1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_buf_item.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_dir2.h" 29 #include "xfs_dmapi.h" 30 #include "xfs_mount.h" 31 #include "xfs_trans_priv.h" 32 #include "xfs_bmap_btree.h" 33 #include "xfs_alloc_btree.h" 34 #include "xfs_ialloc_btree.h" 35 #include "xfs_dir2_sf.h" 36 #include "xfs_attr_sf.h" 37 #include "xfs_dinode.h" 38 #include "xfs_inode.h" 39 #include "xfs_inode_item.h" 40 #include "xfs_btree.h" 41 #include "xfs_ialloc.h" 42 #include "xfs_rw.h" 43 #include "xfs_error.h" 44 45 46 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 47 48 /* 49 * This returns the number of iovecs needed to log the given inode item. 50 * 51 * We need one iovec for the inode log format structure, one for the 52 * inode core, and possibly one for the inode data/extents/b-tree root 53 * and one for the inode attribute data/extents/b-tree root. 54 */ 55 STATIC uint 56 xfs_inode_item_size( 57 xfs_inode_log_item_t *iip) 58 { 59 uint nvecs; 60 xfs_inode_t *ip; 61 62 ip = iip->ili_inode; 63 nvecs = 2; 64 65 /* 66 * Only log the data/extents/b-tree root if there is something 67 * left to log. 68 */ 69 iip->ili_format.ilf_fields |= XFS_ILOG_CORE; 70 71 switch (ip->i_d.di_format) { 72 case XFS_DINODE_FMT_EXTENTS: 73 iip->ili_format.ilf_fields &= 74 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 75 XFS_ILOG_DEV | XFS_ILOG_UUID); 76 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) && 77 (ip->i_d.di_nextents > 0) && 78 (ip->i_df.if_bytes > 0)) { 79 ASSERT(ip->i_df.if_u1.if_extents != NULL); 80 nvecs++; 81 } else { 82 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT; 83 } 84 break; 85 86 case XFS_DINODE_FMT_BTREE: 87 ASSERT(ip->i_df.if_ext_max == 88 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t)); 89 iip->ili_format.ilf_fields &= 90 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | 91 XFS_ILOG_DEV | XFS_ILOG_UUID); 92 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) && 93 (ip->i_df.if_broot_bytes > 0)) { 94 ASSERT(ip->i_df.if_broot != NULL); 95 nvecs++; 96 } else { 97 ASSERT(!(iip->ili_format.ilf_fields & 98 XFS_ILOG_DBROOT)); 99 #ifdef XFS_TRANS_DEBUG 100 if (iip->ili_root_size > 0) { 101 ASSERT(iip->ili_root_size == 102 ip->i_df.if_broot_bytes); 103 ASSERT(memcmp(iip->ili_orig_root, 104 ip->i_df.if_broot, 105 iip->ili_root_size) == 0); 106 } else { 107 ASSERT(ip->i_df.if_broot_bytes == 0); 108 } 109 #endif 110 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT; 111 } 112 break; 113 114 case XFS_DINODE_FMT_LOCAL: 115 iip->ili_format.ilf_fields &= 116 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | 117 XFS_ILOG_DEV | XFS_ILOG_UUID); 118 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) && 119 (ip->i_df.if_bytes > 0)) { 120 ASSERT(ip->i_df.if_u1.if_data != NULL); 121 ASSERT(ip->i_d.di_size > 0); 122 nvecs++; 123 } else { 124 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA; 125 } 126 break; 127 128 case XFS_DINODE_FMT_DEV: 129 iip->ili_format.ilf_fields &= 130 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 131 XFS_ILOG_DEXT | XFS_ILOG_UUID); 132 break; 133 134 case XFS_DINODE_FMT_UUID: 135 iip->ili_format.ilf_fields &= 136 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 137 XFS_ILOG_DEXT | XFS_ILOG_DEV); 138 break; 139 140 default: 141 ASSERT(0); 142 break; 143 } 144 145 /* 146 * If there are no attributes associated with this file, 147 * then there cannot be anything more to log. 148 * Clear all attribute-related log flags. 149 */ 150 if (!XFS_IFORK_Q(ip)) { 151 iip->ili_format.ilf_fields &= 152 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 153 return nvecs; 154 } 155 156 /* 157 * Log any necessary attribute data. 158 */ 159 switch (ip->i_d.di_aformat) { 160 case XFS_DINODE_FMT_EXTENTS: 161 iip->ili_format.ilf_fields &= 162 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 163 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) && 164 (ip->i_d.di_anextents > 0) && 165 (ip->i_afp->if_bytes > 0)) { 166 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 167 nvecs++; 168 } else { 169 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT; 170 } 171 break; 172 173 case XFS_DINODE_FMT_BTREE: 174 iip->ili_format.ilf_fields &= 175 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 176 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) && 177 (ip->i_afp->if_broot_bytes > 0)) { 178 ASSERT(ip->i_afp->if_broot != NULL); 179 nvecs++; 180 } else { 181 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT; 182 } 183 break; 184 185 case XFS_DINODE_FMT_LOCAL: 186 iip->ili_format.ilf_fields &= 187 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 188 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) && 189 (ip->i_afp->if_bytes > 0)) { 190 ASSERT(ip->i_afp->if_u1.if_data != NULL); 191 nvecs++; 192 } else { 193 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA; 194 } 195 break; 196 197 default: 198 ASSERT(0); 199 break; 200 } 201 202 return nvecs; 203 } 204 205 /* 206 * This is called to fill in the vector of log iovecs for the 207 * given inode log item. It fills the first item with an inode 208 * log format structure, the second with the on-disk inode structure, 209 * and a possible third and/or fourth with the inode data/extents/b-tree 210 * root and inode attributes data/extents/b-tree root. 211 */ 212 STATIC void 213 xfs_inode_item_format( 214 xfs_inode_log_item_t *iip, 215 xfs_log_iovec_t *log_vector) 216 { 217 uint nvecs; 218 xfs_log_iovec_t *vecp; 219 xfs_inode_t *ip; 220 size_t data_bytes; 221 xfs_bmbt_rec_t *ext_buffer; 222 int nrecs; 223 xfs_mount_t *mp; 224 225 ip = iip->ili_inode; 226 vecp = log_vector; 227 228 vecp->i_addr = (xfs_caddr_t)&iip->ili_format; 229 vecp->i_len = sizeof(xfs_inode_log_format_t); 230 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT); 231 vecp++; 232 nvecs = 1; 233 234 /* 235 * Make sure the linux inode is dirty. We do this before 236 * clearing i_update_core as the VFS will call back into 237 * XFS here and set i_update_core, so we need to dirty the 238 * inode first so that the ordering of i_update_core and 239 * unlogged modifications still works as described below. 240 */ 241 xfs_mark_inode_dirty_sync(ip); 242 243 /* 244 * Clear i_update_core if the timestamps (or any other 245 * non-transactional modification) need flushing/logging 246 * and we're about to log them with the rest of the core. 247 * 248 * This is the same logic as xfs_iflush() but this code can't 249 * run at the same time as xfs_iflush because we're in commit 250 * processing here and so we have the inode lock held in 251 * exclusive mode. Although it doesn't really matter 252 * for the timestamps if both routines were to grab the 253 * timestamps or not. That would be ok. 254 * 255 * We clear i_update_core before copying out the data. 256 * This is for coordination with our timestamp updates 257 * that don't hold the inode lock. They will always 258 * update the timestamps BEFORE setting i_update_core, 259 * so if we clear i_update_core after they set it we 260 * are guaranteed to see their updates to the timestamps 261 * either here. Likewise, if they set it after we clear it 262 * here, we'll see it either on the next commit of this 263 * inode or the next time the inode gets flushed via 264 * xfs_iflush(). This depends on strongly ordered memory 265 * semantics, but we have that. We use the SYNCHRONIZE 266 * macro to make sure that the compiler does not reorder 267 * the i_update_core access below the data copy below. 268 */ 269 if (ip->i_update_core) { 270 ip->i_update_core = 0; 271 SYNCHRONIZE(); 272 } 273 274 /* 275 * Make sure to get the latest timestamps from the Linux inode. 276 */ 277 xfs_synchronize_times(ip); 278 279 vecp->i_addr = (xfs_caddr_t)&ip->i_d; 280 vecp->i_len = sizeof(struct xfs_icdinode); 281 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE); 282 vecp++; 283 nvecs++; 284 iip->ili_format.ilf_fields |= XFS_ILOG_CORE; 285 286 /* 287 * If this is really an old format inode, then we need to 288 * log it as such. This means that we have to copy the link 289 * count from the new field to the old. We don't have to worry 290 * about the new fields, because nothing trusts them as long as 291 * the old inode version number is there. If the superblock already 292 * has a new version number, then we don't bother converting back. 293 */ 294 mp = ip->i_mount; 295 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 296 if (ip->i_d.di_version == 1) { 297 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 298 /* 299 * Convert it back. 300 */ 301 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 302 ip->i_d.di_onlink = ip->i_d.di_nlink; 303 } else { 304 /* 305 * The superblock version has already been bumped, 306 * so just make the conversion to the new inode 307 * format permanent. 308 */ 309 ip->i_d.di_version = 2; 310 ip->i_d.di_onlink = 0; 311 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 312 } 313 } 314 315 switch (ip->i_d.di_format) { 316 case XFS_DINODE_FMT_EXTENTS: 317 ASSERT(!(iip->ili_format.ilf_fields & 318 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT | 319 XFS_ILOG_DEV | XFS_ILOG_UUID))); 320 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) { 321 ASSERT(ip->i_df.if_bytes > 0); 322 ASSERT(ip->i_df.if_u1.if_extents != NULL); 323 ASSERT(ip->i_d.di_nextents > 0); 324 ASSERT(iip->ili_extents_buf == NULL); 325 nrecs = ip->i_df.if_bytes / 326 (uint)sizeof(xfs_bmbt_rec_t); 327 ASSERT(nrecs > 0); 328 #ifdef XFS_NATIVE_HOST 329 if (nrecs == ip->i_d.di_nextents) { 330 /* 331 * There are no delayed allocation 332 * extents, so just point to the 333 * real extents array. 334 */ 335 vecp->i_addr = 336 (char *)(ip->i_df.if_u1.if_extents); 337 vecp->i_len = ip->i_df.if_bytes; 338 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT); 339 } else 340 #endif 341 { 342 /* 343 * There are delayed allocation extents 344 * in the inode, or we need to convert 345 * the extents to on disk format. 346 * Use xfs_iextents_copy() 347 * to copy only the real extents into 348 * a separate buffer. We'll free the 349 * buffer in the unlock routine. 350 */ 351 ext_buffer = kmem_alloc(ip->i_df.if_bytes, 352 KM_SLEEP); 353 iip->ili_extents_buf = ext_buffer; 354 vecp->i_addr = (xfs_caddr_t)ext_buffer; 355 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, 356 XFS_DATA_FORK); 357 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT); 358 } 359 ASSERT(vecp->i_len <= ip->i_df.if_bytes); 360 iip->ili_format.ilf_dsize = vecp->i_len; 361 vecp++; 362 nvecs++; 363 } 364 break; 365 366 case XFS_DINODE_FMT_BTREE: 367 ASSERT(!(iip->ili_format.ilf_fields & 368 (XFS_ILOG_DDATA | XFS_ILOG_DEXT | 369 XFS_ILOG_DEV | XFS_ILOG_UUID))); 370 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) { 371 ASSERT(ip->i_df.if_broot_bytes > 0); 372 ASSERT(ip->i_df.if_broot != NULL); 373 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot; 374 vecp->i_len = ip->i_df.if_broot_bytes; 375 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT); 376 vecp++; 377 nvecs++; 378 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes; 379 } 380 break; 381 382 case XFS_DINODE_FMT_LOCAL: 383 ASSERT(!(iip->ili_format.ilf_fields & 384 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | 385 XFS_ILOG_DEV | XFS_ILOG_UUID))); 386 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) { 387 ASSERT(ip->i_df.if_bytes > 0); 388 ASSERT(ip->i_df.if_u1.if_data != NULL); 389 ASSERT(ip->i_d.di_size > 0); 390 391 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data; 392 /* 393 * Round i_bytes up to a word boundary. 394 * The underlying memory is guaranteed to 395 * to be there by xfs_idata_realloc(). 396 */ 397 data_bytes = roundup(ip->i_df.if_bytes, 4); 398 ASSERT((ip->i_df.if_real_bytes == 0) || 399 (ip->i_df.if_real_bytes == data_bytes)); 400 vecp->i_len = (int)data_bytes; 401 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL); 402 vecp++; 403 nvecs++; 404 iip->ili_format.ilf_dsize = (unsigned)data_bytes; 405 } 406 break; 407 408 case XFS_DINODE_FMT_DEV: 409 ASSERT(!(iip->ili_format.ilf_fields & 410 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | 411 XFS_ILOG_DDATA | XFS_ILOG_UUID))); 412 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 413 iip->ili_format.ilf_u.ilfu_rdev = 414 ip->i_df.if_u2.if_rdev; 415 } 416 break; 417 418 case XFS_DINODE_FMT_UUID: 419 ASSERT(!(iip->ili_format.ilf_fields & 420 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | 421 XFS_ILOG_DDATA | XFS_ILOG_DEV))); 422 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 423 iip->ili_format.ilf_u.ilfu_uuid = 424 ip->i_df.if_u2.if_uuid; 425 } 426 break; 427 428 default: 429 ASSERT(0); 430 break; 431 } 432 433 /* 434 * If there are no attributes associated with the file, 435 * then we're done. 436 * Assert that no attribute-related log flags are set. 437 */ 438 if (!XFS_IFORK_Q(ip)) { 439 ASSERT(nvecs == iip->ili_item.li_desc->lid_size); 440 iip->ili_format.ilf_size = nvecs; 441 ASSERT(!(iip->ili_format.ilf_fields & 442 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); 443 return; 444 } 445 446 switch (ip->i_d.di_aformat) { 447 case XFS_DINODE_FMT_EXTENTS: 448 ASSERT(!(iip->ili_format.ilf_fields & 449 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT))); 450 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) { 451 ASSERT(ip->i_afp->if_bytes > 0); 452 ASSERT(ip->i_afp->if_u1.if_extents != NULL); 453 ASSERT(ip->i_d.di_anextents > 0); 454 #ifdef DEBUG 455 nrecs = ip->i_afp->if_bytes / 456 (uint)sizeof(xfs_bmbt_rec_t); 457 #endif 458 ASSERT(nrecs > 0); 459 ASSERT(nrecs == ip->i_d.di_anextents); 460 #ifdef XFS_NATIVE_HOST 461 /* 462 * There are not delayed allocation extents 463 * for attributes, so just point at the array. 464 */ 465 vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents); 466 vecp->i_len = ip->i_afp->if_bytes; 467 #else 468 ASSERT(iip->ili_aextents_buf == NULL); 469 /* 470 * Need to endian flip before logging 471 */ 472 ext_buffer = kmem_alloc(ip->i_afp->if_bytes, 473 KM_SLEEP); 474 iip->ili_aextents_buf = ext_buffer; 475 vecp->i_addr = (xfs_caddr_t)ext_buffer; 476 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, 477 XFS_ATTR_FORK); 478 #endif 479 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT); 480 iip->ili_format.ilf_asize = vecp->i_len; 481 vecp++; 482 nvecs++; 483 } 484 break; 485 486 case XFS_DINODE_FMT_BTREE: 487 ASSERT(!(iip->ili_format.ilf_fields & 488 (XFS_ILOG_ADATA | XFS_ILOG_AEXT))); 489 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) { 490 ASSERT(ip->i_afp->if_broot_bytes > 0); 491 ASSERT(ip->i_afp->if_broot != NULL); 492 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot; 493 vecp->i_len = ip->i_afp->if_broot_bytes; 494 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT); 495 vecp++; 496 nvecs++; 497 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes; 498 } 499 break; 500 501 case XFS_DINODE_FMT_LOCAL: 502 ASSERT(!(iip->ili_format.ilf_fields & 503 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); 504 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) { 505 ASSERT(ip->i_afp->if_bytes > 0); 506 ASSERT(ip->i_afp->if_u1.if_data != NULL); 507 508 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data; 509 /* 510 * Round i_bytes up to a word boundary. 511 * The underlying memory is guaranteed to 512 * to be there by xfs_idata_realloc(). 513 */ 514 data_bytes = roundup(ip->i_afp->if_bytes, 4); 515 ASSERT((ip->i_afp->if_real_bytes == 0) || 516 (ip->i_afp->if_real_bytes == data_bytes)); 517 vecp->i_len = (int)data_bytes; 518 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL); 519 vecp++; 520 nvecs++; 521 iip->ili_format.ilf_asize = (unsigned)data_bytes; 522 } 523 break; 524 525 default: 526 ASSERT(0); 527 break; 528 } 529 530 ASSERT(nvecs == iip->ili_item.li_desc->lid_size); 531 iip->ili_format.ilf_size = nvecs; 532 } 533 534 535 /* 536 * This is called to pin the inode associated with the inode log 537 * item in memory so it cannot be written out. Do this by calling 538 * xfs_ipin() to bump the pin count in the inode while holding the 539 * inode pin lock. 540 */ 541 STATIC void 542 xfs_inode_item_pin( 543 xfs_inode_log_item_t *iip) 544 { 545 ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL)); 546 xfs_ipin(iip->ili_inode); 547 } 548 549 550 /* 551 * This is called to unpin the inode associated with the inode log 552 * item which was previously pinned with a call to xfs_inode_item_pin(). 553 * Just call xfs_iunpin() on the inode to do this. 554 */ 555 /* ARGSUSED */ 556 STATIC void 557 xfs_inode_item_unpin( 558 xfs_inode_log_item_t *iip, 559 int stale) 560 { 561 xfs_iunpin(iip->ili_inode); 562 } 563 564 /* ARGSUSED */ 565 STATIC void 566 xfs_inode_item_unpin_remove( 567 xfs_inode_log_item_t *iip, 568 xfs_trans_t *tp) 569 { 570 xfs_iunpin(iip->ili_inode); 571 } 572 573 /* 574 * This is called to attempt to lock the inode associated with this 575 * inode log item, in preparation for the push routine which does the actual 576 * iflush. Don't sleep on the inode lock or the flush lock. 577 * 578 * If the flush lock is already held, indicating that the inode has 579 * been or is in the process of being flushed, then (ideally) we'd like to 580 * see if the inode's buffer is still incore, and if so give it a nudge. 581 * We delay doing so until the pushbuf routine, though, to avoid holding 582 * the AIL lock across a call to the blackhole which is the buffer cache. 583 * Also we don't want to sleep in any device strategy routines, which can happen 584 * if we do the subsequent bawrite in here. 585 */ 586 STATIC uint 587 xfs_inode_item_trylock( 588 xfs_inode_log_item_t *iip) 589 { 590 register xfs_inode_t *ip; 591 592 ip = iip->ili_inode; 593 594 if (xfs_ipincount(ip) > 0) { 595 return XFS_ITEM_PINNED; 596 } 597 598 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 599 return XFS_ITEM_LOCKED; 600 } 601 602 if (!xfs_iflock_nowait(ip)) { 603 /* 604 * If someone else isn't already trying to push the inode 605 * buffer, we get to do it. 606 */ 607 if (iip->ili_pushbuf_flag == 0) { 608 iip->ili_pushbuf_flag = 1; 609 #ifdef DEBUG 610 iip->ili_push_owner = current_pid(); 611 #endif 612 /* 613 * Inode is left locked in shared mode. 614 * Pushbuf routine gets to unlock it. 615 */ 616 return XFS_ITEM_PUSHBUF; 617 } else { 618 /* 619 * We hold the AIL lock, so we must specify the 620 * NONOTIFY flag so that we won't double trip. 621 */ 622 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); 623 return XFS_ITEM_FLUSHING; 624 } 625 /* NOTREACHED */ 626 } 627 628 /* Stale items should force out the iclog */ 629 if (ip->i_flags & XFS_ISTALE) { 630 xfs_ifunlock(ip); 631 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); 632 return XFS_ITEM_PINNED; 633 } 634 635 #ifdef DEBUG 636 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 637 ASSERT(iip->ili_format.ilf_fields != 0); 638 ASSERT(iip->ili_logged == 0); 639 ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL); 640 } 641 #endif 642 return XFS_ITEM_SUCCESS; 643 } 644 645 /* 646 * Unlock the inode associated with the inode log item. 647 * Clear the fields of the inode and inode log item that 648 * are specific to the current transaction. If the 649 * hold flags is set, do not unlock the inode. 650 */ 651 STATIC void 652 xfs_inode_item_unlock( 653 xfs_inode_log_item_t *iip) 654 { 655 uint hold; 656 uint iolocked; 657 uint lock_flags; 658 xfs_inode_t *ip; 659 660 ASSERT(iip != NULL); 661 ASSERT(iip->ili_inode->i_itemp != NULL); 662 ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL)); 663 ASSERT((!(iip->ili_inode->i_itemp->ili_flags & 664 XFS_ILI_IOLOCKED_EXCL)) || 665 xfs_isilocked(iip->ili_inode, XFS_IOLOCK_EXCL)); 666 ASSERT((!(iip->ili_inode->i_itemp->ili_flags & 667 XFS_ILI_IOLOCKED_SHARED)) || 668 xfs_isilocked(iip->ili_inode, XFS_IOLOCK_SHARED)); 669 /* 670 * Clear the transaction pointer in the inode. 671 */ 672 ip = iip->ili_inode; 673 ip->i_transp = NULL; 674 675 /* 676 * If the inode needed a separate buffer with which to log 677 * its extents, then free it now. 678 */ 679 if (iip->ili_extents_buf != NULL) { 680 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS); 681 ASSERT(ip->i_d.di_nextents > 0); 682 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT); 683 ASSERT(ip->i_df.if_bytes > 0); 684 kmem_free(iip->ili_extents_buf); 685 iip->ili_extents_buf = NULL; 686 } 687 if (iip->ili_aextents_buf != NULL) { 688 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS); 689 ASSERT(ip->i_d.di_anextents > 0); 690 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT); 691 ASSERT(ip->i_afp->if_bytes > 0); 692 kmem_free(iip->ili_aextents_buf); 693 iip->ili_aextents_buf = NULL; 694 } 695 696 /* 697 * Figure out if we should unlock the inode or not. 698 */ 699 hold = iip->ili_flags & XFS_ILI_HOLD; 700 701 /* 702 * Before clearing out the flags, remember whether we 703 * are holding the inode's IO lock. 704 */ 705 iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY; 706 707 /* 708 * Clear out the fields of the inode log item particular 709 * to the current transaction. 710 */ 711 iip->ili_flags = 0; 712 713 /* 714 * Unlock the inode if XFS_ILI_HOLD was not set. 715 */ 716 if (!hold) { 717 lock_flags = XFS_ILOCK_EXCL; 718 if (iolocked & XFS_ILI_IOLOCKED_EXCL) { 719 lock_flags |= XFS_IOLOCK_EXCL; 720 } else if (iolocked & XFS_ILI_IOLOCKED_SHARED) { 721 lock_flags |= XFS_IOLOCK_SHARED; 722 } 723 xfs_iput(iip->ili_inode, lock_flags); 724 } 725 } 726 727 /* 728 * This is called to find out where the oldest active copy of the 729 * inode log item in the on disk log resides now that the last log 730 * write of it completed at the given lsn. Since we always re-log 731 * all dirty data in an inode, the latest copy in the on disk log 732 * is the only one that matters. Therefore, simply return the 733 * given lsn. 734 */ 735 /*ARGSUSED*/ 736 STATIC xfs_lsn_t 737 xfs_inode_item_committed( 738 xfs_inode_log_item_t *iip, 739 xfs_lsn_t lsn) 740 { 741 return (lsn); 742 } 743 744 /* 745 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK 746 * failed to get the inode flush lock but did get the inode locked SHARED. 747 * Here we're trying to see if the inode buffer is incore, and if so whether it's 748 * marked delayed write. If that's the case, we'll initiate a bawrite on that 749 * buffer to expedite the process. 750 * 751 * We aren't holding the AIL lock (or the flush lock) when this gets called, 752 * so it is inherently race-y. 753 */ 754 STATIC void 755 xfs_inode_item_pushbuf( 756 xfs_inode_log_item_t *iip) 757 { 758 xfs_inode_t *ip; 759 xfs_mount_t *mp; 760 xfs_buf_t *bp; 761 uint dopush; 762 763 ip = iip->ili_inode; 764 765 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED)); 766 767 /* 768 * The ili_pushbuf_flag keeps others from 769 * trying to duplicate our effort. 770 */ 771 ASSERT(iip->ili_pushbuf_flag != 0); 772 ASSERT(iip->ili_push_owner == current_pid()); 773 774 /* 775 * If a flush is not in progress anymore, chances are that the 776 * inode was taken off the AIL. So, just get out. 777 */ 778 if (completion_done(&ip->i_flush) || 779 ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) { 780 iip->ili_pushbuf_flag = 0; 781 xfs_iunlock(ip, XFS_ILOCK_SHARED); 782 return; 783 } 784 785 mp = ip->i_mount; 786 bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno, 787 iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK); 788 789 if (bp != NULL) { 790 if (XFS_BUF_ISDELAYWRITE(bp)) { 791 /* 792 * We were racing with iflush because we don't hold 793 * the AIL lock or the flush lock. However, at this point, 794 * we have the buffer, and we know that it's dirty. 795 * So, it's possible that iflush raced with us, and 796 * this item is already taken off the AIL. 797 * If not, we can flush it async. 798 */ 799 dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) && 800 !completion_done(&ip->i_flush)); 801 iip->ili_pushbuf_flag = 0; 802 xfs_iunlock(ip, XFS_ILOCK_SHARED); 803 xfs_buftrace("INODE ITEM PUSH", bp); 804 if (XFS_BUF_ISPINNED(bp)) { 805 xfs_log_force(mp, (xfs_lsn_t)0, 806 XFS_LOG_FORCE); 807 } 808 if (dopush) { 809 int error; 810 error = xfs_bawrite(mp, bp); 811 if (error) 812 xfs_fs_cmn_err(CE_WARN, mp, 813 "xfs_inode_item_pushbuf: pushbuf error %d on iip %p, bp %p", 814 error, iip, bp); 815 } else { 816 xfs_buf_relse(bp); 817 } 818 } else { 819 iip->ili_pushbuf_flag = 0; 820 xfs_iunlock(ip, XFS_ILOCK_SHARED); 821 xfs_buf_relse(bp); 822 } 823 return; 824 } 825 /* 826 * We have to be careful about resetting pushbuf flag too early (above). 827 * Even though in theory we can do it as soon as we have the buflock, 828 * we don't want others to be doing work needlessly. They'll come to 829 * this function thinking that pushing the buffer is their 830 * responsibility only to find that the buffer is still locked by 831 * another doing the same thing 832 */ 833 iip->ili_pushbuf_flag = 0; 834 xfs_iunlock(ip, XFS_ILOCK_SHARED); 835 return; 836 } 837 838 839 /* 840 * This is called to asynchronously write the inode associated with this 841 * inode log item out to disk. The inode will already have been locked by 842 * a successful call to xfs_inode_item_trylock(). 843 */ 844 STATIC void 845 xfs_inode_item_push( 846 xfs_inode_log_item_t *iip) 847 { 848 xfs_inode_t *ip; 849 850 ip = iip->ili_inode; 851 852 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED)); 853 ASSERT(!completion_done(&ip->i_flush)); 854 /* 855 * Since we were able to lock the inode's flush lock and 856 * we found it on the AIL, the inode must be dirty. This 857 * is because the inode is removed from the AIL while still 858 * holding the flush lock in xfs_iflush_done(). Thus, if 859 * we found it in the AIL and were able to obtain the flush 860 * lock without sleeping, then there must not have been 861 * anyone in the process of flushing the inode. 862 */ 863 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || 864 iip->ili_format.ilf_fields != 0); 865 866 /* 867 * Write out the inode. The completion routine ('iflush_done') will 868 * pull it from the AIL, mark it clean, unlock the flush lock. 869 */ 870 (void) xfs_iflush(ip, XFS_IFLUSH_ASYNC); 871 xfs_iunlock(ip, XFS_ILOCK_SHARED); 872 873 return; 874 } 875 876 /* 877 * XXX rcc - this one really has to do something. Probably needs 878 * to stamp in a new field in the incore inode. 879 */ 880 /* ARGSUSED */ 881 STATIC void 882 xfs_inode_item_committing( 883 xfs_inode_log_item_t *iip, 884 xfs_lsn_t lsn) 885 { 886 iip->ili_last_lsn = lsn; 887 return; 888 } 889 890 /* 891 * This is the ops vector shared by all buf log items. 892 */ 893 static struct xfs_item_ops xfs_inode_item_ops = { 894 .iop_size = (uint(*)(xfs_log_item_t*))xfs_inode_item_size, 895 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) 896 xfs_inode_item_format, 897 .iop_pin = (void(*)(xfs_log_item_t*))xfs_inode_item_pin, 898 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin, 899 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*)) 900 xfs_inode_item_unpin_remove, 901 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock, 902 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_inode_item_unlock, 903 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) 904 xfs_inode_item_committed, 905 .iop_push = (void(*)(xfs_log_item_t*))xfs_inode_item_push, 906 .iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf, 907 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) 908 xfs_inode_item_committing 909 }; 910 911 912 /* 913 * Initialize the inode log item for a newly allocated (in-core) inode. 914 */ 915 void 916 xfs_inode_item_init( 917 xfs_inode_t *ip, 918 xfs_mount_t *mp) 919 { 920 xfs_inode_log_item_t *iip; 921 922 ASSERT(ip->i_itemp == NULL); 923 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); 924 925 iip->ili_item.li_type = XFS_LI_INODE; 926 iip->ili_item.li_ops = &xfs_inode_item_ops; 927 iip->ili_item.li_mountp = mp; 928 iip->ili_item.li_ailp = mp->m_ail; 929 iip->ili_inode = ip; 930 931 /* 932 We have zeroed memory. No need ... 933 iip->ili_extents_buf = NULL; 934 iip->ili_pushbuf_flag = 0; 935 */ 936 937 iip->ili_format.ilf_type = XFS_LI_INODE; 938 iip->ili_format.ilf_ino = ip->i_ino; 939 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno; 940 iip->ili_format.ilf_len = ip->i_imap.im_len; 941 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset; 942 } 943 944 /* 945 * Free the inode log item and any memory hanging off of it. 946 */ 947 void 948 xfs_inode_item_destroy( 949 xfs_inode_t *ip) 950 { 951 #ifdef XFS_TRANS_DEBUG 952 if (ip->i_itemp->ili_root_size != 0) { 953 kmem_free(ip->i_itemp->ili_orig_root); 954 } 955 #endif 956 kmem_zone_free(xfs_ili_zone, ip->i_itemp); 957 } 958 959 960 /* 961 * This is the inode flushing I/O completion routine. It is called 962 * from interrupt level when the buffer containing the inode is 963 * flushed to disk. It is responsible for removing the inode item 964 * from the AIL if it has not been re-logged, and unlocking the inode's 965 * flush lock. 966 */ 967 /*ARGSUSED*/ 968 void 969 xfs_iflush_done( 970 xfs_buf_t *bp, 971 xfs_inode_log_item_t *iip) 972 { 973 xfs_inode_t *ip = iip->ili_inode; 974 struct xfs_ail *ailp = iip->ili_item.li_ailp; 975 976 /* 977 * We only want to pull the item from the AIL if it is 978 * actually there and its location in the log has not 979 * changed since we started the flush. Thus, we only bother 980 * if the ili_logged flag is set and the inode's lsn has not 981 * changed. First we check the lsn outside 982 * the lock since it's cheaper, and then we recheck while 983 * holding the lock before removing the inode from the AIL. 984 */ 985 if (iip->ili_logged && 986 (iip->ili_item.li_lsn == iip->ili_flush_lsn)) { 987 spin_lock(&ailp->xa_lock); 988 if (iip->ili_item.li_lsn == iip->ili_flush_lsn) { 989 /* xfs_trans_ail_delete() drops the AIL lock. */ 990 xfs_trans_ail_delete(ailp, (xfs_log_item_t*)iip); 991 } else { 992 spin_unlock(&ailp->xa_lock); 993 } 994 } 995 996 iip->ili_logged = 0; 997 998 /* 999 * Clear the ili_last_fields bits now that we know that the 1000 * data corresponding to them is safely on disk. 1001 */ 1002 iip->ili_last_fields = 0; 1003 1004 /* 1005 * Release the inode's flush lock since we're done with it. 1006 */ 1007 xfs_ifunlock(ip); 1008 1009 return; 1010 } 1011 1012 /* 1013 * This is the inode flushing abort routine. It is called 1014 * from xfs_iflush when the filesystem is shutting down to clean 1015 * up the inode state. 1016 * It is responsible for removing the inode item 1017 * from the AIL if it has not been re-logged, and unlocking the inode's 1018 * flush lock. 1019 */ 1020 void 1021 xfs_iflush_abort( 1022 xfs_inode_t *ip) 1023 { 1024 xfs_inode_log_item_t *iip = ip->i_itemp; 1025 xfs_mount_t *mp; 1026 1027 iip = ip->i_itemp; 1028 mp = ip->i_mount; 1029 if (iip) { 1030 struct xfs_ail *ailp = iip->ili_item.li_ailp; 1031 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 1032 spin_lock(&ailp->xa_lock); 1033 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { 1034 /* xfs_trans_ail_delete() drops the AIL lock. */ 1035 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip); 1036 } else 1037 spin_unlock(&ailp->xa_lock); 1038 } 1039 iip->ili_logged = 0; 1040 /* 1041 * Clear the ili_last_fields bits now that we know that the 1042 * data corresponding to them is safely on disk. 1043 */ 1044 iip->ili_last_fields = 0; 1045 /* 1046 * Clear the inode logging fields so no more flushes are 1047 * attempted. 1048 */ 1049 iip->ili_format.ilf_fields = 0; 1050 } 1051 /* 1052 * Release the inode's flush lock since we're done with it. 1053 */ 1054 xfs_ifunlock(ip); 1055 } 1056 1057 void 1058 xfs_istale_done( 1059 xfs_buf_t *bp, 1060 xfs_inode_log_item_t *iip) 1061 { 1062 xfs_iflush_abort(iip->ili_inode); 1063 } 1064 1065 /* 1066 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions 1067 * (which can have different field alignments) to the native version 1068 */ 1069 int 1070 xfs_inode_item_format_convert( 1071 xfs_log_iovec_t *buf, 1072 xfs_inode_log_format_t *in_f) 1073 { 1074 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) { 1075 xfs_inode_log_format_32_t *in_f32; 1076 1077 in_f32 = (xfs_inode_log_format_32_t *)buf->i_addr; 1078 in_f->ilf_type = in_f32->ilf_type; 1079 in_f->ilf_size = in_f32->ilf_size; 1080 in_f->ilf_fields = in_f32->ilf_fields; 1081 in_f->ilf_asize = in_f32->ilf_asize; 1082 in_f->ilf_dsize = in_f32->ilf_dsize; 1083 in_f->ilf_ino = in_f32->ilf_ino; 1084 /* copy biggest field of ilf_u */ 1085 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 1086 in_f32->ilf_u.ilfu_uuid.__u_bits, 1087 sizeof(uuid_t)); 1088 in_f->ilf_blkno = in_f32->ilf_blkno; 1089 in_f->ilf_len = in_f32->ilf_len; 1090 in_f->ilf_boffset = in_f32->ilf_boffset; 1091 return 0; 1092 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){ 1093 xfs_inode_log_format_64_t *in_f64; 1094 1095 in_f64 = (xfs_inode_log_format_64_t *)buf->i_addr; 1096 in_f->ilf_type = in_f64->ilf_type; 1097 in_f->ilf_size = in_f64->ilf_size; 1098 in_f->ilf_fields = in_f64->ilf_fields; 1099 in_f->ilf_asize = in_f64->ilf_asize; 1100 in_f->ilf_dsize = in_f64->ilf_dsize; 1101 in_f->ilf_ino = in_f64->ilf_ino; 1102 /* copy biggest field of ilf_u */ 1103 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, 1104 in_f64->ilf_u.ilfu_uuid.__u_bits, 1105 sizeof(uuid_t)); 1106 in_f->ilf_blkno = in_f64->ilf_blkno; 1107 in_f->ilf_len = in_f64->ilf_len; 1108 in_f->ilf_boffset = in_f64->ilf_boffset; 1109 return 0; 1110 } 1111 return EFSCORRUPTED; 1112 } 1113