xref: /linux/fs/xfs/xfs_inode_item.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 
21 #include <linux/iversion.h>
22 
23 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
24 
25 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
26 {
27 	return container_of(lip, struct xfs_inode_log_item, ili_item);
28 }
29 
30 STATIC void
31 xfs_inode_item_data_fork_size(
32 	struct xfs_inode_log_item *iip,
33 	int			*nvecs,
34 	int			*nbytes)
35 {
36 	struct xfs_inode	*ip = iip->ili_inode;
37 
38 	switch (ip->i_d.di_format) {
39 	case XFS_DINODE_FMT_EXTENTS:
40 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
41 		    ip->i_d.di_nextents > 0 &&
42 		    ip->i_df.if_bytes > 0) {
43 			/* worst case, doesn't subtract delalloc extents */
44 			*nbytes += XFS_IFORK_DSIZE(ip);
45 			*nvecs += 1;
46 		}
47 		break;
48 	case XFS_DINODE_FMT_BTREE:
49 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
50 		    ip->i_df.if_broot_bytes > 0) {
51 			*nbytes += ip->i_df.if_broot_bytes;
52 			*nvecs += 1;
53 		}
54 		break;
55 	case XFS_DINODE_FMT_LOCAL:
56 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
57 		    ip->i_df.if_bytes > 0) {
58 			*nbytes += roundup(ip->i_df.if_bytes, 4);
59 			*nvecs += 1;
60 		}
61 		break;
62 
63 	case XFS_DINODE_FMT_DEV:
64 		break;
65 	default:
66 		ASSERT(0);
67 		break;
68 	}
69 }
70 
71 STATIC void
72 xfs_inode_item_attr_fork_size(
73 	struct xfs_inode_log_item *iip,
74 	int			*nvecs,
75 	int			*nbytes)
76 {
77 	struct xfs_inode	*ip = iip->ili_inode;
78 
79 	switch (ip->i_d.di_aformat) {
80 	case XFS_DINODE_FMT_EXTENTS:
81 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
82 		    ip->i_d.di_anextents > 0 &&
83 		    ip->i_afp->if_bytes > 0) {
84 			/* worst case, doesn't subtract unused space */
85 			*nbytes += XFS_IFORK_ASIZE(ip);
86 			*nvecs += 1;
87 		}
88 		break;
89 	case XFS_DINODE_FMT_BTREE:
90 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
91 		    ip->i_afp->if_broot_bytes > 0) {
92 			*nbytes += ip->i_afp->if_broot_bytes;
93 			*nvecs += 1;
94 		}
95 		break;
96 	case XFS_DINODE_FMT_LOCAL:
97 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
98 		    ip->i_afp->if_bytes > 0) {
99 			*nbytes += roundup(ip->i_afp->if_bytes, 4);
100 			*nvecs += 1;
101 		}
102 		break;
103 	default:
104 		ASSERT(0);
105 		break;
106 	}
107 }
108 
109 /*
110  * This returns the number of iovecs needed to log the given inode item.
111  *
112  * We need one iovec for the inode log format structure, one for the
113  * inode core, and possibly one for the inode data/extents/b-tree root
114  * and one for the inode attribute data/extents/b-tree root.
115  */
116 STATIC void
117 xfs_inode_item_size(
118 	struct xfs_log_item	*lip,
119 	int			*nvecs,
120 	int			*nbytes)
121 {
122 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
123 	struct xfs_inode	*ip = iip->ili_inode;
124 
125 	*nvecs += 2;
126 	*nbytes += sizeof(struct xfs_inode_log_format) +
127 		   xfs_log_dinode_size(ip->i_d.di_version);
128 
129 	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
130 	if (XFS_IFORK_Q(ip))
131 		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
132 }
133 
134 STATIC void
135 xfs_inode_item_format_data_fork(
136 	struct xfs_inode_log_item *iip,
137 	struct xfs_inode_log_format *ilf,
138 	struct xfs_log_vec	*lv,
139 	struct xfs_log_iovec	**vecp)
140 {
141 	struct xfs_inode	*ip = iip->ili_inode;
142 	size_t			data_bytes;
143 
144 	switch (ip->i_d.di_format) {
145 	case XFS_DINODE_FMT_EXTENTS:
146 		iip->ili_fields &=
147 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
148 
149 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
150 		    ip->i_d.di_nextents > 0 &&
151 		    ip->i_df.if_bytes > 0) {
152 			struct xfs_bmbt_rec *p;
153 
154 			ASSERT(xfs_iext_count(&ip->i_df) > 0);
155 
156 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
157 			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
158 			xlog_finish_iovec(lv, *vecp, data_bytes);
159 
160 			ASSERT(data_bytes <= ip->i_df.if_bytes);
161 
162 			ilf->ilf_dsize = data_bytes;
163 			ilf->ilf_size++;
164 		} else {
165 			iip->ili_fields &= ~XFS_ILOG_DEXT;
166 		}
167 		break;
168 	case XFS_DINODE_FMT_BTREE:
169 		iip->ili_fields &=
170 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
171 
172 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
173 		    ip->i_df.if_broot_bytes > 0) {
174 			ASSERT(ip->i_df.if_broot != NULL);
175 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
176 					ip->i_df.if_broot,
177 					ip->i_df.if_broot_bytes);
178 			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
179 			ilf->ilf_size++;
180 		} else {
181 			ASSERT(!(iip->ili_fields &
182 				 XFS_ILOG_DBROOT));
183 			iip->ili_fields &= ~XFS_ILOG_DBROOT;
184 		}
185 		break;
186 	case XFS_DINODE_FMT_LOCAL:
187 		iip->ili_fields &=
188 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
189 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
190 		    ip->i_df.if_bytes > 0) {
191 			/*
192 			 * Round i_bytes up to a word boundary.
193 			 * The underlying memory is guaranteed to
194 			 * to be there by xfs_idata_realloc().
195 			 */
196 			data_bytes = roundup(ip->i_df.if_bytes, 4);
197 			ASSERT(ip->i_df.if_u1.if_data != NULL);
198 			ASSERT(ip->i_d.di_size > 0);
199 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
200 					ip->i_df.if_u1.if_data, data_bytes);
201 			ilf->ilf_dsize = (unsigned)data_bytes;
202 			ilf->ilf_size++;
203 		} else {
204 			iip->ili_fields &= ~XFS_ILOG_DDATA;
205 		}
206 		break;
207 	case XFS_DINODE_FMT_DEV:
208 		iip->ili_fields &=
209 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
210 		if (iip->ili_fields & XFS_ILOG_DEV)
211 			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
212 		break;
213 	default:
214 		ASSERT(0);
215 		break;
216 	}
217 }
218 
219 STATIC void
220 xfs_inode_item_format_attr_fork(
221 	struct xfs_inode_log_item *iip,
222 	struct xfs_inode_log_format *ilf,
223 	struct xfs_log_vec	*lv,
224 	struct xfs_log_iovec	**vecp)
225 {
226 	struct xfs_inode	*ip = iip->ili_inode;
227 	size_t			data_bytes;
228 
229 	switch (ip->i_d.di_aformat) {
230 	case XFS_DINODE_FMT_EXTENTS:
231 		iip->ili_fields &=
232 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
233 
234 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
235 		    ip->i_d.di_anextents > 0 &&
236 		    ip->i_afp->if_bytes > 0) {
237 			struct xfs_bmbt_rec *p;
238 
239 			ASSERT(xfs_iext_count(ip->i_afp) ==
240 				ip->i_d.di_anextents);
241 
242 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
243 			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
244 			xlog_finish_iovec(lv, *vecp, data_bytes);
245 
246 			ilf->ilf_asize = data_bytes;
247 			ilf->ilf_size++;
248 		} else {
249 			iip->ili_fields &= ~XFS_ILOG_AEXT;
250 		}
251 		break;
252 	case XFS_DINODE_FMT_BTREE:
253 		iip->ili_fields &=
254 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
255 
256 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
257 		    ip->i_afp->if_broot_bytes > 0) {
258 			ASSERT(ip->i_afp->if_broot != NULL);
259 
260 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
261 					ip->i_afp->if_broot,
262 					ip->i_afp->if_broot_bytes);
263 			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
264 			ilf->ilf_size++;
265 		} else {
266 			iip->ili_fields &= ~XFS_ILOG_ABROOT;
267 		}
268 		break;
269 	case XFS_DINODE_FMT_LOCAL:
270 		iip->ili_fields &=
271 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
272 
273 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
274 		    ip->i_afp->if_bytes > 0) {
275 			/*
276 			 * Round i_bytes up to a word boundary.
277 			 * The underlying memory is guaranteed to
278 			 * to be there by xfs_idata_realloc().
279 			 */
280 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
281 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
282 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
283 					ip->i_afp->if_u1.if_data,
284 					data_bytes);
285 			ilf->ilf_asize = (unsigned)data_bytes;
286 			ilf->ilf_size++;
287 		} else {
288 			iip->ili_fields &= ~XFS_ILOG_ADATA;
289 		}
290 		break;
291 	default:
292 		ASSERT(0);
293 		break;
294 	}
295 }
296 
297 static void
298 xfs_inode_to_log_dinode(
299 	struct xfs_inode	*ip,
300 	struct xfs_log_dinode	*to,
301 	xfs_lsn_t		lsn)
302 {
303 	struct xfs_icdinode	*from = &ip->i_d;
304 	struct inode		*inode = VFS_I(ip);
305 
306 	to->di_magic = XFS_DINODE_MAGIC;
307 
308 	to->di_version = from->di_version;
309 	to->di_format = from->di_format;
310 	to->di_uid = from->di_uid;
311 	to->di_gid = from->di_gid;
312 	to->di_projid_lo = from->di_projid_lo;
313 	to->di_projid_hi = from->di_projid_hi;
314 
315 	memset(to->di_pad, 0, sizeof(to->di_pad));
316 	memset(to->di_pad3, 0, sizeof(to->di_pad3));
317 	to->di_atime.t_sec = inode->i_atime.tv_sec;
318 	to->di_atime.t_nsec = inode->i_atime.tv_nsec;
319 	to->di_mtime.t_sec = inode->i_mtime.tv_sec;
320 	to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
321 	to->di_ctime.t_sec = inode->i_ctime.tv_sec;
322 	to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
323 	to->di_nlink = inode->i_nlink;
324 	to->di_gen = inode->i_generation;
325 	to->di_mode = inode->i_mode;
326 
327 	to->di_size = from->di_size;
328 	to->di_nblocks = from->di_nblocks;
329 	to->di_extsize = from->di_extsize;
330 	to->di_nextents = from->di_nextents;
331 	to->di_anextents = from->di_anextents;
332 	to->di_forkoff = from->di_forkoff;
333 	to->di_aformat = from->di_aformat;
334 	to->di_dmevmask = from->di_dmevmask;
335 	to->di_dmstate = from->di_dmstate;
336 	to->di_flags = from->di_flags;
337 
338 	/* log a dummy value to ensure log structure is fully initialised */
339 	to->di_next_unlinked = NULLAGINO;
340 
341 	if (from->di_version == 3) {
342 		to->di_changecount = inode_peek_iversion(inode);
343 		to->di_crtime.t_sec = from->di_crtime.t_sec;
344 		to->di_crtime.t_nsec = from->di_crtime.t_nsec;
345 		to->di_flags2 = from->di_flags2;
346 		to->di_cowextsize = from->di_cowextsize;
347 		to->di_ino = ip->i_ino;
348 		to->di_lsn = lsn;
349 		memset(to->di_pad2, 0, sizeof(to->di_pad2));
350 		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
351 		to->di_flushiter = 0;
352 	} else {
353 		to->di_flushiter = from->di_flushiter;
354 	}
355 }
356 
357 /*
358  * Format the inode core. Current timestamp data is only in the VFS inode
359  * fields, so we need to grab them from there. Hence rather than just copying
360  * the XFS inode core structure, format the fields directly into the iovec.
361  */
362 static void
363 xfs_inode_item_format_core(
364 	struct xfs_inode	*ip,
365 	struct xfs_log_vec	*lv,
366 	struct xfs_log_iovec	**vecp)
367 {
368 	struct xfs_log_dinode	*dic;
369 
370 	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
371 	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
372 	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version));
373 }
374 
375 /*
376  * This is called to fill in the vector of log iovecs for the given inode
377  * log item.  It fills the first item with an inode log format structure,
378  * the second with the on-disk inode structure, and a possible third and/or
379  * fourth with the inode data/extents/b-tree root and inode attributes
380  * data/extents/b-tree root.
381  *
382  * Note: Always use the 64 bit inode log format structure so we don't
383  * leave an uninitialised hole in the format item on 64 bit systems. Log
384  * recovery on 32 bit systems handles this just fine, so there's no reason
385  * for not using an initialising the properly padded structure all the time.
386  */
387 STATIC void
388 xfs_inode_item_format(
389 	struct xfs_log_item	*lip,
390 	struct xfs_log_vec	*lv)
391 {
392 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
393 	struct xfs_inode	*ip = iip->ili_inode;
394 	struct xfs_log_iovec	*vecp = NULL;
395 	struct xfs_inode_log_format *ilf;
396 
397 	ASSERT(ip->i_d.di_version > 1);
398 
399 	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
400 	ilf->ilf_type = XFS_LI_INODE;
401 	ilf->ilf_ino = ip->i_ino;
402 	ilf->ilf_blkno = ip->i_imap.im_blkno;
403 	ilf->ilf_len = ip->i_imap.im_len;
404 	ilf->ilf_boffset = ip->i_imap.im_boffset;
405 	ilf->ilf_fields = XFS_ILOG_CORE;
406 	ilf->ilf_size = 2; /* format + core */
407 
408 	/*
409 	 * make sure we don't leak uninitialised data into the log in the case
410 	 * when we don't log every field in the inode.
411 	 */
412 	ilf->ilf_dsize = 0;
413 	ilf->ilf_asize = 0;
414 	ilf->ilf_pad = 0;
415 	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
416 
417 	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
418 
419 	xfs_inode_item_format_core(ip, lv, &vecp);
420 	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
421 	if (XFS_IFORK_Q(ip)) {
422 		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
423 	} else {
424 		iip->ili_fields &=
425 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
426 	}
427 
428 	/* update the format with the exact fields we actually logged */
429 	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
430 }
431 
432 /*
433  * This is called to pin the inode associated with the inode log
434  * item in memory so it cannot be written out.
435  */
436 STATIC void
437 xfs_inode_item_pin(
438 	struct xfs_log_item	*lip)
439 {
440 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
441 
442 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
443 
444 	trace_xfs_inode_pin(ip, _RET_IP_);
445 	atomic_inc(&ip->i_pincount);
446 }
447 
448 
449 /*
450  * This is called to unpin the inode associated with the inode log
451  * item which was previously pinned with a call to xfs_inode_item_pin().
452  *
453  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
454  */
455 STATIC void
456 xfs_inode_item_unpin(
457 	struct xfs_log_item	*lip,
458 	int			remove)
459 {
460 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
461 
462 	trace_xfs_inode_unpin(ip, _RET_IP_);
463 	ASSERT(atomic_read(&ip->i_pincount) > 0);
464 	if (atomic_dec_and_test(&ip->i_pincount))
465 		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
466 }
467 
468 /*
469  * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer
470  * have been failed during writeback
471  *
472  * This informs the AIL that the inode is already flush locked on the next push,
473  * and acquires a hold on the buffer to ensure that it isn't reclaimed before
474  * dirty data makes it to disk.
475  */
476 STATIC void
477 xfs_inode_item_error(
478 	struct xfs_log_item	*lip,
479 	struct xfs_buf		*bp)
480 {
481 	ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode));
482 	xfs_set_li_failed(lip, bp);
483 }
484 
485 STATIC uint
486 xfs_inode_item_push(
487 	struct xfs_log_item	*lip,
488 	struct list_head	*buffer_list)
489 		__releases(&lip->li_ailp->ail_lock)
490 		__acquires(&lip->li_ailp->ail_lock)
491 {
492 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
493 	struct xfs_inode	*ip = iip->ili_inode;
494 	struct xfs_buf		*bp = lip->li_buf;
495 	uint			rval = XFS_ITEM_SUCCESS;
496 	int			error;
497 
498 	if (xfs_ipincount(ip) > 0)
499 		return XFS_ITEM_PINNED;
500 
501 	/*
502 	 * The buffer containing this item failed to be written back
503 	 * previously. Resubmit the buffer for IO.
504 	 */
505 	if (test_bit(XFS_LI_FAILED, &lip->li_flags)) {
506 		if (!xfs_buf_trylock(bp))
507 			return XFS_ITEM_LOCKED;
508 
509 		if (!xfs_buf_resubmit_failed_buffers(bp, buffer_list))
510 			rval = XFS_ITEM_FLUSHING;
511 
512 		xfs_buf_unlock(bp);
513 		return rval;
514 	}
515 
516 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
517 		return XFS_ITEM_LOCKED;
518 
519 	/*
520 	 * Re-check the pincount now that we stabilized the value by
521 	 * taking the ilock.
522 	 */
523 	if (xfs_ipincount(ip) > 0) {
524 		rval = XFS_ITEM_PINNED;
525 		goto out_unlock;
526 	}
527 
528 	/*
529 	 * Stale inode items should force out the iclog.
530 	 */
531 	if (ip->i_flags & XFS_ISTALE) {
532 		rval = XFS_ITEM_PINNED;
533 		goto out_unlock;
534 	}
535 
536 	/*
537 	 * Someone else is already flushing the inode.  Nothing we can do
538 	 * here but wait for the flush to finish and remove the item from
539 	 * the AIL.
540 	 */
541 	if (!xfs_iflock_nowait(ip)) {
542 		rval = XFS_ITEM_FLUSHING;
543 		goto out_unlock;
544 	}
545 
546 	ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
547 	ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
548 
549 	spin_unlock(&lip->li_ailp->ail_lock);
550 
551 	error = xfs_iflush(ip, &bp);
552 	if (!error) {
553 		if (!xfs_buf_delwri_queue(bp, buffer_list))
554 			rval = XFS_ITEM_FLUSHING;
555 		xfs_buf_relse(bp);
556 	}
557 
558 	spin_lock(&lip->li_ailp->ail_lock);
559 out_unlock:
560 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
561 	return rval;
562 }
563 
564 /*
565  * Unlock the inode associated with the inode log item.
566  */
567 STATIC void
568 xfs_inode_item_release(
569 	struct xfs_log_item	*lip)
570 {
571 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
572 	struct xfs_inode	*ip = iip->ili_inode;
573 	unsigned short		lock_flags;
574 
575 	ASSERT(ip->i_itemp != NULL);
576 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
577 
578 	lock_flags = iip->ili_lock_flags;
579 	iip->ili_lock_flags = 0;
580 	if (lock_flags)
581 		xfs_iunlock(ip, lock_flags);
582 }
583 
584 /*
585  * This is called to find out where the oldest active copy of the inode log
586  * item in the on disk log resides now that the last log write of it completed
587  * at the given lsn.  Since we always re-log all dirty data in an inode, the
588  * latest copy in the on disk log is the only one that matters.  Therefore,
589  * simply return the given lsn.
590  *
591  * If the inode has been marked stale because the cluster is being freed, we
592  * don't want to (re-)insert this inode into the AIL. There is a race condition
593  * where the cluster buffer may be unpinned before the inode is inserted into
594  * the AIL during transaction committed processing. If the buffer is unpinned
595  * before the inode item has been committed and inserted, then it is possible
596  * for the buffer to be written and IO completes before the inode is inserted
597  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
598  * AIL which will never get removed. It will, however, get reclaimed which
599  * triggers an assert in xfs_inode_free() complaining about freein an inode
600  * still in the AIL.
601  *
602  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
603  * transaction committed code knows that it does not need to do any further
604  * processing on the item.
605  */
606 STATIC xfs_lsn_t
607 xfs_inode_item_committed(
608 	struct xfs_log_item	*lip,
609 	xfs_lsn_t		lsn)
610 {
611 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
612 	struct xfs_inode	*ip = iip->ili_inode;
613 
614 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
615 		xfs_inode_item_unpin(lip, 0);
616 		return -1;
617 	}
618 	return lsn;
619 }
620 
621 STATIC void
622 xfs_inode_item_committing(
623 	struct xfs_log_item	*lip,
624 	xfs_lsn_t		commit_lsn)
625 {
626 	INODE_ITEM(lip)->ili_last_lsn = commit_lsn;
627 	return xfs_inode_item_release(lip);
628 }
629 
630 static const struct xfs_item_ops xfs_inode_item_ops = {
631 	.iop_size	= xfs_inode_item_size,
632 	.iop_format	= xfs_inode_item_format,
633 	.iop_pin	= xfs_inode_item_pin,
634 	.iop_unpin	= xfs_inode_item_unpin,
635 	.iop_release	= xfs_inode_item_release,
636 	.iop_committed	= xfs_inode_item_committed,
637 	.iop_push	= xfs_inode_item_push,
638 	.iop_committing	= xfs_inode_item_committing,
639 	.iop_error	= xfs_inode_item_error
640 };
641 
642 
643 /*
644  * Initialize the inode log item for a newly allocated (in-core) inode.
645  */
646 void
647 xfs_inode_item_init(
648 	struct xfs_inode	*ip,
649 	struct xfs_mount	*mp)
650 {
651 	struct xfs_inode_log_item *iip;
652 
653 	ASSERT(ip->i_itemp == NULL);
654 	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, 0);
655 
656 	iip->ili_inode = ip;
657 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
658 						&xfs_inode_item_ops);
659 }
660 
661 /*
662  * Free the inode log item and any memory hanging off of it.
663  */
664 void
665 xfs_inode_item_destroy(
666 	xfs_inode_t	*ip)
667 {
668 	kmem_free(ip->i_itemp->ili_item.li_lv_shadow);
669 	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
670 }
671 
672 
673 /*
674  * This is the inode flushing I/O completion routine.  It is called
675  * from interrupt level when the buffer containing the inode is
676  * flushed to disk.  It is responsible for removing the inode item
677  * from the AIL if it has not been re-logged, and unlocking the inode's
678  * flush lock.
679  *
680  * To reduce AIL lock traffic as much as possible, we scan the buffer log item
681  * list for other inodes that will run this function. We remove them from the
682  * buffer list so we can process all the inode IO completions in one AIL lock
683  * traversal.
684  */
685 void
686 xfs_iflush_done(
687 	struct xfs_buf		*bp,
688 	struct xfs_log_item	*lip)
689 {
690 	struct xfs_inode_log_item *iip;
691 	struct xfs_log_item	*blip, *n;
692 	struct xfs_ail		*ailp = lip->li_ailp;
693 	int			need_ail = 0;
694 	LIST_HEAD(tmp);
695 
696 	/*
697 	 * Scan the buffer IO completions for other inodes being completed and
698 	 * attach them to the current inode log item.
699 	 */
700 
701 	list_add_tail(&lip->li_bio_list, &tmp);
702 
703 	list_for_each_entry_safe(blip, n, &bp->b_li_list, li_bio_list) {
704 		if (lip->li_cb != xfs_iflush_done)
705 			continue;
706 
707 		list_move_tail(&blip->li_bio_list, &tmp);
708 		/*
709 		 * while we have the item, do the unlocked check for needing
710 		 * the AIL lock.
711 		 */
712 		iip = INODE_ITEM(blip);
713 		if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) ||
714 		    test_bit(XFS_LI_FAILED, &blip->li_flags))
715 			need_ail++;
716 	}
717 
718 	/* make sure we capture the state of the initial inode. */
719 	iip = INODE_ITEM(lip);
720 	if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) ||
721 	    test_bit(XFS_LI_FAILED, &lip->li_flags))
722 		need_ail++;
723 
724 	/*
725 	 * We only want to pull the item from the AIL if it is
726 	 * actually there and its location in the log has not
727 	 * changed since we started the flush.  Thus, we only bother
728 	 * if the ili_logged flag is set and the inode's lsn has not
729 	 * changed.  First we check the lsn outside
730 	 * the lock since it's cheaper, and then we recheck while
731 	 * holding the lock before removing the inode from the AIL.
732 	 */
733 	if (need_ail) {
734 		bool			mlip_changed = false;
735 
736 		/* this is an opencoded batch version of xfs_trans_ail_delete */
737 		spin_lock(&ailp->ail_lock);
738 		list_for_each_entry(blip, &tmp, li_bio_list) {
739 			if (INODE_ITEM(blip)->ili_logged &&
740 			    blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn)
741 				mlip_changed |= xfs_ail_delete_one(ailp, blip);
742 			else {
743 				xfs_clear_li_failed(blip);
744 			}
745 		}
746 
747 		if (mlip_changed) {
748 			if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
749 				xlog_assign_tail_lsn_locked(ailp->ail_mount);
750 			if (list_empty(&ailp->ail_head))
751 				wake_up_all(&ailp->ail_empty);
752 		}
753 		spin_unlock(&ailp->ail_lock);
754 
755 		if (mlip_changed)
756 			xfs_log_space_wake(ailp->ail_mount);
757 	}
758 
759 	/*
760 	 * clean up and unlock the flush lock now we are done. We can clear the
761 	 * ili_last_fields bits now that we know that the data corresponding to
762 	 * them is safely on disk.
763 	 */
764 	list_for_each_entry_safe(blip, n, &tmp, li_bio_list) {
765 		list_del_init(&blip->li_bio_list);
766 		iip = INODE_ITEM(blip);
767 		iip->ili_logged = 0;
768 		iip->ili_last_fields = 0;
769 		xfs_ifunlock(iip->ili_inode);
770 	}
771 	list_del(&tmp);
772 }
773 
774 /*
775  * This is the inode flushing abort routine.  It is called from xfs_iflush when
776  * the filesystem is shutting down to clean up the inode state.  It is
777  * responsible for removing the inode item from the AIL if it has not been
778  * re-logged, and unlocking the inode's flush lock.
779  */
780 void
781 xfs_iflush_abort(
782 	xfs_inode_t		*ip,
783 	bool			stale)
784 {
785 	xfs_inode_log_item_t	*iip = ip->i_itemp;
786 
787 	if (iip) {
788 		if (test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)) {
789 			xfs_trans_ail_remove(&iip->ili_item,
790 					     stale ? SHUTDOWN_LOG_IO_ERROR :
791 						     SHUTDOWN_CORRUPT_INCORE);
792 		}
793 		iip->ili_logged = 0;
794 		/*
795 		 * Clear the ili_last_fields bits now that we know that the
796 		 * data corresponding to them is safely on disk.
797 		 */
798 		iip->ili_last_fields = 0;
799 		/*
800 		 * Clear the inode logging fields so no more flushes are
801 		 * attempted.
802 		 */
803 		iip->ili_fields = 0;
804 		iip->ili_fsync_fields = 0;
805 	}
806 	/*
807 	 * Release the inode's flush lock since we're done with it.
808 	 */
809 	xfs_ifunlock(ip);
810 }
811 
812 void
813 xfs_istale_done(
814 	struct xfs_buf		*bp,
815 	struct xfs_log_item	*lip)
816 {
817 	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
818 }
819 
820 /*
821  * convert an xfs_inode_log_format struct from the old 32 bit version
822  * (which can have different field alignments) to the native 64 bit version
823  */
824 int
825 xfs_inode_item_format_convert(
826 	struct xfs_log_iovec		*buf,
827 	struct xfs_inode_log_format	*in_f)
828 {
829 	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
830 
831 	if (buf->i_len != sizeof(*in_f32))
832 		return -EFSCORRUPTED;
833 
834 	in_f->ilf_type = in_f32->ilf_type;
835 	in_f->ilf_size = in_f32->ilf_size;
836 	in_f->ilf_fields = in_f32->ilf_fields;
837 	in_f->ilf_asize = in_f32->ilf_asize;
838 	in_f->ilf_dsize = in_f32->ilf_dsize;
839 	in_f->ilf_ino = in_f32->ilf_ino;
840 	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
841 	in_f->ilf_blkno = in_f32->ilf_blkno;
842 	in_f->ilf_len = in_f32->ilf_len;
843 	in_f->ilf_boffset = in_f32->ilf_boffset;
844 	return 0;
845 }
846