for a newly allocated (in-core) inode.
829  */
830 void
831 xfs_inode_item_init(
832 	struct xfs_inode	*ip,
833 	struct xfs_mount	*mp)
834 {
835 	struct xfs_inode_log_item *iip;
836 
837 	ASSERT(ip->i_itemp == NULL);
838 	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
839 					      GFP_KERNEL | __GFP_NOFAIL);
840 
841 	iip->ili_inode = ip;
842 	spin_lock_init(&iip->ili_lock);
843 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
844 						&xfs_inode_item_ops);
845 }
846 
847 /*
848  * Free the inode log item and any memory hanging off of it.
849  */
850 void
851 xfs_inode_item_destroy(
852 	struct xfs_inode	*ip)
853 {
854 	struct xfs_inode_log_item *iip = ip->i_itemp;
855 
856 	ASSERT(iip->ili_item.li_buf == NULL);
857 
858 	ip->i_itemp = NULL;
859 	kvfree(iip->ili_item.li_lv_shadow);
860 	kmem_cache_free(xfs_ili_cache, iip);
861 }
862 
863 
864 /*
865  * We only want to pull the item from the AIL if it is actually there
866  * and its location in the log has not changed since we started the
867  * flush.  Thus, we only bother if the inode's lsn has not changed.
868  */
869 static void
870 xfs_iflush_ail_updates(
871 	struct xfs_ail		*ailp,
872 	struct list_head	*list)
873 {
874 	struct xfs_log_item	*lip;
875 	xfs_lsn_t		tail_lsn = 0;
876 
877 	/* this is an opencoded batch version of xfs_trans_ail_delete */
878 	spin_lock(&ailp->ail_lock);
879 	list_for_each_entry(lip, list, li_bio_list) {
880 		xfs_lsn_t	lsn;
881 
882 		clear_bit(XFS_LI_FAILED, &lip->li_flags);
883 		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
884 			continue;
885 
886 		/*
887 		 * dgc: Not sure how this happens, but it happens very
888 		 * occassionaly via generic/388.  xfs_iflush_abort() also
889 		 * silently handles this same "under writeback but not in AIL at
890 		 * shutdown" condition via xfs_trans_ail_delete().
891 		 */
892 		if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
893 			ASSERT(xlog_is_shutdown(lip->li_log));
894 			continue;
895 		}
896 
897 		lsn = xfs_ail_delete_one(ailp, lip);
898 		if (!tail_lsn && lsn)
899 			tail_lsn = lsn;
900 	}
901 	xfs_ail_update_finish(ailp, tail_lsn);
902 }
903 
904 /*
905  * Walk the list of inodes that have completed their IOs. If they are clean
906  * remove them from the list and dissociate them from the buffer. Buffers that
907  * are still dirty remain linked to the buffer and on the list. Caller must
908  * handle them appropriately.
909  */
910 static void
911 xfs_iflush_finish(
912 	struct xfs_buf		*bp,
913 	struct list_head	*list)
914 {
915 	struct xfs_log_item	*lip, *n;
916 
917 	list_for_each_entry_safe(lip, n, list, li_bio_list) {
918 		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
919 		bool	drop_buffer = false;
920 
921 		spin_lock(&iip->ili_lock);
922 
923 		/*
924 		 * Remove the reference to the cluster buffer if the inode is
925 		 * clean in memory and drop the buffer reference once we've
926 		 * dropped the locks we hold.
927 		 */
928 		ASSERT(iip->ili_item.li_buf == bp);
929 		if (!iip->ili_fields) {
930 			iip->ili_item.li_buf = NULL;
931 			list_del_init(&lip->li_bio_list);
932 			drop_buffer = true;
933 		}
934 		iip->ili_last_fields = 0;
935 		iip->ili_flush_lsn = 0;
936 		spin_unlock(&iip->ili_lock);
937 		xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
938 		if (drop_buffer)
939 			xfs_buf_rele(bp);
940 	}
941 }
942 
943 /*
944  * Inode buffer IO completion routine.  It is responsible for removing inodes
945  * attached to the buffer from the AIL if they have not been re-logged and
946  * completing the inode flush.
947  */
948 void
949 xfs_buf_inode_iodone(
950 	struct xfs_buf		*bp)
951 {
952 	struct xfs_log_item	*lip, *n;
953 	LIST_HEAD(flushed_inodes);
954 	LIST_HEAD(ail_updates);
955 
956 	/*
957 	 * Pull the attached inodes from the buffer one at a time and take the
958 	 * appropriate action on them.
959 	 */
960 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
961 		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
962 
963 		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
964 			xfs_iflush_abort(iip->ili_inode);
965 			continue;
966 		}
967 		if (!iip->ili_last_fields)
968 			continue;
969 
970 		/* Do an unlocked check for needing the AIL lock. */
971 		if (iip->ili_flush_lsn == lip->li_lsn ||
972 		    test_bit(XFS_LI_FAILED, &lip->li_flags))
973 			list_move_tail(&lip->li_bio_list, &ail_updates);
974 		else
975 			list_move_tail(&lip->li_bio_list, &flushed_inodes);
976 	}
977 
978 	if (!list_empty(&ail_updates)) {
979 		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
980 		list_splice_tail(&ail_updates, &flushed_inodes);
981 	}
982 
983 	xfs_iflush_finish(bp, &flushed_inodes);
984 	if (!list_empty(&flushed_inodes))
985 		list_splice_tail(&flushed_inodes, &bp->b_li_list);
986 }
987 
988 void
989 xfs_buf_inode_io_fail(
990 	struct xfs_buf		*bp)
991 {
992 	struct xfs_log_item	*lip;
993 
994 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
995 		set_bit(XFS_LI_FAILED, &lip->li_flags);
996 }
997 
998 /*
999  * Clear the inode logging fields so no more flushes are attempted.  If we are
1000  * on a buffer list, it is now safe to remove it because the buffer is
1001  * guaranteed to be locked. The caller will drop the reference to the buffer
1002  * the log item held.
1003  */
1004 static void
1005 xfs_iflush_abort_clean(
1006 	struct xfs_inode_log_item *iip)
1007 {
1008 	iip->ili_last_fields = 0;
1009 	iip->ili_fields = 0;
1010 	iip->ili_fsync_fields = 0;
1011 	iip->ili_flush_lsn = 0;
1012 	iip->ili_item.li_buf = NULL;
1013 	list_del_init(&iip->ili_item.li_bio_list);
1014 }
1015 
1016 /*
1017  * Abort flushing the inode from a context holding the cluster buffer locked.
1018  *
1019  * This is the normal runtime method of aborting writeback of an inode that is
1020  * attached to a cluster buffer. It occurs when the inode and the backing
1021  * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
1022  * flushing or buffer IO completion encounters a log shutdown situation.
1023  *
1024  * If we need to abort inode writeback and we don't already hold the buffer
1025  * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
1026  * necessary in a shutdown situation.
1027  */
1028 void
1029 xfs_iflush_abort(
1030 	struct xfs_inode	*ip)
1031 {
1032 	struct xfs_inode_log_item *iip = ip->i_itemp;
1033 	struct xfs_buf		*bp;
1034 
1035 	if (!iip) {
1036 		/* clean inode, nothing to do */
1037 		xfs_iflags_clear(ip, XFS_IFLUSHING);
1038 		return;
1039 	}
1040 
1041 	/*
1042 	 * Remove the inode item from the AIL before we clear its internal
1043 	 * state. Whilst the inode is in the AIL, it should have a valid buffer
1044 	 * pointer for push operations to access - it is only safe to remove the
1045 	 * inode from the buffer once it has been removed from the AIL.
1046 	 *
1047 	 * We also clear the failed bit before removing the item from the AIL
1048 	 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
1049 	 * references the inode item owns and needs to hold until we've fully
1050 	 * aborted the inode log item and detached it from the buffer.
1051 	 */
1052 	clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
1053 	xfs_trans_ail_delete(&iip->ili_item, 0);
1054 
1055 	/*
1056 	 * Grab the inode buffer so can we release the reference the inode log
1057 	 * item holds on it.
1058 	 */
1059 	spin_lock(&iip->ili_lock);
1060 	bp = iip->ili_item.li_buf;
1061 	xfs_iflush_abort_clean(iip);
1062 	spin_unlock(&iip->ili_lock);
1063 
1064 	xfs_iflags_clear(ip, XFS_IFLUSHING);
1065 	if (bp)
1066 		xfs_buf_rele(bp);
1067 }
1068 
1069 /*
1070  * Abort an inode flush in the case of a shutdown filesystem. This can be called
1071  * from anywhere with just an inode reference and does not require holding the
1072  * inode cluster buffer locked. If the inode is attached to a cluster buffer,
1073  * it will grab and lock it safely, then abort the inode flush.
1074  */
1075 void
1076 xfs_iflush_shutdown_abort(
1077 	struct xfs_inode	*ip)
1078 {
1079 	struct xfs_inode_log_item *iip = ip->i_itemp;
1080 	struct xfs_buf		*bp;
1081 
1082 	if (!iip) {
1083 		/* clean inode, nothing to do */
1084 		xfs_iflags_clear(ip, XFS_IFLUSHING);
1085 		return;
1086 	}
1087 
1088 	spin_lock(&iip->ili_lock);
1089 	bp = iip->ili_item.li_buf;
1090 	if (!bp) {
1091 		spin_unlock(&iip->ili_lock);
1092 		xfs_iflush_abort(ip);
1093 		return;
1094 	}
1095 
1096 	/*
1097 	 * We have to take a reference to the buffer so that it doesn't get
1098 	 * freed when we drop the ili_lock and then wait to lock the buffer.
1099 	 * We'll clean up the extra reference after we pick up the ili_lock
1100 	 * again.
1101 	 */
1102 	xfs_buf_hold(bp);
1103 	spin_unlock(&iip->ili_lock);
1104 	xfs_buf_lock(bp);
1105 
1106 	spin_lock(&iip->ili_lock);
1107 	if (!iip->ili_item.li_buf) {
1108 		/*
1109 		 * Raced with another removal, hold the only reference
1110 		 * to bp now. Inode should not be in the AIL now, so just clean
1111 		 * up and return;
1112 		 */
1113 		ASSERT(list_empty(&iip->ili_item.li_bio_list));
1114 		ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
1115 		xfs_iflush_abort_clean(iip);
1116 		spin_unlock(&iip->ili_lock);
1117 		xfs_iflags_clear(ip, XFS_IFLUSHING);
1118 		xfs_buf_relse(bp);
1119 		return;
1120 	}
1121 
1122 	/*
1123 	 * Got two references to bp. The first will get dropped by
1124 	 * xfs_iflush_abort() when the item is removed from the buffer list, but
1125 	 * we can't drop our reference until _abort() returns because we have to
1126 	 * unlock the buffer as well. Hence we abort and then unlock and release
1127 	 * our reference to the buffer.
1128 	 */
1129 	ASSERT(iip->ili_item.li_buf == bp);
1130 	spin_unlock(&iip->ili_lock);
1131 	xfs_iflush_abort(ip);
1132 	xfs_buf_relse(bp);
1133 }
1134 
1135 
1136 /*
1137  * convert an xfs_inode_log_format struct from the old 32 bit version
1138  * (which can have different field alignments) to the native 64 bit version
1139  */
1140 int
1141 xfs_inode_item_format_convert(
1142 	struct xfs_log_iovec		*buf,
1143 	struct xfs_inode_log_format	*in_f)
1144 {
1145 	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
1146 
1147 	if (buf->i_len != sizeof(*in_f32)) {
1148 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
1149 		return -EFSCORRUPTED;
1150 	}
1151 
1152 	in_f->ilf_type = in_f32->ilf_type;
1153 	in_f->ilf_size = in_f32->ilf_size;
1154 	in_f->ilf_fields = in_f32->ilf_fields;
1155 	in_f->ilf_asize = in_f32->ilf_asize;
1156 	in_f->ilf_dsize = in_f32->ilf_dsize;
1157 	in_f->ilf_ino = in_f32->ilf_ino;
1158 	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1159 	in_f->ilf_blkno = in_f32->ilf_blkno;
1160 	in_f->ilf_len = in_f32->ilf_len;
1161 	in_f->ilf_boffset = in_f32->ilf_boffset;
1162 	return 0;
1163 }
1164