xref: /linux/fs/xfs/xfs_inode_item.c (revision 858259cf7d1c443c836a2022b78cb281f0a9b95e)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_buf_item.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir.h"
29 #include "xfs_dir2.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_trans_priv.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir_sf.h"
37 #include "xfs_dir2_sf.h"
38 #include "xfs_attr_sf.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_ialloc.h"
44 #include "xfs_rw.h"
45 
46 
47 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
48 
49 /*
50  * This returns the number of iovecs needed to log the given inode item.
51  *
52  * We need one iovec for the inode log format structure, one for the
53  * inode core, and possibly one for the inode data/extents/b-tree root
54  * and one for the inode attribute data/extents/b-tree root.
55  */
56 STATIC uint
57 xfs_inode_item_size(
58 	xfs_inode_log_item_t	*iip)
59 {
60 	uint		nvecs;
61 	xfs_inode_t	*ip;
62 
63 	ip = iip->ili_inode;
64 	nvecs = 2;
65 
66 	/*
67 	 * Only log the data/extents/b-tree root if there is something
68 	 * left to log.
69 	 */
70 	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
71 
72 	switch (ip->i_d.di_format) {
73 	case XFS_DINODE_FMT_EXTENTS:
74 		iip->ili_format.ilf_fields &=
75 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
76 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
77 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
78 		    (ip->i_d.di_nextents > 0) &&
79 		    (ip->i_df.if_bytes > 0)) {
80 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
81 			nvecs++;
82 		} else {
83 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
84 		}
85 		break;
86 
87 	case XFS_DINODE_FMT_BTREE:
88 		ASSERT(ip->i_df.if_ext_max ==
89 		       XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
90 		iip->ili_format.ilf_fields &=
91 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
92 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
93 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
94 		    (ip->i_df.if_broot_bytes > 0)) {
95 			ASSERT(ip->i_df.if_broot != NULL);
96 			nvecs++;
97 		} else {
98 			ASSERT(!(iip->ili_format.ilf_fields &
99 				 XFS_ILOG_DBROOT));
100 #ifdef XFS_TRANS_DEBUG
101 			if (iip->ili_root_size > 0) {
102 				ASSERT(iip->ili_root_size ==
103 				       ip->i_df.if_broot_bytes);
104 				ASSERT(memcmp(iip->ili_orig_root,
105 					    ip->i_df.if_broot,
106 					    iip->ili_root_size) == 0);
107 			} else {
108 				ASSERT(ip->i_df.if_broot_bytes == 0);
109 			}
110 #endif
111 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
112 		}
113 		break;
114 
115 	case XFS_DINODE_FMT_LOCAL:
116 		iip->ili_format.ilf_fields &=
117 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
118 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
119 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
120 		    (ip->i_df.if_bytes > 0)) {
121 			ASSERT(ip->i_df.if_u1.if_data != NULL);
122 			ASSERT(ip->i_d.di_size > 0);
123 			nvecs++;
124 		} else {
125 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
126 		}
127 		break;
128 
129 	case XFS_DINODE_FMT_DEV:
130 		iip->ili_format.ilf_fields &=
131 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
132 			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
133 		break;
134 
135 	case XFS_DINODE_FMT_UUID:
136 		iip->ili_format.ilf_fields &=
137 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
138 			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
139 		break;
140 
141 	default:
142 		ASSERT(0);
143 		break;
144 	}
145 
146 	/*
147 	 * If there are no attributes associated with this file,
148 	 * then there cannot be anything more to log.
149 	 * Clear all attribute-related log flags.
150 	 */
151 	if (!XFS_IFORK_Q(ip)) {
152 		iip->ili_format.ilf_fields &=
153 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
154 		return nvecs;
155 	}
156 
157 	/*
158 	 * Log any necessary attribute data.
159 	 */
160 	switch (ip->i_d.di_aformat) {
161 	case XFS_DINODE_FMT_EXTENTS:
162 		iip->ili_format.ilf_fields &=
163 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
164 		if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
165 		    (ip->i_d.di_anextents > 0) &&
166 		    (ip->i_afp->if_bytes > 0)) {
167 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
168 			nvecs++;
169 		} else {
170 			iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
171 		}
172 		break;
173 
174 	case XFS_DINODE_FMT_BTREE:
175 		iip->ili_format.ilf_fields &=
176 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
177 		if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
178 		    (ip->i_afp->if_broot_bytes > 0)) {
179 			ASSERT(ip->i_afp->if_broot != NULL);
180 			nvecs++;
181 		} else {
182 			iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
183 		}
184 		break;
185 
186 	case XFS_DINODE_FMT_LOCAL:
187 		iip->ili_format.ilf_fields &=
188 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
189 		if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
190 		    (ip->i_afp->if_bytes > 0)) {
191 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
192 			nvecs++;
193 		} else {
194 			iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
195 		}
196 		break;
197 
198 	default:
199 		ASSERT(0);
200 		break;
201 	}
202 
203 	return nvecs;
204 }
205 
206 /*
207  * This is called to fill in the vector of log iovecs for the
208  * given inode log item.  It fills the first item with an inode
209  * log format structure, the second with the on-disk inode structure,
210  * and a possible third and/or fourth with the inode data/extents/b-tree
211  * root and inode attributes data/extents/b-tree root.
212  */
213 STATIC void
214 xfs_inode_item_format(
215 	xfs_inode_log_item_t	*iip,
216 	xfs_log_iovec_t		*log_vector)
217 {
218 	uint			nvecs;
219 	xfs_log_iovec_t		*vecp;
220 	xfs_inode_t		*ip;
221 	size_t			data_bytes;
222 	xfs_bmbt_rec_t		*ext_buffer;
223 	int			nrecs;
224 	xfs_mount_t		*mp;
225 
226 	ip = iip->ili_inode;
227 	vecp = log_vector;
228 
229 	vecp->i_addr = (xfs_caddr_t)&iip->ili_format;
230 	vecp->i_len  = sizeof(xfs_inode_log_format_t);
231 	XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT);
232 	vecp++;
233 	nvecs	     = 1;
234 
235 	/*
236 	 * Clear i_update_core if the timestamps (or any other
237 	 * non-transactional modification) need flushing/logging
238 	 * and we're about to log them with the rest of the core.
239 	 *
240 	 * This is the same logic as xfs_iflush() but this code can't
241 	 * run at the same time as xfs_iflush because we're in commit
242 	 * processing here and so we have the inode lock held in
243 	 * exclusive mode.  Although it doesn't really matter
244 	 * for the timestamps if both routines were to grab the
245 	 * timestamps or not.  That would be ok.
246 	 *
247 	 * We clear i_update_core before copying out the data.
248 	 * This is for coordination with our timestamp updates
249 	 * that don't hold the inode lock. They will always
250 	 * update the timestamps BEFORE setting i_update_core,
251 	 * so if we clear i_update_core after they set it we
252 	 * are guaranteed to see their updates to the timestamps
253 	 * either here.  Likewise, if they set it after we clear it
254 	 * here, we'll see it either on the next commit of this
255 	 * inode or the next time the inode gets flushed via
256 	 * xfs_iflush().  This depends on strongly ordered memory
257 	 * semantics, but we have that.  We use the SYNCHRONIZE
258 	 * macro to make sure that the compiler does not reorder
259 	 * the i_update_core access below the data copy below.
260 	 */
261 	if (ip->i_update_core)  {
262 		ip->i_update_core = 0;
263 		SYNCHRONIZE();
264 	}
265 
266 	/*
267 	 * We don't have to worry about re-ordering here because
268 	 * the update_size field is protected by the inode lock
269 	 * and we have that held in exclusive mode.
270 	 */
271 	if (ip->i_update_size)
272 		ip->i_update_size = 0;
273 
274 	vecp->i_addr = (xfs_caddr_t)&ip->i_d;
275 	vecp->i_len  = sizeof(xfs_dinode_core_t);
276 	XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE);
277 	vecp++;
278 	nvecs++;
279 	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
280 
281 	/*
282 	 * If this is really an old format inode, then we need to
283 	 * log it as such.  This means that we have to copy the link
284 	 * count from the new field to the old.  We don't have to worry
285 	 * about the new fields, because nothing trusts them as long as
286 	 * the old inode version number is there.  If the superblock already
287 	 * has a new version number, then we don't bother converting back.
288 	 */
289 	mp = ip->i_mount;
290 	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
291 	       XFS_SB_VERSION_HASNLINK(&mp->m_sb));
292 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
293 		if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
294 			/*
295 			 * Convert it back.
296 			 */
297 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
298 			ip->i_d.di_onlink = ip->i_d.di_nlink;
299 		} else {
300 			/*
301 			 * The superblock version has already been bumped,
302 			 * so just make the conversion to the new inode
303 			 * format permanent.
304 			 */
305 			ip->i_d.di_version = XFS_DINODE_VERSION_2;
306 			ip->i_d.di_onlink = 0;
307 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
308 		}
309 	}
310 
311 	switch (ip->i_d.di_format) {
312 	case XFS_DINODE_FMT_EXTENTS:
313 		ASSERT(!(iip->ili_format.ilf_fields &
314 			 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
315 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
316 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
317 			ASSERT(ip->i_df.if_bytes > 0);
318 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
319 			ASSERT(ip->i_d.di_nextents > 0);
320 			ASSERT(iip->ili_extents_buf == NULL);
321 			nrecs = ip->i_df.if_bytes /
322 				(uint)sizeof(xfs_bmbt_rec_t);
323 			ASSERT(nrecs > 0);
324 #ifdef XFS_NATIVE_HOST
325 			if (nrecs == ip->i_d.di_nextents) {
326 				/*
327 				 * There are no delayed allocation
328 				 * extents, so just point to the
329 				 * real extents array.
330 				 */
331 				vecp->i_addr =
332 					(char *)(ip->i_df.if_u1.if_extents);
333 				vecp->i_len = ip->i_df.if_bytes;
334 				XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
335 			} else
336 #endif
337 			{
338 				/*
339 				 * There are delayed allocation extents
340 				 * in the inode, or we need to convert
341 				 * the extents to on disk format.
342 				 * Use xfs_iextents_copy()
343 				 * to copy only the real extents into
344 				 * a separate buffer.  We'll free the
345 				 * buffer in the unlock routine.
346 				 */
347 				ext_buffer = kmem_alloc(ip->i_df.if_bytes,
348 					KM_SLEEP);
349 				iip->ili_extents_buf = ext_buffer;
350 				vecp->i_addr = (xfs_caddr_t)ext_buffer;
351 				vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
352 						XFS_DATA_FORK);
353 				XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
354 			}
355 			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
356 			iip->ili_format.ilf_dsize = vecp->i_len;
357 			vecp++;
358 			nvecs++;
359 		}
360 		break;
361 
362 	case XFS_DINODE_FMT_BTREE:
363 		ASSERT(!(iip->ili_format.ilf_fields &
364 			 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
365 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
366 		if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
367 			ASSERT(ip->i_df.if_broot_bytes > 0);
368 			ASSERT(ip->i_df.if_broot != NULL);
369 			vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot;
370 			vecp->i_len = ip->i_df.if_broot_bytes;
371 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT);
372 			vecp++;
373 			nvecs++;
374 			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
375 		}
376 		break;
377 
378 	case XFS_DINODE_FMT_LOCAL:
379 		ASSERT(!(iip->ili_format.ilf_fields &
380 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
381 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
382 		if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
383 			ASSERT(ip->i_df.if_bytes > 0);
384 			ASSERT(ip->i_df.if_u1.if_data != NULL);
385 			ASSERT(ip->i_d.di_size > 0);
386 
387 			vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data;
388 			/*
389 			 * Round i_bytes up to a word boundary.
390 			 * The underlying memory is guaranteed to
391 			 * to be there by xfs_idata_realloc().
392 			 */
393 			data_bytes = roundup(ip->i_df.if_bytes, 4);
394 			ASSERT((ip->i_df.if_real_bytes == 0) ||
395 			       (ip->i_df.if_real_bytes == data_bytes));
396 			vecp->i_len = (int)data_bytes;
397 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL);
398 			vecp++;
399 			nvecs++;
400 			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
401 		}
402 		break;
403 
404 	case XFS_DINODE_FMT_DEV:
405 		ASSERT(!(iip->ili_format.ilf_fields &
406 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
407 			  XFS_ILOG_DDATA | XFS_ILOG_UUID)));
408 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
409 			iip->ili_format.ilf_u.ilfu_rdev =
410 				ip->i_df.if_u2.if_rdev;
411 		}
412 		break;
413 
414 	case XFS_DINODE_FMT_UUID:
415 		ASSERT(!(iip->ili_format.ilf_fields &
416 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
417 			  XFS_ILOG_DDATA | XFS_ILOG_DEV)));
418 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
419 			iip->ili_format.ilf_u.ilfu_uuid =
420 				ip->i_df.if_u2.if_uuid;
421 		}
422 		break;
423 
424 	default:
425 		ASSERT(0);
426 		break;
427 	}
428 
429 	/*
430 	 * If there are no attributes associated with the file,
431 	 * then we're done.
432 	 * Assert that no attribute-related log flags are set.
433 	 */
434 	if (!XFS_IFORK_Q(ip)) {
435 		ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
436 		iip->ili_format.ilf_size = nvecs;
437 		ASSERT(!(iip->ili_format.ilf_fields &
438 			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
439 		return;
440 	}
441 
442 	switch (ip->i_d.di_aformat) {
443 	case XFS_DINODE_FMT_EXTENTS:
444 		ASSERT(!(iip->ili_format.ilf_fields &
445 			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
446 		if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
447 			ASSERT(ip->i_afp->if_bytes > 0);
448 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
449 			ASSERT(ip->i_d.di_anextents > 0);
450 #ifdef DEBUG
451 			nrecs = ip->i_afp->if_bytes /
452 				(uint)sizeof(xfs_bmbt_rec_t);
453 #endif
454 			ASSERT(nrecs > 0);
455 			ASSERT(nrecs == ip->i_d.di_anextents);
456 #ifdef XFS_NATIVE_HOST
457 			/*
458 			 * There are not delayed allocation extents
459 			 * for attributes, so just point at the array.
460 			 */
461 			vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents);
462 			vecp->i_len = ip->i_afp->if_bytes;
463 #else
464 			ASSERT(iip->ili_aextents_buf == NULL);
465 			/*
466 			 * Need to endian flip before logging
467 			 */
468 			ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
469 				KM_SLEEP);
470 			iip->ili_aextents_buf = ext_buffer;
471 			vecp->i_addr = (xfs_caddr_t)ext_buffer;
472 			vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
473 					XFS_ATTR_FORK);
474 #endif
475 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT);
476 			iip->ili_format.ilf_asize = vecp->i_len;
477 			vecp++;
478 			nvecs++;
479 		}
480 		break;
481 
482 	case XFS_DINODE_FMT_BTREE:
483 		ASSERT(!(iip->ili_format.ilf_fields &
484 			 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
485 		if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
486 			ASSERT(ip->i_afp->if_broot_bytes > 0);
487 			ASSERT(ip->i_afp->if_broot != NULL);
488 			vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot;
489 			vecp->i_len = ip->i_afp->if_broot_bytes;
490 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT);
491 			vecp++;
492 			nvecs++;
493 			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
494 		}
495 		break;
496 
497 	case XFS_DINODE_FMT_LOCAL:
498 		ASSERT(!(iip->ili_format.ilf_fields &
499 			 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
500 		if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
501 			ASSERT(ip->i_afp->if_bytes > 0);
502 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
503 
504 			vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data;
505 			/*
506 			 * Round i_bytes up to a word boundary.
507 			 * The underlying memory is guaranteed to
508 			 * to be there by xfs_idata_realloc().
509 			 */
510 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
511 			ASSERT((ip->i_afp->if_real_bytes == 0) ||
512 			       (ip->i_afp->if_real_bytes == data_bytes));
513 			vecp->i_len = (int)data_bytes;
514 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL);
515 			vecp++;
516 			nvecs++;
517 			iip->ili_format.ilf_asize = (unsigned)data_bytes;
518 		}
519 		break;
520 
521 	default:
522 		ASSERT(0);
523 		break;
524 	}
525 
526 	ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
527 	iip->ili_format.ilf_size = nvecs;
528 }
529 
530 
531 /*
532  * This is called to pin the inode associated with the inode log
533  * item in memory so it cannot be written out.  Do this by calling
534  * xfs_ipin() to bump the pin count in the inode while holding the
535  * inode pin lock.
536  */
537 STATIC void
538 xfs_inode_item_pin(
539 	xfs_inode_log_item_t	*iip)
540 {
541 	ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE));
542 	xfs_ipin(iip->ili_inode);
543 }
544 
545 
546 /*
547  * This is called to unpin the inode associated with the inode log
548  * item which was previously pinned with a call to xfs_inode_item_pin().
549  * Just call xfs_iunpin() on the inode to do this.
550  */
551 /* ARGSUSED */
552 STATIC void
553 xfs_inode_item_unpin(
554 	xfs_inode_log_item_t	*iip,
555 	int			stale)
556 {
557 	xfs_iunpin(iip->ili_inode);
558 }
559 
560 /* ARGSUSED */
561 STATIC void
562 xfs_inode_item_unpin_remove(
563 	xfs_inode_log_item_t	*iip,
564 	xfs_trans_t		*tp)
565 {
566 	xfs_iunpin(iip->ili_inode);
567 }
568 
569 /*
570  * This is called to attempt to lock the inode associated with this
571  * inode log item, in preparation for the push routine which does the actual
572  * iflush.  Don't sleep on the inode lock or the flush lock.
573  *
574  * If the flush lock is already held, indicating that the inode has
575  * been or is in the process of being flushed, then (ideally) we'd like to
576  * see if the inode's buffer is still incore, and if so give it a nudge.
577  * We delay doing so until the pushbuf routine, though, to avoid holding
578  * the AIL lock across a call to the blackhole which is the buffercache.
579  * Also we don't want to sleep in any device strategy routines, which can happen
580  * if we do the subsequent bawrite in here.
581  */
582 STATIC uint
583 xfs_inode_item_trylock(
584 	xfs_inode_log_item_t	*iip)
585 {
586 	register xfs_inode_t	*ip;
587 
588 	ip = iip->ili_inode;
589 
590 	if (xfs_ipincount(ip) > 0) {
591 		return XFS_ITEM_PINNED;
592 	}
593 
594 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
595 		return XFS_ITEM_LOCKED;
596 	}
597 
598 	if (!xfs_iflock_nowait(ip)) {
599 		/*
600 		 * If someone else isn't already trying to push the inode
601 		 * buffer, we get to do it.
602 		 */
603 		if (iip->ili_pushbuf_flag == 0) {
604 			iip->ili_pushbuf_flag = 1;
605 #ifdef DEBUG
606 			iip->ili_push_owner = get_thread_id();
607 #endif
608 			/*
609 			 * Inode is left locked in shared mode.
610 			 * Pushbuf routine gets to unlock it.
611 			 */
612 			return XFS_ITEM_PUSHBUF;
613 		} else {
614 			/*
615 			 * We hold the AIL_LOCK, so we must specify the
616 			 * NONOTIFY flag so that we won't double trip.
617 			 */
618 			xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
619 			return XFS_ITEM_FLUSHING;
620 		}
621 		/* NOTREACHED */
622 	}
623 
624 	/* Stale items should force out the iclog */
625 	if (ip->i_flags & XFS_ISTALE) {
626 		xfs_ifunlock(ip);
627 		xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
628 		return XFS_ITEM_PINNED;
629 	}
630 
631 #ifdef DEBUG
632 	if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
633 		ASSERT(iip->ili_format.ilf_fields != 0);
634 		ASSERT(iip->ili_logged == 0);
635 		ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL);
636 	}
637 #endif
638 	return XFS_ITEM_SUCCESS;
639 }
640 
641 /*
642  * Unlock the inode associated with the inode log item.
643  * Clear the fields of the inode and inode log item that
644  * are specific to the current transaction.  If the
645  * hold flags is set, do not unlock the inode.
646  */
647 STATIC void
648 xfs_inode_item_unlock(
649 	xfs_inode_log_item_t	*iip)
650 {
651 	uint		hold;
652 	uint		iolocked;
653 	uint		lock_flags;
654 	xfs_inode_t	*ip;
655 
656 	ASSERT(iip != NULL);
657 	ASSERT(iip->ili_inode->i_itemp != NULL);
658 	ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE));
659 	ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
660 		  XFS_ILI_IOLOCKED_EXCL)) ||
661 	       ismrlocked(&(iip->ili_inode->i_iolock), MR_UPDATE));
662 	ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
663 		  XFS_ILI_IOLOCKED_SHARED)) ||
664 	       ismrlocked(&(iip->ili_inode->i_iolock), MR_ACCESS));
665 	/*
666 	 * Clear the transaction pointer in the inode.
667 	 */
668 	ip = iip->ili_inode;
669 	ip->i_transp = NULL;
670 
671 	/*
672 	 * If the inode needed a separate buffer with which to log
673 	 * its extents, then free it now.
674 	 */
675 	if (iip->ili_extents_buf != NULL) {
676 		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
677 		ASSERT(ip->i_d.di_nextents > 0);
678 		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
679 		ASSERT(ip->i_df.if_bytes > 0);
680 		kmem_free(iip->ili_extents_buf, ip->i_df.if_bytes);
681 		iip->ili_extents_buf = NULL;
682 	}
683 	if (iip->ili_aextents_buf != NULL) {
684 		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
685 		ASSERT(ip->i_d.di_anextents > 0);
686 		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
687 		ASSERT(ip->i_afp->if_bytes > 0);
688 		kmem_free(iip->ili_aextents_buf, ip->i_afp->if_bytes);
689 		iip->ili_aextents_buf = NULL;
690 	}
691 
692 	/*
693 	 * Figure out if we should unlock the inode or not.
694 	 */
695 	hold = iip->ili_flags & XFS_ILI_HOLD;
696 
697 	/*
698 	 * Before clearing out the flags, remember whether we
699 	 * are holding the inode's IO lock.
700 	 */
701 	iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY;
702 
703 	/*
704 	 * Clear out the fields of the inode log item particular
705 	 * to the current transaction.
706 	 */
707 	iip->ili_ilock_recur = 0;
708 	iip->ili_iolock_recur = 0;
709 	iip->ili_flags = 0;
710 
711 	/*
712 	 * Unlock the inode if XFS_ILI_HOLD was not set.
713 	 */
714 	if (!hold) {
715 		lock_flags = XFS_ILOCK_EXCL;
716 		if (iolocked & XFS_ILI_IOLOCKED_EXCL) {
717 			lock_flags |= XFS_IOLOCK_EXCL;
718 		} else if (iolocked & XFS_ILI_IOLOCKED_SHARED) {
719 			lock_flags |= XFS_IOLOCK_SHARED;
720 		}
721 		xfs_iput(iip->ili_inode, lock_flags);
722 	}
723 }
724 
725 /*
726  * This is called to find out where the oldest active copy of the
727  * inode log item in the on disk log resides now that the last log
728  * write of it completed at the given lsn.  Since we always re-log
729  * all dirty data in an inode, the latest copy in the on disk log
730  * is the only one that matters.  Therefore, simply return the
731  * given lsn.
732  */
733 /*ARGSUSED*/
734 STATIC xfs_lsn_t
735 xfs_inode_item_committed(
736 	xfs_inode_log_item_t	*iip,
737 	xfs_lsn_t		lsn)
738 {
739 	return (lsn);
740 }
741 
742 /*
743  * The transaction with the inode locked has aborted.  The inode
744  * must not be dirty within the transaction (unless we're forcibly
745  * shutting down).  We simply unlock just as if the transaction
746  * had been cancelled.
747  */
748 STATIC void
749 xfs_inode_item_abort(
750 	xfs_inode_log_item_t	*iip)
751 {
752 	xfs_inode_item_unlock(iip);
753 	return;
754 }
755 
756 
757 /*
758  * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
759  * failed to get the inode flush lock but did get the inode locked SHARED.
760  * Here we're trying to see if the inode buffer is incore, and if so whether it's
761  * marked delayed write. If that's the case, we'll initiate a bawrite on that
762  * buffer to expedite the process.
763  *
764  * We aren't holding the AIL_LOCK (or the flush lock) when this gets called,
765  * so it is inherently race-y.
766  */
767 STATIC void
768 xfs_inode_item_pushbuf(
769 	xfs_inode_log_item_t	*iip)
770 {
771 	xfs_inode_t	*ip;
772 	xfs_mount_t	*mp;
773 	xfs_buf_t	*bp;
774 	uint		dopush;
775 
776 	ip = iip->ili_inode;
777 
778 	ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));
779 
780 	/*
781 	 * The ili_pushbuf_flag keeps others from
782 	 * trying to duplicate our effort.
783 	 */
784 	ASSERT(iip->ili_pushbuf_flag != 0);
785 	ASSERT(iip->ili_push_owner == get_thread_id());
786 
787 	/*
788 	 * If flushlock isn't locked anymore, chances are that the
789 	 * inode flush completed and the inode was taken off the AIL.
790 	 * So, just get out.
791 	 */
792 	if ((valusema(&(ip->i_flock)) > 0)  ||
793 	    ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
794 		iip->ili_pushbuf_flag = 0;
795 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
796 		return;
797 	}
798 
799 	mp = ip->i_mount;
800 	bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
801 		    iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);
802 
803 	if (bp != NULL) {
804 		if (XFS_BUF_ISDELAYWRITE(bp)) {
805 			/*
806 			 * We were racing with iflush because we don't hold
807 			 * the AIL_LOCK or the flush lock. However, at this point,
808 			 * we have the buffer, and we know that it's dirty.
809 			 * So, it's possible that iflush raced with us, and
810 			 * this item is already taken off the AIL.
811 			 * If not, we can flush it async.
812 			 */
813 			dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) &&
814 				  (valusema(&(ip->i_flock)) <= 0));
815 			iip->ili_pushbuf_flag = 0;
816 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
817 			xfs_buftrace("INODE ITEM PUSH", bp);
818 			if (XFS_BUF_ISPINNED(bp)) {
819 				xfs_log_force(mp, (xfs_lsn_t)0,
820 					      XFS_LOG_FORCE);
821 			}
822 			if (dopush) {
823 				xfs_bawrite(mp, bp);
824 			} else {
825 				xfs_buf_relse(bp);
826 			}
827 		} else {
828 			iip->ili_pushbuf_flag = 0;
829 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
830 			xfs_buf_relse(bp);
831 		}
832 		return;
833 	}
834 	/*
835 	 * We have to be careful about resetting pushbuf flag too early (above).
836 	 * Even though in theory we can do it as soon as we have the buflock,
837 	 * we don't want others to be doing work needlessly. They'll come to
838 	 * this function thinking that pushing the buffer is their
839 	 * responsibility only to find that the buffer is still locked by
840 	 * another doing the same thing
841 	 */
842 	iip->ili_pushbuf_flag = 0;
843 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
844 	return;
845 }
846 
847 
848 /*
849  * This is called to asynchronously write the inode associated with this
850  * inode log item out to disk. The inode will already have been locked by
851  * a successful call to xfs_inode_item_trylock().
852  */
853 STATIC void
854 xfs_inode_item_push(
855 	xfs_inode_log_item_t	*iip)
856 {
857 	xfs_inode_t	*ip;
858 
859 	ip = iip->ili_inode;
860 
861 	ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));
862 	ASSERT(valusema(&(ip->i_flock)) <= 0);
863 	/*
864 	 * Since we were able to lock the inode's flush lock and
865 	 * we found it on the AIL, the inode must be dirty.  This
866 	 * is because the inode is removed from the AIL while still
867 	 * holding the flush lock in xfs_iflush_done().  Thus, if
868 	 * we found it in the AIL and were able to obtain the flush
869 	 * lock without sleeping, then there must not have been
870 	 * anyone in the process of flushing the inode.
871 	 */
872 	ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
873 	       iip->ili_format.ilf_fields != 0);
874 
875 	/*
876 	 * Write out the inode.  The completion routine ('iflush_done') will
877 	 * pull it from the AIL, mark it clean, unlock the flush lock.
878 	 */
879 	(void) xfs_iflush(ip, XFS_IFLUSH_ASYNC);
880 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
881 
882 	return;
883 }
884 
885 /*
886  * XXX rcc - this one really has to do something.  Probably needs
887  * to stamp in a new field in the incore inode.
888  */
889 /* ARGSUSED */
890 STATIC void
891 xfs_inode_item_committing(
892 	xfs_inode_log_item_t	*iip,
893 	xfs_lsn_t		lsn)
894 {
895 	iip->ili_last_lsn = lsn;
896 	return;
897 }
898 
899 /*
900  * This is the ops vector shared by all buf log items.
901  */
902 STATIC struct xfs_item_ops xfs_inode_item_ops = {
903 	.iop_size	= (uint(*)(xfs_log_item_t*))xfs_inode_item_size,
904 	.iop_format	= (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
905 					xfs_inode_item_format,
906 	.iop_pin	= (void(*)(xfs_log_item_t*))xfs_inode_item_pin,
907 	.iop_unpin	= (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin,
908 	.iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
909 					xfs_inode_item_unpin_remove,
910 	.iop_trylock	= (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock,
911 	.iop_unlock	= (void(*)(xfs_log_item_t*))xfs_inode_item_unlock,
912 	.iop_committed	= (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
913 					xfs_inode_item_committed,
914 	.iop_push	= (void(*)(xfs_log_item_t*))xfs_inode_item_push,
915 	.iop_abort	= (void(*)(xfs_log_item_t*))xfs_inode_item_abort,
916 	.iop_pushbuf	= (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf,
917 	.iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
918 					xfs_inode_item_committing
919 };
920 
921 
922 /*
923  * Initialize the inode log item for a newly allocated (in-core) inode.
924  */
925 void
926 xfs_inode_item_init(
927 	xfs_inode_t	*ip,
928 	xfs_mount_t	*mp)
929 {
930 	xfs_inode_log_item_t	*iip;
931 
932 	ASSERT(ip->i_itemp == NULL);
933 	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
934 
935 	iip->ili_item.li_type = XFS_LI_INODE;
936 	iip->ili_item.li_ops = &xfs_inode_item_ops;
937 	iip->ili_item.li_mountp = mp;
938 	iip->ili_inode = ip;
939 
940 	/*
941 	   We have zeroed memory. No need ...
942 	   iip->ili_extents_buf = NULL;
943 	   iip->ili_pushbuf_flag = 0;
944 	 */
945 
946 	iip->ili_format.ilf_type = XFS_LI_INODE;
947 	iip->ili_format.ilf_ino = ip->i_ino;
948 	iip->ili_format.ilf_blkno = ip->i_blkno;
949 	iip->ili_format.ilf_len = ip->i_len;
950 	iip->ili_format.ilf_boffset = ip->i_boffset;
951 }
952 
953 /*
954  * Free the inode log item and any memory hanging off of it.
955  */
956 void
957 xfs_inode_item_destroy(
958 	xfs_inode_t	*ip)
959 {
960 #ifdef XFS_TRANS_DEBUG
961 	if (ip->i_itemp->ili_root_size != 0) {
962 		kmem_free(ip->i_itemp->ili_orig_root,
963 			  ip->i_itemp->ili_root_size);
964 	}
965 #endif
966 	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
967 }
968 
969 
970 /*
971  * This is the inode flushing I/O completion routine.  It is called
972  * from interrupt level when the buffer containing the inode is
973  * flushed to disk.  It is responsible for removing the inode item
974  * from the AIL if it has not been re-logged, and unlocking the inode's
975  * flush lock.
976  */
977 /*ARGSUSED*/
978 void
979 xfs_iflush_done(
980 	xfs_buf_t		*bp,
981 	xfs_inode_log_item_t	*iip)
982 {
983 	xfs_inode_t	*ip;
984 	SPLDECL(s);
985 
986 	ip = iip->ili_inode;
987 
988 	/*
989 	 * We only want to pull the item from the AIL if it is
990 	 * actually there and its location in the log has not
991 	 * changed since we started the flush.  Thus, we only bother
992 	 * if the ili_logged flag is set and the inode's lsn has not
993 	 * changed.  First we check the lsn outside
994 	 * the lock since it's cheaper, and then we recheck while
995 	 * holding the lock before removing the inode from the AIL.
996 	 */
997 	if (iip->ili_logged &&
998 	    (iip->ili_item.li_lsn == iip->ili_flush_lsn)) {
999 		AIL_LOCK(ip->i_mount, s);
1000 		if (iip->ili_item.li_lsn == iip->ili_flush_lsn) {
1001 			/*
1002 			 * xfs_trans_delete_ail() drops the AIL lock.
1003 			 */
1004 			xfs_trans_delete_ail(ip->i_mount,
1005 					     (xfs_log_item_t*)iip, s);
1006 		} else {
1007 			AIL_UNLOCK(ip->i_mount, s);
1008 		}
1009 	}
1010 
1011 	iip->ili_logged = 0;
1012 
1013 	/*
1014 	 * Clear the ili_last_fields bits now that we know that the
1015 	 * data corresponding to them is safely on disk.
1016 	 */
1017 	iip->ili_last_fields = 0;
1018 
1019 	/*
1020 	 * Release the inode's flush lock since we're done with it.
1021 	 */
1022 	xfs_ifunlock(ip);
1023 
1024 	return;
1025 }
1026 
1027 /*
1028  * This is the inode flushing abort routine.  It is called
1029  * from xfs_iflush when the filesystem is shutting down to clean
1030  * up the inode state.
1031  * It is responsible for removing the inode item
1032  * from the AIL if it has not been re-logged, and unlocking the inode's
1033  * flush lock.
1034  */
1035 void
1036 xfs_iflush_abort(
1037 	xfs_inode_t		*ip)
1038 {
1039 	xfs_inode_log_item_t	*iip;
1040 	xfs_mount_t		*mp;
1041 	SPLDECL(s);
1042 
1043 	iip = ip->i_itemp;
1044 	mp = ip->i_mount;
1045 	if (iip) {
1046 		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1047 			AIL_LOCK(mp, s);
1048 			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1049 				/*
1050 				 * xfs_trans_delete_ail() drops the AIL lock.
1051 				 */
1052 				xfs_trans_delete_ail(mp, (xfs_log_item_t *)iip,
1053 					s);
1054 			} else
1055 				AIL_UNLOCK(mp, s);
1056 		}
1057 		iip->ili_logged = 0;
1058 		/*
1059 		 * Clear the ili_last_fields bits now that we know that the
1060 		 * data corresponding to them is safely on disk.
1061 		 */
1062 		iip->ili_last_fields = 0;
1063 		/*
1064 		 * Clear the inode logging fields so no more flushes are
1065 		 * attempted.
1066 		 */
1067 		iip->ili_format.ilf_fields = 0;
1068 	}
1069 	/*
1070 	 * Release the inode's flush lock since we're done with it.
1071 	 */
1072 	xfs_ifunlock(ip);
1073 }
1074 
1075 void
1076 xfs_istale_done(
1077 	xfs_buf_t		*bp,
1078 	xfs_inode_log_item_t	*iip)
1079 {
1080 	xfs_iflush_abort(iip->ili_inode);
1081 }
1082