xref: /linux/fs/xfs/xfs_inode_item.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 #include "xfs_log_priv.h"
21 #include "xfs_error.h"
22 #include "xfs_rtbitmap.h"
23 
24 #include <linux/iversion.h>
25 
26 struct kmem_cache	*xfs_ili_cache;		/* inode log item */
27 
28 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
29 {
30 	return container_of(lip, struct xfs_inode_log_item, ili_item);
31 }
32 
33 static uint64_t
34 xfs_inode_item_sort(
35 	struct xfs_log_item	*lip)
36 {
37 	return INODE_ITEM(lip)->ili_inode->i_ino;
38 }
39 
40 #ifdef DEBUG_EXPENSIVE
41 static void
42 xfs_inode_item_precommit_check(
43 	struct xfs_inode	*ip)
44 {
45 	struct xfs_mount	*mp = ip->i_mount;
46 	struct xfs_dinode	*dip;
47 	xfs_failaddr_t		fa;
48 
49 	dip = kzalloc(mp->m_sb.sb_inodesize, GFP_KERNEL | GFP_NOFS);
50 	if (!dip) {
51 		ASSERT(dip != NULL);
52 		return;
53 	}
54 
55 	xfs_inode_to_disk(ip, dip, 0);
56 	xfs_dinode_calc_crc(mp, dip);
57 	fa = xfs_dinode_verify(mp, ip->i_ino, dip);
58 	if (fa) {
59 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
60 				sizeof(*dip), fa);
61 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
62 		ASSERT(fa == NULL);
63 	}
64 	kfree(dip);
65 }
66 #else
67 # define xfs_inode_item_precommit_check(ip)	((void)0)
68 #endif
69 
70 /*
71  * Prior to finally logging the inode, we have to ensure that all the
72  * per-modification inode state changes are applied. This includes VFS inode
73  * state updates, format conversions, verifier state synchronisation and
74  * ensuring the inode buffer remains in memory whilst the inode is dirty.
75  *
76  * We have to be careful when we grab the inode cluster buffer due to lock
77  * ordering constraints. The unlinked inode modifications (xfs_iunlink_item)
78  * require AGI -> inode cluster buffer lock order. The inode cluster buffer is
79  * not locked until ->precommit, so it happens after everything else has been
80  * modified.
81  *
82  * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we
83  * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we
84  * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because
85  * it can be called on a inode (e.g. via bumplink/droplink) before we take the
86  * AGF lock modifying directory blocks.
87  *
88  * Rather than force a complete rework of all the transactions to call
89  * xfs_trans_log_inode() once and once only at the end of every transaction, we
90  * move the pinning of the inode cluster buffer to a ->precommit operation. This
91  * matches how the xfs_iunlink_item locks the inode cluster buffer, and it
92  * ensures that the inode cluster buffer locking is always done last in a
93  * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode
94  * cluster buffer.
95  *
96  * If we return the inode number as the precommit sort key then we'll also
97  * guarantee that the order all inode cluster buffer locking is the same all the
98  * inodes and unlink items in the transaction.
99  */
100 static int
101 xfs_inode_item_precommit(
102 	struct xfs_trans	*tp,
103 	struct xfs_log_item	*lip)
104 {
105 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
106 	struct xfs_inode	*ip = iip->ili_inode;
107 	struct inode		*inode = VFS_I(ip);
108 	unsigned int		flags = iip->ili_dirty_flags;
109 
110 	/*
111 	 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races
112 	 * don't matter - we either will need an extra transaction in 24 hours
113 	 * to log the timestamps, or will clear already cleared fields in the
114 	 * worst case.
115 	 */
116 	if (inode->i_state & I_DIRTY_TIME) {
117 		spin_lock(&inode->i_lock);
118 		inode->i_state &= ~I_DIRTY_TIME;
119 		spin_unlock(&inode->i_lock);
120 	}
121 
122 	/*
123 	 * If we're updating the inode core or the timestamps and it's possible
124 	 * to upgrade this inode to bigtime format, do so now.
125 	 */
126 	if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) &&
127 	    xfs_has_bigtime(ip->i_mount) &&
128 	    !xfs_inode_has_bigtime(ip)) {
129 		ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME;
130 		flags |= XFS_ILOG_CORE;
131 	}
132 
133 	/*
134 	 * Inode verifiers do not check that the extent size hint is an integer
135 	 * multiple of the rt extent size on a directory with both rtinherit
136 	 * and extszinherit flags set.  If we're logging a directory that is
137 	 * misconfigured in this way, clear the hint.
138 	 */
139 	if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
140 	    (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) &&
141 	    xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) {
142 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
143 				   XFS_DIFLAG_EXTSZINHERIT);
144 		ip->i_extsize = 0;
145 		flags |= XFS_ILOG_CORE;
146 	}
147 
148 	/*
149 	 * Record the specific change for fdatasync optimisation. This allows
150 	 * fdatasync to skip log forces for inodes that are only timestamp
151 	 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it
152 	 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking
153 	 * (ili_fields) correctly tracks that the version has changed.
154 	 */
155 	spin_lock(&iip->ili_lock);
156 	iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION);
157 	if (flags & XFS_ILOG_IVERSION)
158 		flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE);
159 
160 	if (!iip->ili_item.li_buf) {
161 		struct xfs_buf	*bp;
162 		int		error;
163 
164 		/*
165 		 * We hold the ILOCK here, so this inode is not going to be
166 		 * flushed while we are here. Further, because there is no
167 		 * buffer attached to the item, we know that there is no IO in
168 		 * progress, so nothing will clear the ili_fields while we read
169 		 * in the buffer. Hence we can safely drop the spin lock and
170 		 * read the buffer knowing that the state will not change from
171 		 * here.
172 		 */
173 		spin_unlock(&iip->ili_lock);
174 		error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp);
175 		if (error)
176 			return error;
177 
178 		/*
179 		 * We need an explicit buffer reference for the log item but
180 		 * don't want the buffer to remain attached to the transaction.
181 		 * Hold the buffer but release the transaction reference once
182 		 * we've attached the inode log item to the buffer log item
183 		 * list.
184 		 */
185 		xfs_buf_hold(bp);
186 		spin_lock(&iip->ili_lock);
187 		iip->ili_item.li_buf = bp;
188 		bp->b_flags |= _XBF_INODES;
189 		list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list);
190 		xfs_trans_brelse(tp, bp);
191 	}
192 
193 	/*
194 	 * Always OR in the bits from the ili_last_fields field.  This is to
195 	 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
196 	 * in the eventual clearing of the ili_fields bits.  See the big comment
197 	 * in xfs_iflush() for an explanation of this coordination mechanism.
198 	 */
199 	iip->ili_fields |= (flags | iip->ili_last_fields);
200 	spin_unlock(&iip->ili_lock);
201 
202 	xfs_inode_item_precommit_check(ip);
203 
204 	/*
205 	 * We are done with the log item transaction dirty state, so clear it so
206 	 * that it doesn't pollute future transactions.
207 	 */
208 	iip->ili_dirty_flags = 0;
209 	return 0;
210 }
211 
212 /*
213  * The logged size of an inode fork is always the current size of the inode
214  * fork. This means that when an inode fork is relogged, the size of the logged
215  * region is determined by the current state, not the combination of the
216  * previously logged state + the current state. This is different relogging
217  * behaviour to most other log items which will retain the size of the
218  * previously logged changes when smaller regions are relogged.
219  *
220  * Hence operations that remove data from the inode fork (e.g. shortform
221  * dir/attr remove, extent form extent removal, etc), the size of the relogged
222  * inode gets -smaller- rather than stays the same size as the previously logged
223  * size and this can result in the committing transaction reducing the amount of
224  * space being consumed by the CIL.
225  */
226 STATIC void
227 xfs_inode_item_data_fork_size(
228 	struct xfs_inode_log_item *iip,
229 	int			*nvecs,
230 	int			*nbytes)
231 {
232 	struct xfs_inode	*ip = iip->ili_inode;
233 
234 	switch (ip->i_df.if_format) {
235 	case XFS_DINODE_FMT_EXTENTS:
236 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
237 		    ip->i_df.if_nextents > 0 &&
238 		    ip->i_df.if_bytes > 0) {
239 			/* worst case, doesn't subtract delalloc extents */
240 			*nbytes += xfs_inode_data_fork_size(ip);
241 			*nvecs += 1;
242 		}
243 		break;
244 	case XFS_DINODE_FMT_BTREE:
245 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
246 		    ip->i_df.if_broot_bytes > 0) {
247 			*nbytes += ip->i_df.if_broot_bytes;
248 			*nvecs += 1;
249 		}
250 		break;
251 	case XFS_DINODE_FMT_LOCAL:
252 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
253 		    ip->i_df.if_bytes > 0) {
254 			*nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
255 			*nvecs += 1;
256 		}
257 		break;
258 
259 	case XFS_DINODE_FMT_DEV:
260 		break;
261 	default:
262 		ASSERT(0);
263 		break;
264 	}
265 }
266 
267 STATIC void
268 xfs_inode_item_attr_fork_size(
269 	struct xfs_inode_log_item *iip,
270 	int			*nvecs,
271 	int			*nbytes)
272 {
273 	struct xfs_inode	*ip = iip->ili_inode;
274 
275 	switch (ip->i_af.if_format) {
276 	case XFS_DINODE_FMT_EXTENTS:
277 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
278 		    ip->i_af.if_nextents > 0 &&
279 		    ip->i_af.if_bytes > 0) {
280 			/* worst case, doesn't subtract unused space */
281 			*nbytes += xfs_inode_attr_fork_size(ip);
282 			*nvecs += 1;
283 		}
284 		break;
285 	case XFS_DINODE_FMT_BTREE:
286 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
287 		    ip->i_af.if_broot_bytes > 0) {
288 			*nbytes += ip->i_af.if_broot_bytes;
289 			*nvecs += 1;
290 		}
291 		break;
292 	case XFS_DINODE_FMT_LOCAL:
293 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
294 		    ip->i_af.if_bytes > 0) {
295 			*nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
296 			*nvecs += 1;
297 		}
298 		break;
299 	default:
300 		ASSERT(0);
301 		break;
302 	}
303 }
304 
305 /*
306  * This returns the number of iovecs needed to log the given inode item.
307  *
308  * We need one iovec for the inode log format structure, one for the
309  * inode core, and possibly one for the inode data/extents/b-tree root
310  * and one for the inode attribute data/extents/b-tree root.
311  */
312 STATIC void
313 xfs_inode_item_size(
314 	struct xfs_log_item	*lip,
315 	int			*nvecs,
316 	int			*nbytes)
317 {
318 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
319 	struct xfs_inode	*ip = iip->ili_inode;
320 
321 	*nvecs += 2;
322 	*nbytes += sizeof(struct xfs_inode_log_format) +
323 		   xfs_log_dinode_size(ip->i_mount);
324 
325 	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
326 	if (xfs_inode_has_attr_fork(ip))
327 		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
328 }
329 
330 STATIC void
331 xfs_inode_item_format_data_fork(
332 	struct xfs_inode_log_item *iip,
333 	struct xfs_inode_log_format *ilf,
334 	struct xfs_log_vec	*lv,
335 	struct xfs_log_iovec	**vecp)
336 {
337 	struct xfs_inode	*ip = iip->ili_inode;
338 	size_t			data_bytes;
339 
340 	switch (ip->i_df.if_format) {
341 	case XFS_DINODE_FMT_EXTENTS:
342 		iip->ili_fields &=
343 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
344 
345 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
346 		    ip->i_df.if_nextents > 0 &&
347 		    ip->i_df.if_bytes > 0) {
348 			struct xfs_bmbt_rec *p;
349 
350 			ASSERT(xfs_iext_count(&ip->i_df) > 0);
351 
352 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
353 			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
354 			xlog_finish_iovec(lv, *vecp, data_bytes);
355 
356 			ASSERT(data_bytes <= ip->i_df.if_bytes);
357 
358 			ilf->ilf_dsize = data_bytes;
359 			ilf->ilf_size++;
360 		} else {
361 			iip->ili_fields &= ~XFS_ILOG_DEXT;
362 		}
363 		break;
364 	case XFS_DINODE_FMT_BTREE:
365 		iip->ili_fields &=
366 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
367 
368 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
369 		    ip->i_df.if_broot_bytes > 0) {
370 			ASSERT(ip->i_df.if_broot != NULL);
371 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
372 					ip->i_df.if_broot,
373 					ip->i_df.if_broot_bytes);
374 			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
375 			ilf->ilf_size++;
376 		} else {
377 			ASSERT(!(iip->ili_fields &
378 				 XFS_ILOG_DBROOT));
379 			iip->ili_fields &= ~XFS_ILOG_DBROOT;
380 		}
381 		break;
382 	case XFS_DINODE_FMT_LOCAL:
383 		iip->ili_fields &=
384 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
385 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
386 		    ip->i_df.if_bytes > 0) {
387 			ASSERT(ip->i_df.if_data != NULL);
388 			ASSERT(ip->i_disk_size > 0);
389 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
390 					ip->i_df.if_data, ip->i_df.if_bytes);
391 			ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
392 			ilf->ilf_size++;
393 		} else {
394 			iip->ili_fields &= ~XFS_ILOG_DDATA;
395 		}
396 		break;
397 	case XFS_DINODE_FMT_DEV:
398 		iip->ili_fields &=
399 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
400 		if (iip->ili_fields & XFS_ILOG_DEV)
401 			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
402 		break;
403 	default:
404 		ASSERT(0);
405 		break;
406 	}
407 }
408 
409 STATIC void
410 xfs_inode_item_format_attr_fork(
411 	struct xfs_inode_log_item *iip,
412 	struct xfs_inode_log_format *ilf,
413 	struct xfs_log_vec	*lv,
414 	struct xfs_log_iovec	**vecp)
415 {
416 	struct xfs_inode	*ip = iip->ili_inode;
417 	size_t			data_bytes;
418 
419 	switch (ip->i_af.if_format) {
420 	case XFS_DINODE_FMT_EXTENTS:
421 		iip->ili_fields &=
422 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
423 
424 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
425 		    ip->i_af.if_nextents > 0 &&
426 		    ip->i_af.if_bytes > 0) {
427 			struct xfs_bmbt_rec *p;
428 
429 			ASSERT(xfs_iext_count(&ip->i_af) ==
430 				ip->i_af.if_nextents);
431 
432 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
433 			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
434 			xlog_finish_iovec(lv, *vecp, data_bytes);
435 
436 			ilf->ilf_asize = data_bytes;
437 			ilf->ilf_size++;
438 		} else {
439 			iip->ili_fields &= ~XFS_ILOG_AEXT;
440 		}
441 		break;
442 	case XFS_DINODE_FMT_BTREE:
443 		iip->ili_fields &=
444 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
445 
446 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
447 		    ip->i_af.if_broot_bytes > 0) {
448 			ASSERT(ip->i_af.if_broot != NULL);
449 
450 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
451 					ip->i_af.if_broot,
452 					ip->i_af.if_broot_bytes);
453 			ilf->ilf_asize = ip->i_af.if_broot_bytes;
454 			ilf->ilf_size++;
455 		} else {
456 			iip->ili_fields &= ~XFS_ILOG_ABROOT;
457 		}
458 		break;
459 	case XFS_DINODE_FMT_LOCAL:
460 		iip->ili_fields &=
461 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
462 
463 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
464 		    ip->i_af.if_bytes > 0) {
465 			ASSERT(ip->i_af.if_data != NULL);
466 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
467 					ip->i_af.if_data, ip->i_af.if_bytes);
468 			ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
469 			ilf->ilf_size++;
470 		} else {
471 			iip->ili_fields &= ~XFS_ILOG_ADATA;
472 		}
473 		break;
474 	default:
475 		ASSERT(0);
476 		break;
477 	}
478 }
479 
480 /*
481  * Convert an incore timestamp to a log timestamp.  Note that the log format
482  * specifies host endian format!
483  */
484 static inline xfs_log_timestamp_t
485 xfs_inode_to_log_dinode_ts(
486 	struct xfs_inode		*ip,
487 	const struct timespec64		tv)
488 {
489 	struct xfs_log_legacy_timestamp	*lits;
490 	xfs_log_timestamp_t		its;
491 
492 	if (xfs_inode_has_bigtime(ip))
493 		return xfs_inode_encode_bigtime(tv);
494 
495 	lits = (struct xfs_log_legacy_timestamp *)&its;
496 	lits->t_sec = tv.tv_sec;
497 	lits->t_nsec = tv.tv_nsec;
498 
499 	return its;
500 }
501 
502 /*
503  * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
504  * but not in the in-memory one.  But we are guaranteed to have an inode buffer
505  * in memory when logging an inode, so we can just copy it from the on-disk
506  * inode to the in-log inode here so that recovery of file system with these
507  * fields set to non-zero values doesn't lose them.  For all other cases we zero
508  * the fields.
509  */
510 static void
511 xfs_copy_dm_fields_to_log_dinode(
512 	struct xfs_inode	*ip,
513 	struct xfs_log_dinode	*to)
514 {
515 	struct xfs_dinode	*dip;
516 
517 	dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
518 			     ip->i_imap.im_boffset);
519 
520 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
521 		to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
522 		to->di_dmstate = be16_to_cpu(dip->di_dmstate);
523 	} else {
524 		to->di_dmevmask = 0;
525 		to->di_dmstate = 0;
526 	}
527 }
528 
529 static inline void
530 xfs_inode_to_log_dinode_iext_counters(
531 	struct xfs_inode	*ip,
532 	struct xfs_log_dinode	*to)
533 {
534 	if (xfs_inode_has_large_extent_counts(ip)) {
535 		to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
536 		to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
537 		to->di_nrext64_pad = 0;
538 	} else {
539 		to->di_nextents = xfs_ifork_nextents(&ip->i_df);
540 		to->di_anextents = xfs_ifork_nextents(&ip->i_af);
541 	}
542 }
543 
544 static void
545 xfs_inode_to_log_dinode(
546 	struct xfs_inode	*ip,
547 	struct xfs_log_dinode	*to,
548 	xfs_lsn_t		lsn)
549 {
550 	struct inode		*inode = VFS_I(ip);
551 
552 	to->di_magic = XFS_DINODE_MAGIC;
553 	to->di_format = xfs_ifork_format(&ip->i_df);
554 	to->di_uid = i_uid_read(inode);
555 	to->di_gid = i_gid_read(inode);
556 	to->di_projid_lo = ip->i_projid & 0xffff;
557 	to->di_projid_hi = ip->i_projid >> 16;
558 
559 	to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode));
560 	to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode));
561 	to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode));
562 	to->di_nlink = inode->i_nlink;
563 	to->di_gen = inode->i_generation;
564 	to->di_mode = inode->i_mode;
565 
566 	to->di_size = ip->i_disk_size;
567 	to->di_nblocks = ip->i_nblocks;
568 	to->di_extsize = ip->i_extsize;
569 	to->di_forkoff = ip->i_forkoff;
570 	to->di_aformat = xfs_ifork_format(&ip->i_af);
571 	to->di_flags = ip->i_diflags;
572 
573 	xfs_copy_dm_fields_to_log_dinode(ip, to);
574 
575 	/* log a dummy value to ensure log structure is fully initialised */
576 	to->di_next_unlinked = NULLAGINO;
577 
578 	if (xfs_has_v3inodes(ip->i_mount)) {
579 		to->di_version = 3;
580 		to->di_changecount = inode_peek_iversion(inode);
581 		to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
582 		to->di_flags2 = ip->i_diflags2;
583 		to->di_cowextsize = ip->i_cowextsize;
584 		to->di_ino = ip->i_ino;
585 		to->di_lsn = lsn;
586 		memset(to->di_pad2, 0, sizeof(to->di_pad2));
587 		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
588 		to->di_v3_pad = 0;
589 
590 		/* dummy value for initialisation */
591 		to->di_crc = 0;
592 
593 		if (xfs_is_metadir_inode(ip))
594 			to->di_metatype = ip->i_metatype;
595 		else
596 			to->di_metatype = 0;
597 	} else {
598 		to->di_version = 2;
599 		to->di_flushiter = ip->i_flushiter;
600 		memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
601 		to->di_metatype = 0;
602 	}
603 
604 	xfs_inode_to_log_dinode_iext_counters(ip, to);
605 }
606 
607 /*
608  * Format the inode core. Current timestamp data is only in the VFS inode
609  * fields, so we need to grab them from there. Hence rather than just copying
610  * the XFS inode core structure, format the fields directly into the iovec.
611  */
612 static void
613 xfs_inode_item_format_core(
614 	struct xfs_inode	*ip,
615 	struct xfs_log_vec	*lv,
616 	struct xfs_log_iovec	**vecp)
617 {
618 	struct xfs_log_dinode	*dic;
619 
620 	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
621 	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
622 	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
623 }
624 
625 /*
626  * This is called to fill in the vector of log iovecs for the given inode
627  * log item.  It fills the first item with an inode log format structure,
628  * the second with the on-disk inode structure, and a possible third and/or
629  * fourth with the inode data/extents/b-tree root and inode attributes
630  * data/extents/b-tree root.
631  *
632  * Note: Always use the 64 bit inode log format structure so we don't
633  * leave an uninitialised hole in the format item on 64 bit systems. Log
634  * recovery on 32 bit systems handles this just fine, so there's no reason
635  * for not using an initialising the properly padded structure all the time.
636  */
637 STATIC void
638 xfs_inode_item_format(
639 	struct xfs_log_item	*lip,
640 	struct xfs_log_vec	*lv)
641 {
642 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
643 	struct xfs_inode	*ip = iip->ili_inode;
644 	struct xfs_log_iovec	*vecp = NULL;
645 	struct xfs_inode_log_format *ilf;
646 
647 	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
648 	ilf->ilf_type = XFS_LI_INODE;
649 	ilf->ilf_ino = ip->i_ino;
650 	ilf->ilf_blkno = ip->i_imap.im_blkno;
651 	ilf->ilf_len = ip->i_imap.im_len;
652 	ilf->ilf_boffset = ip->i_imap.im_boffset;
653 	ilf->ilf_fields = XFS_ILOG_CORE;
654 	ilf->ilf_size = 2; /* format + core */
655 
656 	/*
657 	 * make sure we don't leak uninitialised data into the log in the case
658 	 * when we don't log every field in the inode.
659 	 */
660 	ilf->ilf_dsize = 0;
661 	ilf->ilf_asize = 0;
662 	ilf->ilf_pad = 0;
663 	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
664 
665 	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
666 
667 	xfs_inode_item_format_core(ip, lv, &vecp);
668 	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
669 	if (xfs_inode_has_attr_fork(ip)) {
670 		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
671 	} else {
672 		iip->ili_fields &=
673 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
674 	}
675 
676 	/* update the format with the exact fields we actually logged */
677 	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
678 }
679 
680 /*
681  * This is called to pin the inode associated with the inode log
682  * item in memory so it cannot be written out.
683  */
684 STATIC void
685 xfs_inode_item_pin(
686 	struct xfs_log_item	*lip)
687 {
688 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
689 
690 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
691 	ASSERT(lip->li_buf);
692 
693 	trace_xfs_inode_pin(ip, _RET_IP_);
694 	atomic_inc(&ip->i_pincount);
695 }
696 
697 
698 /*
699  * This is called to unpin the inode associated with the inode log
700  * item which was previously pinned with a call to xfs_inode_item_pin().
701  *
702  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
703  *
704  * Note that unpin can race with inode cluster buffer freeing marking the buffer
705  * stale. In that case, flush completions are run from the buffer unpin call,
706  * which may happen before the inode is unpinned. If we lose the race, there
707  * will be no buffer attached to the log item, but the inode will be marked
708  * XFS_ISTALE.
709  */
710 STATIC void
711 xfs_inode_item_unpin(
712 	struct xfs_log_item	*lip,
713 	int			remove)
714 {
715 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
716 
717 	trace_xfs_inode_unpin(ip, _RET_IP_);
718 	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
719 	ASSERT(atomic_read(&ip->i_pincount) > 0);
720 	if (atomic_dec_and_test(&ip->i_pincount))
721 		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
722 }
723 
724 STATIC uint
725 xfs_inode_item_push(
726 	struct xfs_log_item	*lip,
727 	struct list_head	*buffer_list)
728 		__releases(&lip->li_ailp->ail_lock)
729 		__acquires(&lip->li_ailp->ail_lock)
730 {
731 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
732 	struct xfs_inode	*ip = iip->ili_inode;
733 	struct xfs_buf		*bp = lip->li_buf;
734 	uint			rval = XFS_ITEM_SUCCESS;
735 	int			error;
736 
737 	if (!bp || (ip->i_flags & XFS_ISTALE)) {
738 		/*
739 		 * Inode item/buffer is being aborted due to cluster
740 		 * buffer deletion. Trigger a log force to have that operation
741 		 * completed and items removed from the AIL before the next push
742 		 * attempt.
743 		 */
744 		return XFS_ITEM_PINNED;
745 	}
746 
747 	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
748 		return XFS_ITEM_PINNED;
749 
750 	if (xfs_iflags_test(ip, XFS_IFLUSHING))
751 		return XFS_ITEM_FLUSHING;
752 
753 	if (!xfs_buf_trylock(bp))
754 		return XFS_ITEM_LOCKED;
755 
756 	spin_unlock(&lip->li_ailp->ail_lock);
757 
758 	/*
759 	 * We need to hold a reference for flushing the cluster buffer as it may
760 	 * fail the buffer without IO submission. In which case, we better get a
761 	 * reference for that completion because otherwise we don't get a
762 	 * reference for IO until we queue the buffer for delwri submission.
763 	 */
764 	xfs_buf_hold(bp);
765 	error = xfs_iflush_cluster(bp);
766 	if (!error) {
767 		if (!xfs_buf_delwri_queue(bp, buffer_list))
768 			rval = XFS_ITEM_FLUSHING;
769 		xfs_buf_relse(bp);
770 	} else {
771 		/*
772 		 * Release the buffer if we were unable to flush anything. On
773 		 * any other error, the buffer has already been released.
774 		 */
775 		if (error == -EAGAIN)
776 			xfs_buf_relse(bp);
777 		rval = XFS_ITEM_LOCKED;
778 	}
779 
780 	spin_lock(&lip->li_ailp->ail_lock);
781 	return rval;
782 }
783 
784 /*
785  * Unlock the inode associated with the inode log item.
786  */
787 STATIC void
788 xfs_inode_item_release(
789 	struct xfs_log_item	*lip)
790 {
791 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
792 	struct xfs_inode	*ip = iip->ili_inode;
793 	unsigned short		lock_flags;
794 
795 	ASSERT(ip->i_itemp != NULL);
796 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
797 
798 	lock_flags = iip->ili_lock_flags;
799 	iip->ili_lock_flags = 0;
800 	if (lock_flags)
801 		xfs_iunlock(ip, lock_flags);
802 }
803 
804 /*
805  * This is called to find out where the oldest active copy of the inode log
806  * item in the on disk log resides now that the last log write of it completed
807  * at the given lsn.  Since we always re-log all dirty data in an inode, the
808  * latest copy in the on disk log is the only one that matters.  Therefore,
809  * simply return the given lsn.
810  *
811  * If the inode has been marked stale because the cluster is being freed, we
812  * don't want to (re-)insert this inode into the AIL. There is a race condition
813  * where the cluster buffer may be unpinned before the inode is inserted into
814  * the AIL during transaction committed processing. If the buffer is unpinned
815  * before the inode item has been committed and inserted, then it is possible
816  * for the buffer to be written and IO completes before the inode is inserted
817  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
818  * AIL which will never get removed. It will, however, get reclaimed which
819  * triggers an assert in xfs_inode_free() complaining about freein an inode
820  * still in the AIL.
821  *
822  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
823  * transaction committed code knows that it does not need to do any further
824  * processing on the item.
825  */
826 STATIC xfs_lsn_t
827 xfs_inode_item_committed(
828 	struct xfs_log_item	*lip,
829 	xfs_lsn_t		lsn)
830 {
831 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
832 	struct xfs_inode	*ip = iip->ili_inode;
833 
834 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
835 		xfs_inode_item_unpin(lip, 0);
836 		return -1;
837 	}
838 	return lsn;
839 }
840 
841 STATIC void
842 xfs_inode_item_committing(
843 	struct xfs_log_item	*lip,
844 	xfs_csn_t		seq)
845 {
846 	INODE_ITEM(lip)->ili_commit_seq = seq;
847 	return xfs_inode_item_release(lip);
848 }
849 
850 static const struct xfs_item_ops xfs_inode_item_ops = {
851 	.iop_sort	= xfs_inode_item_sort,
852 	.iop_precommit	= xfs_inode_item_precommit,
853 	.iop_size	= xfs_inode_item_size,
854 	.iop_format	= xfs_inode_item_format,
855 	.iop_pin	= xfs_inode_item_pin,
856 	.iop_unpin	= xfs_inode_item_unpin,
857 	.iop_release	= xfs_inode_item_release,
858 	.iop_committed	= xfs_inode_item_committed,
859 	.iop_push	= xfs_inode_item_push,
860 	.iop_committing	= xfs_inode_item_committing,
861 };
862 
863 
864 /*
865  * Initialize the inode log item for a newly allocated (in-core) inode.
866  */
867 void
868 xfs_inode_item_init(
869 	struct xfs_inode	*ip,
870 	struct xfs_mount	*mp)
871 {
872 	struct xfs_inode_log_item *iip;
873 
874 	ASSERT(ip->i_itemp == NULL);
875 	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
876 					      GFP_KERNEL | __GFP_NOFAIL);
877 
878 	iip->ili_inode = ip;
879 	spin_lock_init(&iip->ili_lock);
880 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
881 						&xfs_inode_item_ops);
882 }
883 
884 /*
885  * Free the inode log item and any memory hanging off of it.
886  */
887 void
888 xfs_inode_item_destroy(
889 	struct xfs_inode	*ip)
890 {
891 	struct xfs_inode_log_item *iip = ip->i_itemp;
892 
893 	ASSERT(iip->ili_item.li_buf == NULL);
894 
895 	ip->i_itemp = NULL;
896 	kvfree(iip->ili_item.li_lv_shadow);
897 	kmem_cache_free(xfs_ili_cache, iip);
898 }
899 
900 
901 /*
902  * We only want to pull the item from the AIL if it is actually there
903  * and its location in the log has not changed since we started the
904  * flush.  Thus, we only bother if the inode's lsn has not changed.
905  */
906 static void
907 xfs_iflush_ail_updates(
908 	struct xfs_ail		*ailp,
909 	struct list_head	*list)
910 {
911 	struct xfs_log_item	*lip;
912 	xfs_lsn_t		tail_lsn = 0;
913 
914 	/* this is an opencoded batch version of xfs_trans_ail_delete */
915 	spin_lock(&ailp->ail_lock);
916 	list_for_each_entry(lip, list, li_bio_list) {
917 		xfs_lsn_t	lsn;
918 
919 		clear_bit(XFS_LI_FAILED, &lip->li_flags);
920 		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
921 			continue;
922 
923 		/*
924 		 * dgc: Not sure how this happens, but it happens very
925 		 * occassionaly via generic/388.  xfs_iflush_abort() also
926 		 * silently handles this same "under writeback but not in AIL at
927 		 * shutdown" condition via xfs_trans_ail_delete().
928 		 */
929 		if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
930 			ASSERT(xlog_is_shutdown(lip->li_log));
931 			continue;
932 		}
933 
934 		lsn = xfs_ail_delete_one(ailp, lip);
935 		if (!tail_lsn && lsn)
936 			tail_lsn = lsn;
937 	}
938 	xfs_ail_update_finish(ailp, tail_lsn);
939 }
940 
941 /*
942  * Walk the list of inodes that have completed their IOs. If they are clean
943  * remove them from the list and dissociate them from the buffer. Buffers that
944  * are still dirty remain linked to the buffer and on the list. Caller must
945  * handle them appropriately.
946  */
947 static void
948 xfs_iflush_finish(
949 	struct xfs_buf		*bp,
950 	struct list_head	*list)
951 {
952 	struct xfs_log_item	*lip, *n;
953 
954 	list_for_each_entry_safe(lip, n, list, li_bio_list) {
955 		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
956 		bool	drop_buffer = false;
957 
958 		spin_lock(&iip->ili_lock);
959 
960 		/*
961 		 * Remove the reference to the cluster buffer if the inode is
962 		 * clean in memory and drop the buffer reference once we've
963 		 * dropped the locks we hold.
964 		 */
965 		ASSERT(iip->ili_item.li_buf == bp);
966 		if (!iip->ili_fields) {
967 			iip->ili_item.li_buf = NULL;
968 			list_del_init(&lip->li_bio_list);
969 			drop_buffer = true;
970 		}
971 		iip->ili_last_fields = 0;
972 		iip->ili_flush_lsn = 0;
973 		clear_bit(XFS_LI_FLUSHING, &lip->li_flags);
974 		spin_unlock(&iip->ili_lock);
975 		xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
976 		if (drop_buffer)
977 			xfs_buf_rele(bp);
978 	}
979 }
980 
981 /*
982  * Inode buffer IO completion routine.  It is responsible for removing inodes
983  * attached to the buffer from the AIL if they have not been re-logged and
984  * completing the inode flush.
985  */
986 void
987 xfs_buf_inode_iodone(
988 	struct xfs_buf		*bp)
989 {
990 	struct xfs_log_item	*lip, *n;
991 	LIST_HEAD(flushed_inodes);
992 	LIST_HEAD(ail_updates);
993 
994 	/*
995 	 * Pull the attached inodes from the buffer one at a time and take the
996 	 * appropriate action on them.
997 	 */
998 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
999 		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
1000 
1001 		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
1002 			xfs_iflush_abort(iip->ili_inode);
1003 			continue;
1004 		}
1005 		if (!iip->ili_last_fields)
1006 			continue;
1007 
1008 		/* Do an unlocked check for needing the AIL lock. */
1009 		if (iip->ili_flush_lsn == lip->li_lsn ||
1010 		    test_bit(XFS_LI_FAILED, &lip->li_flags))
1011 			list_move_tail(&lip->li_bio_list, &ail_updates);
1012 		else
1013 			list_move_tail(&lip->li_bio_list, &flushed_inodes);
1014 	}
1015 
1016 	if (!list_empty(&ail_updates)) {
1017 		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
1018 		list_splice_tail(&ail_updates, &flushed_inodes);
1019 	}
1020 
1021 	xfs_iflush_finish(bp, &flushed_inodes);
1022 	if (!list_empty(&flushed_inodes))
1023 		list_splice_tail(&flushed_inodes, &bp->b_li_list);
1024 }
1025 
1026 void
1027 xfs_buf_inode_io_fail(
1028 	struct xfs_buf		*bp)
1029 {
1030 	struct xfs_log_item	*lip;
1031 
1032 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1033 		set_bit(XFS_LI_FAILED, &lip->li_flags);
1034 		clear_bit(XFS_LI_FLUSHING, &lip->li_flags);
1035 	}
1036 }
1037 
1038 /*
1039  * Clear the inode logging fields so no more flushes are attempted.  If we are
1040  * on a buffer list, it is now safe to remove it because the buffer is
1041  * guaranteed to be locked. The caller will drop the reference to the buffer
1042  * the log item held.
1043  */
1044 static void
1045 xfs_iflush_abort_clean(
1046 	struct xfs_inode_log_item *iip)
1047 {
1048 	iip->ili_last_fields = 0;
1049 	iip->ili_fields = 0;
1050 	iip->ili_fsync_fields = 0;
1051 	iip->ili_flush_lsn = 0;
1052 	iip->ili_item.li_buf = NULL;
1053 	list_del_init(&iip->ili_item.li_bio_list);
1054 	clear_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
1055 }
1056 
1057 /*
1058  * Abort flushing the inode from a context holding the cluster buffer locked.
1059  *
1060  * This is the normal runtime method of aborting writeback of an inode that is
1061  * attached to a cluster buffer. It occurs when the inode and the backing
1062  * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
1063  * flushing or buffer IO completion encounters a log shutdown situation.
1064  *
1065  * If we need to abort inode writeback and we don't already hold the buffer
1066  * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
1067  * necessary in a shutdown situation.
1068  */
1069 void
1070 xfs_iflush_abort(
1071 	struct xfs_inode	*ip)
1072 {
1073 	struct xfs_inode_log_item *iip = ip->i_itemp;
1074 	struct xfs_buf		*bp;
1075 
1076 	if (!iip) {
1077 		/* clean inode, nothing to do */
1078 		xfs_iflags_clear(ip, XFS_IFLUSHING);
1079 		return;
1080 	}
1081 
1082 	/*
1083 	 * Remove the inode item from the AIL before we clear its internal
1084 	 * state. Whilst the inode is in the AIL, it should have a valid buffer
1085 	 * pointer for push operations to access - it is only safe to remove the
1086 	 * inode from the buffer once it has been removed from the AIL.
1087 	 *
1088 	 * We also clear the failed bit before removing the item from the AIL
1089 	 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
1090 	 * references the inode item owns and needs to hold until we've fully
1091 	 * aborted the inode log item and detached it from the buffer.
1092 	 */
1093 	clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
1094 	xfs_trans_ail_delete(&iip->ili_item, 0);
1095 
1096 	/*
1097 	 * Grab the inode buffer so can we release the reference the inode log
1098 	 * item holds on it.
1099 	 */
1100 	spin_lock(&iip->ili_lock);
1101 	bp = iip->ili_item.li_buf;
1102 	xfs_iflush_abort_clean(iip);
1103 	spin_unlock(&iip->ili_lock);
1104 
1105 	xfs_iflags_clear(ip, XFS_IFLUSHING);
1106 	if (bp)
1107 		xfs_buf_rele(bp);
1108 }
1109 
1110 /*
1111  * Abort an inode flush in the case of a shutdown filesystem. This can be called
1112  * from anywhere with just an inode reference and does not require holding the
1113  * inode cluster buffer locked. If the inode is attached to a cluster buffer,
1114  * it will grab and lock it safely, then abort the inode flush.
1115  */
1116 void
1117 xfs_iflush_shutdown_abort(
1118 	struct xfs_inode	*ip)
1119 {
1120 	struct xfs_inode_log_item *iip = ip->i_itemp;
1121 	struct xfs_buf		*bp;
1122 
1123 	if (!iip) {
1124 		/* clean inode, nothing to do */
1125 		xfs_iflags_clear(ip, XFS_IFLUSHING);
1126 		return;
1127 	}
1128 
1129 	spin_lock(&iip->ili_lock);
1130 	bp = iip->ili_item.li_buf;
1131 	if (!bp) {
1132 		spin_unlock(&iip->ili_lock);
1133 		xfs_iflush_abort(ip);
1134 		return;
1135 	}
1136 
1137 	/*
1138 	 * We have to take a reference to the buffer so that it doesn't get
1139 	 * freed when we drop the ili_lock and then wait to lock the buffer.
1140 	 * We'll clean up the extra reference after we pick up the ili_lock
1141 	 * again.
1142 	 */
1143 	xfs_buf_hold(bp);
1144 	spin_unlock(&iip->ili_lock);
1145 	xfs_buf_lock(bp);
1146 
1147 	spin_lock(&iip->ili_lock);
1148 	if (!iip->ili_item.li_buf) {
1149 		/*
1150 		 * Raced with another removal, hold the only reference
1151 		 * to bp now. Inode should not be in the AIL now, so just clean
1152 		 * up and return;
1153 		 */
1154 		ASSERT(list_empty(&iip->ili_item.li_bio_list));
1155 		ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
1156 		xfs_iflush_abort_clean(iip);
1157 		spin_unlock(&iip->ili_lock);
1158 		xfs_iflags_clear(ip, XFS_IFLUSHING);
1159 		xfs_buf_relse(bp);
1160 		return;
1161 	}
1162 
1163 	/*
1164 	 * Got two references to bp. The first will get dropped by
1165 	 * xfs_iflush_abort() when the item is removed from the buffer list, but
1166 	 * we can't drop our reference until _abort() returns because we have to
1167 	 * unlock the buffer as well. Hence we abort and then unlock and release
1168 	 * our reference to the buffer.
1169 	 */
1170 	ASSERT(iip->ili_item.li_buf == bp);
1171 	spin_unlock(&iip->ili_lock);
1172 	xfs_iflush_abort(ip);
1173 	xfs_buf_relse(bp);
1174 }
1175 
1176 
1177 /*
1178  * convert an xfs_inode_log_format struct from the old 32 bit version
1179  * (which can have different field alignments) to the native 64 bit version
1180  */
1181 int
1182 xfs_inode_item_format_convert(
1183 	struct xfs_log_iovec		*buf,
1184 	struct xfs_inode_log_format	*in_f)
1185 {
1186 	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
1187 
1188 	if (buf->i_len != sizeof(*in_f32)) {
1189 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
1190 		return -EFSCORRUPTED;
1191 	}
1192 
1193 	in_f->ilf_type = in_f32->ilf_type;
1194 	in_f->ilf_size = in_f32->ilf_size;
1195 	in_f->ilf_fields = in_f32->ilf_fields;
1196 	in_f->ilf_asize = in_f32->ilf_asize;
1197 	in_f->ilf_dsize = in_f32->ilf_dsize;
1198 	in_f->ilf_ino = in_f32->ilf_ino;
1199 	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1200 	in_f->ilf_blkno = in_f32->ilf_blkno;
1201 	in_f->ilf_len = in_f32->ilf_len;
1202 	in_f->ilf_boffset = in_f32->ilf_boffset;
1203 	return 0;
1204 }
1205