1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_buf_item.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_dir.h" 29 #include "xfs_dir2.h" 30 #include "xfs_dmapi.h" 31 #include "xfs_mount.h" 32 #include "xfs_trans_priv.h" 33 #include "xfs_bmap_btree.h" 34 #include "xfs_alloc_btree.h" 35 #include "xfs_ialloc_btree.h" 36 #include "xfs_dir_sf.h" 37 #include "xfs_dir2_sf.h" 38 #include "xfs_attr_sf.h" 39 #include "xfs_dinode.h" 40 #include "xfs_inode.h" 41 #include "xfs_inode_item.h" 42 #include "xfs_btree.h" 43 #include "xfs_ialloc.h" 44 #include "xfs_rw.h" 45 46 47 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 48 49 /* 50 * This returns the number of iovecs needed to log the given inode item. 51 * 52 * We need one iovec for the inode log format structure, one for the 53 * inode core, and possibly one for the inode data/extents/b-tree root 54 * and one for the inode attribute data/extents/b-tree root. 55 */ 56 STATIC uint 57 xfs_inode_item_size( 58 xfs_inode_log_item_t *iip) 59 { 60 uint nvecs; 61 xfs_inode_t *ip; 62 63 ip = iip->ili_inode; 64 nvecs = 2; 65 66 /* 67 * Only log the data/extents/b-tree root if there is something 68 * left to log. 69 */ 70 iip->ili_format.ilf_fields |= XFS_ILOG_CORE; 71 72 switch (ip->i_d.di_format) { 73 case XFS_DINODE_FMT_EXTENTS: 74 iip->ili_format.ilf_fields &= 75 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 76 XFS_ILOG_DEV | XFS_ILOG_UUID); 77 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) && 78 (ip->i_d.di_nextents > 0) && 79 (ip->i_df.if_bytes > 0)) { 80 ASSERT(ip->i_df.if_u1.if_extents != NULL); 81 nvecs++; 82 } else { 83 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT; 84 } 85 break; 86 87 case XFS_DINODE_FMT_BTREE: 88 ASSERT(ip->i_df.if_ext_max == 89 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t)); 90 iip->ili_format.ilf_fields &= 91 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | 92 XFS_ILOG_DEV | XFS_ILOG_UUID); 93 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) && 94 (ip->i_df.if_broot_bytes > 0)) { 95 ASSERT(ip->i_df.if_broot != NULL); 96 nvecs++; 97 } else { 98 ASSERT(!(iip->ili_format.ilf_fields & 99 XFS_ILOG_DBROOT)); 100 #ifdef XFS_TRANS_DEBUG 101 if (iip->ili_root_size > 0) { 102 ASSERT(iip->ili_root_size == 103 ip->i_df.if_broot_bytes); 104 ASSERT(memcmp(iip->ili_orig_root, 105 ip->i_df.if_broot, 106 iip->ili_root_size) == 0); 107 } else { 108 ASSERT(ip->i_df.if_broot_bytes == 0); 109 } 110 #endif 111 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT; 112 } 113 break; 114 115 case XFS_DINODE_FMT_LOCAL: 116 iip->ili_format.ilf_fields &= 117 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | 118 XFS_ILOG_DEV | XFS_ILOG_UUID); 119 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) && 120 (ip->i_df.if_bytes > 0)) { 121 ASSERT(ip->i_df.if_u1.if_data != NULL); 122 ASSERT(ip->i_d.di_size > 0); 123 nvecs++; 124 } else { 125 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA; 126 } 127 break; 128 129 case XFS_DINODE_FMT_DEV: 130 iip->ili_format.ilf_fields &= 131 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 132 XFS_ILOG_DEXT | XFS_ILOG_UUID); 133 break; 134 135 case XFS_DINODE_FMT_UUID: 136 iip->ili_format.ilf_fields &= 137 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 138 XFS_ILOG_DEXT | XFS_ILOG_DEV); 139 break; 140 141 default: 142 ASSERT(0); 143 break; 144 } 145 146 /* 147 * If there are no attributes associated with this file, 148 * then there cannot be anything more to log. 149 * Clear all attribute-related log flags. 150 */ 151 if (!XFS_IFORK_Q(ip)) { 152 iip->ili_format.ilf_fields &= 153 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 154 return nvecs; 155 } 156 157 /* 158 * Log any necessary attribute data. 159 */ 160 switch (ip->i_d.di_aformat) { 161 case XFS_DINODE_FMT_EXTENTS: 162 iip->ili_format.ilf_fields &= 163 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 164 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) && 165 (ip->i_d.di_anextents > 0) && 166 (ip->i_afp->if_bytes > 0)) { 167 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 168 nvecs++; 169 } else { 170 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT; 171 } 172 break; 173 174 case XFS_DINODE_FMT_BTREE: 175 iip->ili_format.ilf_fields &= 176 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 177 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) && 178 (ip->i_afp->if_broot_bytes > 0)) { 179 ASSERT(ip->i_afp->if_broot != NULL); 180 nvecs++; 181 } else { 182 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT; 183 } 184 break; 185 186 case XFS_DINODE_FMT_LOCAL: 187 iip->ili_format.ilf_fields &= 188 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 189 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) && 190 (ip->i_afp->if_bytes > 0)) { 191 ASSERT(ip->i_afp->if_u1.if_data != NULL); 192 nvecs++; 193 } else { 194 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA; 195 } 196 break; 197 198 default: 199 ASSERT(0); 200 break; 201 } 202 203 return nvecs; 204 } 205 206 /* 207 * This is called to fill in the vector of log iovecs for the 208 * given inode log item. It fills the first item with an inode 209 * log format structure, the second with the on-disk inode structure, 210 * and a possible third and/or fourth with the inode data/extents/b-tree 211 * root and inode attributes data/extents/b-tree root. 212 */ 213 STATIC void 214 xfs_inode_item_format( 215 xfs_inode_log_item_t *iip, 216 xfs_log_iovec_t *log_vector) 217 { 218 uint nvecs; 219 xfs_log_iovec_t *vecp; 220 xfs_inode_t *ip; 221 size_t data_bytes; 222 xfs_bmbt_rec_t *ext_buffer; 223 int nrecs; 224 xfs_mount_t *mp; 225 226 ip = iip->ili_inode; 227 vecp = log_vector; 228 229 vecp->i_addr = (xfs_caddr_t)&iip->ili_format; 230 vecp->i_len = sizeof(xfs_inode_log_format_t); 231 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT); 232 vecp++; 233 nvecs = 1; 234 235 /* 236 * Clear i_update_core if the timestamps (or any other 237 * non-transactional modification) need flushing/logging 238 * and we're about to log them with the rest of the core. 239 * 240 * This is the same logic as xfs_iflush() but this code can't 241 * run at the same time as xfs_iflush because we're in commit 242 * processing here and so we have the inode lock held in 243 * exclusive mode. Although it doesn't really matter 244 * for the timestamps if both routines were to grab the 245 * timestamps or not. That would be ok. 246 * 247 * We clear i_update_core before copying out the data. 248 * This is for coordination with our timestamp updates 249 * that don't hold the inode lock. They will always 250 * update the timestamps BEFORE setting i_update_core, 251 * so if we clear i_update_core after they set it we 252 * are guaranteed to see their updates to the timestamps 253 * either here. Likewise, if they set it after we clear it 254 * here, we'll see it either on the next commit of this 255 * inode or the next time the inode gets flushed via 256 * xfs_iflush(). This depends on strongly ordered memory 257 * semantics, but we have that. We use the SYNCHRONIZE 258 * macro to make sure that the compiler does not reorder 259 * the i_update_core access below the data copy below. 260 */ 261 if (ip->i_update_core) { 262 ip->i_update_core = 0; 263 SYNCHRONIZE(); 264 } 265 266 /* 267 * We don't have to worry about re-ordering here because 268 * the update_size field is protected by the inode lock 269 * and we have that held in exclusive mode. 270 */ 271 if (ip->i_update_size) 272 ip->i_update_size = 0; 273 274 /* 275 * Make sure to get the latest atime from the Linux inode. 276 */ 277 xfs_synchronize_atime(ip); 278 279 vecp->i_addr = (xfs_caddr_t)&ip->i_d; 280 vecp->i_len = sizeof(xfs_dinode_core_t); 281 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE); 282 vecp++; 283 nvecs++; 284 iip->ili_format.ilf_fields |= XFS_ILOG_CORE; 285 286 /* 287 * If this is really an old format inode, then we need to 288 * log it as such. This means that we have to copy the link 289 * count from the new field to the old. We don't have to worry 290 * about the new fields, because nothing trusts them as long as 291 * the old inode version number is there. If the superblock already 292 * has a new version number, then we don't bother converting back. 293 */ 294 mp = ip->i_mount; 295 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || 296 XFS_SB_VERSION_HASNLINK(&mp->m_sb)); 297 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 298 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { 299 /* 300 * Convert it back. 301 */ 302 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 303 ip->i_d.di_onlink = ip->i_d.di_nlink; 304 } else { 305 /* 306 * The superblock version has already been bumped, 307 * so just make the conversion to the new inode 308 * format permanent. 309 */ 310 ip->i_d.di_version = XFS_DINODE_VERSION_2; 311 ip->i_d.di_onlink = 0; 312 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 313 } 314 } 315 316 switch (ip->i_d.di_format) { 317 case XFS_DINODE_FMT_EXTENTS: 318 ASSERT(!(iip->ili_format.ilf_fields & 319 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 320 XFS_ILOG_DEV | XFS_ILOG_UUID))); 321 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) { 322 ASSERT(ip->i_df.if_bytes > 0); 323 ASSERT(ip->i_df.if_u1.if_extents != NULL); 324 ASSERT(ip->i_d.di_nextents > 0); 325 ASSERT(iip->ili_extents_buf == NULL); 326 nrecs = ip->i_df.if_bytes / 327 (uint)sizeof(xfs_bmbt_rec_t); 328 ASSERT(nrecs > 0); 329 #ifdef XFS_NATIVE_HOST 330 if (nrecs == ip->i_d.di_nextents) { 331 /* 332 * There are no delayed allocation 333 * extents, so just point to the 334 * real extents array. 335 */ 336 vecp->i_addr = 337 (char *)(ip->i_df.if_u1.if_extents); 338 vecp->i_len = ip->i_df.if_bytes; 339 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT); 340 } else 341 #endif 342 { 343 /* 344 * There are delayed allocation extents 345 * in the inode, or we need to convert 346 * the extents to on disk format. 347 * Use xfs_iextents_copy() 348 * to copy only the real extents into 349 * a separate buffer. We'll free the 350 * buffer in the unlock routine. 351 */ 352 ext_buffer = kmem_alloc(ip->i_df.if_bytes, 353 KM_SLEEP); 354 iip->ili_extents_buf = ext_buffer; 355 vecp->i_addr = (xfs_caddr_t)ext_buffer; 356 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, 357 XFS_DATA_FORK); 358 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT); 359 } 360 ASSERT(vecp->i_len <= ip->i_df.if_bytes); 361 iip->ili_format.ilf_dsize = vecp->i_len; 362 vecp++; 363 nvecs++; 364 } 365 break; 366 367 case XFS_DINODE_FMT_BTREE: 368 ASSERT(!(iip->ili_format.ilf_fields & 369 (XFS_ILOG_DDATA | XFS_ILOG_DEXT | 370 XFS_ILOG_DEV | XFS_ILOG_UUID))); 371 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) { 372 ASSERT(ip->i_df.if_broot_bytes > 0); 373 ASSERT(ip->i_df.if_broot != NULL); 374 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot; 375 vecp->i_len = ip->i_df.if_broot_bytes; 376 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT); 377 vecp++; 378 nvecs++; 379 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes; 380 } 381 break; 382 383 case XFS_DINODE_FMT_LOCAL: 384 ASSERT(!(iip->ili_format.ilf_fields & 385 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | 386 XFS_ILOG_DEV | XFS_ILOG_UUID))); 387 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) { 388 ASSERT(ip->i_df.if_bytes > 0); 389 ASSERT(ip->i_df.if_u1.if_data != NULL); 390 ASSERT(ip->i_d.di_size > 0); 391 392 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data; 393 /* 394 * Round i_bytes up to a word boundary. 395 * The underlying memory is guaranteed to 396 * to be there by xfs_idata_realloc(). 397 */ 398 data_bytes = roundup(ip->i_df.if_bytes, 4); 399 ASSERT((ip->i_df.if_real_bytes == 0) || 400 (ip->i_df.if_real_bytes == data_bytes)); 401 vecp->i_len = (int)data_bytes; 402 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL); 403 vecp++; 404 nvecs++; 405 iip->ili_format.ilf_dsize = (unsigned)data_bytes; 406 } 407 break; 408 409 case XFS_DINODE_FMT_DEV: 410 ASSERT(!(iip->ili_format.ilf_fields & 411 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | 412 XFS_ILOG_DDATA | XFS_ILOG_UUID))); 413 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 414 iip->ili_format.ilf_u.ilfu_rdev = 415 ip->i_df.if_u2.if_rdev; 416 } 417 break; 418 419 case XFS_DINODE_FMT_UUID: 420 ASSERT(!(iip->ili_format.ilf_fields & 421 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | 422 XFS_ILOG_DDATA | XFS_ILOG_DEV))); 423 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 424 iip->ili_format.ilf_u.ilfu_uuid = 425 ip->i_df.if_u2.if_uuid; 426 } 427 break; 428 429 default: 430 ASSERT(0); 431 break; 432 } 433 434 /* 435 * If there are no attributes associated with the file, 436 * then we're done. 437 * Assert that no attribute-related log flags are set. 438 */ 439 if (!XFS_IFORK_Q(ip)) { 440 ASSERT(nvecs == iip->ili_item.li_desc->lid_size); 441 iip->ili_format.ilf_size = nvecs; 442 ASSERT(!(iip->ili_format.ilf_fields & 443 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); 444 return; 445 } 446 447 switch (ip->i_d.di_aformat) { 448 case XFS_DINODE_FMT_EXTENTS: 449 ASSERT(!(iip->ili_format.ilf_fields & 450 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT))); 451 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) { 452 ASSERT(ip->i_afp->if_bytes > 0); 453 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 454 ASSERT(ip->i_d.di_anextents > 0); 455 #ifdef DEBUG 456 nrecs = ip->i_afp->if_bytes / 457 (uint)sizeof(xfs_bmbt_rec_t); 458 #endif 459 ASSERT(nrecs > 0); 460 ASSERT(nrecs == ip->i_d.di_anextents); 461 #ifdef XFS_NATIVE_HOST 462 /* 463 * There are not delayed allocation extents 464 * for attributes, so just point at the array. 465 */ 466 vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents); 467 vecp->i_len = ip->i_afp->if_bytes; 468 #else 469 ASSERT(iip->ili_aextents_buf == NULL); 470 /* 471 * Need to endian flip before logging 472 */ 473 ext_buffer = kmem_alloc(ip->i_afp->if_bytes, 474 KM_SLEEP); 475 iip->ili_aextents_buf = ext_buffer; 476 vecp->i_addr = (xfs_caddr_t)ext_buffer; 477 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, 478 XFS_ATTR_FORK); 479 #endif 480 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT); 481 iip->ili_format.ilf_asize = vecp->i_len; 482 vecp++; 483 nvecs++; 484 } 485 break; 486 487 case XFS_DINODE_FMT_BTREE: 488 ASSERT(!(iip->ili_format.ilf_fields & 489 (XFS_ILOG_ADATA | XFS_ILOG_AEXT))); 490 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) { 491 ASSERT(ip->i_afp->if_broot_bytes > 0); 492 ASSERT(ip->i_afp->if_broot != NULL); 493 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot; 494 vecp->i_len = ip->i_afp->if_broot_bytes; 495 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT); 496 vecp++; 497 nvecs++; 498 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes; 499 } 500 break; 501 502 case XFS_DINODE_FMT_LOCAL: 503 ASSERT(!(iip->ili_format.ilf_fields & 504 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); 505 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) { 506 ASSERT(ip->i_afp->if_bytes > 0); 507 ASSERT(ip->i_afp->if_u1.if_data != NULL); 508 509 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data; 510 /* 511 * Round i_bytes up to a word boundary. 512 * The underlying memory is guaranteed to 513 * to be there by xfs_idata_realloc(). 514 */ 515 data_bytes = roundup(ip->i_afp->if_bytes, 4); 516 ASSERT((ip->i_afp->if_real_bytes == 0) || 517 (ip->i_afp->if_real_bytes == data_bytes)); 518 vecp->i_len = (int)data_bytes; 519 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL); 520 vecp++; 521 nvecs++; 522 iip->ili_format.ilf_asize = (unsigned)data_bytes; 523 } 524 break; 525 526 default: 527 ASSERT(0); 528 break; 529 } 530 531 ASSERT(nvecs == iip->ili_item.li_desc->lid_size); 532 iip->ili_format.ilf_size = nvecs; 533 } 534 535 536 /* 537 * This is called to pin the inode associated with the inode log 538 * item in memory so it cannot be written out. Do this by calling 539 * xfs_ipin() to bump the pin count in the inode while holding the 540 * inode pin lock. 541 */ 542 STATIC void 543 xfs_inode_item_pin( 544 xfs_inode_log_item_t *iip) 545 { 546 ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE)); 547 xfs_ipin(iip->ili_inode); 548 } 549 550 551 /* 552 * This is called to unpin the inode associated with the inode log 553 * item which was previously pinned with a call to xfs_inode_item_pin(). 554 * Just call xfs_iunpin() on the inode to do this. 555 */ 556 /* ARGSUSED */ 557 STATIC void 558 xfs_inode_item_unpin( 559 xfs_inode_log_item_t *iip, 560 int stale) 561 { 562 xfs_iunpin(iip->ili_inode); 563 } 564 565 /* ARGSUSED */ 566 STATIC void 567 xfs_inode_item_unpin_remove( 568 xfs_inode_log_item_t *iip, 569 xfs_trans_t *tp) 570 { 571 xfs_iunpin(iip->ili_inode); 572 } 573 574 /* 575 * This is called to attempt to lock the inode associated with this 576 * inode log item, in preparation for the push routine which does the actual 577 * iflush. Don't sleep on the inode lock or the flush lock. 578 * 579 * If the flush lock is already held, indicating that the inode has 580 * been or is in the process of being flushed, then (ideally) we'd like to 581 * see if the inode's buffer is still incore, and if so give it a nudge. 582 * We delay doing so until the pushbuf routine, though, to avoid holding 583 * the AIL lock across a call to the blackhole which is the buffer cache. 584 * Also we don't want to sleep in any device strategy routines, which can happen 585 * if we do the subsequent bawrite in here. 586 */ 587 STATIC uint 588 xfs_inode_item_trylock( 589 xfs_inode_log_item_t *iip) 590 { 591 register xfs_inode_t *ip; 592 593 ip = iip->ili_inode; 594 595 if (xfs_ipincount(ip) > 0) { 596 return XFS_ITEM_PINNED; 597 } 598 599 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 600 return XFS_ITEM_LOCKED; 601 } 602 603 if (!xfs_iflock_nowait(ip)) { 604 /* 605 * If someone else isn't already trying to push the inode 606 * buffer, we get to do it. 607 */ 608 if (iip->ili_pushbuf_flag == 0) { 609 iip->ili_pushbuf_flag = 1; 610 #ifdef DEBUG 611 iip->ili_push_owner = current_pid(); 612 #endif 613 /* 614 * Inode is left locked in shared mode. 615 * Pushbuf routine gets to unlock it. 616 */ 617 return XFS_ITEM_PUSHBUF; 618 } else { 619 /* 620 * We hold the AIL_LOCK, so we must specify the 621 * NONOTIFY flag so that we won't double trip. 622 */ 623 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); 624 return XFS_ITEM_FLUSHING; 625 } 626 /* NOTREACHED */ 627 } 628 629 /* Stale items should force out the iclog */ 630 if (ip->i_flags & XFS_ISTALE) { 631 xfs_ifunlock(ip); 632 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); 633 return XFS_ITEM_PINNED; 634 } 635 636 #ifdef DEBUG 637 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 638 ASSERT(iip->ili_format.ilf_fields != 0); 639 ASSERT(iip->ili_logged == 0); 640 ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL); 641 } 642 #endif 643 return XFS_ITEM_SUCCESS; 644 } 645 646 /* 647 * Unlock the inode associated with the inode log item. 648 * Clear the fields of the inode and inode log item that 649 * are specific to the current transaction. If the 650 * hold flags is set, do not unlock the inode. 651 */ 652 STATIC void 653 xfs_inode_item_unlock( 654 xfs_inode_log_item_t *iip) 655 { 656 uint hold; 657 uint iolocked; 658 uint lock_flags; 659 xfs_inode_t *ip; 660 661 ASSERT(iip != NULL); 662 ASSERT(iip->ili_inode->i_itemp != NULL); 663 ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE)); 664 ASSERT((!(iip->ili_inode->i_itemp->ili_flags & 665 XFS_ILI_IOLOCKED_EXCL)) || 666 ismrlocked(&(iip->ili_inode->i_iolock), MR_UPDATE)); 667 ASSERT((!(iip->ili_inode->i_itemp->ili_flags & 668 XFS_ILI_IOLOCKED_SHARED)) || 669 ismrlocked(&(iip->ili_inode->i_iolock), MR_ACCESS)); 670 /* 671 * Clear the transaction pointer in the inode. 672 */ 673 ip = iip->ili_inode; 674 ip->i_transp = NULL; 675 676 /* 677 * If the inode needed a separate buffer with which to log 678 * its extents, then free it now. 679 */ 680 if (iip->ili_extents_buf != NULL) { 681 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS); 682 ASSERT(ip->i_d.di_nextents > 0); 683 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT); 684 ASSERT(ip->i_df.if_bytes > 0); 685 kmem_free(iip->ili_extents_buf, ip->i_df.if_bytes); 686 iip->ili_extents_buf = NULL; 687 } 688 if (iip->ili_aextents_buf != NULL) { 689 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS); 690 ASSERT(ip->i_d.di_anextents > 0); 691 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT); 692 ASSERT(ip->i_afp->if_bytes > 0); 693 kmem_free(iip->ili_aextents_buf, ip->i_afp->if_bytes); 694 iip->ili_aextents_buf = NULL; 695 } 696 697 /* 698 * Figure out if we should unlock the inode or not. 699 */ 700 hold = iip->ili_flags & XFS_ILI_HOLD; 701 702 /* 703 * Before clearing out the flags, remember whether we 704 * are holding the inode's IO lock. 705 */ 706 iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY; 707 708 /* 709 * Clear out the fields of the inode log item particular 710 * to the current transaction. 711 */ 712 iip->ili_ilock_recur = 0; 713 iip->ili_iolock_recur = 0; 714 iip->ili_flags = 0; 715 716 /* 717 * Unlock the inode if XFS_ILI_HOLD was not set. 718 */ 719 if (!hold) { 720 lock_flags = XFS_ILOCK_EXCL; 721 if (iolocked & XFS_ILI_IOLOCKED_EXCL) { 722 lock_flags |= XFS_IOLOCK_EXCL; 723 } else if (iolocked & XFS_ILI_IOLOCKED_SHARED) { 724 lock_flags |= XFS_IOLOCK_SHARED; 725 } 726 xfs_iput(iip->ili_inode, lock_flags); 727 } 728 } 729 730 /* 731 * This is called to find out where the oldest active copy of the 732 * inode log item in the on disk log resides now that the last log 733 * write of it completed at the given lsn. Since we always re-log 734 * all dirty data in an inode, the latest copy in the on disk log 735 * is the only one that matters. Therefore, simply return the 736 * given lsn. 737 */ 738 /*ARGSUSED*/ 739 STATIC xfs_lsn_t 740 xfs_inode_item_committed( 741 xfs_inode_log_item_t *iip, 742 xfs_lsn_t lsn) 743 { 744 return (lsn); 745 } 746 747 /* 748 * The transaction with the inode locked has aborted. The inode 749 * must not be dirty within the transaction (unless we're forcibly 750 * shutting down). We simply unlock just as if the transaction 751 * had been cancelled. 752 */ 753 STATIC void 754 xfs_inode_item_abort( 755 xfs_inode_log_item_t *iip) 756 { 757 xfs_inode_item_unlock(iip); 758 return; 759 } 760 761 762 /* 763 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK 764 * failed to get the inode flush lock but did get the inode locked SHARED. 765 * Here we're trying to see if the inode buffer is incore, and if so whether it's 766 * marked delayed write. If that's the case, we'll initiate a bawrite on that 767 * buffer to expedite the process. 768 * 769 * We aren't holding the AIL_LOCK (or the flush lock) when this gets called, 770 * so it is inherently race-y. 771 */ 772 STATIC void 773 xfs_inode_item_pushbuf( 774 xfs_inode_log_item_t *iip) 775 { 776 xfs_inode_t *ip; 777 xfs_mount_t *mp; 778 xfs_buf_t *bp; 779 uint dopush; 780 781 ip = iip->ili_inode; 782 783 ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS)); 784 785 /* 786 * The ili_pushbuf_flag keeps others from 787 * trying to duplicate our effort. 788 */ 789 ASSERT(iip->ili_pushbuf_flag != 0); 790 ASSERT(iip->ili_push_owner == current_pid()); 791 792 /* 793 * If flushlock isn't locked anymore, chances are that the 794 * inode flush completed and the inode was taken off the AIL. 795 * So, just get out. 796 */ 797 if ((valusema(&(ip->i_flock)) > 0) || 798 ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) { 799 iip->ili_pushbuf_flag = 0; 800 xfs_iunlock(ip, XFS_ILOCK_SHARED); 801 return; 802 } 803 804 mp = ip->i_mount; 805 bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno, 806 iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK); 807 808 if (bp != NULL) { 809 if (XFS_BUF_ISDELAYWRITE(bp)) { 810 /* 811 * We were racing with iflush because we don't hold 812 * the AIL_LOCK or the flush lock. However, at this point, 813 * we have the buffer, and we know that it's dirty. 814 * So, it's possible that iflush raced with us, and 815 * this item is already taken off the AIL. 816 * If not, we can flush it async. 817 */ 818 dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) && 819 (valusema(&(ip->i_flock)) <= 0)); 820 iip->ili_pushbuf_flag = 0; 821 xfs_iunlock(ip, XFS_ILOCK_SHARED); 822 xfs_buftrace("INODE ITEM PUSH", bp); 823 if (XFS_BUF_ISPINNED(bp)) { 824 xfs_log_force(mp, (xfs_lsn_t)0, 825 XFS_LOG_FORCE); 826 } 827 if (dopush) { 828 xfs_bawrite(mp, bp); 829 } else { 830 xfs_buf_relse(bp); 831 } 832 } else { 833 iip->ili_pushbuf_flag = 0; 834 xfs_iunlock(ip, XFS_ILOCK_SHARED); 835 xfs_buf_relse(bp); 836 } 837 return; 838 } 839 /* 840 * We have to be careful about resetting pushbuf flag too early (above). 841 * Even though in theory we can do it as soon as we have the buflock, 842 * we don't want others to be doing work needlessly. They'll come to 843 * this function thinking that pushing the buffer is their 844 * responsibility only to find that the buffer is still locked by 845 * another doing the same thing 846 */ 847 iip->ili_pushbuf_flag = 0; 848 xfs_iunlock(ip, XFS_ILOCK_SHARED); 849 return; 850 } 851 852 853 /* 854 * This is called to asynchronously write the inode associated with this 855 * inode log item out to disk. The inode will already have been locked by 856 * a successful call to xfs_inode_item_trylock(). 857 */ 858 STATIC void 859 xfs_inode_item_push( 860 xfs_inode_log_item_t *iip) 861 { 862 xfs_inode_t *ip; 863 864 ip = iip->ili_inode; 865 866 ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS)); 867 ASSERT(valusema(&(ip->i_flock)) <= 0); 868 /* 869 * Since we were able to lock the inode's flush lock and 870 * we found it on the AIL, the inode must be dirty. This 871 * is because the inode is removed from the AIL while still 872 * holding the flush lock in xfs_iflush_done(). Thus, if 873 * we found it in the AIL and were able to obtain the flush 874 * lock without sleeping, then there must not have been 875 * anyone in the process of flushing the inode. 876 */ 877 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || 878 iip->ili_format.ilf_fields != 0); 879 880 /* 881 * Write out the inode. The completion routine ('iflush_done') will 882 * pull it from the AIL, mark it clean, unlock the flush lock. 883 */ 884 (void) xfs_iflush(ip, XFS_IFLUSH_ASYNC); 885 xfs_iunlock(ip, XFS_ILOCK_SHARED); 886 887 return; 888 } 889 890 /* 891 * XXX rcc - this one really has to do something. Probably needs 892 * to stamp in a new field in the incore inode. 893 */ 894 /* ARGSUSED */ 895 STATIC void 896 xfs_inode_item_committing( 897 xfs_inode_log_item_t *iip, 898 xfs_lsn_t lsn) 899 { 900 iip->ili_last_lsn = lsn; 901 return; 902 } 903 904 /* 905 * This is the ops vector shared by all buf log items. 906 */ 907 STATIC struct xfs_item_ops xfs_inode_item_ops = { 908 .iop_size = (uint(*)(xfs_log_item_t*))xfs_inode_item_size, 909 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) 910 xfs_inode_item_format, 911 .iop_pin = (void(*)(xfs_log_item_t*))xfs_inode_item_pin, 912 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin, 913 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*)) 914 xfs_inode_item_unpin_remove, 915 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock, 916 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_inode_item_unlock, 917 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) 918 xfs_inode_item_committed, 919 .iop_push = (void(*)(xfs_log_item_t*))xfs_inode_item_push, 920 .iop_abort = (void(*)(xfs_log_item_t*))xfs_inode_item_abort, 921 .iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf, 922 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) 923 xfs_inode_item_committing 924 }; 925 926 927 /* 928 * Initialize the inode log item for a newly allocated (in-core) inode. 929 */ 930 void 931 xfs_inode_item_init( 932 xfs_inode_t *ip, 933 xfs_mount_t *mp) 934 { 935 xfs_inode_log_item_t *iip; 936 937 ASSERT(ip->i_itemp == NULL); 938 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); 939 940 iip->ili_item.li_type = XFS_LI_INODE; 941 iip->ili_item.li_ops = &xfs_inode_item_ops; 942 iip->ili_item.li_mountp = mp; 943 iip->ili_inode = ip; 944 945 /* 946 We have zeroed memory. No need ... 947 iip->ili_extents_buf = NULL; 948 iip->ili_pushbuf_flag = 0; 949 */ 950 951 iip->ili_format.ilf_type = XFS_LI_INODE; 952 iip->ili_format.ilf_ino = ip->i_ino; 953 iip->ili_format.ilf_blkno = ip->i_blkno; 954 iip->ili_format.ilf_len = ip->i_len; 955 iip->ili_format.ilf_boffset = ip->i_boffset; 956 } 957 958 /* 959 * Free the inode log item and any memory hanging off of it. 960 */ 961 void 962 xfs_inode_item_destroy( 963 xfs_inode_t *ip) 964 { 965 #ifdef XFS_TRANS_DEBUG 966 if (ip->i_itemp->ili_root_size != 0) { 967 kmem_free(ip->i_itemp->ili_orig_root, 968 ip->i_itemp->ili_root_size); 969 } 970 #endif 971 kmem_zone_free(xfs_ili_zone, ip->i_itemp); 972 } 973 974 975 /* 976 * This is the inode flushing I/O completion routine. It is called 977 * from interrupt level when the buffer containing the inode is 978 * flushed to disk. It is responsible for removing the inode item 979 * from the AIL if it has not been re-logged, and unlocking the inode's 980 * flush lock. 981 */ 982 /*ARGSUSED*/ 983 void 984 xfs_iflush_done( 985 xfs_buf_t *bp, 986 xfs_inode_log_item_t *iip) 987 { 988 xfs_inode_t *ip; 989 SPLDECL(s); 990 991 ip = iip->ili_inode; 992 993 /* 994 * We only want to pull the item from the AIL if it is 995 * actually there and its location in the log has not 996 * changed since we started the flush. Thus, we only bother 997 * if the ili_logged flag is set and the inode's lsn has not 998 * changed. First we check the lsn outside 999 * the lock since it's cheaper, and then we recheck while 1000 * holding the lock before removing the inode from the AIL. 1001 */ 1002 if (iip->ili_logged && 1003 (iip->ili_item.li_lsn == iip->ili_flush_lsn)) { 1004 AIL_LOCK(ip->i_mount, s); 1005 if (iip->ili_item.li_lsn == iip->ili_flush_lsn) { 1006 /* 1007 * xfs_trans_delete_ail() drops the AIL lock. 1008 */ 1009 xfs_trans_delete_ail(ip->i_mount, 1010 (xfs_log_item_t*)iip, s); 1011 } else { 1012 AIL_UNLOCK(ip->i_mount, s); 1013 } 1014 } 1015 1016 iip->ili_logged = 0; 1017 1018 /* 1019 * Clear the ili_last_fields bits now that we know that the 1020 * data corresponding to them is safely on disk. 1021 */ 1022 iip->ili_last_fields = 0; 1023 1024 /* 1025 * Release the inode's flush lock since we're done with it. 1026 */ 1027 xfs_ifunlock(ip); 1028 1029 return; 1030 } 1031 1032 /* 1033 * This is the inode flushing abort routine. It is called 1034 * from xfs_iflush when the filesystem is shutting down to clean 1035 * up the inode state. 1036 * It is responsible for removing the inode item 1037 * from the AIL if it has not been re-logged, and unlocking the inode's 1038 * flush lock. 1039 */ 1040 void 1041 xfs_iflush_abort( 1042 xfs_inode_t *ip) 1043 { 1044 xfs_inode_log_item_t *iip; 1045 xfs_mount_t *mp; 1046 SPLDECL(s); 1047 1048 iip = ip->i_itemp; 1049 mp = ip->i_mount; 1050 if (iip) { 1051 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 1052 AIL_LOCK(mp, s); 1053 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 1054 /* 1055 * xfs_trans_delete_ail() drops the AIL lock. 1056 */ 1057 xfs_trans_delete_ail(mp, (xfs_log_item_t *)iip, 1058 s); 1059 } else 1060 AIL_UNLOCK(mp, s); 1061 } 1062 iip->ili_logged = 0; 1063 /* 1064 * Clear the ili_last_fields bits now that we know that the 1065 * data corresponding to them is safely on disk. 1066 */ 1067 iip->ili_last_fields = 0; 1068 /* 1069 * Clear the inode logging fields so no more flushes are 1070 * attempted. 1071 */ 1072 iip->ili_format.ilf_fields = 0; 1073 } 1074 /* 1075 * Release the inode's flush lock since we're done with it. 1076 */ 1077 xfs_ifunlock(ip); 1078 } 1079 1080 void 1081 xfs_istale_done( 1082 xfs_buf_t *bp, 1083 xfs_inode_log_item_t *iip) 1084 { 1085 xfs_iflush_abort(iip->ili_inode); 1086 } 1087