xref: /linux/fs/xfs/xfs_inode_item.c (revision 46e6acfe3501fa938af9c5bd730f0020235b08a2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 #include "xfs_log_priv.h"
21 #include "xfs_error.h"
22 #include "xfs_rtbitmap.h"
23 
24 #include <linux/iversion.h>
25 
26 struct kmem_cache	*xfs_ili_cache;		/* inode log item */
27 
28 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
29 {
30 	return container_of(lip, struct xfs_inode_log_item, ili_item);
31 }
32 
33 static uint64_t
34 xfs_inode_item_sort(
35 	struct xfs_log_item	*lip)
36 {
37 	return INODE_ITEM(lip)->ili_inode->i_ino;
38 }
39 
40 #ifdef DEBUG_EXPENSIVE
41 static void
42 xfs_inode_item_precommit_check(
43 	struct xfs_inode	*ip)
44 {
45 	struct xfs_mount	*mp = ip->i_mount;
46 	struct xfs_dinode	*dip;
47 	xfs_failaddr_t		fa;
48 
49 	dip = kzalloc(mp->m_sb.sb_inodesize, GFP_KERNEL | GFP_NOFS);
50 	if (!dip) {
51 		ASSERT(dip != NULL);
52 		return;
53 	}
54 
55 	xfs_inode_to_disk(ip, dip, 0);
56 	xfs_dinode_calc_crc(mp, dip);
57 	fa = xfs_dinode_verify(mp, ip->i_ino, dip);
58 	if (fa) {
59 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
60 				sizeof(*dip), fa);
61 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
62 		ASSERT(fa == NULL);
63 	}
64 	kfree(dip);
65 }
66 #else
67 # define xfs_inode_item_precommit_check(ip)	((void)0)
68 #endif
69 
70 /*
71  * Prior to finally logging the inode, we have to ensure that all the
72  * per-modification inode state changes are applied. This includes VFS inode
73  * state updates, format conversions, verifier state synchronisation and
74  * ensuring the inode buffer remains in memory whilst the inode is dirty.
75  *
76  * We have to be careful when we grab the inode cluster buffer due to lock
77  * ordering constraints. The unlinked inode modifications (xfs_iunlink_item)
78  * require AGI -> inode cluster buffer lock order. The inode cluster buffer is
79  * not locked until ->precommit, so it happens after everything else has been
80  * modified.
81  *
82  * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we
83  * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we
84  * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because
85  * it can be called on a inode (e.g. via bumplink/droplink) before we take the
86  * AGF lock modifying directory blocks.
87  *
88  * Rather than force a complete rework of all the transactions to call
89  * xfs_trans_log_inode() once and once only at the end of every transaction, we
90  * move the pinning of the inode cluster buffer to a ->precommit operation. This
91  * matches how the xfs_iunlink_item locks the inode cluster buffer, and it
92  * ensures that the inode cluster buffer locking is always done last in a
93  * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode
94  * cluster buffer.
95  *
96  * If we return the inode number as the precommit sort key then we'll also
97  * guarantee that the order all inode cluster buffer locking is the same all the
98  * inodes and unlink items in the transaction.
99  */
100 static int
101 xfs_inode_item_precommit(
102 	struct xfs_trans	*tp,
103 	struct xfs_log_item	*lip)
104 {
105 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
106 	struct xfs_inode	*ip = iip->ili_inode;
107 	struct inode		*inode = VFS_I(ip);
108 	unsigned int		flags = iip->ili_dirty_flags;
109 
110 	/*
111 	 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races
112 	 * don't matter - we either will need an extra transaction in 24 hours
113 	 * to log the timestamps, or will clear already cleared fields in the
114 	 * worst case.
115 	 */
116 	if (inode->i_state & I_DIRTY_TIME) {
117 		spin_lock(&inode->i_lock);
118 		inode->i_state &= ~I_DIRTY_TIME;
119 		spin_unlock(&inode->i_lock);
120 	}
121 
122 	/*
123 	 * If we're updating the inode core or the timestamps and it's possible
124 	 * to upgrade this inode to bigtime format, do so now.
125 	 */
126 	if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) &&
127 	    xfs_has_bigtime(ip->i_mount) &&
128 	    !xfs_inode_has_bigtime(ip)) {
129 		ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME;
130 		flags |= XFS_ILOG_CORE;
131 	}
132 
133 	/*
134 	 * Inode verifiers do not check that the extent size hint is an integer
135 	 * multiple of the rt extent size on a directory with both rtinherit
136 	 * and extszinherit flags set.  If we're logging a directory that is
137 	 * misconfigured in this way, clear the hint.
138 	 */
139 	if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
140 	    (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) &&
141 	    xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) {
142 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
143 				   XFS_DIFLAG_EXTSZINHERIT);
144 		ip->i_extsize = 0;
145 		flags |= XFS_ILOG_CORE;
146 	}
147 
148 	/*
149 	 * Record the specific change for fdatasync optimisation. This allows
150 	 * fdatasync to skip log forces for inodes that are only timestamp
151 	 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it
152 	 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking
153 	 * (ili_fields) correctly tracks that the version has changed.
154 	 */
155 	spin_lock(&iip->ili_lock);
156 	iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION);
157 	if (flags & XFS_ILOG_IVERSION)
158 		flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE);
159 
160 	if (!iip->ili_item.li_buf) {
161 		struct xfs_buf	*bp;
162 		int		error;
163 
164 		/*
165 		 * We hold the ILOCK here, so this inode is not going to be
166 		 * flushed while we are here. Further, because there is no
167 		 * buffer attached to the item, we know that there is no IO in
168 		 * progress, so nothing will clear the ili_fields while we read
169 		 * in the buffer. Hence we can safely drop the spin lock and
170 		 * read the buffer knowing that the state will not change from
171 		 * here.
172 		 */
173 		spin_unlock(&iip->ili_lock);
174 		error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp);
175 		if (error)
176 			return error;
177 
178 		/*
179 		 * We need an explicit buffer reference for the log item but
180 		 * don't want the buffer to remain attached to the transaction.
181 		 * Hold the buffer but release the transaction reference once
182 		 * we've attached the inode log item to the buffer log item
183 		 * list.
184 		 */
185 		xfs_buf_hold(bp);
186 		spin_lock(&iip->ili_lock);
187 		iip->ili_item.li_buf = bp;
188 		bp->b_flags |= _XBF_INODES;
189 		list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list);
190 		xfs_trans_brelse(tp, bp);
191 	}
192 
193 	/*
194 	 * Always OR in the bits from the ili_last_fields field.  This is to
195 	 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
196 	 * in the eventual clearing of the ili_fields bits.  See the big comment
197 	 * in xfs_iflush() for an explanation of this coordination mechanism.
198 	 */
199 	iip->ili_fields |= (flags | iip->ili_last_fields);
200 	spin_unlock(&iip->ili_lock);
201 
202 	xfs_inode_item_precommit_check(ip);
203 
204 	/*
205 	 * We are done with the log item transaction dirty state, so clear it so
206 	 * that it doesn't pollute future transactions.
207 	 */
208 	iip->ili_dirty_flags = 0;
209 	return 0;
210 }
211 
212 /*
213  * The logged size of an inode fork is always the current size of the inode
214  * fork. This means that when an inode fork is relogged, the size of the logged
215  * region is determined by the current state, not the combination of the
216  * previously logged state + the current state. This is different relogging
217  * behaviour to most other log items which will retain the size of the
218  * previously logged changes when smaller regions are relogged.
219  *
220  * Hence operations that remove data from the inode fork (e.g. shortform
221  * dir/attr remove, extent form extent removal, etc), the size of the relogged
222  * inode gets -smaller- rather than stays the same size as the previously logged
223  * size and this can result in the committing transaction reducing the amount of
224  * space being consumed by the CIL.
225  */
226 STATIC void
227 xfs_inode_item_data_fork_size(
228 	struct xfs_inode_log_item *iip,
229 	int			*nvecs,
230 	int			*nbytes)
231 {
232 	struct xfs_inode	*ip = iip->ili_inode;
233 
234 	switch (ip->i_df.if_format) {
235 	case XFS_DINODE_FMT_EXTENTS:
236 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
237 		    ip->i_df.if_nextents > 0 &&
238 		    ip->i_df.if_bytes > 0) {
239 			/* worst case, doesn't subtract delalloc extents */
240 			*nbytes += xfs_inode_data_fork_size(ip);
241 			*nvecs += 1;
242 		}
243 		break;
244 	case XFS_DINODE_FMT_BTREE:
245 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
246 		    ip->i_df.if_broot_bytes > 0) {
247 			*nbytes += ip->i_df.if_broot_bytes;
248 			*nvecs += 1;
249 		}
250 		break;
251 	case XFS_DINODE_FMT_LOCAL:
252 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
253 		    ip->i_df.if_bytes > 0) {
254 			*nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
255 			*nvecs += 1;
256 		}
257 		break;
258 
259 	case XFS_DINODE_FMT_DEV:
260 		break;
261 	default:
262 		ASSERT(0);
263 		break;
264 	}
265 }
266 
267 STATIC void
268 xfs_inode_item_attr_fork_size(
269 	struct xfs_inode_log_item *iip,
270 	int			*nvecs,
271 	int			*nbytes)
272 {
273 	struct xfs_inode	*ip = iip->ili_inode;
274 
275 	switch (ip->i_af.if_format) {
276 	case XFS_DINODE_FMT_EXTENTS:
277 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
278 		    ip->i_af.if_nextents > 0 &&
279 		    ip->i_af.if_bytes > 0) {
280 			/* worst case, doesn't subtract unused space */
281 			*nbytes += xfs_inode_attr_fork_size(ip);
282 			*nvecs += 1;
283 		}
284 		break;
285 	case XFS_DINODE_FMT_BTREE:
286 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
287 		    ip->i_af.if_broot_bytes > 0) {
288 			*nbytes += ip->i_af.if_broot_bytes;
289 			*nvecs += 1;
290 		}
291 		break;
292 	case XFS_DINODE_FMT_LOCAL:
293 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
294 		    ip->i_af.if_bytes > 0) {
295 			*nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
296 			*nvecs += 1;
297 		}
298 		break;
299 	default:
300 		ASSERT(0);
301 		break;
302 	}
303 }
304 
305 /*
306  * This returns the number of iovecs needed to log the given inode item.
307  *
308  * We need one iovec for the inode log format structure, one for the
309  * inode core, and possibly one for the inode data/extents/b-tree root
310  * and one for the inode attribute data/extents/b-tree root.
311  */
312 STATIC void
313 xfs_inode_item_size(
314 	struct xfs_log_item	*lip,
315 	int			*nvecs,
316 	int			*nbytes)
317 {
318 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
319 	struct xfs_inode	*ip = iip->ili_inode;
320 
321 	*nvecs += 2;
322 	*nbytes += sizeof(struct xfs_inode_log_format) +
323 		   xfs_log_dinode_size(ip->i_mount);
324 
325 	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
326 	if (xfs_inode_has_attr_fork(ip))
327 		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
328 }
329 
330 STATIC void
331 xfs_inode_item_format_data_fork(
332 	struct xfs_inode_log_item *iip,
333 	struct xfs_inode_log_format *ilf,
334 	struct xfs_log_vec	*lv,
335 	struct xfs_log_iovec	**vecp)
336 {
337 	struct xfs_inode	*ip = iip->ili_inode;
338 	size_t			data_bytes;
339 
340 	switch (ip->i_df.if_format) {
341 	case XFS_DINODE_FMT_EXTENTS:
342 		iip->ili_fields &=
343 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
344 
345 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
346 		    ip->i_df.if_nextents > 0 &&
347 		    ip->i_df.if_bytes > 0) {
348 			struct xfs_bmbt_rec *p;
349 
350 			ASSERT(xfs_iext_count(&ip->i_df) > 0);
351 
352 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
353 			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
354 			xlog_finish_iovec(lv, *vecp, data_bytes);
355 
356 			ASSERT(data_bytes <= ip->i_df.if_bytes);
357 
358 			ilf->ilf_dsize = data_bytes;
359 			ilf->ilf_size++;
360 		} else {
361 			iip->ili_fields &= ~XFS_ILOG_DEXT;
362 		}
363 		break;
364 	case XFS_DINODE_FMT_BTREE:
365 		iip->ili_fields &=
366 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
367 
368 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
369 		    ip->i_df.if_broot_bytes > 0) {
370 			ASSERT(ip->i_df.if_broot != NULL);
371 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
372 					ip->i_df.if_broot,
373 					ip->i_df.if_broot_bytes);
374 			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
375 			ilf->ilf_size++;
376 		} else {
377 			ASSERT(!(iip->ili_fields &
378 				 XFS_ILOG_DBROOT));
379 			iip->ili_fields &= ~XFS_ILOG_DBROOT;
380 		}
381 		break;
382 	case XFS_DINODE_FMT_LOCAL:
383 		iip->ili_fields &=
384 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
385 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
386 		    ip->i_df.if_bytes > 0) {
387 			ASSERT(ip->i_df.if_data != NULL);
388 			ASSERT(ip->i_disk_size > 0);
389 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
390 					ip->i_df.if_data, ip->i_df.if_bytes);
391 			ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
392 			ilf->ilf_size++;
393 		} else {
394 			iip->ili_fields &= ~XFS_ILOG_DDATA;
395 		}
396 		break;
397 	case XFS_DINODE_FMT_DEV:
398 		iip->ili_fields &=
399 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
400 		if (iip->ili_fields & XFS_ILOG_DEV)
401 			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
402 		break;
403 	default:
404 		ASSERT(0);
405 		break;
406 	}
407 }
408 
409 STATIC void
410 xfs_inode_item_format_attr_fork(
411 	struct xfs_inode_log_item *iip,
412 	struct xfs_inode_log_format *ilf,
413 	struct xfs_log_vec	*lv,
414 	struct xfs_log_iovec	**vecp)
415 {
416 	struct xfs_inode	*ip = iip->ili_inode;
417 	size_t			data_bytes;
418 
419 	switch (ip->i_af.if_format) {
420 	case XFS_DINODE_FMT_EXTENTS:
421 		iip->ili_fields &=
422 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
423 
424 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
425 		    ip->i_af.if_nextents > 0 &&
426 		    ip->i_af.if_bytes > 0) {
427 			struct xfs_bmbt_rec *p;
428 
429 			ASSERT(xfs_iext_count(&ip->i_af) ==
430 				ip->i_af.if_nextents);
431 
432 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
433 			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
434 			xlog_finish_iovec(lv, *vecp, data_bytes);
435 
436 			ilf->ilf_asize = data_bytes;
437 			ilf->ilf_size++;
438 		} else {
439 			iip->ili_fields &= ~XFS_ILOG_AEXT;
440 		}
441 		break;
442 	case XFS_DINODE_FMT_BTREE:
443 		iip->ili_fields &=
444 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
445 
446 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
447 		    ip->i_af.if_broot_bytes > 0) {
448 			ASSERT(ip->i_af.if_broot != NULL);
449 
450 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
451 					ip->i_af.if_broot,
452 					ip->i_af.if_broot_bytes);
453 			ilf->ilf_asize = ip->i_af.if_broot_bytes;
454 			ilf->ilf_size++;
455 		} else {
456 			iip->ili_fields &= ~XFS_ILOG_ABROOT;
457 		}
458 		break;
459 	case XFS_DINODE_FMT_LOCAL:
460 		iip->ili_fields &=
461 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
462 
463 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
464 		    ip->i_af.if_bytes > 0) {
465 			ASSERT(ip->i_af.if_data != NULL);
466 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
467 					ip->i_af.if_data, ip->i_af.if_bytes);
468 			ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
469 			ilf->ilf_size++;
470 		} else {
471 			iip->ili_fields &= ~XFS_ILOG_ADATA;
472 		}
473 		break;
474 	default:
475 		ASSERT(0);
476 		break;
477 	}
478 }
479 
480 /*
481  * Convert an incore timestamp to a log timestamp.  Note that the log format
482  * specifies host endian format!
483  */
484 static inline xfs_log_timestamp_t
485 xfs_inode_to_log_dinode_ts(
486 	struct xfs_inode		*ip,
487 	const struct timespec64		tv)
488 {
489 	struct xfs_log_legacy_timestamp	*lits;
490 	xfs_log_timestamp_t		its;
491 
492 	if (xfs_inode_has_bigtime(ip))
493 		return xfs_inode_encode_bigtime(tv);
494 
495 	lits = (struct xfs_log_legacy_timestamp *)&its;
496 	lits->t_sec = tv.tv_sec;
497 	lits->t_nsec = tv.tv_nsec;
498 
499 	return its;
500 }
501 
502 /*
503  * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
504  * but not in the in-memory one.  But we are guaranteed to have an inode buffer
505  * in memory when logging an inode, so we can just copy it from the on-disk
506  * inode to the in-log inode here so that recovery of file system with these
507  * fields set to non-zero values doesn't lose them.  For all other cases we zero
508  * the fields.
509  */
510 static void
511 xfs_copy_dm_fields_to_log_dinode(
512 	struct xfs_inode	*ip,
513 	struct xfs_log_dinode	*to)
514 {
515 	struct xfs_dinode	*dip;
516 
517 	dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
518 			     ip->i_imap.im_boffset);
519 
520 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
521 		to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
522 		to->di_dmstate = be16_to_cpu(dip->di_dmstate);
523 	} else {
524 		to->di_dmevmask = 0;
525 		to->di_dmstate = 0;
526 	}
527 }
528 
529 static inline void
530 xfs_inode_to_log_dinode_iext_counters(
531 	struct xfs_inode	*ip,
532 	struct xfs_log_dinode	*to)
533 {
534 	if (xfs_inode_has_large_extent_counts(ip)) {
535 		to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
536 		to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
537 		to->di_nrext64_pad = 0;
538 	} else {
539 		to->di_nextents = xfs_ifork_nextents(&ip->i_df);
540 		to->di_anextents = xfs_ifork_nextents(&ip->i_af);
541 	}
542 }
543 
544 static void
545 xfs_inode_to_log_dinode(
546 	struct xfs_inode	*ip,
547 	struct xfs_log_dinode	*to,
548 	xfs_lsn_t		lsn)
549 {
550 	struct inode		*inode = VFS_I(ip);
551 
552 	to->di_magic = XFS_DINODE_MAGIC;
553 	to->di_format = xfs_ifork_format(&ip->i_df);
554 	to->di_uid = i_uid_read(inode);
555 	to->di_gid = i_gid_read(inode);
556 	to->di_projid_lo = ip->i_projid & 0xffff;
557 	to->di_projid_hi = ip->i_projid >> 16;
558 
559 	memset(to->di_pad3, 0, sizeof(to->di_pad3));
560 	to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode));
561 	to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode));
562 	to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode));
563 	to->di_nlink = inode->i_nlink;
564 	to->di_gen = inode->i_generation;
565 	to->di_mode = inode->i_mode;
566 
567 	to->di_size = ip->i_disk_size;
568 	to->di_nblocks = ip->i_nblocks;
569 	to->di_extsize = ip->i_extsize;
570 	to->di_forkoff = ip->i_forkoff;
571 	to->di_aformat = xfs_ifork_format(&ip->i_af);
572 	to->di_flags = ip->i_diflags;
573 
574 	xfs_copy_dm_fields_to_log_dinode(ip, to);
575 
576 	/* log a dummy value to ensure log structure is fully initialised */
577 	to->di_next_unlinked = NULLAGINO;
578 
579 	if (xfs_has_v3inodes(ip->i_mount)) {
580 		to->di_version = 3;
581 		to->di_changecount = inode_peek_iversion(inode);
582 		to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
583 		to->di_flags2 = ip->i_diflags2;
584 		to->di_cowextsize = ip->i_cowextsize;
585 		to->di_ino = ip->i_ino;
586 		to->di_lsn = lsn;
587 		memset(to->di_pad2, 0, sizeof(to->di_pad2));
588 		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
589 		to->di_v3_pad = 0;
590 
591 		/* dummy value for initialisation */
592 		to->di_crc = 0;
593 	} else {
594 		to->di_version = 2;
595 		to->di_flushiter = ip->i_flushiter;
596 		memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
597 	}
598 
599 	xfs_inode_to_log_dinode_iext_counters(ip, to);
600 }
601 
602 /*
603  * Format the inode core. Current timestamp data is only in the VFS inode
604  * fields, so we need to grab them from there. Hence rather than just copying
605  * the XFS inode core structure, format the fields directly into the iovec.
606  */
607 static void
608 xfs_inode_item_format_core(
609 	struct xfs_inode	*ip,
610 	struct xfs_log_vec	*lv,
611 	struct xfs_log_iovec	**vecp)
612 {
613 	struct xfs_log_dinode	*dic;
614 
615 	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
616 	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
617 	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
618 }
619 
620 /*
621  * This is called to fill in the vector of log iovecs for the given inode
622  * log item.  It fills the first item with an inode log format structure,
623  * the second with the on-disk inode structure, and a possible third and/or
624  * fourth with the inode data/extents/b-tree root and inode attributes
625  * data/extents/b-tree root.
626  *
627  * Note: Always use the 64 bit inode log format structure so we don't
628  * leave an uninitialised hole in the format item on 64 bit systems. Log
629  * recovery on 32 bit systems handles this just fine, so there's no reason
630  * for not using an initialising the properly padded structure all the time.
631  */
632 STATIC void
633 xfs_inode_item_format(
634 	struct xfs_log_item	*lip,
635 	struct xfs_log_vec	*lv)
636 {
637 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
638 	struct xfs_inode	*ip = iip->ili_inode;
639 	struct xfs_log_iovec	*vecp = NULL;
640 	struct xfs_inode_log_format *ilf;
641 
642 	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
643 	ilf->ilf_type = XFS_LI_INODE;
644 	ilf->ilf_ino = ip->i_ino;
645 	ilf->ilf_blkno = ip->i_imap.im_blkno;
646 	ilf->ilf_len = ip->i_imap.im_len;
647 	ilf->ilf_boffset = ip->i_imap.im_boffset;
648 	ilf->ilf_fields = XFS_ILOG_CORE;
649 	ilf->ilf_size = 2; /* format + core */
650 
651 	/*
652 	 * make sure we don't leak uninitialised data into the log in the case
653 	 * when we don't log every field in the inode.
654 	 */
655 	ilf->ilf_dsize = 0;
656 	ilf->ilf_asize = 0;
657 	ilf->ilf_pad = 0;
658 	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
659 
660 	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
661 
662 	xfs_inode_item_format_core(ip, lv, &vecp);
663 	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
664 	if (xfs_inode_has_attr_fork(ip)) {
665 		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
666 	} else {
667 		iip->ili_fields &=
668 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
669 	}
670 
671 	/* update the format with the exact fields we actually logged */
672 	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
673 }
674 
675 /*
676  * This is called to pin the inode associated with the inode log
677  * item in memory so it cannot be written out.
678  */
679 STATIC void
680 xfs_inode_item_pin(
681 	struct xfs_log_item	*lip)
682 {
683 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
684 
685 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
686 	ASSERT(lip->li_buf);
687 
688 	trace_xfs_inode_pin(ip, _RET_IP_);
689 	atomic_inc(&ip->i_pincount);
690 }
691 
692 
693 /*
694  * This is called to unpin the inode associated with the inode log
695  * item which was previously pinned with a call to xfs_inode_item_pin().
696  *
697  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
698  *
699  * Note that unpin can race with inode cluster buffer freeing marking the buffer
700  * stale. In that case, flush completions are run from the buffer unpin call,
701  * which may happen before the inode is unpinned. If we lose the race, there
702  * will be no buffer attached to the log item, but the inode will be marked
703  * XFS_ISTALE.
704  */
705 STATIC void
706 xfs_inode_item_unpin(
707 	struct xfs_log_item	*lip,
708 	int			remove)
709 {
710 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
711 
712 	trace_xfs_inode_unpin(ip, _RET_IP_);
713 	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
714 	ASSERT(atomic_read(&ip->i_pincount) > 0);
715 	if (atomic_dec_and_test(&ip->i_pincount))
716 		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
717 }
718 
719 STATIC uint
720 xfs_inode_item_push(
721 	struct xfs_log_item	*lip,
722 	struct list_head	*buffer_list)
723 		__releases(&lip->li_ailp->ail_lock)
724 		__acquires(&lip->li_ailp->ail_lock)
725 {
726 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
727 	struct xfs_inode	*ip = iip->ili_inode;
728 	struct xfs_buf		*bp = lip->li_buf;
729 	uint			rval = XFS_ITEM_SUCCESS;
730 	int			error;
731 
732 	if (!bp || (ip->i_flags & XFS_ISTALE)) {
733 		/*
734 		 * Inode item/buffer is being aborted due to cluster
735 		 * buffer deletion. Trigger a log force to have that operation
736 		 * completed and items removed from the AIL before the next push
737 		 * attempt.
738 		 */
739 		return XFS_ITEM_PINNED;
740 	}
741 
742 	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
743 		return XFS_ITEM_PINNED;
744 
745 	if (xfs_iflags_test(ip, XFS_IFLUSHING))
746 		return XFS_ITEM_FLUSHING;
747 
748 	if (!xfs_buf_trylock(bp))
749 		return XFS_ITEM_LOCKED;
750 
751 	spin_unlock(&lip->li_ailp->ail_lock);
752 
753 	/*
754 	 * We need to hold a reference for flushing the cluster buffer as it may
755 	 * fail the buffer without IO submission. In which case, we better get a
756 	 * reference for that completion because otherwise we don't get a
757 	 * reference for IO until we queue the buffer for delwri submission.
758 	 */
759 	xfs_buf_hold(bp);
760 	error = xfs_iflush_cluster(bp);
761 	if (!error) {
762 		if (!xfs_buf_delwri_queue(bp, buffer_list))
763 			rval = XFS_ITEM_FLUSHING;
764 		xfs_buf_relse(bp);
765 	} else {
766 		/*
767 		 * Release the buffer if we were unable to flush anything. On
768 		 * any other error, the buffer has already been released.
769 		 */
770 		if (error == -EAGAIN)
771 			xfs_buf_relse(bp);
772 		rval = XFS_ITEM_LOCKED;
773 	}
774 
775 	spin_lock(&lip->li_ailp->ail_lock);
776 	return rval;
777 }
778 
779 /*
780  * Unlock the inode associated with the inode log item.
781  */
782 STATIC void
783 xfs_inode_item_release(
784 	struct xfs_log_item	*lip)
785 {
786 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
787 	struct xfs_inode	*ip = iip->ili_inode;
788 	unsigned short		lock_flags;
789 
790 	ASSERT(ip->i_itemp != NULL);
791 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
792 
793 	lock_flags = iip->ili_lock_flags;
794 	iip->ili_lock_flags = 0;
795 	if (lock_flags)
796 		xfs_iunlock(ip, lock_flags);
797 }
798 
799 /*
800  * This is called to find out where the oldest active copy of the inode log
801  * item in the on disk log resides now that the last log write of it completed
802  * at the given lsn.  Since we always re-log all dirty data in an inode, the
803  * latest copy in the on disk log is the only one that matters.  Therefore,
804  * simply return the given lsn.
805  *
806  * If the inode has been marked stale because the cluster is being freed, we
807  * don't want to (re-)insert this inode into the AIL. There is a race condition
808  * where the cluster buffer may be unpinned before the inode is inserted into
809  * the AIL during transaction committed processing. If the buffer is unpinned
810  * before the inode item has been committed and inserted, then it is possible
811  * for the buffer to be written and IO completes before the inode is inserted
812  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
813  * AIL which will never get removed. It will, however, get reclaimed which
814  * triggers an assert in xfs_inode_free() complaining about freein an inode
815  * still in the AIL.
816  *
817  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
818  * transaction committed code knows that it does not need to do any further
819  * processing on the item.
820  */
821 STATIC xfs_lsn_t
822 xfs_inode_item_committed(
823 	struct xfs_log_item	*lip,
824 	xfs_lsn_t		lsn)
825 {
826 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
827 	struct xfs_inode	*ip = iip->ili_inode;
828 
829 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
830 		xfs_inode_item_unpin(lip, 0);
831 		return -1;
832 	}
833 	return lsn;
834 }
835 
836 STATIC void
837 xfs_inode_item_committing(
838 	struct xfs_log_item	*lip,
839 	xfs_csn_t		seq)
840 {
841 	INODE_ITEM(lip)->ili_commit_seq = seq;
842 	return xfs_inode_item_release(lip);
843 }
844 
845 static const struct xfs_item_ops xfs_inode_item_ops = {
846 	.iop_sort	= xfs_inode_item_sort,
847 	.iop_precommit	= xfs_inode_item_precommit,
848 	.iop_size	= xfs_inode_item_size,
849 	.iop_format	= xfs_inode_item_format,
850 	.iop_pin	= xfs_inode_item_pin,
851 	.iop_unpin	= xfs_inode_item_unpin,
852 	.iop_release	= xfs_inode_item_release,
853 	.iop_committed	= xfs_inode_item_committed,
854 	.iop_push	= xfs_inode_item_push,
855 	.iop_committing	= xfs_inode_item_committing,
856 };
857 
858 
859 /*
860  * Initialize the inode log item for a newly allocated (in-core) inode.
861  */
862 void
863 xfs_inode_item_init(
864 	struct xfs_inode	*ip,
865 	struct xfs_mount	*mp)
866 {
867 	struct xfs_inode_log_item *iip;
868 
869 	ASSERT(ip->i_itemp == NULL);
870 	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
871 					      GFP_KERNEL | __GFP_NOFAIL);
872 
873 	iip->ili_inode = ip;
874 	spin_lock_init(&iip->ili_lock);
875 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
876 						&xfs_inode_item_ops);
877 }
878 
879 /*
880  * Free the inode log item and any memory hanging off of it.
881  */
882 void
883 xfs_inode_item_destroy(
884 	struct xfs_inode	*ip)
885 {
886 	struct xfs_inode_log_item *iip = ip->i_itemp;
887 
888 	ASSERT(iip->ili_item.li_buf == NULL);
889 
890 	ip->i_itemp = NULL;
891 	kvfree(iip->ili_item.li_lv_shadow);
892 	kmem_cache_free(xfs_ili_cache, iip);
893 }
894 
895 
896 /*
897  * We only want to pull the item from the AIL if it is actually there
898  * and its location in the log has not changed since we started the
899  * flush.  Thus, we only bother if the inode's lsn has not changed.
900  */
901 static void
902 xfs_iflush_ail_updates(
903 	struct xfs_ail		*ailp,
904 	struct list_head	*list)
905 {
906 	struct xfs_log_item	*lip;
907 	xfs_lsn_t		tail_lsn = 0;
908 
909 	/* this is an opencoded batch version of xfs_trans_ail_delete */
910 	spin_lock(&ailp->ail_lock);
911 	list_for_each_entry(lip, list, li_bio_list) {
912 		xfs_lsn_t	lsn;
913 
914 		clear_bit(XFS_LI_FAILED, &lip->li_flags);
915 		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
916 			continue;
917 
918 		/*
919 		 * dgc: Not sure how this happens, but it happens very
920 		 * occassionaly via generic/388.  xfs_iflush_abort() also
921 		 * silently handles this same "under writeback but not in AIL at
922 		 * shutdown" condition via xfs_trans_ail_delete().
923 		 */
924 		if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
925 			ASSERT(xlog_is_shutdown(lip->li_log));
926 			continue;
927 		}
928 
929 		lsn = xfs_ail_delete_one(ailp, lip);
930 		if (!tail_lsn && lsn)
931 			tail_lsn = lsn;
932 	}
933 	xfs_ail_update_finish(ailp, tail_lsn);
934 }
935 
936 /*
937  * Walk the list of inodes that have completed their IOs. If they are clean
938  * remove them from the list and dissociate them from the buffer. Buffers that
939  * are still dirty remain linked to the buffer and on the list. Caller must
940  * handle them appropriately.
941  */
942 static void
943 xfs_iflush_finish(
944 	struct xfs_buf		*bp,
945 	struct list_head	*list)
946 {
947 	struct xfs_log_item	*lip, *n;
948 
949 	list_for_each_entry_safe(lip, n, list, li_bio_list) {
950 		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
951 		bool	drop_buffer = false;
952 
953 		spin_lock(&iip->ili_lock);
954 
955 		/*
956 		 * Remove the reference to the cluster buffer if the inode is
957 		 * clean in memory and drop the buffer reference once we've
958 		 * dropped the locks we hold.
959 		 */
960 		ASSERT(iip->ili_item.li_buf == bp);
961 		if (!iip->ili_fields) {
962 			iip->ili_item.li_buf = NULL;
963 			list_del_init(&lip->li_bio_list);
964 			drop_buffer = true;
965 		}
966 		iip->ili_last_fields = 0;
967 		iip->ili_flush_lsn = 0;
968 		clear_bit(XFS_LI_FLUSHING, &lip->li_flags);
969 		spin_unlock(&iip->ili_lock);
970 		xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
971 		if (drop_buffer)
972 			xfs_buf_rele(bp);
973 	}
974 }
975 
976 /*
977  * Inode buffer IO completion routine.  It is responsible for removing inodes
978  * attached to the buffer from the AIL if they have not been re-logged and
979  * completing the inode flush.
980  */
981 void
982 xfs_buf_inode_iodone(
983 	struct xfs_buf		*bp)
984 {
985 	struct xfs_log_item	*lip, *n;
986 	LIST_HEAD(flushed_inodes);
987 	LIST_HEAD(ail_updates);
988 
989 	/*
990 	 * Pull the attached inodes from the buffer one at a time and take the
991 	 * appropriate action on them.
992 	 */
993 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
994 		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
995 
996 		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
997 			xfs_iflush_abort(iip->ili_inode);
998 			continue;
999 		}
1000 		if (!iip->ili_last_fields)
1001 			continue;
1002 
1003 		/* Do an unlocked check for needing the AIL lock. */
1004 		if (iip->ili_flush_lsn == lip->li_lsn ||
1005 		    test_bit(XFS_LI_FAILED, &lip->li_flags))
1006 			list_move_tail(&lip->li_bio_list, &ail_updates);
1007 		else
1008 			list_move_tail(&lip->li_bio_list, &flushed_inodes);
1009 	}
1010 
1011 	if (!list_empty(&ail_updates)) {
1012 		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
1013 		list_splice_tail(&ail_updates, &flushed_inodes);
1014 	}
1015 
1016 	xfs_iflush_finish(bp, &flushed_inodes);
1017 	if (!list_empty(&flushed_inodes))
1018 		list_splice_tail(&flushed_inodes, &bp->b_li_list);
1019 }
1020 
1021 void
1022 xfs_buf_inode_io_fail(
1023 	struct xfs_buf		*bp)
1024 {
1025 	struct xfs_log_item	*lip;
1026 
1027 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1028 		set_bit(XFS_LI_FAILED, &lip->li_flags);
1029 		clear_bit(XFS_LI_FLUSHING, &lip->li_flags);
1030 	}
1031 }
1032 
1033 /*
1034  * Clear the inode logging fields so no more flushes are attempted.  If we are
1035  * on a buffer list, it is now safe to remove it because the buffer is
1036  * guaranteed to be locked. The caller will drop the reference to the buffer
1037  * the log item held.
1038  */
1039 static void
1040 xfs_iflush_abort_clean(
1041 	struct xfs_inode_log_item *iip)
1042 {
1043 	iip->ili_last_fields = 0;
1044 	iip->ili_fields = 0;
1045 	iip->ili_fsync_fields = 0;
1046 	iip->ili_flush_lsn = 0;
1047 	iip->ili_item.li_buf = NULL;
1048 	list_del_init(&iip->ili_item.li_bio_list);
1049 	clear_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
1050 }
1051 
1052 /*
1053  * Abort flushing the inode from a context holding the cluster buffer locked.
1054  *
1055  * This is the normal runtime method of aborting writeback of an inode that is
1056  * attached to a cluster buffer. It occurs when the inode and the backing
1057  * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
1058  * flushing or buffer IO completion encounters a log shutdown situation.
1059  *
1060  * If we need to abort inode writeback and we don't already hold the buffer
1061  * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
1062  * necessary in a shutdown situation.
1063  */
1064 void
1065 xfs_iflush_abort(
1066 	struct xfs_inode	*ip)
1067 {
1068 	struct xfs_inode_log_item *iip = ip->i_itemp;
1069 	struct xfs_buf		*bp;
1070 
1071 	if (!iip) {
1072 		/* clean inode, nothing to do */
1073 		xfs_iflags_clear(ip, XFS_IFLUSHING);
1074 		return;
1075 	}
1076 
1077 	/*
1078 	 * Remove the inode item from the AIL before we clear its internal
1079 	 * state. Whilst the inode is in the AIL, it should have a valid buffer
1080 	 * pointer for push operations to access - it is only safe to remove the
1081 	 * inode from the buffer once it has been removed from the AIL.
1082 	 *
1083 	 * We also clear the failed bit before removing the item from the AIL
1084 	 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
1085 	 * references the inode item owns and needs to hold until we've fully
1086 	 * aborted the inode log item and detached it from the buffer.
1087 	 */
1088 	clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
1089 	xfs_trans_ail_delete(&iip->ili_item, 0);
1090 
1091 	/*
1092 	 * Grab the inode buffer so can we release the reference the inode log
1093 	 * item holds on it.
1094 	 */
1095 	spin_lock(&iip->ili_lock);
1096 	bp = iip->ili_item.li_buf;
1097 	xfs_iflush_abort_clean(iip);
1098 	spin_unlock(&iip->ili_lock);
1099 
1100 	xfs_iflags_clear(ip, XFS_IFLUSHING);
1101 	if (bp)
1102 		xfs_buf_rele(bp);
1103 }
1104 
1105 /*
1106  * Abort an inode flush in the case of a shutdown filesystem. This can be called
1107  * from anywhere with just an inode reference and does not require holding the
1108  * inode cluster buffer locked. If the inode is attached to a cluster buffer,
1109  * it will grab and lock it safely, then abort the inode flush.
1110  */
1111 void
1112 xfs_iflush_shutdown_abort(
1113 	struct xfs_inode	*ip)
1114 {
1115 	struct xfs_inode_log_item *iip = ip->i_itemp;
1116 	struct xfs_buf		*bp;
1117 
1118 	if (!iip) {
1119 		/* clean inode, nothing to do */
1120 		xfs_iflags_clear(ip, XFS_IFLUSHING);
1121 		return;
1122 	}
1123 
1124 	spin_lock(&iip->ili_lock);
1125 	bp = iip->ili_item.li_buf;
1126 	if (!bp) {
1127 		spin_unlock(&iip->ili_lock);
1128 		xfs_iflush_abort(ip);
1129 		return;
1130 	}
1131 
1132 	/*
1133 	 * We have to take a reference to the buffer so that it doesn't get
1134 	 * freed when we drop the ili_lock and then wait to lock the buffer.
1135 	 * We'll clean up the extra reference after we pick up the ili_lock
1136 	 * again.
1137 	 */
1138 	xfs_buf_hold(bp);
1139 	spin_unlock(&iip->ili_lock);
1140 	xfs_buf_lock(bp);
1141 
1142 	spin_lock(&iip->ili_lock);
1143 	if (!iip->ili_item.li_buf) {
1144 		/*
1145 		 * Raced with another removal, hold the only reference
1146 		 * to bp now. Inode should not be in the AIL now, so just clean
1147 		 * up and return;
1148 		 */
1149 		ASSERT(list_empty(&iip->ili_item.li_bio_list));
1150 		ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
1151 		xfs_iflush_abort_clean(iip);
1152 		spin_unlock(&iip->ili_lock);
1153 		xfs_iflags_clear(ip, XFS_IFLUSHING);
1154 		xfs_buf_relse(bp);
1155 		return;
1156 	}
1157 
1158 	/*
1159 	 * Got two references to bp. The first will get dropped by
1160 	 * xfs_iflush_abort() when the item is removed from the buffer list, but
1161 	 * we can't drop our reference until _abort() returns because we have to
1162 	 * unlock the buffer as well. Hence we abort and then unlock and release
1163 	 * our reference to the buffer.
1164 	 */
1165 	ASSERT(iip->ili_item.li_buf == bp);
1166 	spin_unlock(&iip->ili_lock);
1167 	xfs_iflush_abort(ip);
1168 	xfs_buf_relse(bp);
1169 }
1170 
1171 
1172 /*
1173  * convert an xfs_inode_log_format struct from the old 32 bit version
1174  * (which can have different field alignments) to the native 64 bit version
1175  */
1176 int
1177 xfs_inode_item_format_convert(
1178 	struct xfs_log_iovec		*buf,
1179 	struct xfs_inode_log_format	*in_f)
1180 {
1181 	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
1182 
1183 	if (buf->i_len != sizeof(*in_f32)) {
1184 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
1185 		return -EFSCORRUPTED;
1186 	}
1187 
1188 	in_f->ilf_type = in_f32->ilf_type;
1189 	in_f->ilf_size = in_f32->ilf_size;
1190 	in_f->ilf_fields = in_f32->ilf_fields;
1191 	in_f->ilf_asize = in_f32->ilf_asize;
1192 	in_f->ilf_dsize = in_f32->ilf_dsize;
1193 	in_f->ilf_ino = in_f32->ilf_ino;
1194 	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1195 	in_f->ilf_blkno = in_f32->ilf_blkno;
1196 	in_f->ilf_len = in_f32->ilf_len;
1197 	in_f->ilf_boffset = in_f32->ilf_boffset;
1198 	return 0;
1199 }
1200