1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_buf_item.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_dir.h" 29 #include "xfs_dir2.h" 30 #include "xfs_dmapi.h" 31 #include "xfs_mount.h" 32 #include "xfs_trans_priv.h" 33 #include "xfs_bmap_btree.h" 34 #include "xfs_alloc_btree.h" 35 #include "xfs_ialloc_btree.h" 36 #include "xfs_dir_sf.h" 37 #include "xfs_dir2_sf.h" 38 #include "xfs_attr_sf.h" 39 #include "xfs_dinode.h" 40 #include "xfs_inode.h" 41 #include "xfs_inode_item.h" 42 #include "xfs_btree.h" 43 #include "xfs_ialloc.h" 44 #include "xfs_rw.h" 45 46 47 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 48 49 /* 50 * This returns the number of iovecs needed to log the given inode item. 51 * 52 * We need one iovec for the inode log format structure, one for the 53 * inode core, and possibly one for the inode data/extents/b-tree root 54 * and one for the inode attribute data/extents/b-tree root. 55 */ 56 STATIC uint 57 xfs_inode_item_size( 58 xfs_inode_log_item_t *iip) 59 { 60 uint nvecs; 61 xfs_inode_t *ip; 62 63 ip = iip->ili_inode; 64 nvecs = 2; 65 66 /* 67 * Only log the data/extents/b-tree root if there is something 68 * left to log. 69 */ 70 iip->ili_format.ilf_fields |= XFS_ILOG_CORE; 71 72 switch (ip->i_d.di_format) { 73 case XFS_DINODE_FMT_EXTENTS: 74 iip->ili_format.ilf_fields &= 75 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 76 XFS_ILOG_DEV | XFS_ILOG_UUID); 77 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) && 78 (ip->i_d.di_nextents > 0) && 79 (ip->i_df.if_bytes > 0)) { 80 ASSERT(ip->i_df.if_u1.if_extents != NULL); 81 nvecs++; 82 } else { 83 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT; 84 } 85 break; 86 87 case XFS_DINODE_FMT_BTREE: 88 ASSERT(ip->i_df.if_ext_max == 89 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t)); 90 iip->ili_format.ilf_fields &= 91 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | 92 XFS_ILOG_DEV | XFS_ILOG_UUID); 93 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) && 94 (ip->i_df.if_broot_bytes > 0)) { 95 ASSERT(ip->i_df.if_broot != NULL); 96 nvecs++; 97 } else { 98 ASSERT(!(iip->ili_format.ilf_fields & 99 XFS_ILOG_DBROOT)); 100 #ifdef XFS_TRANS_DEBUG 101 if (iip->ili_root_size > 0) { 102 ASSERT(iip->ili_root_size == 103 ip->i_df.if_broot_bytes); 104 ASSERT(memcmp(iip->ili_orig_root, 105 ip->i_df.if_broot, 106 iip->ili_root_size) == 0); 107 } else { 108 ASSERT(ip->i_df.if_broot_bytes == 0); 109 } 110 #endif 111 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT; 112 } 113 break; 114 115 case XFS_DINODE_FMT_LOCAL: 116 iip->ili_format.ilf_fields &= 117 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | 118 XFS_ILOG_DEV | XFS_ILOG_UUID); 119 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) && 120 (ip->i_df.if_bytes > 0)) { 121 ASSERT(ip->i_df.if_u1.if_data != NULL); 122 ASSERT(ip->i_d.di_size > 0); 123 nvecs++; 124 } else { 125 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA; 126 } 127 break; 128 129 case XFS_DINODE_FMT_DEV: 130 iip->ili_format.ilf_fields &= 131 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 132 XFS_ILOG_DEXT | XFS_ILOG_UUID); 133 break; 134 135 case XFS_DINODE_FMT_UUID: 136 iip->ili_format.ilf_fields &= 137 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 138 XFS_ILOG_DEXT | XFS_ILOG_DEV); 139 break; 140 141 default: 142 ASSERT(0); 143 break; 144 } 145 146 /* 147 * If there are no attributes associated with this file, 148 * then there cannot be anything more to log. 149 * Clear all attribute-related log flags. 150 */ 151 if (!XFS_IFORK_Q(ip)) { 152 iip->ili_format.ilf_fields &= 153 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 154 return nvecs; 155 } 156 157 /* 158 * Log any necessary attribute data. 159 */ 160 switch (ip->i_d.di_aformat) { 161 case XFS_DINODE_FMT_EXTENTS: 162 iip->ili_format.ilf_fields &= 163 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 164 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) && 165 (ip->i_d.di_anextents > 0) && 166 (ip->i_afp->if_bytes > 0)) { 167 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 168 nvecs++; 169 } else { 170 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT; 171 } 172 break; 173 174 case XFS_DINODE_FMT_BTREE: 175 iip->ili_format.ilf_fields &= 176 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 177 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) && 178 (ip->i_afp->if_broot_bytes > 0)) { 179 ASSERT(ip->i_afp->if_broot != NULL); 180 nvecs++; 181 } else { 182 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT; 183 } 184 break; 185 186 case XFS_DINODE_FMT_LOCAL: 187 iip->ili_format.ilf_fields &= 188 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 189 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) && 190 (ip->i_afp->if_bytes > 0)) { 191 ASSERT(ip->i_afp->if_u1.if_data != NULL); 192 nvecs++; 193 } else { 194 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA; 195 } 196 break; 197 198 default: 199 ASSERT(0); 200 break; 201 } 202 203 return nvecs; 204 } 205 206 /* 207 * This is called to fill in the vector of log iovecs for the 208 * given inode log item. It fills the first item with an inode 209 * log format structure, the second with the on-disk inode structure, 210 * and a possible third and/or fourth with the inode data/extents/b-tree 211 * root and inode attributes data/extents/b-tree root. 212 */ 213 STATIC void 214 xfs_inode_item_format( 215 xfs_inode_log_item_t *iip, 216 xfs_log_iovec_t *log_vector) 217 { 218 uint nvecs; 219 xfs_log_iovec_t *vecp; 220 xfs_inode_t *ip; 221 size_t data_bytes; 222 xfs_bmbt_rec_t *ext_buffer; 223 int nrecs; 224 xfs_mount_t *mp; 225 226 ip = iip->ili_inode; 227 vecp = log_vector; 228 229 vecp->i_addr = (xfs_caddr_t)&iip->ili_format; 230 vecp->i_len = sizeof(xfs_inode_log_format_t); 231 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT); 232 vecp++; 233 nvecs = 1; 234 235 /* 236 * Clear i_update_core if the timestamps (or any other 237 * non-transactional modification) need flushing/logging 238 * and we're about to log them with the rest of the core. 239 * 240 * This is the same logic as xfs_iflush() but this code can't 241 * run at the same time as xfs_iflush because we're in commit 242 * processing here and so we have the inode lock held in 243 * exclusive mode. Although it doesn't really matter 244 * for the timestamps if both routines were to grab the 245 * timestamps or not. That would be ok. 246 * 247 * We clear i_update_core before copying out the data. 248 * This is for coordination with our timestamp updates 249 * that don't hold the inode lock. They will always 250 * update the timestamps BEFORE setting i_update_core, 251 * so if we clear i_update_core after they set it we 252 * are guaranteed to see their updates to the timestamps 253 * either here. Likewise, if they set it after we clear it 254 * here, we'll see it either on the next commit of this 255 * inode or the next time the inode gets flushed via 256 * xfs_iflush(). This depends on strongly ordered memory 257 * semantics, but we have that. We use the SYNCHRONIZE 258 * macro to make sure that the compiler does not reorder 259 * the i_update_core access below the data copy below. 260 */ 261 if (ip->i_update_core) { 262 ip->i_update_core = 0; 263 SYNCHRONIZE(); 264 } 265 266 /* 267 * We don't have to worry about re-ordering here because 268 * the update_size field is protected by the inode lock 269 * and we have that held in exclusive mode. 270 */ 271 if (ip->i_update_size) 272 ip->i_update_size = 0; 273 274 vecp->i_addr = (xfs_caddr_t)&ip->i_d; 275 vecp->i_len = sizeof(xfs_dinode_core_t); 276 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE); 277 vecp++; 278 nvecs++; 279 iip->ili_format.ilf_fields |= XFS_ILOG_CORE; 280 281 /* 282 * If this is really an old format inode, then we need to 283 * log it as such. This means that we have to copy the link 284 * count from the new field to the old. We don't have to worry 285 * about the new fields, because nothing trusts them as long as 286 * the old inode version number is there. If the superblock already 287 * has a new version number, then we don't bother converting back. 288 */ 289 mp = ip->i_mount; 290 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || 291 XFS_SB_VERSION_HASNLINK(&mp->m_sb)); 292 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 293 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { 294 /* 295 * Convert it back. 296 */ 297 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 298 ip->i_d.di_onlink = ip->i_d.di_nlink; 299 } else { 300 /* 301 * The superblock version has already been bumped, 302 * so just make the conversion to the new inode 303 * format permanent. 304 */ 305 ip->i_d.di_version = XFS_DINODE_VERSION_2; 306 ip->i_d.di_onlink = 0; 307 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 308 } 309 } 310 311 switch (ip->i_d.di_format) { 312 case XFS_DINODE_FMT_EXTENTS: 313 ASSERT(!(iip->ili_format.ilf_fields & 314 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 315 XFS_ILOG_DEV | XFS_ILOG_UUID))); 316 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) { 317 ASSERT(ip->i_df.if_bytes > 0); 318 ASSERT(ip->i_df.if_u1.if_extents != NULL); 319 ASSERT(ip->i_d.di_nextents > 0); 320 ASSERT(iip->ili_extents_buf == NULL); 321 nrecs = ip->i_df.if_bytes / 322 (uint)sizeof(xfs_bmbt_rec_t); 323 ASSERT(nrecs > 0); 324 #ifdef XFS_NATIVE_HOST 325 if (nrecs == ip->i_d.di_nextents) { 326 /* 327 * There are no delayed allocation 328 * extents, so just point to the 329 * real extents array. 330 */ 331 vecp->i_addr = 332 (char *)(ip->i_df.if_u1.if_extents); 333 vecp->i_len = ip->i_df.if_bytes; 334 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT); 335 } else 336 #endif 337 { 338 /* 339 * There are delayed allocation extents 340 * in the inode, or we need to convert 341 * the extents to on disk format. 342 * Use xfs_iextents_copy() 343 * to copy only the real extents into 344 * a separate buffer. We'll free the 345 * buffer in the unlock routine. 346 */ 347 ext_buffer = kmem_alloc(ip->i_df.if_bytes, 348 KM_SLEEP); 349 iip->ili_extents_buf = ext_buffer; 350 vecp->i_addr = (xfs_caddr_t)ext_buffer; 351 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, 352 XFS_DATA_FORK); 353 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT); 354 } 355 ASSERT(vecp->i_len <= ip->i_df.if_bytes); 356 iip->ili_format.ilf_dsize = vecp->i_len; 357 vecp++; 358 nvecs++; 359 } 360 break; 361 362 case XFS_DINODE_FMT_BTREE: 363 ASSERT(!(iip->ili_format.ilf_fields & 364 (XFS_ILOG_DDATA | XFS_ILOG_DEXT | 365 XFS_ILOG_DEV | XFS_ILOG_UUID))); 366 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) { 367 ASSERT(ip->i_df.if_broot_bytes > 0); 368 ASSERT(ip->i_df.if_broot != NULL); 369 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot; 370 vecp->i_len = ip->i_df.if_broot_bytes; 371 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT); 372 vecp++; 373 nvecs++; 374 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes; 375 } 376 break; 377 378 case XFS_DINODE_FMT_LOCAL: 379 ASSERT(!(iip->ili_format.ilf_fields & 380 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | 381 XFS_ILOG_DEV | XFS_ILOG_UUID))); 382 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) { 383 ASSERT(ip->i_df.if_bytes > 0); 384 ASSERT(ip->i_df.if_u1.if_data != NULL); 385 ASSERT(ip->i_d.di_size > 0); 386 387 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data; 388 /* 389 * Round i_bytes up to a word boundary. 390 * The underlying memory is guaranteed to 391 * to be there by xfs_idata_realloc(). 392 */ 393 data_bytes = roundup(ip->i_df.if_bytes, 4); 394 ASSERT((ip->i_df.if_real_bytes == 0) || 395 (ip->i_df.if_real_bytes == data_bytes)); 396 vecp->i_len = (int)data_bytes; 397 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL); 398 vecp++; 399 nvecs++; 400 iip->ili_format.ilf_dsize = (unsigned)data_bytes; 401 } 402 break; 403 404 case XFS_DINODE_FMT_DEV: 405 ASSERT(!(iip->ili_format.ilf_fields & 406 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | 407 XFS_ILOG_DDATA | XFS_ILOG_UUID))); 408 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 409 iip->ili_format.ilf_u.ilfu_rdev = 410 ip->i_df.if_u2.if_rdev; 411 } 412 break; 413 414 case XFS_DINODE_FMT_UUID: 415 ASSERT(!(iip->ili_format.ilf_fields & 416 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | 417 XFS_ILOG_DDATA | XFS_ILOG_DEV))); 418 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 419 iip->ili_format.ilf_u.ilfu_uuid = 420 ip->i_df.if_u2.if_uuid; 421 } 422 break; 423 424 default: 425 ASSERT(0); 426 break; 427 } 428 429 /* 430 * If there are no attributes associated with the file, 431 * then we're done. 432 * Assert that no attribute-related log flags are set. 433 */ 434 if (!XFS_IFORK_Q(ip)) { 435 ASSERT(nvecs == iip->ili_item.li_desc->lid_size); 436 iip->ili_format.ilf_size = nvecs; 437 ASSERT(!(iip->ili_format.ilf_fields & 438 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); 439 return; 440 } 441 442 switch (ip->i_d.di_aformat) { 443 case XFS_DINODE_FMT_EXTENTS: 444 ASSERT(!(iip->ili_format.ilf_fields & 445 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT))); 446 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) { 447 ASSERT(ip->i_afp->if_bytes > 0); 448 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 449 ASSERT(ip->i_d.di_anextents > 0); 450 #ifdef DEBUG 451 nrecs = ip->i_afp->if_bytes / 452 (uint)sizeof(xfs_bmbt_rec_t); 453 #endif 454 ASSERT(nrecs > 0); 455 ASSERT(nrecs == ip->i_d.di_anextents); 456 #ifdef XFS_NATIVE_HOST 457 /* 458 * There are not delayed allocation extents 459 * for attributes, so just point at the array. 460 */ 461 vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents); 462 vecp->i_len = ip->i_afp->if_bytes; 463 #else 464 ASSERT(iip->ili_aextents_buf == NULL); 465 /* 466 * Need to endian flip before logging 467 */ 468 ext_buffer = kmem_alloc(ip->i_afp->if_bytes, 469 KM_SLEEP); 470 iip->ili_aextents_buf = ext_buffer; 471 vecp->i_addr = (xfs_caddr_t)ext_buffer; 472 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, 473 XFS_ATTR_FORK); 474 #endif 475 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT); 476 iip->ili_format.ilf_asize = vecp->i_len; 477 vecp++; 478 nvecs++; 479 } 480 break; 481 482 case XFS_DINODE_FMT_BTREE: 483 ASSERT(!(iip->ili_format.ilf_fields & 484 (XFS_ILOG_ADATA | XFS_ILOG_AEXT))); 485 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) { 486 ASSERT(ip->i_afp->if_broot_bytes > 0); 487 ASSERT(ip->i_afp->if_broot != NULL); 488 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot; 489 vecp->i_len = ip->i_afp->if_broot_bytes; 490 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT); 491 vecp++; 492 nvecs++; 493 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes; 494 } 495 break; 496 497 case XFS_DINODE_FMT_LOCAL: 498 ASSERT(!(iip->ili_format.ilf_fields & 499 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); 500 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) { 501 ASSERT(ip->i_afp->if_bytes > 0); 502 ASSERT(ip->i_afp->if_u1.if_data != NULL); 503 504 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data; 505 /* 506 * Round i_bytes up to a word boundary. 507 * The underlying memory is guaranteed to 508 * to be there by xfs_idata_realloc(). 509 */ 510 data_bytes = roundup(ip->i_afp->if_bytes, 4); 511 ASSERT((ip->i_afp->if_real_bytes == 0) || 512 (ip->i_afp->if_real_bytes == data_bytes)); 513 vecp->i_len = (int)data_bytes; 514 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL); 515 vecp++; 516 nvecs++; 517 iip->ili_format.ilf_asize = (unsigned)data_bytes; 518 } 519 break; 520 521 default: 522 ASSERT(0); 523 break; 524 } 525 526 ASSERT(nvecs == iip->ili_item.li_desc->lid_size); 527 iip->ili_format.ilf_size = nvecs; 528 } 529 530 531 /* 532 * This is called to pin the inode associated with the inode log 533 * item in memory so it cannot be written out. Do this by calling 534 * xfs_ipin() to bump the pin count in the inode while holding the 535 * inode pin lock. 536 */ 537 STATIC void 538 xfs_inode_item_pin( 539 xfs_inode_log_item_t *iip) 540 { 541 ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE)); 542 xfs_ipin(iip->ili_inode); 543 } 544 545 546 /* 547 * This is called to unpin the inode associated with the inode log 548 * item which was previously pinned with a call to xfs_inode_item_pin(). 549 * Just call xfs_iunpin() on the inode to do this. 550 */ 551 /* ARGSUSED */ 552 STATIC void 553 xfs_inode_item_unpin( 554 xfs_inode_log_item_t *iip, 555 int stale) 556 { 557 xfs_iunpin(iip->ili_inode); 558 } 559 560 /* ARGSUSED */ 561 STATIC void 562 xfs_inode_item_unpin_remove( 563 xfs_inode_log_item_t *iip, 564 xfs_trans_t *tp) 565 { 566 xfs_iunpin(iip->ili_inode); 567 } 568 569 /* 570 * This is called to attempt to lock the inode associated with this 571 * inode log item, in preparation for the push routine which does the actual 572 * iflush. Don't sleep on the inode lock or the flush lock. 573 * 574 * If the flush lock is already held, indicating that the inode has 575 * been or is in the process of being flushed, then (ideally) we'd like to 576 * see if the inode's buffer is still incore, and if so give it a nudge. 577 * We delay doing so until the pushbuf routine, though, to avoid holding 578 * the AIL lock across a call to the blackhole which is the buffercache. 579 * Also we don't want to sleep in any device strategy routines, which can happen 580 * if we do the subsequent bawrite in here. 581 */ 582 STATIC uint 583 xfs_inode_item_trylock( 584 xfs_inode_log_item_t *iip) 585 { 586 register xfs_inode_t *ip; 587 588 ip = iip->ili_inode; 589 590 if (xfs_ipincount(ip) > 0) { 591 return XFS_ITEM_PINNED; 592 } 593 594 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 595 return XFS_ITEM_LOCKED; 596 } 597 598 if (!xfs_iflock_nowait(ip)) { 599 /* 600 * If someone else isn't already trying to push the inode 601 * buffer, we get to do it. 602 */ 603 if (iip->ili_pushbuf_flag == 0) { 604 iip->ili_pushbuf_flag = 1; 605 #ifdef DEBUG 606 iip->ili_push_owner = get_thread_id(); 607 #endif 608 /* 609 * Inode is left locked in shared mode. 610 * Pushbuf routine gets to unlock it. 611 */ 612 return XFS_ITEM_PUSHBUF; 613 } else { 614 /* 615 * We hold the AIL_LOCK, so we must specify the 616 * NONOTIFY flag so that we won't double trip. 617 */ 618 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); 619 return XFS_ITEM_FLUSHING; 620 } 621 /* NOTREACHED */ 622 } 623 624 /* Stale items should force out the iclog */ 625 if (ip->i_flags & XFS_ISTALE) { 626 xfs_ifunlock(ip); 627 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); 628 return XFS_ITEM_PINNED; 629 } 630 631 #ifdef DEBUG 632 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 633 ASSERT(iip->ili_format.ilf_fields != 0); 634 ASSERT(iip->ili_logged == 0); 635 ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL); 636 } 637 #endif 638 return XFS_ITEM_SUCCESS; 639 } 640 641 /* 642 * Unlock the inode associated with the inode log item. 643 * Clear the fields of the inode and inode log item that 644 * are specific to the current transaction. If the 645 * hold flags is set, do not unlock the inode. 646 */ 647 STATIC void 648 xfs_inode_item_unlock( 649 xfs_inode_log_item_t *iip) 650 { 651 uint hold; 652 uint iolocked; 653 uint lock_flags; 654 xfs_inode_t *ip; 655 656 ASSERT(iip != NULL); 657 ASSERT(iip->ili_inode->i_itemp != NULL); 658 ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE)); 659 ASSERT((!(iip->ili_inode->i_itemp->ili_flags & 660 XFS_ILI_IOLOCKED_EXCL)) || 661 ismrlocked(&(iip->ili_inode->i_iolock), MR_UPDATE)); 662 ASSERT((!(iip->ili_inode->i_itemp->ili_flags & 663 XFS_ILI_IOLOCKED_SHARED)) || 664 ismrlocked(&(iip->ili_inode->i_iolock), MR_ACCESS)); 665 /* 666 * Clear the transaction pointer in the inode. 667 */ 668 ip = iip->ili_inode; 669 ip->i_transp = NULL; 670 671 /* 672 * If the inode needed a separate buffer with which to log 673 * its extents, then free it now. 674 */ 675 if (iip->ili_extents_buf != NULL) { 676 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS); 677 ASSERT(ip->i_d.di_nextents > 0); 678 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT); 679 ASSERT(ip->i_df.if_bytes > 0); 680 kmem_free(iip->ili_extents_buf, ip->i_df.if_bytes); 681 iip->ili_extents_buf = NULL; 682 } 683 if (iip->ili_aextents_buf != NULL) { 684 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS); 685 ASSERT(ip->i_d.di_anextents > 0); 686 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT); 687 ASSERT(ip->i_afp->if_bytes > 0); 688 kmem_free(iip->ili_aextents_buf, ip->i_afp->if_bytes); 689 iip->ili_aextents_buf = NULL; 690 } 691 692 /* 693 * Figure out if we should unlock the inode or not. 694 */ 695 hold = iip->ili_flags & XFS_ILI_HOLD; 696 697 /* 698 * Before clearing out the flags, remember whether we 699 * are holding the inode's IO lock. 700 */ 701 iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY; 702 703 /* 704 * Clear out the fields of the inode log item particular 705 * to the current transaction. 706 */ 707 iip->ili_ilock_recur = 0; 708 iip->ili_iolock_recur = 0; 709 iip->ili_flags = 0; 710 711 /* 712 * Unlock the inode if XFS_ILI_HOLD was not set. 713 */ 714 if (!hold) { 715 lock_flags = XFS_ILOCK_EXCL; 716 if (iolocked & XFS_ILI_IOLOCKED_EXCL) { 717 lock_flags |= XFS_IOLOCK_EXCL; 718 } else if (iolocked & XFS_ILI_IOLOCKED_SHARED) { 719 lock_flags |= XFS_IOLOCK_SHARED; 720 } 721 xfs_iput(iip->ili_inode, lock_flags); 722 } 723 } 724 725 /* 726 * This is called to find out where the oldest active copy of the 727 * inode log item in the on disk log resides now that the last log 728 * write of it completed at the given lsn. Since we always re-log 729 * all dirty data in an inode, the latest copy in the on disk log 730 * is the only one that matters. Therefore, simply return the 731 * given lsn. 732 */ 733 /*ARGSUSED*/ 734 STATIC xfs_lsn_t 735 xfs_inode_item_committed( 736 xfs_inode_log_item_t *iip, 737 xfs_lsn_t lsn) 738 { 739 return (lsn); 740 } 741 742 /* 743 * The transaction with the inode locked has aborted. The inode 744 * must not be dirty within the transaction (unless we're forcibly 745 * shutting down). We simply unlock just as if the transaction 746 * had been cancelled. 747 */ 748 STATIC void 749 xfs_inode_item_abort( 750 xfs_inode_log_item_t *iip) 751 { 752 xfs_inode_item_unlock(iip); 753 return; 754 } 755 756 757 /* 758 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK 759 * failed to get the inode flush lock but did get the inode locked SHARED. 760 * Here we're trying to see if the inode buffer is incore, and if so whether it's 761 * marked delayed write. If that's the case, we'll initiate a bawrite on that 762 * buffer to expedite the process. 763 * 764 * We aren't holding the AIL_LOCK (or the flush lock) when this gets called, 765 * so it is inherently race-y. 766 */ 767 STATIC void 768 xfs_inode_item_pushbuf( 769 xfs_inode_log_item_t *iip) 770 { 771 xfs_inode_t *ip; 772 xfs_mount_t *mp; 773 xfs_buf_t *bp; 774 uint dopush; 775 776 ip = iip->ili_inode; 777 778 ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS)); 779 780 /* 781 * The ili_pushbuf_flag keeps others from 782 * trying to duplicate our effort. 783 */ 784 ASSERT(iip->ili_pushbuf_flag != 0); 785 ASSERT(iip->ili_push_owner == get_thread_id()); 786 787 /* 788 * If flushlock isn't locked anymore, chances are that the 789 * inode flush completed and the inode was taken off the AIL. 790 * So, just get out. 791 */ 792 if ((valusema(&(ip->i_flock)) > 0) || 793 ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) { 794 iip->ili_pushbuf_flag = 0; 795 xfs_iunlock(ip, XFS_ILOCK_SHARED); 796 return; 797 } 798 799 mp = ip->i_mount; 800 bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno, 801 iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK); 802 803 if (bp != NULL) { 804 if (XFS_BUF_ISDELAYWRITE(bp)) { 805 /* 806 * We were racing with iflush because we don't hold 807 * the AIL_LOCK or the flush lock. However, at this point, 808 * we have the buffer, and we know that it's dirty. 809 * So, it's possible that iflush raced with us, and 810 * this item is already taken off the AIL. 811 * If not, we can flush it async. 812 */ 813 dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) && 814 (valusema(&(ip->i_flock)) <= 0)); 815 iip->ili_pushbuf_flag = 0; 816 xfs_iunlock(ip, XFS_ILOCK_SHARED); 817 xfs_buftrace("INODE ITEM PUSH", bp); 818 if (XFS_BUF_ISPINNED(bp)) { 819 xfs_log_force(mp, (xfs_lsn_t)0, 820 XFS_LOG_FORCE); 821 } 822 if (dopush) { 823 xfs_bawrite(mp, bp); 824 } else { 825 xfs_buf_relse(bp); 826 } 827 } else { 828 iip->ili_pushbuf_flag = 0; 829 xfs_iunlock(ip, XFS_ILOCK_SHARED); 830 xfs_buf_relse(bp); 831 } 832 return; 833 } 834 /* 835 * We have to be careful about resetting pushbuf flag too early (above). 836 * Even though in theory we can do it as soon as we have the buflock, 837 * we don't want others to be doing work needlessly. They'll come to 838 * this function thinking that pushing the buffer is their 839 * responsibility only to find that the buffer is still locked by 840 * another doing the same thing 841 */ 842 iip->ili_pushbuf_flag = 0; 843 xfs_iunlock(ip, XFS_ILOCK_SHARED); 844 return; 845 } 846 847 848 /* 849 * This is called to asynchronously write the inode associated with this 850 * inode log item out to disk. The inode will already have been locked by 851 * a successful call to xfs_inode_item_trylock(). 852 */ 853 STATIC void 854 xfs_inode_item_push( 855 xfs_inode_log_item_t *iip) 856 { 857 xfs_inode_t *ip; 858 859 ip = iip->ili_inode; 860 861 ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS)); 862 ASSERT(valusema(&(ip->i_flock)) <= 0); 863 /* 864 * Since we were able to lock the inode's flush lock and 865 * we found it on the AIL, the inode must be dirty. This 866 * is because the inode is removed from the AIL while still 867 * holding the flush lock in xfs_iflush_done(). Thus, if 868 * we found it in the AIL and were able to obtain the flush 869 * lock without sleeping, then there must not have been 870 * anyone in the process of flushing the inode. 871 */ 872 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || 873 iip->ili_format.ilf_fields != 0); 874 875 /* 876 * Write out the inode. The completion routine ('iflush_done') will 877 * pull it from the AIL, mark it clean, unlock the flush lock. 878 */ 879 (void) xfs_iflush(ip, XFS_IFLUSH_ASYNC); 880 xfs_iunlock(ip, XFS_ILOCK_SHARED); 881 882 return; 883 } 884 885 /* 886 * XXX rcc - this one really has to do something. Probably needs 887 * to stamp in a new field in the incore inode. 888 */ 889 /* ARGSUSED */ 890 STATIC void 891 xfs_inode_item_committing( 892 xfs_inode_log_item_t *iip, 893 xfs_lsn_t lsn) 894 { 895 iip->ili_last_lsn = lsn; 896 return; 897 } 898 899 /* 900 * This is the ops vector shared by all buf log items. 901 */ 902 STATIC struct xfs_item_ops xfs_inode_item_ops = { 903 .iop_size = (uint(*)(xfs_log_item_t*))xfs_inode_item_size, 904 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) 905 xfs_inode_item_format, 906 .iop_pin = (void(*)(xfs_log_item_t*))xfs_inode_item_pin, 907 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin, 908 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*)) 909 xfs_inode_item_unpin_remove, 910 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock, 911 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_inode_item_unlock, 912 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) 913 xfs_inode_item_committed, 914 .iop_push = (void(*)(xfs_log_item_t*))xfs_inode_item_push, 915 .iop_abort = (void(*)(xfs_log_item_t*))xfs_inode_item_abort, 916 .iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf, 917 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) 918 xfs_inode_item_committing 919 }; 920 921 922 /* 923 * Initialize the inode log item for a newly allocated (in-core) inode. 924 */ 925 void 926 xfs_inode_item_init( 927 xfs_inode_t *ip, 928 xfs_mount_t *mp) 929 { 930 xfs_inode_log_item_t *iip; 931 932 ASSERT(ip->i_itemp == NULL); 933 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); 934 935 iip->ili_item.li_type = XFS_LI_INODE; 936 iip->ili_item.li_ops = &xfs_inode_item_ops; 937 iip->ili_item.li_mountp = mp; 938 iip->ili_inode = ip; 939 940 /* 941 We have zeroed memory. No need ... 942 iip->ili_extents_buf = NULL; 943 iip->ili_pushbuf_flag = 0; 944 */ 945 946 iip->ili_format.ilf_type = XFS_LI_INODE; 947 iip->ili_format.ilf_ino = ip->i_ino; 948 iip->ili_format.ilf_blkno = ip->i_blkno; 949 iip->ili_format.ilf_len = ip->i_len; 950 iip->ili_format.ilf_boffset = ip->i_boffset; 951 } 952 953 /* 954 * Free the inode log item and any memory hanging off of it. 955 */ 956 void 957 xfs_inode_item_destroy( 958 xfs_inode_t *ip) 959 { 960 #ifdef XFS_TRANS_DEBUG 961 if (ip->i_itemp->ili_root_size != 0) { 962 kmem_free(ip->i_itemp->ili_orig_root, 963 ip->i_itemp->ili_root_size); 964 } 965 #endif 966 kmem_zone_free(xfs_ili_zone, ip->i_itemp); 967 } 968 969 970 /* 971 * This is the inode flushing I/O completion routine. It is called 972 * from interrupt level when the buffer containing the inode is 973 * flushed to disk. It is responsible for removing the inode item 974 * from the AIL if it has not been re-logged, and unlocking the inode's 975 * flush lock. 976 */ 977 /*ARGSUSED*/ 978 void 979 xfs_iflush_done( 980 xfs_buf_t *bp, 981 xfs_inode_log_item_t *iip) 982 { 983 xfs_inode_t *ip; 984 SPLDECL(s); 985 986 ip = iip->ili_inode; 987 988 /* 989 * We only want to pull the item from the AIL if it is 990 * actually there and its location in the log has not 991 * changed since we started the flush. Thus, we only bother 992 * if the ili_logged flag is set and the inode's lsn has not 993 * changed. First we check the lsn outside 994 * the lock since it's cheaper, and then we recheck while 995 * holding the lock before removing the inode from the AIL. 996 */ 997 if (iip->ili_logged && 998 (iip->ili_item.li_lsn == iip->ili_flush_lsn)) { 999 AIL_LOCK(ip->i_mount, s); 1000 if (iip->ili_item.li_lsn == iip->ili_flush_lsn) { 1001 /* 1002 * xfs_trans_delete_ail() drops the AIL lock. 1003 */ 1004 xfs_trans_delete_ail(ip->i_mount, 1005 (xfs_log_item_t*)iip, s); 1006 } else { 1007 AIL_UNLOCK(ip->i_mount, s); 1008 } 1009 } 1010 1011 iip->ili_logged = 0; 1012 1013 /* 1014 * Clear the ili_last_fields bits now that we know that the 1015 * data corresponding to them is safely on disk. 1016 */ 1017 iip->ili_last_fields = 0; 1018 1019 /* 1020 * Release the inode's flush lock since we're done with it. 1021 */ 1022 xfs_ifunlock(ip); 1023 1024 return; 1025 } 1026 1027 /* 1028 * This is the inode flushing abort routine. It is called 1029 * from xfs_iflush when the filesystem is shutting down to clean 1030 * up the inode state. 1031 * It is responsible for removing the inode item 1032 * from the AIL if it has not been re-logged, and unlocking the inode's 1033 * flush lock. 1034 */ 1035 void 1036 xfs_iflush_abort( 1037 xfs_inode_t *ip) 1038 { 1039 xfs_inode_log_item_t *iip; 1040 xfs_mount_t *mp; 1041 SPLDECL(s); 1042 1043 iip = ip->i_itemp; 1044 mp = ip->i_mount; 1045 if (iip) { 1046 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 1047 AIL_LOCK(mp, s); 1048 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 1049 /* 1050 * xfs_trans_delete_ail() drops the AIL lock. 1051 */ 1052 xfs_trans_delete_ail(mp, (xfs_log_item_t *)iip, 1053 s); 1054 } else 1055 AIL_UNLOCK(mp, s); 1056 } 1057 iip->ili_logged = 0; 1058 /* 1059 * Clear the ili_last_fields bits now that we know that the 1060 * data corresponding to them is safely on disk. 1061 */ 1062 iip->ili_last_fields = 0; 1063 /* 1064 * Clear the inode logging fields so no more flushes are 1065 * attempted. 1066 */ 1067 iip->ili_format.ilf_fields = 0; 1068 } 1069 /* 1070 * Release the inode's flush lock since we're done with it. 1071 */ 1072 xfs_ifunlock(ip); 1073 } 1074 1075 void 1076 xfs_istale_done( 1077 xfs_buf_t *bp, 1078 xfs_inode_log_item_t *iip) 1079 { 1080 xfs_iflush_abort(iip->ili_inode); 1081 } 1082