1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_trace.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_buf_item.h" 19 #include "xfs_log.h" 20 #include "xfs_error.h" 21 22 #include <linux/iversion.h> 23 24 kmem_zone_t *xfs_ili_zone; /* inode log item zone */ 25 26 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 27 { 28 return container_of(lip, struct xfs_inode_log_item, ili_item); 29 } 30 31 STATIC void 32 xfs_inode_item_data_fork_size( 33 struct xfs_inode_log_item *iip, 34 int *nvecs, 35 int *nbytes) 36 { 37 struct xfs_inode *ip = iip->ili_inode; 38 39 switch (ip->i_df.if_format) { 40 case XFS_DINODE_FMT_EXTENTS: 41 if ((iip->ili_fields & XFS_ILOG_DEXT) && 42 ip->i_df.if_nextents > 0 && 43 ip->i_df.if_bytes > 0) { 44 /* worst case, doesn't subtract delalloc extents */ 45 *nbytes += XFS_IFORK_DSIZE(ip); 46 *nvecs += 1; 47 } 48 break; 49 case XFS_DINODE_FMT_BTREE: 50 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 51 ip->i_df.if_broot_bytes > 0) { 52 *nbytes += ip->i_df.if_broot_bytes; 53 *nvecs += 1; 54 } 55 break; 56 case XFS_DINODE_FMT_LOCAL: 57 if ((iip->ili_fields & XFS_ILOG_DDATA) && 58 ip->i_df.if_bytes > 0) { 59 *nbytes += roundup(ip->i_df.if_bytes, 4); 60 *nvecs += 1; 61 } 62 break; 63 64 case XFS_DINODE_FMT_DEV: 65 break; 66 default: 67 ASSERT(0); 68 break; 69 } 70 } 71 72 STATIC void 73 xfs_inode_item_attr_fork_size( 74 struct xfs_inode_log_item *iip, 75 int *nvecs, 76 int *nbytes) 77 { 78 struct xfs_inode *ip = iip->ili_inode; 79 80 switch (ip->i_afp->if_format) { 81 case XFS_DINODE_FMT_EXTENTS: 82 if ((iip->ili_fields & XFS_ILOG_AEXT) && 83 ip->i_afp->if_nextents > 0 && 84 ip->i_afp->if_bytes > 0) { 85 /* worst case, doesn't subtract unused space */ 86 *nbytes += XFS_IFORK_ASIZE(ip); 87 *nvecs += 1; 88 } 89 break; 90 case XFS_DINODE_FMT_BTREE: 91 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 92 ip->i_afp->if_broot_bytes > 0) { 93 *nbytes += ip->i_afp->if_broot_bytes; 94 *nvecs += 1; 95 } 96 break; 97 case XFS_DINODE_FMT_LOCAL: 98 if ((iip->ili_fields & XFS_ILOG_ADATA) && 99 ip->i_afp->if_bytes > 0) { 100 *nbytes += roundup(ip->i_afp->if_bytes, 4); 101 *nvecs += 1; 102 } 103 break; 104 default: 105 ASSERT(0); 106 break; 107 } 108 } 109 110 /* 111 * This returns the number of iovecs needed to log the given inode item. 112 * 113 * We need one iovec for the inode log format structure, one for the 114 * inode core, and possibly one for the inode data/extents/b-tree root 115 * and one for the inode attribute data/extents/b-tree root. 116 */ 117 STATIC void 118 xfs_inode_item_size( 119 struct xfs_log_item *lip, 120 int *nvecs, 121 int *nbytes) 122 { 123 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 124 struct xfs_inode *ip = iip->ili_inode; 125 126 *nvecs += 2; 127 *nbytes += sizeof(struct xfs_inode_log_format) + 128 xfs_log_dinode_size(ip->i_mount); 129 130 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 131 if (XFS_IFORK_Q(ip)) 132 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 133 } 134 135 STATIC void 136 xfs_inode_item_format_data_fork( 137 struct xfs_inode_log_item *iip, 138 struct xfs_inode_log_format *ilf, 139 struct xfs_log_vec *lv, 140 struct xfs_log_iovec **vecp) 141 { 142 struct xfs_inode *ip = iip->ili_inode; 143 size_t data_bytes; 144 145 switch (ip->i_df.if_format) { 146 case XFS_DINODE_FMT_EXTENTS: 147 iip->ili_fields &= 148 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 149 150 if ((iip->ili_fields & XFS_ILOG_DEXT) && 151 ip->i_df.if_nextents > 0 && 152 ip->i_df.if_bytes > 0) { 153 struct xfs_bmbt_rec *p; 154 155 ASSERT(xfs_iext_count(&ip->i_df) > 0); 156 157 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 158 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 159 xlog_finish_iovec(lv, *vecp, data_bytes); 160 161 ASSERT(data_bytes <= ip->i_df.if_bytes); 162 163 ilf->ilf_dsize = data_bytes; 164 ilf->ilf_size++; 165 } else { 166 iip->ili_fields &= ~XFS_ILOG_DEXT; 167 } 168 break; 169 case XFS_DINODE_FMT_BTREE: 170 iip->ili_fields &= 171 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); 172 173 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 174 ip->i_df.if_broot_bytes > 0) { 175 ASSERT(ip->i_df.if_broot != NULL); 176 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 177 ip->i_df.if_broot, 178 ip->i_df.if_broot_bytes); 179 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 180 ilf->ilf_size++; 181 } else { 182 ASSERT(!(iip->ili_fields & 183 XFS_ILOG_DBROOT)); 184 iip->ili_fields &= ~XFS_ILOG_DBROOT; 185 } 186 break; 187 case XFS_DINODE_FMT_LOCAL: 188 iip->ili_fields &= 189 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 190 if ((iip->ili_fields & XFS_ILOG_DDATA) && 191 ip->i_df.if_bytes > 0) { 192 /* 193 * Round i_bytes up to a word boundary. 194 * The underlying memory is guaranteed to 195 * to be there by xfs_idata_realloc(). 196 */ 197 data_bytes = roundup(ip->i_df.if_bytes, 4); 198 ASSERT(ip->i_df.if_u1.if_data != NULL); 199 ASSERT(ip->i_d.di_size > 0); 200 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 201 ip->i_df.if_u1.if_data, data_bytes); 202 ilf->ilf_dsize = (unsigned)data_bytes; 203 ilf->ilf_size++; 204 } else { 205 iip->ili_fields &= ~XFS_ILOG_DDATA; 206 } 207 break; 208 case XFS_DINODE_FMT_DEV: 209 iip->ili_fields &= 210 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); 211 if (iip->ili_fields & XFS_ILOG_DEV) 212 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); 213 break; 214 default: 215 ASSERT(0); 216 break; 217 } 218 } 219 220 STATIC void 221 xfs_inode_item_format_attr_fork( 222 struct xfs_inode_log_item *iip, 223 struct xfs_inode_log_format *ilf, 224 struct xfs_log_vec *lv, 225 struct xfs_log_iovec **vecp) 226 { 227 struct xfs_inode *ip = iip->ili_inode; 228 size_t data_bytes; 229 230 switch (ip->i_afp->if_format) { 231 case XFS_DINODE_FMT_EXTENTS: 232 iip->ili_fields &= 233 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 234 235 if ((iip->ili_fields & XFS_ILOG_AEXT) && 236 ip->i_afp->if_nextents > 0 && 237 ip->i_afp->if_bytes > 0) { 238 struct xfs_bmbt_rec *p; 239 240 ASSERT(xfs_iext_count(ip->i_afp) == 241 ip->i_afp->if_nextents); 242 243 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 244 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 245 xlog_finish_iovec(lv, *vecp, data_bytes); 246 247 ilf->ilf_asize = data_bytes; 248 ilf->ilf_size++; 249 } else { 250 iip->ili_fields &= ~XFS_ILOG_AEXT; 251 } 252 break; 253 case XFS_DINODE_FMT_BTREE: 254 iip->ili_fields &= 255 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 256 257 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 258 ip->i_afp->if_broot_bytes > 0) { 259 ASSERT(ip->i_afp->if_broot != NULL); 260 261 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 262 ip->i_afp->if_broot, 263 ip->i_afp->if_broot_bytes); 264 ilf->ilf_asize = ip->i_afp->if_broot_bytes; 265 ilf->ilf_size++; 266 } else { 267 iip->ili_fields &= ~XFS_ILOG_ABROOT; 268 } 269 break; 270 case XFS_DINODE_FMT_LOCAL: 271 iip->ili_fields &= 272 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 273 274 if ((iip->ili_fields & XFS_ILOG_ADATA) && 275 ip->i_afp->if_bytes > 0) { 276 /* 277 * Round i_bytes up to a word boundary. 278 * The underlying memory is guaranteed to 279 * to be there by xfs_idata_realloc(). 280 */ 281 data_bytes = roundup(ip->i_afp->if_bytes, 4); 282 ASSERT(ip->i_afp->if_u1.if_data != NULL); 283 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 284 ip->i_afp->if_u1.if_data, 285 data_bytes); 286 ilf->ilf_asize = (unsigned)data_bytes; 287 ilf->ilf_size++; 288 } else { 289 iip->ili_fields &= ~XFS_ILOG_ADATA; 290 } 291 break; 292 default: 293 ASSERT(0); 294 break; 295 } 296 } 297 298 static void 299 xfs_inode_to_log_dinode( 300 struct xfs_inode *ip, 301 struct xfs_log_dinode *to, 302 xfs_lsn_t lsn) 303 { 304 struct xfs_icdinode *from = &ip->i_d; 305 struct inode *inode = VFS_I(ip); 306 307 to->di_magic = XFS_DINODE_MAGIC; 308 to->di_format = xfs_ifork_format(&ip->i_df); 309 to->di_uid = i_uid_read(inode); 310 to->di_gid = i_gid_read(inode); 311 to->di_projid_lo = from->di_projid & 0xffff; 312 to->di_projid_hi = from->di_projid >> 16; 313 314 memset(to->di_pad, 0, sizeof(to->di_pad)); 315 memset(to->di_pad3, 0, sizeof(to->di_pad3)); 316 to->di_atime.t_sec = inode->i_atime.tv_sec; 317 to->di_atime.t_nsec = inode->i_atime.tv_nsec; 318 to->di_mtime.t_sec = inode->i_mtime.tv_sec; 319 to->di_mtime.t_nsec = inode->i_mtime.tv_nsec; 320 to->di_ctime.t_sec = inode->i_ctime.tv_sec; 321 to->di_ctime.t_nsec = inode->i_ctime.tv_nsec; 322 to->di_nlink = inode->i_nlink; 323 to->di_gen = inode->i_generation; 324 to->di_mode = inode->i_mode; 325 326 to->di_size = from->di_size; 327 to->di_nblocks = from->di_nblocks; 328 to->di_extsize = from->di_extsize; 329 to->di_nextents = xfs_ifork_nextents(&ip->i_df); 330 to->di_anextents = xfs_ifork_nextents(ip->i_afp); 331 to->di_forkoff = from->di_forkoff; 332 to->di_aformat = xfs_ifork_format(ip->i_afp); 333 to->di_dmevmask = from->di_dmevmask; 334 to->di_dmstate = from->di_dmstate; 335 to->di_flags = from->di_flags; 336 337 /* log a dummy value to ensure log structure is fully initialised */ 338 to->di_next_unlinked = NULLAGINO; 339 340 if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) { 341 to->di_version = 3; 342 to->di_changecount = inode_peek_iversion(inode); 343 to->di_crtime.t_sec = from->di_crtime.tv_sec; 344 to->di_crtime.t_nsec = from->di_crtime.tv_nsec; 345 to->di_flags2 = from->di_flags2; 346 to->di_cowextsize = from->di_cowextsize; 347 to->di_ino = ip->i_ino; 348 to->di_lsn = lsn; 349 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 350 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 351 to->di_flushiter = 0; 352 } else { 353 to->di_version = 2; 354 to->di_flushiter = from->di_flushiter; 355 } 356 } 357 358 /* 359 * Format the inode core. Current timestamp data is only in the VFS inode 360 * fields, so we need to grab them from there. Hence rather than just copying 361 * the XFS inode core structure, format the fields directly into the iovec. 362 */ 363 static void 364 xfs_inode_item_format_core( 365 struct xfs_inode *ip, 366 struct xfs_log_vec *lv, 367 struct xfs_log_iovec **vecp) 368 { 369 struct xfs_log_dinode *dic; 370 371 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 372 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 373 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount)); 374 } 375 376 /* 377 * This is called to fill in the vector of log iovecs for the given inode 378 * log item. It fills the first item with an inode log format structure, 379 * the second with the on-disk inode structure, and a possible third and/or 380 * fourth with the inode data/extents/b-tree root and inode attributes 381 * data/extents/b-tree root. 382 * 383 * Note: Always use the 64 bit inode log format structure so we don't 384 * leave an uninitialised hole in the format item on 64 bit systems. Log 385 * recovery on 32 bit systems handles this just fine, so there's no reason 386 * for not using an initialising the properly padded structure all the time. 387 */ 388 STATIC void 389 xfs_inode_item_format( 390 struct xfs_log_item *lip, 391 struct xfs_log_vec *lv) 392 { 393 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 394 struct xfs_inode *ip = iip->ili_inode; 395 struct xfs_log_iovec *vecp = NULL; 396 struct xfs_inode_log_format *ilf; 397 398 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 399 ilf->ilf_type = XFS_LI_INODE; 400 ilf->ilf_ino = ip->i_ino; 401 ilf->ilf_blkno = ip->i_imap.im_blkno; 402 ilf->ilf_len = ip->i_imap.im_len; 403 ilf->ilf_boffset = ip->i_imap.im_boffset; 404 ilf->ilf_fields = XFS_ILOG_CORE; 405 ilf->ilf_size = 2; /* format + core */ 406 407 /* 408 * make sure we don't leak uninitialised data into the log in the case 409 * when we don't log every field in the inode. 410 */ 411 ilf->ilf_dsize = 0; 412 ilf->ilf_asize = 0; 413 ilf->ilf_pad = 0; 414 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); 415 416 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 417 418 xfs_inode_item_format_core(ip, lv, &vecp); 419 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 420 if (XFS_IFORK_Q(ip)) { 421 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 422 } else { 423 iip->ili_fields &= 424 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 425 } 426 427 /* update the format with the exact fields we actually logged */ 428 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 429 } 430 431 /* 432 * This is called to pin the inode associated with the inode log 433 * item in memory so it cannot be written out. 434 */ 435 STATIC void 436 xfs_inode_item_pin( 437 struct xfs_log_item *lip) 438 { 439 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 440 441 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 442 443 trace_xfs_inode_pin(ip, _RET_IP_); 444 atomic_inc(&ip->i_pincount); 445 } 446 447 448 /* 449 * This is called to unpin the inode associated with the inode log 450 * item which was previously pinned with a call to xfs_inode_item_pin(). 451 * 452 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 453 */ 454 STATIC void 455 xfs_inode_item_unpin( 456 struct xfs_log_item *lip, 457 int remove) 458 { 459 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 460 461 trace_xfs_inode_unpin(ip, _RET_IP_); 462 ASSERT(atomic_read(&ip->i_pincount) > 0); 463 if (atomic_dec_and_test(&ip->i_pincount)) 464 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 465 } 466 467 /* 468 * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer 469 * have been failed during writeback 470 * 471 * This informs the AIL that the inode is already flush locked on the next push, 472 * and acquires a hold on the buffer to ensure that it isn't reclaimed before 473 * dirty data makes it to disk. 474 */ 475 STATIC void 476 xfs_inode_item_error( 477 struct xfs_log_item *lip, 478 struct xfs_buf *bp) 479 { 480 ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode)); 481 xfs_set_li_failed(lip, bp); 482 } 483 484 STATIC uint 485 xfs_inode_item_push( 486 struct xfs_log_item *lip, 487 struct list_head *buffer_list) 488 __releases(&lip->li_ailp->ail_lock) 489 __acquires(&lip->li_ailp->ail_lock) 490 { 491 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 492 struct xfs_inode *ip = iip->ili_inode; 493 struct xfs_buf *bp = lip->li_buf; 494 uint rval = XFS_ITEM_SUCCESS; 495 int error; 496 497 if (xfs_ipincount(ip) > 0) 498 return XFS_ITEM_PINNED; 499 500 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) 501 return XFS_ITEM_LOCKED; 502 503 /* 504 * Re-check the pincount now that we stabilized the value by 505 * taking the ilock. 506 */ 507 if (xfs_ipincount(ip) > 0) { 508 rval = XFS_ITEM_PINNED; 509 goto out_unlock; 510 } 511 512 /* 513 * Stale inode items should force out the iclog. 514 */ 515 if (ip->i_flags & XFS_ISTALE) { 516 rval = XFS_ITEM_PINNED; 517 goto out_unlock; 518 } 519 520 /* 521 * Someone else is already flushing the inode. Nothing we can do 522 * here but wait for the flush to finish and remove the item from 523 * the AIL. 524 */ 525 if (!xfs_iflock_nowait(ip)) { 526 rval = XFS_ITEM_FLUSHING; 527 goto out_unlock; 528 } 529 530 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 531 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); 532 533 spin_unlock(&lip->li_ailp->ail_lock); 534 535 error = xfs_iflush(ip, &bp); 536 if (!error) { 537 if (!xfs_buf_delwri_queue(bp, buffer_list)) 538 rval = XFS_ITEM_FLUSHING; 539 xfs_buf_relse(bp); 540 } else if (error == -EAGAIN) 541 rval = XFS_ITEM_LOCKED; 542 543 spin_lock(&lip->li_ailp->ail_lock); 544 out_unlock: 545 xfs_iunlock(ip, XFS_ILOCK_SHARED); 546 return rval; 547 } 548 549 /* 550 * Unlock the inode associated with the inode log item. 551 */ 552 STATIC void 553 xfs_inode_item_release( 554 struct xfs_log_item *lip) 555 { 556 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 557 struct xfs_inode *ip = iip->ili_inode; 558 unsigned short lock_flags; 559 560 ASSERT(ip->i_itemp != NULL); 561 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 562 563 lock_flags = iip->ili_lock_flags; 564 iip->ili_lock_flags = 0; 565 if (lock_flags) 566 xfs_iunlock(ip, lock_flags); 567 } 568 569 /* 570 * This is called to find out where the oldest active copy of the inode log 571 * item in the on disk log resides now that the last log write of it completed 572 * at the given lsn. Since we always re-log all dirty data in an inode, the 573 * latest copy in the on disk log is the only one that matters. Therefore, 574 * simply return the given lsn. 575 * 576 * If the inode has been marked stale because the cluster is being freed, we 577 * don't want to (re-)insert this inode into the AIL. There is a race condition 578 * where the cluster buffer may be unpinned before the inode is inserted into 579 * the AIL during transaction committed processing. If the buffer is unpinned 580 * before the inode item has been committed and inserted, then it is possible 581 * for the buffer to be written and IO completes before the inode is inserted 582 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 583 * AIL which will never get removed. It will, however, get reclaimed which 584 * triggers an assert in xfs_inode_free() complaining about freein an inode 585 * still in the AIL. 586 * 587 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 588 * transaction committed code knows that it does not need to do any further 589 * processing on the item. 590 */ 591 STATIC xfs_lsn_t 592 xfs_inode_item_committed( 593 struct xfs_log_item *lip, 594 xfs_lsn_t lsn) 595 { 596 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 597 struct xfs_inode *ip = iip->ili_inode; 598 599 if (xfs_iflags_test(ip, XFS_ISTALE)) { 600 xfs_inode_item_unpin(lip, 0); 601 return -1; 602 } 603 return lsn; 604 } 605 606 STATIC void 607 xfs_inode_item_committing( 608 struct xfs_log_item *lip, 609 xfs_lsn_t commit_lsn) 610 { 611 INODE_ITEM(lip)->ili_last_lsn = commit_lsn; 612 return xfs_inode_item_release(lip); 613 } 614 615 static const struct xfs_item_ops xfs_inode_item_ops = { 616 .iop_size = xfs_inode_item_size, 617 .iop_format = xfs_inode_item_format, 618 .iop_pin = xfs_inode_item_pin, 619 .iop_unpin = xfs_inode_item_unpin, 620 .iop_release = xfs_inode_item_release, 621 .iop_committed = xfs_inode_item_committed, 622 .iop_push = xfs_inode_item_push, 623 .iop_committing = xfs_inode_item_committing, 624 .iop_error = xfs_inode_item_error 625 }; 626 627 628 /* 629 * Initialize the inode log item for a newly allocated (in-core) inode. 630 */ 631 void 632 xfs_inode_item_init( 633 struct xfs_inode *ip, 634 struct xfs_mount *mp) 635 { 636 struct xfs_inode_log_item *iip; 637 638 ASSERT(ip->i_itemp == NULL); 639 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, 0); 640 641 iip->ili_inode = ip; 642 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 643 &xfs_inode_item_ops); 644 } 645 646 /* 647 * Free the inode log item and any memory hanging off of it. 648 */ 649 void 650 xfs_inode_item_destroy( 651 xfs_inode_t *ip) 652 { 653 kmem_free(ip->i_itemp->ili_item.li_lv_shadow); 654 kmem_cache_free(xfs_ili_zone, ip->i_itemp); 655 } 656 657 658 /* 659 * This is the inode flushing I/O completion routine. It is called 660 * from interrupt level when the buffer containing the inode is 661 * flushed to disk. It is responsible for removing the inode item 662 * from the AIL if it has not been re-logged, and unlocking the inode's 663 * flush lock. 664 * 665 * To reduce AIL lock traffic as much as possible, we scan the buffer log item 666 * list for other inodes that will run this function. We remove them from the 667 * buffer list so we can process all the inode IO completions in one AIL lock 668 * traversal. 669 */ 670 void 671 xfs_iflush_done( 672 struct xfs_buf *bp, 673 struct xfs_log_item *lip) 674 { 675 struct xfs_inode_log_item *iip; 676 struct xfs_log_item *blip, *n; 677 struct xfs_ail *ailp = lip->li_ailp; 678 int need_ail = 0; 679 LIST_HEAD(tmp); 680 681 /* 682 * Scan the buffer IO completions for other inodes being completed and 683 * attach them to the current inode log item. 684 */ 685 686 list_add_tail(&lip->li_bio_list, &tmp); 687 688 list_for_each_entry_safe(blip, n, &bp->b_li_list, li_bio_list) { 689 if (lip->li_cb != xfs_iflush_done) 690 continue; 691 692 list_move_tail(&blip->li_bio_list, &tmp); 693 /* 694 * while we have the item, do the unlocked check for needing 695 * the AIL lock. 696 */ 697 iip = INODE_ITEM(blip); 698 if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) || 699 test_bit(XFS_LI_FAILED, &blip->li_flags)) 700 need_ail++; 701 } 702 703 /* make sure we capture the state of the initial inode. */ 704 iip = INODE_ITEM(lip); 705 if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) || 706 test_bit(XFS_LI_FAILED, &lip->li_flags)) 707 need_ail++; 708 709 /* 710 * We only want to pull the item from the AIL if it is 711 * actually there and its location in the log has not 712 * changed since we started the flush. Thus, we only bother 713 * if the ili_logged flag is set and the inode's lsn has not 714 * changed. First we check the lsn outside 715 * the lock since it's cheaper, and then we recheck while 716 * holding the lock before removing the inode from the AIL. 717 */ 718 if (need_ail) { 719 xfs_lsn_t tail_lsn = 0; 720 721 /* this is an opencoded batch version of xfs_trans_ail_delete */ 722 spin_lock(&ailp->ail_lock); 723 list_for_each_entry(blip, &tmp, li_bio_list) { 724 if (INODE_ITEM(blip)->ili_logged && 725 blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn) { 726 /* 727 * xfs_ail_update_finish() only cares about the 728 * lsn of the first tail item removed, any 729 * others will be at the same or higher lsn so 730 * we just ignore them. 731 */ 732 xfs_lsn_t lsn = xfs_ail_delete_one(ailp, blip); 733 if (!tail_lsn && lsn) 734 tail_lsn = lsn; 735 } else { 736 xfs_clear_li_failed(blip); 737 } 738 } 739 xfs_ail_update_finish(ailp, tail_lsn); 740 } 741 742 /* 743 * clean up and unlock the flush lock now we are done. We can clear the 744 * ili_last_fields bits now that we know that the data corresponding to 745 * them is safely on disk. 746 */ 747 list_for_each_entry_safe(blip, n, &tmp, li_bio_list) { 748 list_del_init(&blip->li_bio_list); 749 iip = INODE_ITEM(blip); 750 iip->ili_logged = 0; 751 iip->ili_last_fields = 0; 752 xfs_ifunlock(iip->ili_inode); 753 } 754 list_del(&tmp); 755 } 756 757 /* 758 * This is the inode flushing abort routine. It is called from xfs_iflush when 759 * the filesystem is shutting down to clean up the inode state. It is 760 * responsible for removing the inode item from the AIL if it has not been 761 * re-logged, and unlocking the inode's flush lock. 762 */ 763 void 764 xfs_iflush_abort( 765 struct xfs_inode *ip) 766 { 767 struct xfs_inode_log_item *iip = ip->i_itemp; 768 769 if (iip) { 770 xfs_trans_ail_delete(&iip->ili_item, 0); 771 iip->ili_logged = 0; 772 /* 773 * Clear the ili_last_fields bits now that we know that the 774 * data corresponding to them is safely on disk. 775 */ 776 iip->ili_last_fields = 0; 777 /* 778 * Clear the inode logging fields so no more flushes are 779 * attempted. 780 */ 781 iip->ili_fields = 0; 782 iip->ili_fsync_fields = 0; 783 } 784 /* 785 * Release the inode's flush lock since we're done with it. 786 */ 787 xfs_ifunlock(ip); 788 } 789 790 void 791 xfs_istale_done( 792 struct xfs_buf *bp, 793 struct xfs_log_item *lip) 794 { 795 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode); 796 } 797 798 /* 799 * convert an xfs_inode_log_format struct from the old 32 bit version 800 * (which can have different field alignments) to the native 64 bit version 801 */ 802 int 803 xfs_inode_item_format_convert( 804 struct xfs_log_iovec *buf, 805 struct xfs_inode_log_format *in_f) 806 { 807 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; 808 809 if (buf->i_len != sizeof(*in_f32)) { 810 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 811 return -EFSCORRUPTED; 812 } 813 814 in_f->ilf_type = in_f32->ilf_type; 815 in_f->ilf_size = in_f32->ilf_size; 816 in_f->ilf_fields = in_f32->ilf_fields; 817 in_f->ilf_asize = in_f32->ilf_asize; 818 in_f->ilf_dsize = in_f32->ilf_dsize; 819 in_f->ilf_ino = in_f32->ilf_ino; 820 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); 821 in_f->ilf_blkno = in_f32->ilf_blkno; 822 in_f->ilf_len = in_f32->ilf_len; 823 in_f->ilf_boffset = in_f32->ilf_boffset; 824 return 0; 825 } 826