1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_dinode.h" 31 #include "xfs_inode.h" 32 #include "xfs_inode_item.h" 33 #include "xfs_error.h" 34 #include "xfs_trace.h" 35 36 37 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 38 39 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 40 { 41 return container_of(lip, struct xfs_inode_log_item, ili_item); 42 } 43 44 45 /* 46 * This returns the number of iovecs needed to log the given inode item. 47 * 48 * We need one iovec for the inode log format structure, one for the 49 * inode core, and possibly one for the inode data/extents/b-tree root 50 * and one for the inode attribute data/extents/b-tree root. 51 */ 52 STATIC uint 53 xfs_inode_item_size( 54 struct xfs_log_item *lip) 55 { 56 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 57 struct xfs_inode *ip = iip->ili_inode; 58 uint nvecs = 2; 59 60 /* 61 * Only log the data/extents/b-tree root if there is something 62 * left to log. 63 */ 64 iip->ili_format.ilf_fields |= XFS_ILOG_CORE; 65 66 switch (ip->i_d.di_format) { 67 case XFS_DINODE_FMT_EXTENTS: 68 iip->ili_format.ilf_fields &= 69 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 70 XFS_ILOG_DEV | XFS_ILOG_UUID); 71 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) && 72 (ip->i_d.di_nextents > 0) && 73 (ip->i_df.if_bytes > 0)) { 74 ASSERT(ip->i_df.if_u1.if_extents != NULL); 75 nvecs++; 76 } else { 77 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT; 78 } 79 break; 80 81 case XFS_DINODE_FMT_BTREE: 82 iip->ili_format.ilf_fields &= 83 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | 84 XFS_ILOG_DEV | XFS_ILOG_UUID); 85 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) && 86 (ip->i_df.if_broot_bytes > 0)) { 87 ASSERT(ip->i_df.if_broot != NULL); 88 nvecs++; 89 } else { 90 ASSERT(!(iip->ili_format.ilf_fields & 91 XFS_ILOG_DBROOT)); 92 #ifdef XFS_TRANS_DEBUG 93 if (iip->ili_root_size > 0) { 94 ASSERT(iip->ili_root_size == 95 ip->i_df.if_broot_bytes); 96 ASSERT(memcmp(iip->ili_orig_root, 97 ip->i_df.if_broot, 98 iip->ili_root_size) == 0); 99 } else { 100 ASSERT(ip->i_df.if_broot_bytes == 0); 101 } 102 #endif 103 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT; 104 } 105 break; 106 107 case XFS_DINODE_FMT_LOCAL: 108 iip->ili_format.ilf_fields &= 109 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | 110 XFS_ILOG_DEV | XFS_ILOG_UUID); 111 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) && 112 (ip->i_df.if_bytes > 0)) { 113 ASSERT(ip->i_df.if_u1.if_data != NULL); 114 ASSERT(ip->i_d.di_size > 0); 115 nvecs++; 116 } else { 117 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA; 118 } 119 break; 120 121 case XFS_DINODE_FMT_DEV: 122 iip->ili_format.ilf_fields &= 123 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 124 XFS_ILOG_DEXT | XFS_ILOG_UUID); 125 break; 126 127 case XFS_DINODE_FMT_UUID: 128 iip->ili_format.ilf_fields &= 129 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 130 XFS_ILOG_DEXT | XFS_ILOG_DEV); 131 break; 132 133 default: 134 ASSERT(0); 135 break; 136 } 137 138 /* 139 * If there are no attributes associated with this file, 140 * then there cannot be anything more to log. 141 * Clear all attribute-related log flags. 142 */ 143 if (!XFS_IFORK_Q(ip)) { 144 iip->ili_format.ilf_fields &= 145 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 146 return nvecs; 147 } 148 149 /* 150 * Log any necessary attribute data. 151 */ 152 switch (ip->i_d.di_aformat) { 153 case XFS_DINODE_FMT_EXTENTS: 154 iip->ili_format.ilf_fields &= 155 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 156 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) && 157 (ip->i_d.di_anextents > 0) && 158 (ip->i_afp->if_bytes > 0)) { 159 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 160 nvecs++; 161 } else { 162 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT; 163 } 164 break; 165 166 case XFS_DINODE_FMT_BTREE: 167 iip->ili_format.ilf_fields &= 168 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 169 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) && 170 (ip->i_afp->if_broot_bytes > 0)) { 171 ASSERT(ip->i_afp->if_broot != NULL); 172 nvecs++; 173 } else { 174 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT; 175 } 176 break; 177 178 case XFS_DINODE_FMT_LOCAL: 179 iip->ili_format.ilf_fields &= 180 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 181 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) && 182 (ip->i_afp->if_bytes > 0)) { 183 ASSERT(ip->i_afp->if_u1.if_data != NULL); 184 nvecs++; 185 } else { 186 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA; 187 } 188 break; 189 190 default: 191 ASSERT(0); 192 break; 193 } 194 195 return nvecs; 196 } 197 198 /* 199 * xfs_inode_item_format_extents - convert in-core extents to on-disk form 200 * 201 * For either the data or attr fork in extent format, we need to endian convert 202 * the in-core extent as we place them into the on-disk inode. In this case, we 203 * need to do this conversion before we write the extents into the log. Because 204 * we don't have the disk inode to write into here, we allocate a buffer and 205 * format the extents into it via xfs_iextents_copy(). We free the buffer in 206 * the unlock routine after the copy for the log has been made. 207 * 208 * In the case of the data fork, the in-core and on-disk fork sizes can be 209 * different due to delayed allocation extents. We only log on-disk extents 210 * here, so always use the physical fork size to determine the size of the 211 * buffer we need to allocate. 212 */ 213 STATIC void 214 xfs_inode_item_format_extents( 215 struct xfs_inode *ip, 216 struct xfs_log_iovec *vecp, 217 int whichfork, 218 int type) 219 { 220 xfs_bmbt_rec_t *ext_buffer; 221 222 ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP); 223 if (whichfork == XFS_DATA_FORK) 224 ip->i_itemp->ili_extents_buf = ext_buffer; 225 else 226 ip->i_itemp->ili_aextents_buf = ext_buffer; 227 228 vecp->i_addr = ext_buffer; 229 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork); 230 vecp->i_type = type; 231 } 232 233 /* 234 * This is called to fill in the vector of log iovecs for the 235 * given inode log item. It fills the first item with an inode 236 * log format structure, the second with the on-disk inode structure, 237 * and a possible third and/or fourth with the inode data/extents/b-tree 238 * root and inode attributes data/extents/b-tree root. 239 */ 240 STATIC void 241 xfs_inode_item_format( 242 struct xfs_log_item *lip, 243 struct xfs_log_iovec *vecp) 244 { 245 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 246 struct xfs_inode *ip = iip->ili_inode; 247 uint nvecs; 248 size_t data_bytes; 249 xfs_mount_t *mp; 250 251 vecp->i_addr = &iip->ili_format; 252 vecp->i_len = sizeof(xfs_inode_log_format_t); 253 vecp->i_type = XLOG_REG_TYPE_IFORMAT; 254 vecp++; 255 nvecs = 1; 256 257 /* 258 * Clear i_update_core if the timestamps (or any other 259 * non-transactional modification) need flushing/logging 260 * and we're about to log them with the rest of the core. 261 * 262 * This is the same logic as xfs_iflush() but this code can't 263 * run at the same time as xfs_iflush because we're in commit 264 * processing here and so we have the inode lock held in 265 * exclusive mode. Although it doesn't really matter 266 * for the timestamps if both routines were to grab the 267 * timestamps or not. That would be ok. 268 * 269 * We clear i_update_core before copying out the data. 270 * This is for coordination with our timestamp updates 271 * that don't hold the inode lock. They will always 272 * update the timestamps BEFORE setting i_update_core, 273 * so if we clear i_update_core after they set it we 274 * are guaranteed to see their updates to the timestamps 275 * either here. Likewise, if they set it after we clear it 276 * here, we'll see it either on the next commit of this 277 * inode or the next time the inode gets flushed via 278 * xfs_iflush(). This depends on strongly ordered memory 279 * semantics, but we have that. We use the SYNCHRONIZE 280 * macro to make sure that the compiler does not reorder 281 * the i_update_core access below the data copy below. 282 */ 283 if (ip->i_update_core) { 284 ip->i_update_core = 0; 285 SYNCHRONIZE(); 286 } 287 288 /* 289 * Make sure to get the latest timestamps from the Linux inode. 290 */ 291 xfs_synchronize_times(ip); 292 293 vecp->i_addr = &ip->i_d; 294 vecp->i_len = sizeof(struct xfs_icdinode); 295 vecp->i_type = XLOG_REG_TYPE_ICORE; 296 vecp++; 297 nvecs++; 298 iip->ili_format.ilf_fields |= XFS_ILOG_CORE; 299 300 /* 301 * If this is really an old format inode, then we need to 302 * log it as such. This means that we have to copy the link 303 * count from the new field to the old. We don't have to worry 304 * about the new fields, because nothing trusts them as long as 305 * the old inode version number is there. If the superblock already 306 * has a new version number, then we don't bother converting back. 307 */ 308 mp = ip->i_mount; 309 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 310 if (ip->i_d.di_version == 1) { 311 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 312 /* 313 * Convert it back. 314 */ 315 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 316 ip->i_d.di_onlink = ip->i_d.di_nlink; 317 } else { 318 /* 319 * The superblock version has already been bumped, 320 * so just make the conversion to the new inode 321 * format permanent. 322 */ 323 ip->i_d.di_version = 2; 324 ip->i_d.di_onlink = 0; 325 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 326 } 327 } 328 329 switch (ip->i_d.di_format) { 330 case XFS_DINODE_FMT_EXTENTS: 331 ASSERT(!(iip->ili_format.ilf_fields & 332 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 333 XFS_ILOG_DEV | XFS_ILOG_UUID))); 334 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) { 335 ASSERT(ip->i_df.if_bytes > 0); 336 ASSERT(ip->i_df.if_u1.if_extents != NULL); 337 ASSERT(ip->i_d.di_nextents > 0); 338 ASSERT(iip->ili_extents_buf == NULL); 339 ASSERT((ip->i_df.if_bytes / 340 (uint)sizeof(xfs_bmbt_rec_t)) > 0); 341 #ifdef XFS_NATIVE_HOST 342 if (ip->i_d.di_nextents == ip->i_df.if_bytes / 343 (uint)sizeof(xfs_bmbt_rec_t)) { 344 /* 345 * There are no delayed allocation 346 * extents, so just point to the 347 * real extents array. 348 */ 349 vecp->i_addr = ip->i_df.if_u1.if_extents; 350 vecp->i_len = ip->i_df.if_bytes; 351 vecp->i_type = XLOG_REG_TYPE_IEXT; 352 } else 353 #endif 354 { 355 xfs_inode_item_format_extents(ip, vecp, 356 XFS_DATA_FORK, XLOG_REG_TYPE_IEXT); 357 } 358 ASSERT(vecp->i_len <= ip->i_df.if_bytes); 359 iip->ili_format.ilf_dsize = vecp->i_len; 360 vecp++; 361 nvecs++; 362 } 363 break; 364 365 case XFS_DINODE_FMT_BTREE: 366 ASSERT(!(iip->ili_format.ilf_fields & 367 (XFS_ILOG_DDATA | XFS_ILOG_DEXT | 368 XFS_ILOG_DEV | XFS_ILOG_UUID))); 369 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) { 370 ASSERT(ip->i_df.if_broot_bytes > 0); 371 ASSERT(ip->i_df.if_broot != NULL); 372 vecp->i_addr = ip->i_df.if_broot; 373 vecp->i_len = ip->i_df.if_broot_bytes; 374 vecp->i_type = XLOG_REG_TYPE_IBROOT; 375 vecp++; 376 nvecs++; 377 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes; 378 } 379 break; 380 381 case XFS_DINODE_FMT_LOCAL: 382 ASSERT(!(iip->ili_format.ilf_fields & 383 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | 384 XFS_ILOG_DEV | XFS_ILOG_UUID))); 385 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) { 386 ASSERT(ip->i_df.if_bytes > 0); 387 ASSERT(ip->i_df.if_u1.if_data != NULL); 388 ASSERT(ip->i_d.di_size > 0); 389 390 vecp->i_addr = ip->i_df.if_u1.if_data; 391 /* 392 * Round i_bytes up to a word boundary. 393 * The underlying memory is guaranteed to 394 * to be there by xfs_idata_realloc(). 395 */ 396 data_bytes = roundup(ip->i_df.if_bytes, 4); 397 ASSERT((ip->i_df.if_real_bytes == 0) || 398 (ip->i_df.if_real_bytes == data_bytes)); 399 vecp->i_len = (int)data_bytes; 400 vecp->i_type = XLOG_REG_TYPE_ILOCAL; 401 vecp++; 402 nvecs++; 403 iip->ili_format.ilf_dsize = (unsigned)data_bytes; 404 } 405 break; 406 407 case XFS_DINODE_FMT_DEV: 408 ASSERT(!(iip->ili_format.ilf_fields & 409 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | 410 XFS_ILOG_DDATA | XFS_ILOG_UUID))); 411 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 412 iip->ili_format.ilf_u.ilfu_rdev = 413 ip->i_df.if_u2.if_rdev; 414 } 415 break; 416 417 case XFS_DINODE_FMT_UUID: 418 ASSERT(!(iip->ili_format.ilf_fields & 419 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | 420 XFS_ILOG_DDATA | XFS_ILOG_DEV))); 421 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 422 iip->ili_format.ilf_u.ilfu_uuid = 423 ip->i_df.if_u2.if_uuid; 424 } 425 break; 426 427 default: 428 ASSERT(0); 429 break; 430 } 431 432 /* 433 * If there are no attributes associated with the file, 434 * then we're done. 435 * Assert that no attribute-related log flags are set. 436 */ 437 if (!XFS_IFORK_Q(ip)) { 438 iip->ili_format.ilf_size = nvecs; 439 ASSERT(!(iip->ili_format.ilf_fields & 440 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); 441 return; 442 } 443 444 switch (ip->i_d.di_aformat) { 445 case XFS_DINODE_FMT_EXTENTS: 446 ASSERT(!(iip->ili_format.ilf_fields & 447 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT))); 448 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) { 449 #ifdef DEBUG 450 int nrecs = ip->i_afp->if_bytes / 451 (uint)sizeof(xfs_bmbt_rec_t); 452 ASSERT(nrecs > 0); 453 ASSERT(nrecs == ip->i_d.di_anextents); 454 ASSERT(ip->i_afp->if_bytes > 0); 455 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 456 ASSERT(ip->i_d.di_anextents > 0); 457 #endif 458 #ifdef XFS_NATIVE_HOST 459 /* 460 * There are not delayed allocation extents 461 * for attributes, so just point at the array. 462 */ 463 vecp->i_addr = ip->i_afp->if_u1.if_extents; 464 vecp->i_len = ip->i_afp->if_bytes; 465 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT; 466 #else 467 ASSERT(iip->ili_aextents_buf == NULL); 468 xfs_inode_item_format_extents(ip, vecp, 469 XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT); 470 #endif 471 iip->ili_format.ilf_asize = vecp->i_len; 472 vecp++; 473 nvecs++; 474 } 475 break; 476 477 case XFS_DINODE_FMT_BTREE: 478 ASSERT(!(iip->ili_format.ilf_fields & 479 (XFS_ILOG_ADATA | XFS_ILOG_AEXT))); 480 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) { 481 ASSERT(ip->i_afp->if_broot_bytes > 0); 482 ASSERT(ip->i_afp->if_broot != NULL); 483 vecp->i_addr = ip->i_afp->if_broot; 484 vecp->i_len = ip->i_afp->if_broot_bytes; 485 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT; 486 vecp++; 487 nvecs++; 488 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes; 489 } 490 break; 491 492 case XFS_DINODE_FMT_LOCAL: 493 ASSERT(!(iip->ili_format.ilf_fields & 494 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); 495 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) { 496 ASSERT(ip->i_afp->if_bytes > 0); 497 ASSERT(ip->i_afp->if_u1.if_data != NULL); 498 499 vecp->i_addr = ip->i_afp->if_u1.if_data; 500 /* 501 * Round i_bytes up to a word boundary. 502 * The underlying memory is guaranteed to 503 * to be there by xfs_idata_realloc(). 504 */ 505 data_bytes = roundup(ip->i_afp->if_bytes, 4); 506 ASSERT((ip->i_afp->if_real_bytes == 0) || 507 (ip->i_afp->if_real_bytes == data_bytes)); 508 vecp->i_len = (int)data_bytes; 509 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL; 510 vecp++; 511 nvecs++; 512 iip->ili_format.ilf_asize = (unsigned)data_bytes; 513 } 514 break; 515 516 default: 517 ASSERT(0); 518 break; 519 } 520 521 iip->ili_format.ilf_size = nvecs; 522 } 523 524 525 /* 526 * This is called to pin the inode associated with the inode log 527 * item in memory so it cannot be written out. 528 */ 529 STATIC void 530 xfs_inode_item_pin( 531 struct xfs_log_item *lip) 532 { 533 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 534 535 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 536 537 trace_xfs_inode_pin(ip, _RET_IP_); 538 atomic_inc(&ip->i_pincount); 539 } 540 541 542 /* 543 * This is called to unpin the inode associated with the inode log 544 * item which was previously pinned with a call to xfs_inode_item_pin(). 545 * 546 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 547 */ 548 STATIC void 549 xfs_inode_item_unpin( 550 struct xfs_log_item *lip, 551 int remove) 552 { 553 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 554 555 trace_xfs_inode_unpin(ip, _RET_IP_); 556 ASSERT(atomic_read(&ip->i_pincount) > 0); 557 if (atomic_dec_and_test(&ip->i_pincount)) 558 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 559 } 560 561 /* 562 * This is called to attempt to lock the inode associated with this 563 * inode log item, in preparation for the push routine which does the actual 564 * iflush. Don't sleep on the inode lock or the flush lock. 565 * 566 * If the flush lock is already held, indicating that the inode has 567 * been or is in the process of being flushed, then (ideally) we'd like to 568 * see if the inode's buffer is still incore, and if so give it a nudge. 569 * We delay doing so until the pushbuf routine, though, to avoid holding 570 * the AIL lock across a call to the blackhole which is the buffer cache. 571 * Also we don't want to sleep in any device strategy routines, which can happen 572 * if we do the subsequent bawrite in here. 573 */ 574 STATIC uint 575 xfs_inode_item_trylock( 576 struct xfs_log_item *lip) 577 { 578 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 579 struct xfs_inode *ip = iip->ili_inode; 580 581 if (xfs_ipincount(ip) > 0) 582 return XFS_ITEM_PINNED; 583 584 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) 585 return XFS_ITEM_LOCKED; 586 587 if (!xfs_iflock_nowait(ip)) { 588 /* 589 * inode has already been flushed to the backing buffer, 590 * leave it locked in shared mode, pushbuf routine will 591 * unlock it. 592 */ 593 return XFS_ITEM_PUSHBUF; 594 } 595 596 /* Stale items should force out the iclog */ 597 if (ip->i_flags & XFS_ISTALE) { 598 xfs_ifunlock(ip); 599 /* 600 * we hold the AIL lock - notify the unlock routine of this 601 * so it doesn't try to get the lock again. 602 */ 603 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); 604 return XFS_ITEM_PINNED; 605 } 606 607 #ifdef DEBUG 608 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 609 ASSERT(iip->ili_format.ilf_fields != 0); 610 ASSERT(iip->ili_logged == 0); 611 ASSERT(lip->li_flags & XFS_LI_IN_AIL); 612 } 613 #endif 614 return XFS_ITEM_SUCCESS; 615 } 616 617 /* 618 * Unlock the inode associated with the inode log item. 619 * Clear the fields of the inode and inode log item that 620 * are specific to the current transaction. If the 621 * hold flags is set, do not unlock the inode. 622 */ 623 STATIC void 624 xfs_inode_item_unlock( 625 struct xfs_log_item *lip) 626 { 627 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 628 struct xfs_inode *ip = iip->ili_inode; 629 unsigned short lock_flags; 630 631 ASSERT(ip->i_itemp != NULL); 632 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 633 634 /* 635 * If the inode needed a separate buffer with which to log 636 * its extents, then free it now. 637 */ 638 if (iip->ili_extents_buf != NULL) { 639 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS); 640 ASSERT(ip->i_d.di_nextents > 0); 641 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT); 642 ASSERT(ip->i_df.if_bytes > 0); 643 kmem_free(iip->ili_extents_buf); 644 iip->ili_extents_buf = NULL; 645 } 646 if (iip->ili_aextents_buf != NULL) { 647 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS); 648 ASSERT(ip->i_d.di_anextents > 0); 649 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT); 650 ASSERT(ip->i_afp->if_bytes > 0); 651 kmem_free(iip->ili_aextents_buf); 652 iip->ili_aextents_buf = NULL; 653 } 654 655 lock_flags = iip->ili_lock_flags; 656 iip->ili_lock_flags = 0; 657 if (lock_flags) 658 xfs_iunlock(ip, lock_flags); 659 } 660 661 /* 662 * This is called to find out where the oldest active copy of the inode log 663 * item in the on disk log resides now that the last log write of it completed 664 * at the given lsn. Since we always re-log all dirty data in an inode, the 665 * latest copy in the on disk log is the only one that matters. Therefore, 666 * simply return the given lsn. 667 * 668 * If the inode has been marked stale because the cluster is being freed, we 669 * don't want to (re-)insert this inode into the AIL. There is a race condition 670 * where the cluster buffer may be unpinned before the inode is inserted into 671 * the AIL during transaction committed processing. If the buffer is unpinned 672 * before the inode item has been committed and inserted, then it is possible 673 * for the buffer to be written and IO completes before the inode is inserted 674 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 675 * AIL which will never get removed. It will, however, get reclaimed which 676 * triggers an assert in xfs_inode_free() complaining about freein an inode 677 * still in the AIL. 678 * 679 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 680 * transaction committed code knows that it does not need to do any further 681 * processing on the item. 682 */ 683 STATIC xfs_lsn_t 684 xfs_inode_item_committed( 685 struct xfs_log_item *lip, 686 xfs_lsn_t lsn) 687 { 688 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 689 struct xfs_inode *ip = iip->ili_inode; 690 691 if (xfs_iflags_test(ip, XFS_ISTALE)) { 692 xfs_inode_item_unpin(lip, 0); 693 return -1; 694 } 695 return lsn; 696 } 697 698 /* 699 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK 700 * failed to get the inode flush lock but did get the inode locked SHARED. 701 * Here we're trying to see if the inode buffer is incore, and if so whether it's 702 * marked delayed write. If that's the case, we'll promote it and that will 703 * allow the caller to write the buffer by triggering the xfsbufd to run. 704 */ 705 STATIC bool 706 xfs_inode_item_pushbuf( 707 struct xfs_log_item *lip) 708 { 709 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 710 struct xfs_inode *ip = iip->ili_inode; 711 struct xfs_buf *bp; 712 bool ret = true; 713 714 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED)); 715 716 /* 717 * If a flush is not in progress anymore, chances are that the 718 * inode was taken off the AIL. So, just get out. 719 */ 720 if (!xfs_isiflocked(ip) || 721 !(lip->li_flags & XFS_LI_IN_AIL)) { 722 xfs_iunlock(ip, XFS_ILOCK_SHARED); 723 return true; 724 } 725 726 bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno, 727 iip->ili_format.ilf_len, XBF_TRYLOCK); 728 729 xfs_iunlock(ip, XFS_ILOCK_SHARED); 730 if (!bp) 731 return true; 732 if (XFS_BUF_ISDELAYWRITE(bp)) 733 xfs_buf_delwri_promote(bp); 734 if (xfs_buf_ispinned(bp)) 735 ret = false; 736 xfs_buf_relse(bp); 737 return ret; 738 } 739 740 /* 741 * This is called to asynchronously write the inode associated with this 742 * inode log item out to disk. The inode will already have been locked by 743 * a successful call to xfs_inode_item_trylock(). 744 */ 745 STATIC void 746 xfs_inode_item_push( 747 struct xfs_log_item *lip) 748 { 749 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 750 struct xfs_inode *ip = iip->ili_inode; 751 752 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED)); 753 ASSERT(xfs_isiflocked(ip)); 754 755 /* 756 * Since we were able to lock the inode's flush lock and 757 * we found it on the AIL, the inode must be dirty. This 758 * is because the inode is removed from the AIL while still 759 * holding the flush lock in xfs_iflush_done(). Thus, if 760 * we found it in the AIL and were able to obtain the flush 761 * lock without sleeping, then there must not have been 762 * anyone in the process of flushing the inode. 763 */ 764 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || 765 iip->ili_format.ilf_fields != 0); 766 767 /* 768 * Push the inode to it's backing buffer. This will not remove the 769 * inode from the AIL - a further push will be required to trigger a 770 * buffer push. However, this allows all the dirty inodes to be pushed 771 * to the buffer before it is pushed to disk. The buffer IO completion 772 * will pull the inode from the AIL, mark it clean and unlock the flush 773 * lock. 774 */ 775 (void) xfs_iflush(ip, SYNC_TRYLOCK); 776 xfs_iunlock(ip, XFS_ILOCK_SHARED); 777 } 778 779 /* 780 * XXX rcc - this one really has to do something. Probably needs 781 * to stamp in a new field in the incore inode. 782 */ 783 STATIC void 784 xfs_inode_item_committing( 785 struct xfs_log_item *lip, 786 xfs_lsn_t lsn) 787 { 788 INODE_ITEM(lip)->ili_last_lsn = lsn; 789 } 790 791 /* 792 * This is the ops vector shared by all buf log items. 793 */ 794 static const struct xfs_item_ops xfs_inode_item_ops = { 795 .iop_size = xfs_inode_item_size, 796 .iop_format = xfs_inode_item_format, 797 .iop_pin = xfs_inode_item_pin, 798 .iop_unpin = xfs_inode_item_unpin, 799 .iop_trylock = xfs_inode_item_trylock, 800 .iop_unlock = xfs_inode_item_unlock, 801 .iop_committed = xfs_inode_item_committed, 802 .iop_push = xfs_inode_item_push, 803 .iop_pushbuf = xfs_inode_item_pushbuf, 804 .iop_committing = xfs_inode_item_committing 805 }; 806 807 808 /* 809 * Initialize the inode log item for a newly allocated (in-core) inode. 810 */ 811 void 812 xfs_inode_item_init( 813 struct xfs_inode *ip, 814 struct xfs_mount *mp) 815 { 816 struct xfs_inode_log_item *iip; 817 818 ASSERT(ip->i_itemp == NULL); 819 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); 820 821 iip->ili_inode = ip; 822 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 823 &xfs_inode_item_ops); 824 iip->ili_format.ilf_type = XFS_LI_INODE; 825 iip->ili_format.ilf_ino = ip->i_ino; 826 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno; 827 iip->ili_format.ilf_len = ip->i_imap.im_len; 828 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset; 829 } 830 831 /* 832 * Free the inode log item and any memory hanging off of it. 833 */ 834 void 835 xfs_inode_item_destroy( 836 xfs_inode_t *ip) 837 { 838 #ifdef XFS_TRANS_DEBUG 839 if (ip->i_itemp->ili_root_size != 0) { 840 kmem_free(ip->i_itemp->ili_orig_root); 841 } 842 #endif 843 kmem_zone_free(xfs_ili_zone, ip->i_itemp); 844 } 845 846 847 /* 848 * This is the inode flushing I/O completion routine. It is called 849 * from interrupt level when the buffer containing the inode is 850 * flushed to disk. It is responsible for removing the inode item 851 * from the AIL if it has not been re-logged, and unlocking the inode's 852 * flush lock. 853 * 854 * To reduce AIL lock traffic as much as possible, we scan the buffer log item 855 * list for other inodes that will run this function. We remove them from the 856 * buffer list so we can process all the inode IO completions in one AIL lock 857 * traversal. 858 */ 859 void 860 xfs_iflush_done( 861 struct xfs_buf *bp, 862 struct xfs_log_item *lip) 863 { 864 struct xfs_inode_log_item *iip; 865 struct xfs_log_item *blip; 866 struct xfs_log_item *next; 867 struct xfs_log_item *prev; 868 struct xfs_ail *ailp = lip->li_ailp; 869 int need_ail = 0; 870 871 /* 872 * Scan the buffer IO completions for other inodes being completed and 873 * attach them to the current inode log item. 874 */ 875 blip = bp->b_fspriv; 876 prev = NULL; 877 while (blip != NULL) { 878 if (lip->li_cb != xfs_iflush_done) { 879 prev = blip; 880 blip = blip->li_bio_list; 881 continue; 882 } 883 884 /* remove from list */ 885 next = blip->li_bio_list; 886 if (!prev) { 887 bp->b_fspriv = next; 888 } else { 889 prev->li_bio_list = next; 890 } 891 892 /* add to current list */ 893 blip->li_bio_list = lip->li_bio_list; 894 lip->li_bio_list = blip; 895 896 /* 897 * while we have the item, do the unlocked check for needing 898 * the AIL lock. 899 */ 900 iip = INODE_ITEM(blip); 901 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) 902 need_ail++; 903 904 blip = next; 905 } 906 907 /* make sure we capture the state of the initial inode. */ 908 iip = INODE_ITEM(lip); 909 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) 910 need_ail++; 911 912 /* 913 * We only want to pull the item from the AIL if it is 914 * actually there and its location in the log has not 915 * changed since we started the flush. Thus, we only bother 916 * if the ili_logged flag is set and the inode's lsn has not 917 * changed. First we check the lsn outside 918 * the lock since it's cheaper, and then we recheck while 919 * holding the lock before removing the inode from the AIL. 920 */ 921 if (need_ail) { 922 struct xfs_log_item *log_items[need_ail]; 923 int i = 0; 924 spin_lock(&ailp->xa_lock); 925 for (blip = lip; blip; blip = blip->li_bio_list) { 926 iip = INODE_ITEM(blip); 927 if (iip->ili_logged && 928 blip->li_lsn == iip->ili_flush_lsn) { 929 log_items[i++] = blip; 930 } 931 ASSERT(i <= need_ail); 932 } 933 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */ 934 xfs_trans_ail_delete_bulk(ailp, log_items, i); 935 } 936 937 938 /* 939 * clean up and unlock the flush lock now we are done. We can clear the 940 * ili_last_fields bits now that we know that the data corresponding to 941 * them is safely on disk. 942 */ 943 for (blip = lip; blip; blip = next) { 944 next = blip->li_bio_list; 945 blip->li_bio_list = NULL; 946 947 iip = INODE_ITEM(blip); 948 iip->ili_logged = 0; 949 iip->ili_last_fields = 0; 950 xfs_ifunlock(iip->ili_inode); 951 } 952 } 953 954 /* 955 * This is the inode flushing abort routine. It is called 956 * from xfs_iflush when the filesystem is shutting down to clean 957 * up the inode state. 958 * It is responsible for removing the inode item 959 * from the AIL if it has not been re-logged, and unlocking the inode's 960 * flush lock. 961 */ 962 void 963 xfs_iflush_abort( 964 xfs_inode_t *ip) 965 { 966 xfs_inode_log_item_t *iip = ip->i_itemp; 967 968 if (iip) { 969 struct xfs_ail *ailp = iip->ili_item.li_ailp; 970 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 971 spin_lock(&ailp->xa_lock); 972 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 973 /* xfs_trans_ail_delete() drops the AIL lock. */ 974 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip); 975 } else 976 spin_unlock(&ailp->xa_lock); 977 } 978 iip->ili_logged = 0; 979 /* 980 * Clear the ili_last_fields bits now that we know that the 981 * data corresponding to them is safely on disk. 982 */ 983 iip->ili_last_fields = 0; 984 /* 985 * Clear the inode logging fields so no more flushes are 986 * attempted. 987 */ 988 iip->ili_format.ilf_fields = 0; 989 } 990 /* 991 * Release the inode's flush lock since we're done with it. 992 */ 993 xfs_ifunlock(ip); 994 } 995 996 void 997 xfs_istale_done( 998 struct xfs_buf *bp, 999 struct xfs_log_item *lip) 1000 { 1001 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode); 1002 } 1003 1004 /* 1005 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions 1006 * (which can have different field alignments) to the native version 1007 */ 1008 int 1009 xfs_inode_item_format_convert( 1010 xfs_log_iovec_t *buf, 1011 xfs_inode_log_format_t *in_f) 1012 { 1013 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) { 1014 xfs_inode_log_format_32_t *in_f32 = buf->i_addr; 1015 1016 in_f->ilf_type = in_f32->ilf_type; 1017 in_f->ilf_size = in_f32->ilf_size; 1018 in_f->ilf_fields = in_f32->ilf_fields; 1019 in_f->ilf_asize = in_f32->ilf_asize; 1020 in_f->ilf_dsize = in_f32->ilf_dsize; 1021 in_f->ilf_ino = in_f32->ilf_ino; 1022 /* copy biggest field of ilf_u */ 1023 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 1024 in_f32->ilf_u.ilfu_uuid.__u_bits, 1025 sizeof(uuid_t)); 1026 in_f->ilf_blkno = in_f32->ilf_blkno; 1027 in_f->ilf_len = in_f32->ilf_len; 1028 in_f->ilf_boffset = in_f32->ilf_boffset; 1029 return 0; 1030 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){ 1031 xfs_inode_log_format_64_t *in_f64 = buf->i_addr; 1032 1033 in_f->ilf_type = in_f64->ilf_type; 1034 in_f->ilf_size = in_f64->ilf_size; 1035 in_f->ilf_fields = in_f64->ilf_fields; 1036 in_f->ilf_asize = in_f64->ilf_asize; 1037 in_f->ilf_dsize = in_f64->ilf_dsize; 1038 in_f->ilf_ino = in_f64->ilf_ino; 1039 /* copy biggest field of ilf_u */ 1040 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 1041 in_f64->ilf_u.ilfu_uuid.__u_bits, 1042 sizeof(uuid_t)); 1043 in_f->ilf_blkno = in_f64->ilf_blkno; 1044 in_f->ilf_len = in_f64->ilf_len; 1045 in_f->ilf_boffset = in_f64->ilf_boffset; 1046 return 0; 1047 } 1048 return EFSCORRUPTED; 1049 } 1050