1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_trace.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_buf_item.h" 19 #include "xfs_log.h" 20 #include "xfs_log_priv.h" 21 #include "xfs_error.h" 22 #include "xfs_rtbitmap.h" 23 24 #include <linux/iversion.h> 25 26 struct kmem_cache *xfs_ili_cache; /* inode log item */ 27 28 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 29 { 30 return container_of(lip, struct xfs_inode_log_item, ili_item); 31 } 32 33 static uint64_t 34 xfs_inode_item_sort( 35 struct xfs_log_item *lip) 36 { 37 return INODE_ITEM(lip)->ili_inode->i_ino; 38 } 39 40 /* 41 * Prior to finally logging the inode, we have to ensure that all the 42 * per-modification inode state changes are applied. This includes VFS inode 43 * state updates, format conversions, verifier state synchronisation and 44 * ensuring the inode buffer remains in memory whilst the inode is dirty. 45 * 46 * We have to be careful when we grab the inode cluster buffer due to lock 47 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item) 48 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is 49 * not locked until ->precommit, so it happens after everything else has been 50 * modified. 51 * 52 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we 53 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we 54 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because 55 * it can be called on a inode (e.g. via bumplink/droplink) before we take the 56 * AGF lock modifying directory blocks. 57 * 58 * Rather than force a complete rework of all the transactions to call 59 * xfs_trans_log_inode() once and once only at the end of every transaction, we 60 * move the pinning of the inode cluster buffer to a ->precommit operation. This 61 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it 62 * ensures that the inode cluster buffer locking is always done last in a 63 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode 64 * cluster buffer. 65 * 66 * If we return the inode number as the precommit sort key then we'll also 67 * guarantee that the order all inode cluster buffer locking is the same all the 68 * inodes and unlink items in the transaction. 69 */ 70 static int 71 xfs_inode_item_precommit( 72 struct xfs_trans *tp, 73 struct xfs_log_item *lip) 74 { 75 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 76 struct xfs_inode *ip = iip->ili_inode; 77 struct inode *inode = VFS_I(ip); 78 unsigned int flags = iip->ili_dirty_flags; 79 80 /* 81 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races 82 * don't matter - we either will need an extra transaction in 24 hours 83 * to log the timestamps, or will clear already cleared fields in the 84 * worst case. 85 */ 86 if (inode->i_state & I_DIRTY_TIME) { 87 spin_lock(&inode->i_lock); 88 inode->i_state &= ~I_DIRTY_TIME; 89 spin_unlock(&inode->i_lock); 90 } 91 92 /* 93 * If we're updating the inode core or the timestamps and it's possible 94 * to upgrade this inode to bigtime format, do so now. 95 */ 96 if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) && 97 xfs_has_bigtime(ip->i_mount) && 98 !xfs_inode_has_bigtime(ip)) { 99 ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME; 100 flags |= XFS_ILOG_CORE; 101 } 102 103 /* 104 * Inode verifiers do not check that the extent size hint is an integer 105 * multiple of the rt extent size on a directory with both rtinherit 106 * and extszinherit flags set. If we're logging a directory that is 107 * misconfigured in this way, clear the hint. 108 */ 109 if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) && 110 (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) && 111 xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) { 112 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 113 XFS_DIFLAG_EXTSZINHERIT); 114 ip->i_extsize = 0; 115 flags |= XFS_ILOG_CORE; 116 } 117 118 /* 119 * Record the specific change for fdatasync optimisation. This allows 120 * fdatasync to skip log forces for inodes that are only timestamp 121 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it 122 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking 123 * (ili_fields) correctly tracks that the version has changed. 124 */ 125 spin_lock(&iip->ili_lock); 126 iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION); 127 if (flags & XFS_ILOG_IVERSION) 128 flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE); 129 130 if (!iip->ili_item.li_buf) { 131 struct xfs_buf *bp; 132 int error; 133 134 /* 135 * We hold the ILOCK here, so this inode is not going to be 136 * flushed while we are here. Further, because there is no 137 * buffer attached to the item, we know that there is no IO in 138 * progress, so nothing will clear the ili_fields while we read 139 * in the buffer. Hence we can safely drop the spin lock and 140 * read the buffer knowing that the state will not change from 141 * here. 142 */ 143 spin_unlock(&iip->ili_lock); 144 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp); 145 if (error) 146 return error; 147 148 /* 149 * We need an explicit buffer reference for the log item but 150 * don't want the buffer to remain attached to the transaction. 151 * Hold the buffer but release the transaction reference once 152 * we've attached the inode log item to the buffer log item 153 * list. 154 */ 155 xfs_buf_hold(bp); 156 spin_lock(&iip->ili_lock); 157 iip->ili_item.li_buf = bp; 158 bp->b_flags |= _XBF_INODES; 159 list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list); 160 xfs_trans_brelse(tp, bp); 161 } 162 163 /* 164 * Always OR in the bits from the ili_last_fields field. This is to 165 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines 166 * in the eventual clearing of the ili_fields bits. See the big comment 167 * in xfs_iflush() for an explanation of this coordination mechanism. 168 */ 169 iip->ili_fields |= (flags | iip->ili_last_fields); 170 spin_unlock(&iip->ili_lock); 171 172 /* 173 * We are done with the log item transaction dirty state, so clear it so 174 * that it doesn't pollute future transactions. 175 */ 176 iip->ili_dirty_flags = 0; 177 return 0; 178 } 179 180 /* 181 * The logged size of an inode fork is always the current size of the inode 182 * fork. This means that when an inode fork is relogged, the size of the logged 183 * region is determined by the current state, not the combination of the 184 * previously logged state + the current state. This is different relogging 185 * behaviour to most other log items which will retain the size of the 186 * previously logged changes when smaller regions are relogged. 187 * 188 * Hence operations that remove data from the inode fork (e.g. shortform 189 * dir/attr remove, extent form extent removal, etc), the size of the relogged 190 * inode gets -smaller- rather than stays the same size as the previously logged 191 * size and this can result in the committing transaction reducing the amount of 192 * space being consumed by the CIL. 193 */ 194 STATIC void 195 xfs_inode_item_data_fork_size( 196 struct xfs_inode_log_item *iip, 197 int *nvecs, 198 int *nbytes) 199 { 200 struct xfs_inode *ip = iip->ili_inode; 201 202 switch (ip->i_df.if_format) { 203 case XFS_DINODE_FMT_EXTENTS: 204 if ((iip->ili_fields & XFS_ILOG_DEXT) && 205 ip->i_df.if_nextents > 0 && 206 ip->i_df.if_bytes > 0) { 207 /* worst case, doesn't subtract delalloc extents */ 208 *nbytes += xfs_inode_data_fork_size(ip); 209 *nvecs += 1; 210 } 211 break; 212 case XFS_DINODE_FMT_BTREE: 213 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 214 ip->i_df.if_broot_bytes > 0) { 215 *nbytes += ip->i_df.if_broot_bytes; 216 *nvecs += 1; 217 } 218 break; 219 case XFS_DINODE_FMT_LOCAL: 220 if ((iip->ili_fields & XFS_ILOG_DDATA) && 221 ip->i_df.if_bytes > 0) { 222 *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes); 223 *nvecs += 1; 224 } 225 break; 226 227 case XFS_DINODE_FMT_DEV: 228 break; 229 default: 230 ASSERT(0); 231 break; 232 } 233 } 234 235 STATIC void 236 xfs_inode_item_attr_fork_size( 237 struct xfs_inode_log_item *iip, 238 int *nvecs, 239 int *nbytes) 240 { 241 struct xfs_inode *ip = iip->ili_inode; 242 243 switch (ip->i_af.if_format) { 244 case XFS_DINODE_FMT_EXTENTS: 245 if ((iip->ili_fields & XFS_ILOG_AEXT) && 246 ip->i_af.if_nextents > 0 && 247 ip->i_af.if_bytes > 0) { 248 /* worst case, doesn't subtract unused space */ 249 *nbytes += xfs_inode_attr_fork_size(ip); 250 *nvecs += 1; 251 } 252 break; 253 case XFS_DINODE_FMT_BTREE: 254 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 255 ip->i_af.if_broot_bytes > 0) { 256 *nbytes += ip->i_af.if_broot_bytes; 257 *nvecs += 1; 258 } 259 break; 260 case XFS_DINODE_FMT_LOCAL: 261 if ((iip->ili_fields & XFS_ILOG_ADATA) && 262 ip->i_af.if_bytes > 0) { 263 *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes); 264 *nvecs += 1; 265 } 266 break; 267 default: 268 ASSERT(0); 269 break; 270 } 271 } 272 273 /* 274 * This returns the number of iovecs needed to log the given inode item. 275 * 276 * We need one iovec for the inode log format structure, one for the 277 * inode core, and possibly one for the inode data/extents/b-tree root 278 * and one for the inode attribute data/extents/b-tree root. 279 */ 280 STATIC void 281 xfs_inode_item_size( 282 struct xfs_log_item *lip, 283 int *nvecs, 284 int *nbytes) 285 { 286 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 287 struct xfs_inode *ip = iip->ili_inode; 288 289 *nvecs += 2; 290 *nbytes += sizeof(struct xfs_inode_log_format) + 291 xfs_log_dinode_size(ip->i_mount); 292 293 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 294 if (xfs_inode_has_attr_fork(ip)) 295 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 296 } 297 298 STATIC void 299 xfs_inode_item_format_data_fork( 300 struct xfs_inode_log_item *iip, 301 struct xfs_inode_log_format *ilf, 302 struct xfs_log_vec *lv, 303 struct xfs_log_iovec **vecp) 304 { 305 struct xfs_inode *ip = iip->ili_inode; 306 size_t data_bytes; 307 308 switch (ip->i_df.if_format) { 309 case XFS_DINODE_FMT_EXTENTS: 310 iip->ili_fields &= 311 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 312 313 if ((iip->ili_fields & XFS_ILOG_DEXT) && 314 ip->i_df.if_nextents > 0 && 315 ip->i_df.if_bytes > 0) { 316 struct xfs_bmbt_rec *p; 317 318 ASSERT(xfs_iext_count(&ip->i_df) > 0); 319 320 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 321 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 322 xlog_finish_iovec(lv, *vecp, data_bytes); 323 324 ASSERT(data_bytes <= ip->i_df.if_bytes); 325 326 ilf->ilf_dsize = data_bytes; 327 ilf->ilf_size++; 328 } else { 329 iip->ili_fields &= ~XFS_ILOG_DEXT; 330 } 331 break; 332 case XFS_DINODE_FMT_BTREE: 333 iip->ili_fields &= 334 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); 335 336 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 337 ip->i_df.if_broot_bytes > 0) { 338 ASSERT(ip->i_df.if_broot != NULL); 339 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 340 ip->i_df.if_broot, 341 ip->i_df.if_broot_bytes); 342 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 343 ilf->ilf_size++; 344 } else { 345 ASSERT(!(iip->ili_fields & 346 XFS_ILOG_DBROOT)); 347 iip->ili_fields &= ~XFS_ILOG_DBROOT; 348 } 349 break; 350 case XFS_DINODE_FMT_LOCAL: 351 iip->ili_fields &= 352 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 353 if ((iip->ili_fields & XFS_ILOG_DDATA) && 354 ip->i_df.if_bytes > 0) { 355 ASSERT(ip->i_df.if_data != NULL); 356 ASSERT(ip->i_disk_size > 0); 357 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 358 ip->i_df.if_data, ip->i_df.if_bytes); 359 ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes; 360 ilf->ilf_size++; 361 } else { 362 iip->ili_fields &= ~XFS_ILOG_DDATA; 363 } 364 break; 365 case XFS_DINODE_FMT_DEV: 366 iip->ili_fields &= 367 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); 368 if (iip->ili_fields & XFS_ILOG_DEV) 369 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); 370 break; 371 default: 372 ASSERT(0); 373 break; 374 } 375 } 376 377 STATIC void 378 xfs_inode_item_format_attr_fork( 379 struct xfs_inode_log_item *iip, 380 struct xfs_inode_log_format *ilf, 381 struct xfs_log_vec *lv, 382 struct xfs_log_iovec **vecp) 383 { 384 struct xfs_inode *ip = iip->ili_inode; 385 size_t data_bytes; 386 387 switch (ip->i_af.if_format) { 388 case XFS_DINODE_FMT_EXTENTS: 389 iip->ili_fields &= 390 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 391 392 if ((iip->ili_fields & XFS_ILOG_AEXT) && 393 ip->i_af.if_nextents > 0 && 394 ip->i_af.if_bytes > 0) { 395 struct xfs_bmbt_rec *p; 396 397 ASSERT(xfs_iext_count(&ip->i_af) == 398 ip->i_af.if_nextents); 399 400 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 401 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 402 xlog_finish_iovec(lv, *vecp, data_bytes); 403 404 ilf->ilf_asize = data_bytes; 405 ilf->ilf_size++; 406 } else { 407 iip->ili_fields &= ~XFS_ILOG_AEXT; 408 } 409 break; 410 case XFS_DINODE_FMT_BTREE: 411 iip->ili_fields &= 412 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 413 414 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 415 ip->i_af.if_broot_bytes > 0) { 416 ASSERT(ip->i_af.if_broot != NULL); 417 418 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 419 ip->i_af.if_broot, 420 ip->i_af.if_broot_bytes); 421 ilf->ilf_asize = ip->i_af.if_broot_bytes; 422 ilf->ilf_size++; 423 } else { 424 iip->ili_fields &= ~XFS_ILOG_ABROOT; 425 } 426 break; 427 case XFS_DINODE_FMT_LOCAL: 428 iip->ili_fields &= 429 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 430 431 if ((iip->ili_fields & XFS_ILOG_ADATA) && 432 ip->i_af.if_bytes > 0) { 433 ASSERT(ip->i_af.if_data != NULL); 434 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 435 ip->i_af.if_data, ip->i_af.if_bytes); 436 ilf->ilf_asize = (unsigned)ip->i_af.if_bytes; 437 ilf->ilf_size++; 438 } else { 439 iip->ili_fields &= ~XFS_ILOG_ADATA; 440 } 441 break; 442 default: 443 ASSERT(0); 444 break; 445 } 446 } 447 448 /* 449 * Convert an incore timestamp to a log timestamp. Note that the log format 450 * specifies host endian format! 451 */ 452 static inline xfs_log_timestamp_t 453 xfs_inode_to_log_dinode_ts( 454 struct xfs_inode *ip, 455 const struct timespec64 tv) 456 { 457 struct xfs_log_legacy_timestamp *lits; 458 xfs_log_timestamp_t its; 459 460 if (xfs_inode_has_bigtime(ip)) 461 return xfs_inode_encode_bigtime(tv); 462 463 lits = (struct xfs_log_legacy_timestamp *)&its; 464 lits->t_sec = tv.tv_sec; 465 lits->t_nsec = tv.tv_nsec; 466 467 return its; 468 } 469 470 /* 471 * The legacy DMAPI fields are only present in the on-disk and in-log inodes, 472 * but not in the in-memory one. But we are guaranteed to have an inode buffer 473 * in memory when logging an inode, so we can just copy it from the on-disk 474 * inode to the in-log inode here so that recovery of file system with these 475 * fields set to non-zero values doesn't lose them. For all other cases we zero 476 * the fields. 477 */ 478 static void 479 xfs_copy_dm_fields_to_log_dinode( 480 struct xfs_inode *ip, 481 struct xfs_log_dinode *to) 482 { 483 struct xfs_dinode *dip; 484 485 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf, 486 ip->i_imap.im_boffset); 487 488 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) { 489 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask); 490 to->di_dmstate = be16_to_cpu(dip->di_dmstate); 491 } else { 492 to->di_dmevmask = 0; 493 to->di_dmstate = 0; 494 } 495 } 496 497 static inline void 498 xfs_inode_to_log_dinode_iext_counters( 499 struct xfs_inode *ip, 500 struct xfs_log_dinode *to) 501 { 502 if (xfs_inode_has_large_extent_counts(ip)) { 503 to->di_big_nextents = xfs_ifork_nextents(&ip->i_df); 504 to->di_big_anextents = xfs_ifork_nextents(&ip->i_af); 505 to->di_nrext64_pad = 0; 506 } else { 507 to->di_nextents = xfs_ifork_nextents(&ip->i_df); 508 to->di_anextents = xfs_ifork_nextents(&ip->i_af); 509 } 510 } 511 512 static void 513 xfs_inode_to_log_dinode( 514 struct xfs_inode *ip, 515 struct xfs_log_dinode *to, 516 xfs_lsn_t lsn) 517 { 518 struct inode *inode = VFS_I(ip); 519 520 to->di_magic = XFS_DINODE_MAGIC; 521 to->di_format = xfs_ifork_format(&ip->i_df); 522 to->di_uid = i_uid_read(inode); 523 to->di_gid = i_gid_read(inode); 524 to->di_projid_lo = ip->i_projid & 0xffff; 525 to->di_projid_hi = ip->i_projid >> 16; 526 527 memset(to->di_pad3, 0, sizeof(to->di_pad3)); 528 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode)); 529 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode)); 530 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode)); 531 to->di_nlink = inode->i_nlink; 532 to->di_gen = inode->i_generation; 533 to->di_mode = inode->i_mode; 534 535 to->di_size = ip->i_disk_size; 536 to->di_nblocks = ip->i_nblocks; 537 to->di_extsize = ip->i_extsize; 538 to->di_forkoff = ip->i_forkoff; 539 to->di_aformat = xfs_ifork_format(&ip->i_af); 540 to->di_flags = ip->i_diflags; 541 542 xfs_copy_dm_fields_to_log_dinode(ip, to); 543 544 /* log a dummy value to ensure log structure is fully initialised */ 545 to->di_next_unlinked = NULLAGINO; 546 547 if (xfs_has_v3inodes(ip->i_mount)) { 548 to->di_version = 3; 549 to->di_changecount = inode_peek_iversion(inode); 550 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime); 551 to->di_flags2 = ip->i_diflags2; 552 to->di_cowextsize = ip->i_cowextsize; 553 to->di_ino = ip->i_ino; 554 to->di_lsn = lsn; 555 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 556 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 557 to->di_v3_pad = 0; 558 559 /* dummy value for initialisation */ 560 to->di_crc = 0; 561 } else { 562 to->di_version = 2; 563 to->di_flushiter = ip->i_flushiter; 564 memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad)); 565 } 566 567 xfs_inode_to_log_dinode_iext_counters(ip, to); 568 } 569 570 /* 571 * Format the inode core. Current timestamp data is only in the VFS inode 572 * fields, so we need to grab them from there. Hence rather than just copying 573 * the XFS inode core structure, format the fields directly into the iovec. 574 */ 575 static void 576 xfs_inode_item_format_core( 577 struct xfs_inode *ip, 578 struct xfs_log_vec *lv, 579 struct xfs_log_iovec **vecp) 580 { 581 struct xfs_log_dinode *dic; 582 583 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 584 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 585 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount)); 586 } 587 588 /* 589 * This is called to fill in the vector of log iovecs for the given inode 590 * log item. It fills the first item with an inode log format structure, 591 * the second with the on-disk inode structure, and a possible third and/or 592 * fourth with the inode data/extents/b-tree root and inode attributes 593 * data/extents/b-tree root. 594 * 595 * Note: Always use the 64 bit inode log format structure so we don't 596 * leave an uninitialised hole in the format item on 64 bit systems. Log 597 * recovery on 32 bit systems handles this just fine, so there's no reason 598 * for not using an initialising the properly padded structure all the time. 599 */ 600 STATIC void 601 xfs_inode_item_format( 602 struct xfs_log_item *lip, 603 struct xfs_log_vec *lv) 604 { 605 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 606 struct xfs_inode *ip = iip->ili_inode; 607 struct xfs_log_iovec *vecp = NULL; 608 struct xfs_inode_log_format *ilf; 609 610 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 611 ilf->ilf_type = XFS_LI_INODE; 612 ilf->ilf_ino = ip->i_ino; 613 ilf->ilf_blkno = ip->i_imap.im_blkno; 614 ilf->ilf_len = ip->i_imap.im_len; 615 ilf->ilf_boffset = ip->i_imap.im_boffset; 616 ilf->ilf_fields = XFS_ILOG_CORE; 617 ilf->ilf_size = 2; /* format + core */ 618 619 /* 620 * make sure we don't leak uninitialised data into the log in the case 621 * when we don't log every field in the inode. 622 */ 623 ilf->ilf_dsize = 0; 624 ilf->ilf_asize = 0; 625 ilf->ilf_pad = 0; 626 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); 627 628 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 629 630 xfs_inode_item_format_core(ip, lv, &vecp); 631 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 632 if (xfs_inode_has_attr_fork(ip)) { 633 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 634 } else { 635 iip->ili_fields &= 636 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 637 } 638 639 /* update the format with the exact fields we actually logged */ 640 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 641 } 642 643 /* 644 * This is called to pin the inode associated with the inode log 645 * item in memory so it cannot be written out. 646 */ 647 STATIC void 648 xfs_inode_item_pin( 649 struct xfs_log_item *lip) 650 { 651 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 652 653 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 654 ASSERT(lip->li_buf); 655 656 trace_xfs_inode_pin(ip, _RET_IP_); 657 atomic_inc(&ip->i_pincount); 658 } 659 660 661 /* 662 * This is called to unpin the inode associated with the inode log 663 * item which was previously pinned with a call to xfs_inode_item_pin(). 664 * 665 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 666 * 667 * Note that unpin can race with inode cluster buffer freeing marking the buffer 668 * stale. In that case, flush completions are run from the buffer unpin call, 669 * which may happen before the inode is unpinned. If we lose the race, there 670 * will be no buffer attached to the log item, but the inode will be marked 671 * XFS_ISTALE. 672 */ 673 STATIC void 674 xfs_inode_item_unpin( 675 struct xfs_log_item *lip, 676 int remove) 677 { 678 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 679 680 trace_xfs_inode_unpin(ip, _RET_IP_); 681 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE)); 682 ASSERT(atomic_read(&ip->i_pincount) > 0); 683 if (atomic_dec_and_test(&ip->i_pincount)) 684 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 685 } 686 687 STATIC uint 688 xfs_inode_item_push( 689 struct xfs_log_item *lip, 690 struct list_head *buffer_list) 691 __releases(&lip->li_ailp->ail_lock) 692 __acquires(&lip->li_ailp->ail_lock) 693 { 694 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 695 struct xfs_inode *ip = iip->ili_inode; 696 struct xfs_buf *bp = lip->li_buf; 697 uint rval = XFS_ITEM_SUCCESS; 698 int error; 699 700 if (!bp || (ip->i_flags & XFS_ISTALE)) { 701 /* 702 * Inode item/buffer is being aborted due to cluster 703 * buffer deletion. Trigger a log force to have that operation 704 * completed and items removed from the AIL before the next push 705 * attempt. 706 */ 707 return XFS_ITEM_PINNED; 708 } 709 710 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp)) 711 return XFS_ITEM_PINNED; 712 713 if (xfs_iflags_test(ip, XFS_IFLUSHING)) 714 return XFS_ITEM_FLUSHING; 715 716 if (!xfs_buf_trylock(bp)) 717 return XFS_ITEM_LOCKED; 718 719 spin_unlock(&lip->li_ailp->ail_lock); 720 721 /* 722 * We need to hold a reference for flushing the cluster buffer as it may 723 * fail the buffer without IO submission. In which case, we better get a 724 * reference for that completion because otherwise we don't get a 725 * reference for IO until we queue the buffer for delwri submission. 726 */ 727 xfs_buf_hold(bp); 728 error = xfs_iflush_cluster(bp); 729 if (!error) { 730 if (!xfs_buf_delwri_queue(bp, buffer_list)) 731 rval = XFS_ITEM_FLUSHING; 732 xfs_buf_relse(bp); 733 } else { 734 /* 735 * Release the buffer if we were unable to flush anything. On 736 * any other error, the buffer has already been released. 737 */ 738 if (error == -EAGAIN) 739 xfs_buf_relse(bp); 740 rval = XFS_ITEM_LOCKED; 741 } 742 743 spin_lock(&lip->li_ailp->ail_lock); 744 return rval; 745 } 746 747 /* 748 * Unlock the inode associated with the inode log item. 749 */ 750 STATIC void 751 xfs_inode_item_release( 752 struct xfs_log_item *lip) 753 { 754 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 755 struct xfs_inode *ip = iip->ili_inode; 756 unsigned short lock_flags; 757 758 ASSERT(ip->i_itemp != NULL); 759 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 760 761 lock_flags = iip->ili_lock_flags; 762 iip->ili_lock_flags = 0; 763 if (lock_flags) 764 xfs_iunlock(ip, lock_flags); 765 } 766 767 /* 768 * This is called to find out where the oldest active copy of the inode log 769 * item in the on disk log resides now that the last log write of it completed 770 * at the given lsn. Since we always re-log all dirty data in an inode, the 771 * latest copy in the on disk log is the only one that matters. Therefore, 772 * simply return the given lsn. 773 * 774 * If the inode has been marked stale because the cluster is being freed, we 775 * don't want to (re-)insert this inode into the AIL. There is a race condition 776 * where the cluster buffer may be unpinned before the inode is inserted into 777 * the AIL during transaction committed processing. If the buffer is unpinned 778 * before the inode item has been committed and inserted, then it is possible 779 * for the buffer to be written and IO completes before the inode is inserted 780 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 781 * AIL which will never get removed. It will, however, get reclaimed which 782 * triggers an assert in xfs_inode_free() complaining about freein an inode 783 * still in the AIL. 784 * 785 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 786 * transaction committed code knows that it does not need to do any further 787 * processing on the item. 788 */ 789 STATIC xfs_lsn_t 790 xfs_inode_item_committed( 791 struct xfs_log_item *lip, 792 xfs_lsn_t lsn) 793 { 794 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 795 struct xfs_inode *ip = iip->ili_inode; 796 797 if (xfs_iflags_test(ip, XFS_ISTALE)) { 798 xfs_inode_item_unpin(lip, 0); 799 return -1; 800 } 801 return lsn; 802 } 803 804 STATIC void 805 xfs_inode_item_committing( 806 struct xfs_log_item *lip, 807 xfs_csn_t seq) 808 { 809 INODE_ITEM(lip)->ili_commit_seq = seq; 810 return xfs_inode_item_release(lip); 811 } 812 813 static const struct xfs_item_ops xfs_inode_item_ops = { 814 .iop_sort = xfs_inode_item_sort, 815 .iop_precommit = xfs_inode_item_precommit, 816 .iop_size = xfs_inode_item_size, 817 .iop_format = xfs_inode_item_format, 818 .iop_pin = xfs_inode_item_pin, 819 .iop_unpin = xfs_inode_item_unpin, 820 .iop_release = xfs_inode_item_release, 821 .iop_committed = xfs_inode_item_committed, 822 .iop_push = xfs_inode_item_push, 823 .iop_committing = xfs_inode_item_committing, 824 }; 825 826 827 /* 828 * Initialize the inode log item for a newly allocated (in-core) inode. 829 */ 830 void 831 xfs_inode_item_init( 832 struct xfs_inode *ip, 833 struct xfs_mount *mp) 834 { 835 struct xfs_inode_log_item *iip; 836 837 ASSERT(ip->i_itemp == NULL); 838 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache, 839 GFP_KERNEL | __GFP_NOFAIL); 840 841 iip->ili_inode = ip; 842 spin_lock_init(&iip->ili_lock); 843 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 844 &xfs_inode_item_ops); 845 } 846 847 /* 848 * Free the inode log item and any memory hanging off of it. 849 */ 850 void 851 xfs_inode_item_destroy( 852 struct xfs_inode *ip) 853 { 854 struct xfs_inode_log_item *iip = ip->i_itemp; 855 856 ASSERT(iip->ili_item.li_buf == NULL); 857 858 ip->i_itemp = NULL; 859 kmem_free(iip->ili_item.li_lv_shadow); 860 kmem_cache_free(xfs_ili_cache, iip); 861 } 862 863 864 /* 865 * We only want to pull the item from the AIL if it is actually there 866 * and its location in the log has not changed since we started the 867 * flush. Thus, we only bother if the inode's lsn has not changed. 868 */ 869 static void 870 xfs_iflush_ail_updates( 871 struct xfs_ail *ailp, 872 struct list_head *list) 873 { 874 struct xfs_log_item *lip; 875 xfs_lsn_t tail_lsn = 0; 876 877 /* this is an opencoded batch version of xfs_trans_ail_delete */ 878 spin_lock(&ailp->ail_lock); 879 list_for_each_entry(lip, list, li_bio_list) { 880 xfs_lsn_t lsn; 881 882 clear_bit(XFS_LI_FAILED, &lip->li_flags); 883 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn) 884 continue; 885 886 /* 887 * dgc: Not sure how this happens, but it happens very 888 * occassionaly via generic/388. xfs_iflush_abort() also 889 * silently handles this same "under writeback but not in AIL at 890 * shutdown" condition via xfs_trans_ail_delete(). 891 */ 892 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) { 893 ASSERT(xlog_is_shutdown(lip->li_log)); 894 continue; 895 } 896 897 lsn = xfs_ail_delete_one(ailp, lip); 898 if (!tail_lsn && lsn) 899 tail_lsn = lsn; 900 } 901 xfs_ail_update_finish(ailp, tail_lsn); 902 } 903 904 /* 905 * Walk the list of inodes that have completed their IOs. If they are clean 906 * remove them from the list and dissociate them from the buffer. Buffers that 907 * are still dirty remain linked to the buffer and on the list. Caller must 908 * handle them appropriately. 909 */ 910 static void 911 xfs_iflush_finish( 912 struct xfs_buf *bp, 913 struct list_head *list) 914 { 915 struct xfs_log_item *lip, *n; 916 917 list_for_each_entry_safe(lip, n, list, li_bio_list) { 918 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 919 bool drop_buffer = false; 920 921 spin_lock(&iip->ili_lock); 922 923 /* 924 * Remove the reference to the cluster buffer if the inode is 925 * clean in memory and drop the buffer reference once we've 926 * dropped the locks we hold. 927 */ 928 ASSERT(iip->ili_item.li_buf == bp); 929 if (!iip->ili_fields) { 930 iip->ili_item.li_buf = NULL; 931 list_del_init(&lip->li_bio_list); 932 drop_buffer = true; 933 } 934 iip->ili_last_fields = 0; 935 iip->ili_flush_lsn = 0; 936 spin_unlock(&iip->ili_lock); 937 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING); 938 if (drop_buffer) 939 xfs_buf_rele(bp); 940 } 941 } 942 943 /* 944 * Inode buffer IO completion routine. It is responsible for removing inodes 945 * attached to the buffer from the AIL if they have not been re-logged and 946 * completing the inode flush. 947 */ 948 void 949 xfs_buf_inode_iodone( 950 struct xfs_buf *bp) 951 { 952 struct xfs_log_item *lip, *n; 953 LIST_HEAD(flushed_inodes); 954 LIST_HEAD(ail_updates); 955 956 /* 957 * Pull the attached inodes from the buffer one at a time and take the 958 * appropriate action on them. 959 */ 960 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 961 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 962 963 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) { 964 xfs_iflush_abort(iip->ili_inode); 965 continue; 966 } 967 if (!iip->ili_last_fields) 968 continue; 969 970 /* Do an unlocked check for needing the AIL lock. */ 971 if (iip->ili_flush_lsn == lip->li_lsn || 972 test_bit(XFS_LI_FAILED, &lip->li_flags)) 973 list_move_tail(&lip->li_bio_list, &ail_updates); 974 else 975 list_move_tail(&lip->li_bio_list, &flushed_inodes); 976 } 977 978 if (!list_empty(&ail_updates)) { 979 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates); 980 list_splice_tail(&ail_updates, &flushed_inodes); 981 } 982 983 xfs_iflush_finish(bp, &flushed_inodes); 984 if (!list_empty(&flushed_inodes)) 985 list_splice_tail(&flushed_inodes, &bp->b_li_list); 986 } 987 988 void 989 xfs_buf_inode_io_fail( 990 struct xfs_buf *bp) 991 { 992 struct xfs_log_item *lip; 993 994 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) 995 set_bit(XFS_LI_FAILED, &lip->li_flags); 996 } 997 998 /* 999 * Clear the inode logging fields so no more flushes are attempted. If we are 1000 * on a buffer list, it is now safe to remove it because the buffer is 1001 * guaranteed to be locked. The caller will drop the reference to the buffer 1002 * the log item held. 1003 */ 1004 static void 1005 xfs_iflush_abort_clean( 1006 struct xfs_inode_log_item *iip) 1007 { 1008 iip->ili_last_fields = 0; 1009 iip->ili_fields = 0; 1010 iip->ili_fsync_fields = 0; 1011 iip->ili_flush_lsn = 0; 1012 iip->ili_item.li_buf = NULL; 1013 list_del_init(&iip->ili_item.li_bio_list); 1014 } 1015 1016 /* 1017 * Abort flushing the inode from a context holding the cluster buffer locked. 1018 * 1019 * This is the normal runtime method of aborting writeback of an inode that is 1020 * attached to a cluster buffer. It occurs when the inode and the backing 1021 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster 1022 * flushing or buffer IO completion encounters a log shutdown situation. 1023 * 1024 * If we need to abort inode writeback and we don't already hold the buffer 1025 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be 1026 * necessary in a shutdown situation. 1027 */ 1028 void 1029 xfs_iflush_abort( 1030 struct xfs_inode *ip) 1031 { 1032 struct xfs_inode_log_item *iip = ip->i_itemp; 1033 struct xfs_buf *bp; 1034 1035 if (!iip) { 1036 /* clean inode, nothing to do */ 1037 xfs_iflags_clear(ip, XFS_IFLUSHING); 1038 return; 1039 } 1040 1041 /* 1042 * Remove the inode item from the AIL before we clear its internal 1043 * state. Whilst the inode is in the AIL, it should have a valid buffer 1044 * pointer for push operations to access - it is only safe to remove the 1045 * inode from the buffer once it has been removed from the AIL. 1046 * 1047 * We also clear the failed bit before removing the item from the AIL 1048 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer 1049 * references the inode item owns and needs to hold until we've fully 1050 * aborted the inode log item and detached it from the buffer. 1051 */ 1052 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags); 1053 xfs_trans_ail_delete(&iip->ili_item, 0); 1054 1055 /* 1056 * Grab the inode buffer so can we release the reference the inode log 1057 * item holds on it. 1058 */ 1059 spin_lock(&iip->ili_lock); 1060 bp = iip->ili_item.li_buf; 1061 xfs_iflush_abort_clean(iip); 1062 spin_unlock(&iip->ili_lock); 1063 1064 xfs_iflags_clear(ip, XFS_IFLUSHING); 1065 if (bp) 1066 xfs_buf_rele(bp); 1067 } 1068 1069 /* 1070 * Abort an inode flush in the case of a shutdown filesystem. This can be called 1071 * from anywhere with just an inode reference and does not require holding the 1072 * inode cluster buffer locked. If the inode is attached to a cluster buffer, 1073 * it will grab and lock it safely, then abort the inode flush. 1074 */ 1075 void 1076 xfs_iflush_shutdown_abort( 1077 struct xfs_inode *ip) 1078 { 1079 struct xfs_inode_log_item *iip = ip->i_itemp; 1080 struct xfs_buf *bp; 1081 1082 if (!iip) { 1083 /* clean inode, nothing to do */ 1084 xfs_iflags_clear(ip, XFS_IFLUSHING); 1085 return; 1086 } 1087 1088 spin_lock(&iip->ili_lock); 1089 bp = iip->ili_item.li_buf; 1090 if (!bp) { 1091 spin_unlock(&iip->ili_lock); 1092 xfs_iflush_abort(ip); 1093 return; 1094 } 1095 1096 /* 1097 * We have to take a reference to the buffer so that it doesn't get 1098 * freed when we drop the ili_lock and then wait to lock the buffer. 1099 * We'll clean up the extra reference after we pick up the ili_lock 1100 * again. 1101 */ 1102 xfs_buf_hold(bp); 1103 spin_unlock(&iip->ili_lock); 1104 xfs_buf_lock(bp); 1105 1106 spin_lock(&iip->ili_lock); 1107 if (!iip->ili_item.li_buf) { 1108 /* 1109 * Raced with another removal, hold the only reference 1110 * to bp now. Inode should not be in the AIL now, so just clean 1111 * up and return; 1112 */ 1113 ASSERT(list_empty(&iip->ili_item.li_bio_list)); 1114 ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)); 1115 xfs_iflush_abort_clean(iip); 1116 spin_unlock(&iip->ili_lock); 1117 xfs_iflags_clear(ip, XFS_IFLUSHING); 1118 xfs_buf_relse(bp); 1119 return; 1120 } 1121 1122 /* 1123 * Got two references to bp. The first will get dropped by 1124 * xfs_iflush_abort() when the item is removed from the buffer list, but 1125 * we can't drop our reference until _abort() returns because we have to 1126 * unlock the buffer as well. Hence we abort and then unlock and release 1127 * our reference to the buffer. 1128 */ 1129 ASSERT(iip->ili_item.li_buf == bp); 1130 spin_unlock(&iip->ili_lock); 1131 xfs_iflush_abort(ip); 1132 xfs_buf_relse(bp); 1133 } 1134 1135 1136 /* 1137 * convert an xfs_inode_log_format struct from the old 32 bit version 1138 * (which can have different field alignments) to the native 64 bit version 1139 */ 1140 int 1141 xfs_inode_item_format_convert( 1142 struct xfs_log_iovec *buf, 1143 struct xfs_inode_log_format *in_f) 1144 { 1145 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; 1146 1147 if (buf->i_len != sizeof(*in_f32)) { 1148 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 1149 return -EFSCORRUPTED; 1150 } 1151 1152 in_f->ilf_type = in_f32->ilf_type; 1153 in_f->ilf_size = in_f32->ilf_size; 1154 in_f->ilf_fields = in_f32->ilf_fields; 1155 in_f->ilf_asize = in_f32->ilf_asize; 1156 in_f->ilf_dsize = in_f32->ilf_dsize; 1157 in_f->ilf_ino = in_f32->ilf_ino; 1158 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); 1159 in_f->ilf_blkno = in_f32->ilf_blkno; 1160 in_f->ilf_len = in_f32->ilf_len; 1161 in_f->ilf_boffset = in_f32->ilf_boffset; 1162 return 0; 1163 } 1164