1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_inode.h" 25 #include "xfs_trans.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_error.h" 28 #include "xfs_trace.h" 29 #include "xfs_trans_priv.h" 30 #include "xfs_log.h" 31 32 33 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 34 35 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 36 { 37 return container_of(lip, struct xfs_inode_log_item, ili_item); 38 } 39 40 STATIC void 41 xfs_inode_item_data_fork_size( 42 struct xfs_inode_log_item *iip, 43 int *nvecs, 44 int *nbytes) 45 { 46 struct xfs_inode *ip = iip->ili_inode; 47 48 switch (ip->i_d.di_format) { 49 case XFS_DINODE_FMT_EXTENTS: 50 if ((iip->ili_fields & XFS_ILOG_DEXT) && 51 ip->i_d.di_nextents > 0 && 52 ip->i_df.if_bytes > 0) { 53 /* worst case, doesn't subtract delalloc extents */ 54 *nbytes += XFS_IFORK_DSIZE(ip); 55 *nvecs += 1; 56 } 57 break; 58 case XFS_DINODE_FMT_BTREE: 59 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 60 ip->i_df.if_broot_bytes > 0) { 61 *nbytes += ip->i_df.if_broot_bytes; 62 *nvecs += 1; 63 } 64 break; 65 case XFS_DINODE_FMT_LOCAL: 66 if ((iip->ili_fields & XFS_ILOG_DDATA) && 67 ip->i_df.if_bytes > 0) { 68 *nbytes += roundup(ip->i_df.if_bytes, 4); 69 *nvecs += 1; 70 } 71 break; 72 73 case XFS_DINODE_FMT_DEV: 74 case XFS_DINODE_FMT_UUID: 75 break; 76 default: 77 ASSERT(0); 78 break; 79 } 80 } 81 82 STATIC void 83 xfs_inode_item_attr_fork_size( 84 struct xfs_inode_log_item *iip, 85 int *nvecs, 86 int *nbytes) 87 { 88 struct xfs_inode *ip = iip->ili_inode; 89 90 switch (ip->i_d.di_aformat) { 91 case XFS_DINODE_FMT_EXTENTS: 92 if ((iip->ili_fields & XFS_ILOG_AEXT) && 93 ip->i_d.di_anextents > 0 && 94 ip->i_afp->if_bytes > 0) { 95 /* worst case, doesn't subtract unused space */ 96 *nbytes += XFS_IFORK_ASIZE(ip); 97 *nvecs += 1; 98 } 99 break; 100 case XFS_DINODE_FMT_BTREE: 101 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 102 ip->i_afp->if_broot_bytes > 0) { 103 *nbytes += ip->i_afp->if_broot_bytes; 104 *nvecs += 1; 105 } 106 break; 107 case XFS_DINODE_FMT_LOCAL: 108 if ((iip->ili_fields & XFS_ILOG_ADATA) && 109 ip->i_afp->if_bytes > 0) { 110 *nbytes += roundup(ip->i_afp->if_bytes, 4); 111 *nvecs += 1; 112 } 113 break; 114 default: 115 ASSERT(0); 116 break; 117 } 118 } 119 120 /* 121 * This returns the number of iovecs needed to log the given inode item. 122 * 123 * We need one iovec for the inode log format structure, one for the 124 * inode core, and possibly one for the inode data/extents/b-tree root 125 * and one for the inode attribute data/extents/b-tree root. 126 */ 127 STATIC void 128 xfs_inode_item_size( 129 struct xfs_log_item *lip, 130 int *nvecs, 131 int *nbytes) 132 { 133 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 134 struct xfs_inode *ip = iip->ili_inode; 135 136 *nvecs += 2; 137 *nbytes += sizeof(struct xfs_inode_log_format) + 138 xfs_icdinode_size(ip->i_d.di_version); 139 140 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 141 if (XFS_IFORK_Q(ip)) 142 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 143 } 144 145 STATIC void 146 xfs_inode_item_format_data_fork( 147 struct xfs_inode_log_item *iip, 148 struct xfs_inode_log_format *ilf, 149 struct xfs_log_vec *lv, 150 struct xfs_log_iovec **vecp) 151 { 152 struct xfs_inode *ip = iip->ili_inode; 153 size_t data_bytes; 154 155 switch (ip->i_d.di_format) { 156 case XFS_DINODE_FMT_EXTENTS: 157 iip->ili_fields &= 158 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 159 XFS_ILOG_DEV | XFS_ILOG_UUID); 160 161 if ((iip->ili_fields & XFS_ILOG_DEXT) && 162 ip->i_d.di_nextents > 0 && 163 ip->i_df.if_bytes > 0) { 164 struct xfs_bmbt_rec *p; 165 166 ASSERT(ip->i_df.if_u1.if_extents != NULL); 167 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0); 168 169 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 170 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 171 xlog_finish_iovec(lv, *vecp, data_bytes); 172 173 ASSERT(data_bytes <= ip->i_df.if_bytes); 174 175 ilf->ilf_dsize = data_bytes; 176 ilf->ilf_size++; 177 } else { 178 iip->ili_fields &= ~XFS_ILOG_DEXT; 179 } 180 break; 181 case XFS_DINODE_FMT_BTREE: 182 iip->ili_fields &= 183 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | 184 XFS_ILOG_DEV | XFS_ILOG_UUID); 185 186 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 187 ip->i_df.if_broot_bytes > 0) { 188 ASSERT(ip->i_df.if_broot != NULL); 189 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 190 ip->i_df.if_broot, 191 ip->i_df.if_broot_bytes); 192 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 193 ilf->ilf_size++; 194 } else { 195 ASSERT(!(iip->ili_fields & 196 XFS_ILOG_DBROOT)); 197 iip->ili_fields &= ~XFS_ILOG_DBROOT; 198 } 199 break; 200 case XFS_DINODE_FMT_LOCAL: 201 iip->ili_fields &= 202 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | 203 XFS_ILOG_DEV | XFS_ILOG_UUID); 204 if ((iip->ili_fields & XFS_ILOG_DDATA) && 205 ip->i_df.if_bytes > 0) { 206 /* 207 * Round i_bytes up to a word boundary. 208 * The underlying memory is guaranteed to 209 * to be there by xfs_idata_realloc(). 210 */ 211 data_bytes = roundup(ip->i_df.if_bytes, 4); 212 ASSERT(ip->i_df.if_real_bytes == 0 || 213 ip->i_df.if_real_bytes == data_bytes); 214 ASSERT(ip->i_df.if_u1.if_data != NULL); 215 ASSERT(ip->i_d.di_size > 0); 216 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 217 ip->i_df.if_u1.if_data, data_bytes); 218 ilf->ilf_dsize = (unsigned)data_bytes; 219 ilf->ilf_size++; 220 } else { 221 iip->ili_fields &= ~XFS_ILOG_DDATA; 222 } 223 break; 224 case XFS_DINODE_FMT_DEV: 225 iip->ili_fields &= 226 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 227 XFS_ILOG_DEXT | XFS_ILOG_UUID); 228 if (iip->ili_fields & XFS_ILOG_DEV) 229 ilf->ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev; 230 break; 231 case XFS_DINODE_FMT_UUID: 232 iip->ili_fields &= 233 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 234 XFS_ILOG_DEXT | XFS_ILOG_DEV); 235 if (iip->ili_fields & XFS_ILOG_UUID) 236 ilf->ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid; 237 break; 238 default: 239 ASSERT(0); 240 break; 241 } 242 } 243 244 STATIC void 245 xfs_inode_item_format_attr_fork( 246 struct xfs_inode_log_item *iip, 247 struct xfs_inode_log_format *ilf, 248 struct xfs_log_vec *lv, 249 struct xfs_log_iovec **vecp) 250 { 251 struct xfs_inode *ip = iip->ili_inode; 252 size_t data_bytes; 253 254 switch (ip->i_d.di_aformat) { 255 case XFS_DINODE_FMT_EXTENTS: 256 iip->ili_fields &= 257 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 258 259 if ((iip->ili_fields & XFS_ILOG_AEXT) && 260 ip->i_d.di_anextents > 0 && 261 ip->i_afp->if_bytes > 0) { 262 struct xfs_bmbt_rec *p; 263 264 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) == 265 ip->i_d.di_anextents); 266 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 267 268 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 269 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 270 xlog_finish_iovec(lv, *vecp, data_bytes); 271 272 ilf->ilf_asize = data_bytes; 273 ilf->ilf_size++; 274 } else { 275 iip->ili_fields &= ~XFS_ILOG_AEXT; 276 } 277 break; 278 case XFS_DINODE_FMT_BTREE: 279 iip->ili_fields &= 280 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 281 282 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 283 ip->i_afp->if_broot_bytes > 0) { 284 ASSERT(ip->i_afp->if_broot != NULL); 285 286 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 287 ip->i_afp->if_broot, 288 ip->i_afp->if_broot_bytes); 289 ilf->ilf_asize = ip->i_afp->if_broot_bytes; 290 ilf->ilf_size++; 291 } else { 292 iip->ili_fields &= ~XFS_ILOG_ABROOT; 293 } 294 break; 295 case XFS_DINODE_FMT_LOCAL: 296 iip->ili_fields &= 297 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 298 299 if ((iip->ili_fields & XFS_ILOG_ADATA) && 300 ip->i_afp->if_bytes > 0) { 301 /* 302 * Round i_bytes up to a word boundary. 303 * The underlying memory is guaranteed to 304 * to be there by xfs_idata_realloc(). 305 */ 306 data_bytes = roundup(ip->i_afp->if_bytes, 4); 307 ASSERT(ip->i_afp->if_real_bytes == 0 || 308 ip->i_afp->if_real_bytes == data_bytes); 309 ASSERT(ip->i_afp->if_u1.if_data != NULL); 310 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 311 ip->i_afp->if_u1.if_data, 312 data_bytes); 313 ilf->ilf_asize = (unsigned)data_bytes; 314 ilf->ilf_size++; 315 } else { 316 iip->ili_fields &= ~XFS_ILOG_ADATA; 317 } 318 break; 319 default: 320 ASSERT(0); 321 break; 322 } 323 } 324 325 /* 326 * This is called to fill in the vector of log iovecs for the given inode 327 * log item. It fills the first item with an inode log format structure, 328 * the second with the on-disk inode structure, and a possible third and/or 329 * fourth with the inode data/extents/b-tree root and inode attributes 330 * data/extents/b-tree root. 331 */ 332 STATIC void 333 xfs_inode_item_format( 334 struct xfs_log_item *lip, 335 struct xfs_log_vec *lv) 336 { 337 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 338 struct xfs_inode *ip = iip->ili_inode; 339 struct xfs_inode_log_format *ilf; 340 struct xfs_log_iovec *vecp = NULL; 341 342 ASSERT(ip->i_d.di_version > 1); 343 344 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 345 ilf->ilf_type = XFS_LI_INODE; 346 ilf->ilf_ino = ip->i_ino; 347 ilf->ilf_blkno = ip->i_imap.im_blkno; 348 ilf->ilf_len = ip->i_imap.im_len; 349 ilf->ilf_boffset = ip->i_imap.im_boffset; 350 ilf->ilf_fields = XFS_ILOG_CORE; 351 ilf->ilf_size = 2; /* format + core */ 352 xlog_finish_iovec(lv, vecp, sizeof(struct xfs_inode_log_format)); 353 354 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_ICORE, 355 &ip->i_d, 356 xfs_icdinode_size(ip->i_d.di_version)); 357 358 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 359 if (XFS_IFORK_Q(ip)) { 360 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 361 } else { 362 iip->ili_fields &= 363 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 364 } 365 366 /* update the format with the exact fields we actually logged */ 367 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 368 } 369 370 /* 371 * This is called to pin the inode associated with the inode log 372 * item in memory so it cannot be written out. 373 */ 374 STATIC void 375 xfs_inode_item_pin( 376 struct xfs_log_item *lip) 377 { 378 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 379 380 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 381 382 trace_xfs_inode_pin(ip, _RET_IP_); 383 atomic_inc(&ip->i_pincount); 384 } 385 386 387 /* 388 * This is called to unpin the inode associated with the inode log 389 * item which was previously pinned with a call to xfs_inode_item_pin(). 390 * 391 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 392 */ 393 STATIC void 394 xfs_inode_item_unpin( 395 struct xfs_log_item *lip, 396 int remove) 397 { 398 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 399 400 trace_xfs_inode_unpin(ip, _RET_IP_); 401 ASSERT(atomic_read(&ip->i_pincount) > 0); 402 if (atomic_dec_and_test(&ip->i_pincount)) 403 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 404 } 405 406 STATIC uint 407 xfs_inode_item_push( 408 struct xfs_log_item *lip, 409 struct list_head *buffer_list) 410 { 411 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 412 struct xfs_inode *ip = iip->ili_inode; 413 struct xfs_buf *bp = NULL; 414 uint rval = XFS_ITEM_SUCCESS; 415 int error; 416 417 if (xfs_ipincount(ip) > 0) 418 return XFS_ITEM_PINNED; 419 420 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) 421 return XFS_ITEM_LOCKED; 422 423 /* 424 * Re-check the pincount now that we stabilized the value by 425 * taking the ilock. 426 */ 427 if (xfs_ipincount(ip) > 0) { 428 rval = XFS_ITEM_PINNED; 429 goto out_unlock; 430 } 431 432 /* 433 * Stale inode items should force out the iclog. 434 */ 435 if (ip->i_flags & XFS_ISTALE) { 436 rval = XFS_ITEM_PINNED; 437 goto out_unlock; 438 } 439 440 /* 441 * Someone else is already flushing the inode. Nothing we can do 442 * here but wait for the flush to finish and remove the item from 443 * the AIL. 444 */ 445 if (!xfs_iflock_nowait(ip)) { 446 rval = XFS_ITEM_FLUSHING; 447 goto out_unlock; 448 } 449 450 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 451 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 452 453 spin_unlock(&lip->li_ailp->xa_lock); 454 455 error = xfs_iflush(ip, &bp); 456 if (!error) { 457 if (!xfs_buf_delwri_queue(bp, buffer_list)) 458 rval = XFS_ITEM_FLUSHING; 459 xfs_buf_relse(bp); 460 } 461 462 spin_lock(&lip->li_ailp->xa_lock); 463 out_unlock: 464 xfs_iunlock(ip, XFS_ILOCK_SHARED); 465 return rval; 466 } 467 468 /* 469 * Unlock the inode associated with the inode log item. 470 * Clear the fields of the inode and inode log item that 471 * are specific to the current transaction. If the 472 * hold flags is set, do not unlock the inode. 473 */ 474 STATIC void 475 xfs_inode_item_unlock( 476 struct xfs_log_item *lip) 477 { 478 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 479 struct xfs_inode *ip = iip->ili_inode; 480 unsigned short lock_flags; 481 482 ASSERT(ip->i_itemp != NULL); 483 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 484 485 lock_flags = iip->ili_lock_flags; 486 iip->ili_lock_flags = 0; 487 if (lock_flags) 488 xfs_iunlock(ip, lock_flags); 489 } 490 491 /* 492 * This is called to find out where the oldest active copy of the inode log 493 * item in the on disk log resides now that the last log write of it completed 494 * at the given lsn. Since we always re-log all dirty data in an inode, the 495 * latest copy in the on disk log is the only one that matters. Therefore, 496 * simply return the given lsn. 497 * 498 * If the inode has been marked stale because the cluster is being freed, we 499 * don't want to (re-)insert this inode into the AIL. There is a race condition 500 * where the cluster buffer may be unpinned before the inode is inserted into 501 * the AIL during transaction committed processing. If the buffer is unpinned 502 * before the inode item has been committed and inserted, then it is possible 503 * for the buffer to be written and IO completes before the inode is inserted 504 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 505 * AIL which will never get removed. It will, however, get reclaimed which 506 * triggers an assert in xfs_inode_free() complaining about freein an inode 507 * still in the AIL. 508 * 509 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 510 * transaction committed code knows that it does not need to do any further 511 * processing on the item. 512 */ 513 STATIC xfs_lsn_t 514 xfs_inode_item_committed( 515 struct xfs_log_item *lip, 516 xfs_lsn_t lsn) 517 { 518 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 519 struct xfs_inode *ip = iip->ili_inode; 520 521 if (xfs_iflags_test(ip, XFS_ISTALE)) { 522 xfs_inode_item_unpin(lip, 0); 523 return -1; 524 } 525 return lsn; 526 } 527 528 /* 529 * XXX rcc - this one really has to do something. Probably needs 530 * to stamp in a new field in the incore inode. 531 */ 532 STATIC void 533 xfs_inode_item_committing( 534 struct xfs_log_item *lip, 535 xfs_lsn_t lsn) 536 { 537 INODE_ITEM(lip)->ili_last_lsn = lsn; 538 } 539 540 /* 541 * This is the ops vector shared by all buf log items. 542 */ 543 static const struct xfs_item_ops xfs_inode_item_ops = { 544 .iop_size = xfs_inode_item_size, 545 .iop_format = xfs_inode_item_format, 546 .iop_pin = xfs_inode_item_pin, 547 .iop_unpin = xfs_inode_item_unpin, 548 .iop_unlock = xfs_inode_item_unlock, 549 .iop_committed = xfs_inode_item_committed, 550 .iop_push = xfs_inode_item_push, 551 .iop_committing = xfs_inode_item_committing 552 }; 553 554 555 /* 556 * Initialize the inode log item for a newly allocated (in-core) inode. 557 */ 558 void 559 xfs_inode_item_init( 560 struct xfs_inode *ip, 561 struct xfs_mount *mp) 562 { 563 struct xfs_inode_log_item *iip; 564 565 ASSERT(ip->i_itemp == NULL); 566 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); 567 568 iip->ili_inode = ip; 569 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 570 &xfs_inode_item_ops); 571 } 572 573 /* 574 * Free the inode log item and any memory hanging off of it. 575 */ 576 void 577 xfs_inode_item_destroy( 578 xfs_inode_t *ip) 579 { 580 kmem_zone_free(xfs_ili_zone, ip->i_itemp); 581 } 582 583 584 /* 585 * This is the inode flushing I/O completion routine. It is called 586 * from interrupt level when the buffer containing the inode is 587 * flushed to disk. It is responsible for removing the inode item 588 * from the AIL if it has not been re-logged, and unlocking the inode's 589 * flush lock. 590 * 591 * To reduce AIL lock traffic as much as possible, we scan the buffer log item 592 * list for other inodes that will run this function. We remove them from the 593 * buffer list so we can process all the inode IO completions in one AIL lock 594 * traversal. 595 */ 596 void 597 xfs_iflush_done( 598 struct xfs_buf *bp, 599 struct xfs_log_item *lip) 600 { 601 struct xfs_inode_log_item *iip; 602 struct xfs_log_item *blip; 603 struct xfs_log_item *next; 604 struct xfs_log_item *prev; 605 struct xfs_ail *ailp = lip->li_ailp; 606 int need_ail = 0; 607 608 /* 609 * Scan the buffer IO completions for other inodes being completed and 610 * attach them to the current inode log item. 611 */ 612 blip = bp->b_fspriv; 613 prev = NULL; 614 while (blip != NULL) { 615 if (blip->li_cb != xfs_iflush_done) { 616 prev = blip; 617 blip = blip->li_bio_list; 618 continue; 619 } 620 621 /* remove from list */ 622 next = blip->li_bio_list; 623 if (!prev) { 624 bp->b_fspriv = next; 625 } else { 626 prev->li_bio_list = next; 627 } 628 629 /* add to current list */ 630 blip->li_bio_list = lip->li_bio_list; 631 lip->li_bio_list = blip; 632 633 /* 634 * while we have the item, do the unlocked check for needing 635 * the AIL lock. 636 */ 637 iip = INODE_ITEM(blip); 638 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) 639 need_ail++; 640 641 blip = next; 642 } 643 644 /* make sure we capture the state of the initial inode. */ 645 iip = INODE_ITEM(lip); 646 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) 647 need_ail++; 648 649 /* 650 * We only want to pull the item from the AIL if it is 651 * actually there and its location in the log has not 652 * changed since we started the flush. Thus, we only bother 653 * if the ili_logged flag is set and the inode's lsn has not 654 * changed. First we check the lsn outside 655 * the lock since it's cheaper, and then we recheck while 656 * holding the lock before removing the inode from the AIL. 657 */ 658 if (need_ail) { 659 struct xfs_log_item *log_items[need_ail]; 660 int i = 0; 661 spin_lock(&ailp->xa_lock); 662 for (blip = lip; blip; blip = blip->li_bio_list) { 663 iip = INODE_ITEM(blip); 664 if (iip->ili_logged && 665 blip->li_lsn == iip->ili_flush_lsn) { 666 log_items[i++] = blip; 667 } 668 ASSERT(i <= need_ail); 669 } 670 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */ 671 xfs_trans_ail_delete_bulk(ailp, log_items, i, 672 SHUTDOWN_CORRUPT_INCORE); 673 } 674 675 676 /* 677 * clean up and unlock the flush lock now we are done. We can clear the 678 * ili_last_fields bits now that we know that the data corresponding to 679 * them is safely on disk. 680 */ 681 for (blip = lip; blip; blip = next) { 682 next = blip->li_bio_list; 683 blip->li_bio_list = NULL; 684 685 iip = INODE_ITEM(blip); 686 iip->ili_logged = 0; 687 iip->ili_last_fields = 0; 688 xfs_ifunlock(iip->ili_inode); 689 } 690 } 691 692 /* 693 * This is the inode flushing abort routine. It is called from xfs_iflush when 694 * the filesystem is shutting down to clean up the inode state. It is 695 * responsible for removing the inode item from the AIL if it has not been 696 * re-logged, and unlocking the inode's flush lock. 697 */ 698 void 699 xfs_iflush_abort( 700 xfs_inode_t *ip, 701 bool stale) 702 { 703 xfs_inode_log_item_t *iip = ip->i_itemp; 704 705 if (iip) { 706 struct xfs_ail *ailp = iip->ili_item.li_ailp; 707 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 708 spin_lock(&ailp->xa_lock); 709 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 710 /* xfs_trans_ail_delete() drops the AIL lock. */ 711 xfs_trans_ail_delete(ailp, &iip->ili_item, 712 stale ? 713 SHUTDOWN_LOG_IO_ERROR : 714 SHUTDOWN_CORRUPT_INCORE); 715 } else 716 spin_unlock(&ailp->xa_lock); 717 } 718 iip->ili_logged = 0; 719 /* 720 * Clear the ili_last_fields bits now that we know that the 721 * data corresponding to them is safely on disk. 722 */ 723 iip->ili_last_fields = 0; 724 /* 725 * Clear the inode logging fields so no more flushes are 726 * attempted. 727 */ 728 iip->ili_fields = 0; 729 } 730 /* 731 * Release the inode's flush lock since we're done with it. 732 */ 733 xfs_ifunlock(ip); 734 } 735 736 void 737 xfs_istale_done( 738 struct xfs_buf *bp, 739 struct xfs_log_item *lip) 740 { 741 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true); 742 } 743 744 /* 745 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions 746 * (which can have different field alignments) to the native version 747 */ 748 int 749 xfs_inode_item_format_convert( 750 xfs_log_iovec_t *buf, 751 xfs_inode_log_format_t *in_f) 752 { 753 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) { 754 xfs_inode_log_format_32_t *in_f32 = buf->i_addr; 755 756 in_f->ilf_type = in_f32->ilf_type; 757 in_f->ilf_size = in_f32->ilf_size; 758 in_f->ilf_fields = in_f32->ilf_fields; 759 in_f->ilf_asize = in_f32->ilf_asize; 760 in_f->ilf_dsize = in_f32->ilf_dsize; 761 in_f->ilf_ino = in_f32->ilf_ino; 762 /* copy biggest field of ilf_u */ 763 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 764 in_f32->ilf_u.ilfu_uuid.__u_bits, 765 sizeof(uuid_t)); 766 in_f->ilf_blkno = in_f32->ilf_blkno; 767 in_f->ilf_len = in_f32->ilf_len; 768 in_f->ilf_boffset = in_f32->ilf_boffset; 769 return 0; 770 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){ 771 xfs_inode_log_format_64_t *in_f64 = buf->i_addr; 772 773 in_f->ilf_type = in_f64->ilf_type; 774 in_f->ilf_size = in_f64->ilf_size; 775 in_f->ilf_fields = in_f64->ilf_fields; 776 in_f->ilf_asize = in_f64->ilf_asize; 777 in_f->ilf_dsize = in_f64->ilf_dsize; 778 in_f->ilf_ino = in_f64->ilf_ino; 779 /* copy biggest field of ilf_u */ 780 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 781 in_f64->ilf_u.ilfu_uuid.__u_bits, 782 sizeof(uuid_t)); 783 in_f->ilf_blkno = in_f64->ilf_blkno; 784 in_f->ilf_len = in_f64->ilf_len; 785 in_f->ilf_boffset = in_f64->ilf_boffset; 786 return 0; 787 } 788 return -EFSCORRUPTED; 789 } 790