1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_trace.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_buf_item.h" 19 #include "xfs_log.h" 20 #include "xfs_error.h" 21 22 #include <linux/iversion.h> 23 24 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 25 26 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 27 { 28 return container_of(lip, struct xfs_inode_log_item, ili_item); 29 } 30 31 STATIC void 32 xfs_inode_item_data_fork_size( 33 struct xfs_inode_log_item *iip, 34 int *nvecs, 35 int *nbytes) 36 { 37 struct xfs_inode *ip = iip->ili_inode; 38 39 switch (ip->i_df.if_format) { 40 case XFS_DINODE_FMT_EXTENTS: 41 if ((iip->ili_fields & XFS_ILOG_DEXT) && 42 ip->i_df.if_nextents > 0 && 43 ip->i_df.if_bytes > 0) { 44 /* worst case, doesn't subtract delalloc extents */ 45 *nbytes += XFS_IFORK_DSIZE(ip); 46 *nvecs += 1; 47 } 48 break; 49 case XFS_DINODE_FMT_BTREE: 50 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 51 ip->i_df.if_broot_bytes > 0) { 52 *nbytes += ip->i_df.if_broot_bytes; 53 *nvecs += 1; 54 } 55 break; 56 case XFS_DINODE_FMT_LOCAL: 57 if ((iip->ili_fields & XFS_ILOG_DDATA) && 58 ip->i_df.if_bytes > 0) { 59 *nbytes += roundup(ip->i_df.if_bytes, 4); 60 *nvecs += 1; 61 } 62 break; 63 64 case XFS_DINODE_FMT_DEV: 65 break; 66 default: 67 ASSERT(0); 68 break; 69 } 70 } 71 72 STATIC void 73 xfs_inode_item_attr_fork_size( 74 struct xfs_inode_log_item *iip, 75 int *nvecs, 76 int *nbytes) 77 { 78 struct xfs_inode *ip = iip->ili_inode; 79 80 switch (ip->i_afp->if_format) { 81 case XFS_DINODE_FMT_EXTENTS: 82 if ((iip->ili_fields & XFS_ILOG_AEXT) && 83 ip->i_afp->if_nextents > 0 && 84 ip->i_afp->if_bytes > 0) { 85 /* worst case, doesn't subtract unused space */ 86 *nbytes += XFS_IFORK_ASIZE(ip); 87 *nvecs += 1; 88 } 89 break; 90 case XFS_DINODE_FMT_BTREE: 91 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 92 ip->i_afp->if_broot_bytes > 0) { 93 *nbytes += ip->i_afp->if_broot_bytes; 94 *nvecs += 1; 95 } 96 break; 97 case XFS_DINODE_FMT_LOCAL: 98 if ((iip->ili_fields & XFS_ILOG_ADATA) && 99 ip->i_afp->if_bytes > 0) { 100 *nbytes += roundup(ip->i_afp->if_bytes, 4); 101 *nvecs += 1; 102 } 103 break; 104 default: 105 ASSERT(0); 106 break; 107 } 108 } 109 110 /* 111 * This returns the number of iovecs needed to log the given inode item. 112 * 113 * We need one iovec for the inode log format structure, one for the 114 * inode core, and possibly one for the inode data/extents/b-tree root 115 * and one for the inode attribute data/extents/b-tree root. 116 */ 117 STATIC void 118 xfs_inode_item_size( 119 struct xfs_log_item *lip, 120 int *nvecs, 121 int *nbytes) 122 { 123 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 124 struct xfs_inode *ip = iip->ili_inode; 125 126 *nvecs += 2; 127 *nbytes += sizeof(struct xfs_inode_log_format) + 128 xfs_log_dinode_size(ip->i_mount); 129 130 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 131 if (XFS_IFORK_Q(ip)) 132 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 133 } 134 135 STATIC void 136 xfs_inode_item_format_data_fork( 137 struct xfs_inode_log_item *iip, 138 struct xfs_inode_log_format *ilf, 139 struct xfs_log_vec *lv, 140 struct xfs_log_iovec **vecp) 141 { 142 struct xfs_inode *ip = iip->ili_inode; 143 size_t data_bytes; 144 145 switch (ip->i_df.if_format) { 146 case XFS_DINODE_FMT_EXTENTS: 147 iip->ili_fields &= 148 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 149 150 if ((iip->ili_fields & XFS_ILOG_DEXT) && 151 ip->i_df.if_nextents > 0 && 152 ip->i_df.if_bytes > 0) { 153 struct xfs_bmbt_rec *p; 154 155 ASSERT(xfs_iext_count(&ip->i_df) > 0); 156 157 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 158 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 159 xlog_finish_iovec(lv, *vecp, data_bytes); 160 161 ASSERT(data_bytes <= ip->i_df.if_bytes); 162 163 ilf->ilf_dsize = data_bytes; 164 ilf->ilf_size++; 165 } else { 166 iip->ili_fields &= ~XFS_ILOG_DEXT; 167 } 168 break; 169 case XFS_DINODE_FMT_BTREE: 170 iip->ili_fields &= 171 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); 172 173 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 174 ip->i_df.if_broot_bytes > 0) { 175 ASSERT(ip->i_df.if_broot != NULL); 176 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 177 ip->i_df.if_broot, 178 ip->i_df.if_broot_bytes); 179 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 180 ilf->ilf_size++; 181 } else { 182 ASSERT(!(iip->ili_fields & 183 XFS_ILOG_DBROOT)); 184 iip->ili_fields &= ~XFS_ILOG_DBROOT; 185 } 186 break; 187 case XFS_DINODE_FMT_LOCAL: 188 iip->ili_fields &= 189 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 190 if ((iip->ili_fields & XFS_ILOG_DDATA) && 191 ip->i_df.if_bytes > 0) { 192 /* 193 * Round i_bytes up to a word boundary. 194 * The underlying memory is guaranteed 195 * to be there by xfs_idata_realloc(). 196 */ 197 data_bytes = roundup(ip->i_df.if_bytes, 4); 198 ASSERT(ip->i_df.if_u1.if_data != NULL); 199 ASSERT(ip->i_d.di_size > 0); 200 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 201 ip->i_df.if_u1.if_data, data_bytes); 202 ilf->ilf_dsize = (unsigned)data_bytes; 203 ilf->ilf_size++; 204 } else { 205 iip->ili_fields &= ~XFS_ILOG_DDATA; 206 } 207 break; 208 case XFS_DINODE_FMT_DEV: 209 iip->ili_fields &= 210 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); 211 if (iip->ili_fields & XFS_ILOG_DEV) 212 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); 213 break; 214 default: 215 ASSERT(0); 216 break; 217 } 218 } 219 220 STATIC void 221 xfs_inode_item_format_attr_fork( 222 struct xfs_inode_log_item *iip, 223 struct xfs_inode_log_format *ilf, 224 struct xfs_log_vec *lv, 225 struct xfs_log_iovec **vecp) 226 { 227 struct xfs_inode *ip = iip->ili_inode; 228 size_t data_bytes; 229 230 switch (ip->i_afp->if_format) { 231 case XFS_DINODE_FMT_EXTENTS: 232 iip->ili_fields &= 233 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 234 235 if ((iip->ili_fields & XFS_ILOG_AEXT) && 236 ip->i_afp->if_nextents > 0 && 237 ip->i_afp->if_bytes > 0) { 238 struct xfs_bmbt_rec *p; 239 240 ASSERT(xfs_iext_count(ip->i_afp) == 241 ip->i_afp->if_nextents); 242 243 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 244 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 245 xlog_finish_iovec(lv, *vecp, data_bytes); 246 247 ilf->ilf_asize = data_bytes; 248 ilf->ilf_size++; 249 } else { 250 iip->ili_fields &= ~XFS_ILOG_AEXT; 251 } 252 break; 253 case XFS_DINODE_FMT_BTREE: 254 iip->ili_fields &= 255 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 256 257 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 258 ip->i_afp->if_broot_bytes > 0) { 259 ASSERT(ip->i_afp->if_broot != NULL); 260 261 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 262 ip->i_afp->if_broot, 263 ip->i_afp->if_broot_bytes); 264 ilf->ilf_asize = ip->i_afp->if_broot_bytes; 265 ilf->ilf_size++; 266 } else { 267 iip->ili_fields &= ~XFS_ILOG_ABROOT; 268 } 269 break; 270 case XFS_DINODE_FMT_LOCAL: 271 iip->ili_fields &= 272 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 273 274 if ((iip->ili_fields & XFS_ILOG_ADATA) && 275 ip->i_afp->if_bytes > 0) { 276 /* 277 * Round i_bytes up to a word boundary. 278 * The underlying memory is guaranteed 279 * to be there by xfs_idata_realloc(). 280 */ 281 data_bytes = roundup(ip->i_afp->if_bytes, 4); 282 ASSERT(ip->i_afp->if_u1.if_data != NULL); 283 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 284 ip->i_afp->if_u1.if_data, 285 data_bytes); 286 ilf->ilf_asize = (unsigned)data_bytes; 287 ilf->ilf_size++; 288 } else { 289 iip->ili_fields &= ~XFS_ILOG_ADATA; 290 } 291 break; 292 default: 293 ASSERT(0); 294 break; 295 } 296 } 297 298 static void 299 xfs_inode_to_log_dinode( 300 struct xfs_inode *ip, 301 struct xfs_log_dinode *to, 302 xfs_lsn_t lsn) 303 { 304 struct xfs_icdinode *from = &ip->i_d; 305 struct inode *inode = VFS_I(ip); 306 307 to->di_magic = XFS_DINODE_MAGIC; 308 to->di_format = xfs_ifork_format(&ip->i_df); 309 to->di_uid = i_uid_read(inode); 310 to->di_gid = i_gid_read(inode); 311 to->di_projid_lo = from->di_projid & 0xffff; 312 to->di_projid_hi = from->di_projid >> 16; 313 314 memset(to->di_pad, 0, sizeof(to->di_pad)); 315 memset(to->di_pad3, 0, sizeof(to->di_pad3)); 316 to->di_atime.t_sec = inode->i_atime.tv_sec; 317 to->di_atime.t_nsec = inode->i_atime.tv_nsec; 318 to->di_mtime.t_sec = inode->i_mtime.tv_sec; 319 to->di_mtime.t_nsec = inode->i_mtime.tv_nsec; 320 to->di_ctime.t_sec = inode->i_ctime.tv_sec; 321 to->di_ctime.t_nsec = inode->i_ctime.tv_nsec; 322 to->di_nlink = inode->i_nlink; 323 to->di_gen = inode->i_generation; 324 to->di_mode = inode->i_mode; 325 326 to->di_size = from->di_size; 327 to->di_nblocks = from->di_nblocks; 328 to->di_extsize = from->di_extsize; 329 to->di_nextents = xfs_ifork_nextents(&ip->i_df); 330 to->di_anextents = xfs_ifork_nextents(ip->i_afp); 331 to->di_forkoff = from->di_forkoff; 332 to->di_aformat = xfs_ifork_format(ip->i_afp); 333 to->di_dmevmask = from->di_dmevmask; 334 to->di_dmstate = from->di_dmstate; 335 to->di_flags = from->di_flags; 336 337 /* log a dummy value to ensure log structure is fully initialised */ 338 to->di_next_unlinked = NULLAGINO; 339 340 if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) { 341 to->di_version = 3; 342 to->di_changecount = inode_peek_iversion(inode); 343 to->di_crtime.t_sec = from->di_crtime.tv_sec; 344 to->di_crtime.t_nsec = from->di_crtime.tv_nsec; 345 to->di_flags2 = from->di_flags2; 346 to->di_cowextsize = from->di_cowextsize; 347 to->di_ino = ip->i_ino; 348 to->di_lsn = lsn; 349 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 350 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 351 to->di_flushiter = 0; 352 } else { 353 to->di_version = 2; 354 to->di_flushiter = from->di_flushiter; 355 } 356 } 357 358 /* 359 * Format the inode core. Current timestamp data is only in the VFS inode 360 * fields, so we need to grab them from there. Hence rather than just copying 361 * the XFS inode core structure, format the fields directly into the iovec. 362 */ 363 static void 364 xfs_inode_item_format_core( 365 struct xfs_inode *ip, 366 struct xfs_log_vec *lv, 367 struct xfs_log_iovec **vecp) 368 { 369 struct xfs_log_dinode *dic; 370 371 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 372 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 373 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount)); 374 } 375 376 /* 377 * This is called to fill in the vector of log iovecs for the given inode 378 * log item. It fills the first item with an inode log format structure, 379 * the second with the on-disk inode structure, and a possible third and/or 380 * fourth with the inode data/extents/b-tree root and inode attributes 381 * data/extents/b-tree root. 382 * 383 * Note: Always use the 64 bit inode log format structure so we don't 384 * leave an uninitialised hole in the format item on 64 bit systems. Log 385 * recovery on 32 bit systems handles this just fine, so there's no reason 386 * for not using an initialising the properly padded structure all the time. 387 */ 388 STATIC void 389 xfs_inode_item_format( 390 struct xfs_log_item *lip, 391 struct xfs_log_vec *lv) 392 { 393 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 394 struct xfs_inode *ip = iip->ili_inode; 395 struct xfs_log_iovec *vecp = NULL; 396 struct xfs_inode_log_format *ilf; 397 398 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 399 ilf->ilf_type = XFS_LI_INODE; 400 ilf->ilf_ino = ip->i_ino; 401 ilf->ilf_blkno = ip->i_imap.im_blkno; 402 ilf->ilf_len = ip->i_imap.im_len; 403 ilf->ilf_boffset = ip->i_imap.im_boffset; 404 ilf->ilf_fields = XFS_ILOG_CORE; 405 ilf->ilf_size = 2; /* format + core */ 406 407 /* 408 * make sure we don't leak uninitialised data into the log in the case 409 * when we don't log every field in the inode. 410 */ 411 ilf->ilf_dsize = 0; 412 ilf->ilf_asize = 0; 413 ilf->ilf_pad = 0; 414 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); 415 416 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 417 418 xfs_inode_item_format_core(ip, lv, &vecp); 419 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 420 if (XFS_IFORK_Q(ip)) { 421 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 422 } else { 423 iip->ili_fields &= 424 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 425 } 426 427 /* update the format with the exact fields we actually logged */ 428 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 429 } 430 431 /* 432 * This is called to pin the inode associated with the inode log 433 * item in memory so it cannot be written out. 434 */ 435 STATIC void 436 xfs_inode_item_pin( 437 struct xfs_log_item *lip) 438 { 439 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 440 441 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 442 ASSERT(lip->li_buf); 443 444 trace_xfs_inode_pin(ip, _RET_IP_); 445 atomic_inc(&ip->i_pincount); 446 } 447 448 449 /* 450 * This is called to unpin the inode associated with the inode log 451 * item which was previously pinned with a call to xfs_inode_item_pin(). 452 * 453 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 454 * 455 * Note that unpin can race with inode cluster buffer freeing marking the buffer 456 * stale. In that case, flush completions are run from the buffer unpin call, 457 * which may happen before the inode is unpinned. If we lose the race, there 458 * will be no buffer attached to the log item, but the inode will be marked 459 * XFS_ISTALE. 460 */ 461 STATIC void 462 xfs_inode_item_unpin( 463 struct xfs_log_item *lip, 464 int remove) 465 { 466 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 467 468 trace_xfs_inode_unpin(ip, _RET_IP_); 469 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE)); 470 ASSERT(atomic_read(&ip->i_pincount) > 0); 471 if (atomic_dec_and_test(&ip->i_pincount)) 472 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 473 } 474 475 STATIC uint 476 xfs_inode_item_push( 477 struct xfs_log_item *lip, 478 struct list_head *buffer_list) 479 __releases(&lip->li_ailp->ail_lock) 480 __acquires(&lip->li_ailp->ail_lock) 481 { 482 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 483 struct xfs_inode *ip = iip->ili_inode; 484 struct xfs_buf *bp = lip->li_buf; 485 uint rval = XFS_ITEM_SUCCESS; 486 int error; 487 488 ASSERT(iip->ili_item.li_buf); 489 490 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp) || 491 (ip->i_flags & XFS_ISTALE)) 492 return XFS_ITEM_PINNED; 493 494 /* If the inode is already flush locked, we're already flushing. */ 495 if (xfs_isiflocked(ip)) 496 return XFS_ITEM_FLUSHING; 497 498 if (!xfs_buf_trylock(bp)) 499 return XFS_ITEM_LOCKED; 500 501 spin_unlock(&lip->li_ailp->ail_lock); 502 503 /* 504 * We need to hold a reference for flushing the cluster buffer as it may 505 * fail the buffer without IO submission. In which case, we better get a 506 * reference for that completion because otherwise we don't get a 507 * reference for IO until we queue the buffer for delwri submission. 508 */ 509 xfs_buf_hold(bp); 510 error = xfs_iflush_cluster(bp); 511 if (!error) { 512 if (!xfs_buf_delwri_queue(bp, buffer_list)) 513 rval = XFS_ITEM_FLUSHING; 514 xfs_buf_relse(bp); 515 } else { 516 /* 517 * Release the buffer if we were unable to flush anything. On 518 * any other error, the buffer has already been released. 519 */ 520 if (error == -EAGAIN) 521 xfs_buf_relse(bp); 522 rval = XFS_ITEM_LOCKED; 523 } 524 525 spin_lock(&lip->li_ailp->ail_lock); 526 return rval; 527 } 528 529 /* 530 * Unlock the inode associated with the inode log item. 531 */ 532 STATIC void 533 xfs_inode_item_release( 534 struct xfs_log_item *lip) 535 { 536 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 537 struct xfs_inode *ip = iip->ili_inode; 538 unsigned short lock_flags; 539 540 ASSERT(ip->i_itemp != NULL); 541 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 542 543 lock_flags = iip->ili_lock_flags; 544 iip->ili_lock_flags = 0; 545 if (lock_flags) 546 xfs_iunlock(ip, lock_flags); 547 } 548 549 /* 550 * This is called to find out where the oldest active copy of the inode log 551 * item in the on disk log resides now that the last log write of it completed 552 * at the given lsn. Since we always re-log all dirty data in an inode, the 553 * latest copy in the on disk log is the only one that matters. Therefore, 554 * simply return the given lsn. 555 * 556 * If the inode has been marked stale because the cluster is being freed, we 557 * don't want to (re-)insert this inode into the AIL. There is a race condition 558 * where the cluster buffer may be unpinned before the inode is inserted into 559 * the AIL during transaction committed processing. If the buffer is unpinned 560 * before the inode item has been committed and inserted, then it is possible 561 * for the buffer to be written and IO completes before the inode is inserted 562 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 563 * AIL which will never get removed. It will, however, get reclaimed which 564 * triggers an assert in xfs_inode_free() complaining about freein an inode 565 * still in the AIL. 566 * 567 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 568 * transaction committed code knows that it does not need to do any further 569 * processing on the item. 570 */ 571 STATIC xfs_lsn_t 572 xfs_inode_item_committed( 573 struct xfs_log_item *lip, 574 xfs_lsn_t lsn) 575 { 576 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 577 struct xfs_inode *ip = iip->ili_inode; 578 579 if (xfs_iflags_test(ip, XFS_ISTALE)) { 580 xfs_inode_item_unpin(lip, 0); 581 return -1; 582 } 583 return lsn; 584 } 585 586 STATIC void 587 xfs_inode_item_committing( 588 struct xfs_log_item *lip, 589 xfs_lsn_t commit_lsn) 590 { 591 INODE_ITEM(lip)->ili_last_lsn = commit_lsn; 592 return xfs_inode_item_release(lip); 593 } 594 595 static const struct xfs_item_ops xfs_inode_item_ops = { 596 .iop_size = xfs_inode_item_size, 597 .iop_format = xfs_inode_item_format, 598 .iop_pin = xfs_inode_item_pin, 599 .iop_unpin = xfs_inode_item_unpin, 600 .iop_release = xfs_inode_item_release, 601 .iop_committed = xfs_inode_item_committed, 602 .iop_push = xfs_inode_item_push, 603 .iop_committing = xfs_inode_item_committing, 604 }; 605 606 607 /* 608 * Initialize the inode log item for a newly allocated (in-core) inode. 609 */ 610 void 611 xfs_inode_item_init( 612 struct xfs_inode *ip, 613 struct xfs_mount *mp) 614 { 615 struct xfs_inode_log_item *iip; 616 617 ASSERT(ip->i_itemp == NULL); 618 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_zone, 619 GFP_KERNEL | __GFP_NOFAIL); 620 621 iip->ili_inode = ip; 622 spin_lock_init(&iip->ili_lock); 623 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 624 &xfs_inode_item_ops); 625 } 626 627 /* 628 * Free the inode log item and any memory hanging off of it. 629 */ 630 void 631 xfs_inode_item_destroy( 632 struct xfs_inode *ip) 633 { 634 struct xfs_inode_log_item *iip = ip->i_itemp; 635 636 ASSERT(iip->ili_item.li_buf == NULL); 637 638 ip->i_itemp = NULL; 639 kmem_free(iip->ili_item.li_lv_shadow); 640 kmem_cache_free(xfs_ili_zone, iip); 641 } 642 643 644 /* 645 * We only want to pull the item from the AIL if it is actually there 646 * and its location in the log has not changed since we started the 647 * flush. Thus, we only bother if the inode's lsn has not changed. 648 */ 649 static void 650 xfs_iflush_ail_updates( 651 struct xfs_ail *ailp, 652 struct list_head *list) 653 { 654 struct xfs_log_item *lip; 655 xfs_lsn_t tail_lsn = 0; 656 657 /* this is an opencoded batch version of xfs_trans_ail_delete */ 658 spin_lock(&ailp->ail_lock); 659 list_for_each_entry(lip, list, li_bio_list) { 660 xfs_lsn_t lsn; 661 662 clear_bit(XFS_LI_FAILED, &lip->li_flags); 663 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn) 664 continue; 665 666 lsn = xfs_ail_delete_one(ailp, lip); 667 if (!tail_lsn && lsn) 668 tail_lsn = lsn; 669 } 670 xfs_ail_update_finish(ailp, tail_lsn); 671 } 672 673 /* 674 * Walk the list of inodes that have completed their IOs. If they are clean 675 * remove them from the list and dissociate them from the buffer. Buffers that 676 * are still dirty remain linked to the buffer and on the list. Caller must 677 * handle them appropriately. 678 */ 679 static void 680 xfs_iflush_finish( 681 struct xfs_buf *bp, 682 struct list_head *list) 683 { 684 struct xfs_log_item *lip, *n; 685 686 list_for_each_entry_safe(lip, n, list, li_bio_list) { 687 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 688 bool drop_buffer = false; 689 690 spin_lock(&iip->ili_lock); 691 692 /* 693 * Remove the reference to the cluster buffer if the inode is 694 * clean in memory and drop the buffer reference once we've 695 * dropped the locks we hold. 696 */ 697 ASSERT(iip->ili_item.li_buf == bp); 698 if (!iip->ili_fields) { 699 iip->ili_item.li_buf = NULL; 700 list_del_init(&lip->li_bio_list); 701 drop_buffer = true; 702 } 703 iip->ili_last_fields = 0; 704 iip->ili_flush_lsn = 0; 705 spin_unlock(&iip->ili_lock); 706 xfs_ifunlock(iip->ili_inode); 707 if (drop_buffer) 708 xfs_buf_rele(bp); 709 } 710 } 711 712 /* 713 * Inode buffer IO completion routine. It is responsible for removing inodes 714 * attached to the buffer from the AIL if they have not been re-logged, as well 715 * as completing the flush and unlocking the inode. 716 */ 717 void 718 xfs_iflush_done( 719 struct xfs_buf *bp) 720 { 721 struct xfs_log_item *lip, *n; 722 LIST_HEAD(flushed_inodes); 723 LIST_HEAD(ail_updates); 724 725 /* 726 * Pull the attached inodes from the buffer one at a time and take the 727 * appropriate action on them. 728 */ 729 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 730 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 731 732 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) { 733 xfs_iflush_abort(iip->ili_inode); 734 continue; 735 } 736 if (!iip->ili_last_fields) 737 continue; 738 739 /* Do an unlocked check for needing the AIL lock. */ 740 if (iip->ili_flush_lsn == lip->li_lsn || 741 test_bit(XFS_LI_FAILED, &lip->li_flags)) 742 list_move_tail(&lip->li_bio_list, &ail_updates); 743 else 744 list_move_tail(&lip->li_bio_list, &flushed_inodes); 745 } 746 747 if (!list_empty(&ail_updates)) { 748 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates); 749 list_splice_tail(&ail_updates, &flushed_inodes); 750 } 751 752 xfs_iflush_finish(bp, &flushed_inodes); 753 if (!list_empty(&flushed_inodes)) 754 list_splice_tail(&flushed_inodes, &bp->b_li_list); 755 } 756 757 /* 758 * This is the inode flushing abort routine. It is called from xfs_iflush when 759 * the filesystem is shutting down to clean up the inode state. It is 760 * responsible for removing the inode item from the AIL if it has not been 761 * re-logged, and unlocking the inode's flush lock. 762 */ 763 void 764 xfs_iflush_abort( 765 struct xfs_inode *ip) 766 { 767 struct xfs_inode_log_item *iip = ip->i_itemp; 768 struct xfs_buf *bp = NULL; 769 770 if (iip) { 771 /* 772 * Clear the failed bit before removing the item from the AIL so 773 * xfs_trans_ail_delete() doesn't try to clear and release the 774 * buffer attached to the log item before we are done with it. 775 */ 776 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags); 777 xfs_trans_ail_delete(&iip->ili_item, 0); 778 779 /* 780 * Clear the inode logging fields so no more flushes are 781 * attempted. 782 */ 783 spin_lock(&iip->ili_lock); 784 iip->ili_last_fields = 0; 785 iip->ili_fields = 0; 786 iip->ili_fsync_fields = 0; 787 iip->ili_flush_lsn = 0; 788 bp = iip->ili_item.li_buf; 789 iip->ili_item.li_buf = NULL; 790 list_del_init(&iip->ili_item.li_bio_list); 791 spin_unlock(&iip->ili_lock); 792 } 793 xfs_ifunlock(ip); 794 if (bp) 795 xfs_buf_rele(bp); 796 } 797 798 /* 799 * convert an xfs_inode_log_format struct from the old 32 bit version 800 * (which can have different field alignments) to the native 64 bit version 801 */ 802 int 803 xfs_inode_item_format_convert( 804 struct xfs_log_iovec *buf, 805 struct xfs_inode_log_format *in_f) 806 { 807 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; 808 809 if (buf->i_len != sizeof(*in_f32)) { 810 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 811 return -EFSCORRUPTED; 812 } 813 814 in_f->ilf_type = in_f32->ilf_type; 815 in_f->ilf_size = in_f32->ilf_size; 816 in_f->ilf_fields = in_f32->ilf_fields; 817 in_f->ilf_asize = in_f32->ilf_asize; 818 in_f->ilf_dsize = in_f32->ilf_dsize; 819 in_f->ilf_ino = in_f32->ilf_ino; 820 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); 821 in_f->ilf_blkno = in_f32->ilf_blkno; 822 in_f->ilf_len = in_f32->ilf_len; 823 in_f->ilf_boffset = in_f32->ilf_boffset; 824 return 0; 825 } 826