xref: /linux/fs/xfs/xfs_inode_item.c (revision 2624f124b3b5d550ab2fbef7ee3bc0e1fed09722)
1 /*
2  * Copyright (c) 2000-2002 Silicon Graphics, Inc.  All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11  *
12  * Further, this software is distributed without any warranty that it is
13  * free of the rightful claim of any third person regarding infringement
14  * or the like.  Any license provided herein, whether implied or
15  * otherwise, applies only to this software file.  Patent licenses, if
16  * any, provided herein do not apply to combinations of this program with
17  * other software, or any other product whatsoever.
18  *
19  * You should have received a copy of the GNU General Public License along
20  * with this program; if not, write the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22  *
23  * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24  * Mountain View, CA  94043, or:
25  *
26  * http://www.sgi.com
27  *
28  * For further information regarding this notice, see:
29  *
30  * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31  */
32 
33 /*
34  * This file contains the implementation of the xfs_inode_log_item.
35  * It contains the item operations used to manipulate the inode log
36  * items as well as utility routines used by the inode specific
37  * transaction routines.
38  */
39 #include "xfs.h"
40 #include "xfs_macros.h"
41 #include "xfs_types.h"
42 #include "xfs_inum.h"
43 #include "xfs_log.h"
44 #include "xfs_trans.h"
45 #include "xfs_buf_item.h"
46 #include "xfs_sb.h"
47 #include "xfs_dir.h"
48 #include "xfs_dir2.h"
49 #include "xfs_dmapi.h"
50 #include "xfs_mount.h"
51 #include "xfs_trans_priv.h"
52 #include "xfs_ag.h"
53 #include "xfs_alloc_btree.h"
54 #include "xfs_bmap_btree.h"
55 #include "xfs_ialloc_btree.h"
56 #include "xfs_btree.h"
57 #include "xfs_ialloc.h"
58 #include "xfs_attr_sf.h"
59 #include "xfs_dir_sf.h"
60 #include "xfs_dir2_sf.h"
61 #include "xfs_dinode.h"
62 #include "xfs_inode_item.h"
63 #include "xfs_inode.h"
64 #include "xfs_rw.h"
65 
66 
67 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
68 
69 /*
70  * This returns the number of iovecs needed to log the given inode item.
71  *
72  * We need one iovec for the inode log format structure, one for the
73  * inode core, and possibly one for the inode data/extents/b-tree root
74  * and one for the inode attribute data/extents/b-tree root.
75  */
76 STATIC uint
77 xfs_inode_item_size(
78 	xfs_inode_log_item_t	*iip)
79 {
80 	uint		nvecs;
81 	xfs_inode_t	*ip;
82 
83 	ip = iip->ili_inode;
84 	nvecs = 2;
85 
86 	/*
87 	 * Only log the data/extents/b-tree root if there is something
88 	 * left to log.
89 	 */
90 	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
91 
92 	switch (ip->i_d.di_format) {
93 	case XFS_DINODE_FMT_EXTENTS:
94 		iip->ili_format.ilf_fields &=
95 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
96 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
97 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
98 		    (ip->i_d.di_nextents > 0) &&
99 		    (ip->i_df.if_bytes > 0)) {
100 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
101 			nvecs++;
102 		} else {
103 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
104 		}
105 		break;
106 
107 	case XFS_DINODE_FMT_BTREE:
108 		ASSERT(ip->i_df.if_ext_max ==
109 		       XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
110 		iip->ili_format.ilf_fields &=
111 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
112 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
113 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
114 		    (ip->i_df.if_broot_bytes > 0)) {
115 			ASSERT(ip->i_df.if_broot != NULL);
116 			nvecs++;
117 		} else {
118 			ASSERT(!(iip->ili_format.ilf_fields &
119 				 XFS_ILOG_DBROOT));
120 #ifdef XFS_TRANS_DEBUG
121 			if (iip->ili_root_size > 0) {
122 				ASSERT(iip->ili_root_size ==
123 				       ip->i_df.if_broot_bytes);
124 				ASSERT(memcmp(iip->ili_orig_root,
125 					    ip->i_df.if_broot,
126 					    iip->ili_root_size) == 0);
127 			} else {
128 				ASSERT(ip->i_df.if_broot_bytes == 0);
129 			}
130 #endif
131 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
132 		}
133 		break;
134 
135 	case XFS_DINODE_FMT_LOCAL:
136 		iip->ili_format.ilf_fields &=
137 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
138 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
139 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
140 		    (ip->i_df.if_bytes > 0)) {
141 			ASSERT(ip->i_df.if_u1.if_data != NULL);
142 			ASSERT(ip->i_d.di_size > 0);
143 			nvecs++;
144 		} else {
145 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
146 		}
147 		break;
148 
149 	case XFS_DINODE_FMT_DEV:
150 		iip->ili_format.ilf_fields &=
151 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
152 			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
153 		break;
154 
155 	case XFS_DINODE_FMT_UUID:
156 		iip->ili_format.ilf_fields &=
157 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
158 			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
159 		break;
160 
161 	default:
162 		ASSERT(0);
163 		break;
164 	}
165 
166 	/*
167 	 * If there are no attributes associated with this file,
168 	 * then there cannot be anything more to log.
169 	 * Clear all attribute-related log flags.
170 	 */
171 	if (!XFS_IFORK_Q(ip)) {
172 		iip->ili_format.ilf_fields &=
173 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
174 		return nvecs;
175 	}
176 
177 	/*
178 	 * Log any necessary attribute data.
179 	 */
180 	switch (ip->i_d.di_aformat) {
181 	case XFS_DINODE_FMT_EXTENTS:
182 		iip->ili_format.ilf_fields &=
183 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
184 		if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
185 		    (ip->i_d.di_anextents > 0) &&
186 		    (ip->i_afp->if_bytes > 0)) {
187 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
188 			nvecs++;
189 		} else {
190 			iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
191 		}
192 		break;
193 
194 	case XFS_DINODE_FMT_BTREE:
195 		iip->ili_format.ilf_fields &=
196 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
197 		if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
198 		    (ip->i_afp->if_broot_bytes > 0)) {
199 			ASSERT(ip->i_afp->if_broot != NULL);
200 			nvecs++;
201 		} else {
202 			iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
203 		}
204 		break;
205 
206 	case XFS_DINODE_FMT_LOCAL:
207 		iip->ili_format.ilf_fields &=
208 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
209 		if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
210 		    (ip->i_afp->if_bytes > 0)) {
211 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
212 			nvecs++;
213 		} else {
214 			iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
215 		}
216 		break;
217 
218 	default:
219 		ASSERT(0);
220 		break;
221 	}
222 
223 	return nvecs;
224 }
225 
226 /*
227  * This is called to fill in the vector of log iovecs for the
228  * given inode log item.  It fills the first item with an inode
229  * log format structure, the second with the on-disk inode structure,
230  * and a possible third and/or fourth with the inode data/extents/b-tree
231  * root and inode attributes data/extents/b-tree root.
232  */
233 STATIC void
234 xfs_inode_item_format(
235 	xfs_inode_log_item_t	*iip,
236 	xfs_log_iovec_t		*log_vector)
237 {
238 	uint			nvecs;
239 	xfs_log_iovec_t		*vecp;
240 	xfs_inode_t		*ip;
241 	size_t			data_bytes;
242 	xfs_bmbt_rec_t		*ext_buffer;
243 	int			nrecs;
244 	xfs_mount_t		*mp;
245 
246 	ip = iip->ili_inode;
247 	vecp = log_vector;
248 
249 	vecp->i_addr = (xfs_caddr_t)&iip->ili_format;
250 	vecp->i_len  = sizeof(xfs_inode_log_format_t);
251 	XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT);
252 	vecp++;
253 	nvecs	     = 1;
254 
255 	/*
256 	 * Clear i_update_core if the timestamps (or any other
257 	 * non-transactional modification) need flushing/logging
258 	 * and we're about to log them with the rest of the core.
259 	 *
260 	 * This is the same logic as xfs_iflush() but this code can't
261 	 * run at the same time as xfs_iflush because we're in commit
262 	 * processing here and so we have the inode lock held in
263 	 * exclusive mode.  Although it doesn't really matter
264 	 * for the timestamps if both routines were to grab the
265 	 * timestamps or not.  That would be ok.
266 	 *
267 	 * We clear i_update_core before copying out the data.
268 	 * This is for coordination with our timestamp updates
269 	 * that don't hold the inode lock. They will always
270 	 * update the timestamps BEFORE setting i_update_core,
271 	 * so if we clear i_update_core after they set it we
272 	 * are guaranteed to see their updates to the timestamps
273 	 * either here.  Likewise, if they set it after we clear it
274 	 * here, we'll see it either on the next commit of this
275 	 * inode or the next time the inode gets flushed via
276 	 * xfs_iflush().  This depends on strongly ordered memory
277 	 * semantics, but we have that.  We use the SYNCHRONIZE
278 	 * macro to make sure that the compiler does not reorder
279 	 * the i_update_core access below the data copy below.
280 	 */
281 	if (ip->i_update_core)  {
282 		ip->i_update_core = 0;
283 		SYNCHRONIZE();
284 	}
285 
286 	/*
287 	 * We don't have to worry about re-ordering here because
288 	 * the update_size field is protected by the inode lock
289 	 * and we have that held in exclusive mode.
290 	 */
291 	if (ip->i_update_size)
292 		ip->i_update_size = 0;
293 
294 	vecp->i_addr = (xfs_caddr_t)&ip->i_d;
295 	vecp->i_len  = sizeof(xfs_dinode_core_t);
296 	XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE);
297 	vecp++;
298 	nvecs++;
299 	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
300 
301 	/*
302 	 * If this is really an old format inode, then we need to
303 	 * log it as such.  This means that we have to copy the link
304 	 * count from the new field to the old.  We don't have to worry
305 	 * about the new fields, because nothing trusts them as long as
306 	 * the old inode version number is there.  If the superblock already
307 	 * has a new version number, then we don't bother converting back.
308 	 */
309 	mp = ip->i_mount;
310 	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
311 	       XFS_SB_VERSION_HASNLINK(&mp->m_sb));
312 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
313 		if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
314 			/*
315 			 * Convert it back.
316 			 */
317 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
318 			ip->i_d.di_onlink = ip->i_d.di_nlink;
319 		} else {
320 			/*
321 			 * The superblock version has already been bumped,
322 			 * so just make the conversion to the new inode
323 			 * format permanent.
324 			 */
325 			ip->i_d.di_version = XFS_DINODE_VERSION_2;
326 			ip->i_d.di_onlink = 0;
327 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
328 		}
329 	}
330 
331 	switch (ip->i_d.di_format) {
332 	case XFS_DINODE_FMT_EXTENTS:
333 		ASSERT(!(iip->ili_format.ilf_fields &
334 			 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
335 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
336 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
337 			ASSERT(ip->i_df.if_bytes > 0);
338 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
339 			ASSERT(ip->i_d.di_nextents > 0);
340 			ASSERT(iip->ili_extents_buf == NULL);
341 			nrecs = ip->i_df.if_bytes /
342 				(uint)sizeof(xfs_bmbt_rec_t);
343 			ASSERT(nrecs > 0);
344 #ifdef XFS_NATIVE_HOST
345 			if (nrecs == ip->i_d.di_nextents) {
346 				/*
347 				 * There are no delayed allocation
348 				 * extents, so just point to the
349 				 * real extents array.
350 				 */
351 				vecp->i_addr =
352 					(char *)(ip->i_df.if_u1.if_extents);
353 				vecp->i_len = ip->i_df.if_bytes;
354 				XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
355 			} else
356 #endif
357 			{
358 				/*
359 				 * There are delayed allocation extents
360 				 * in the inode, or we need to convert
361 				 * the extents to on disk format.
362 				 * Use xfs_iextents_copy()
363 				 * to copy only the real extents into
364 				 * a separate buffer.  We'll free the
365 				 * buffer in the unlock routine.
366 				 */
367 				ext_buffer = kmem_alloc(ip->i_df.if_bytes,
368 					KM_SLEEP);
369 				iip->ili_extents_buf = ext_buffer;
370 				vecp->i_addr = (xfs_caddr_t)ext_buffer;
371 				vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
372 						XFS_DATA_FORK);
373 				XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
374 			}
375 			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
376 			iip->ili_format.ilf_dsize = vecp->i_len;
377 			vecp++;
378 			nvecs++;
379 		}
380 		break;
381 
382 	case XFS_DINODE_FMT_BTREE:
383 		ASSERT(!(iip->ili_format.ilf_fields &
384 			 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
385 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
386 		if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
387 			ASSERT(ip->i_df.if_broot_bytes > 0);
388 			ASSERT(ip->i_df.if_broot != NULL);
389 			vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot;
390 			vecp->i_len = ip->i_df.if_broot_bytes;
391 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT);
392 			vecp++;
393 			nvecs++;
394 			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
395 		}
396 		break;
397 
398 	case XFS_DINODE_FMT_LOCAL:
399 		ASSERT(!(iip->ili_format.ilf_fields &
400 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
401 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
402 		if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
403 			ASSERT(ip->i_df.if_bytes > 0);
404 			ASSERT(ip->i_df.if_u1.if_data != NULL);
405 			ASSERT(ip->i_d.di_size > 0);
406 
407 			vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data;
408 			/*
409 			 * Round i_bytes up to a word boundary.
410 			 * The underlying memory is guaranteed to
411 			 * to be there by xfs_idata_realloc().
412 			 */
413 			data_bytes = roundup(ip->i_df.if_bytes, 4);
414 			ASSERT((ip->i_df.if_real_bytes == 0) ||
415 			       (ip->i_df.if_real_bytes == data_bytes));
416 			vecp->i_len = (int)data_bytes;
417 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL);
418 			vecp++;
419 			nvecs++;
420 			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
421 		}
422 		break;
423 
424 	case XFS_DINODE_FMT_DEV:
425 		ASSERT(!(iip->ili_format.ilf_fields &
426 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
427 			  XFS_ILOG_DDATA | XFS_ILOG_UUID)));
428 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
429 			iip->ili_format.ilf_u.ilfu_rdev =
430 				ip->i_df.if_u2.if_rdev;
431 		}
432 		break;
433 
434 	case XFS_DINODE_FMT_UUID:
435 		ASSERT(!(iip->ili_format.ilf_fields &
436 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
437 			  XFS_ILOG_DDATA | XFS_ILOG_DEV)));
438 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
439 			iip->ili_format.ilf_u.ilfu_uuid =
440 				ip->i_df.if_u2.if_uuid;
441 		}
442 		break;
443 
444 	default:
445 		ASSERT(0);
446 		break;
447 	}
448 
449 	/*
450 	 * If there are no attributes associated with the file,
451 	 * then we're done.
452 	 * Assert that no attribute-related log flags are set.
453 	 */
454 	if (!XFS_IFORK_Q(ip)) {
455 		ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
456 		iip->ili_format.ilf_size = nvecs;
457 		ASSERT(!(iip->ili_format.ilf_fields &
458 			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
459 		return;
460 	}
461 
462 	switch (ip->i_d.di_aformat) {
463 	case XFS_DINODE_FMT_EXTENTS:
464 		ASSERT(!(iip->ili_format.ilf_fields &
465 			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
466 		if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
467 			ASSERT(ip->i_afp->if_bytes > 0);
468 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
469 			ASSERT(ip->i_d.di_anextents > 0);
470 #ifdef DEBUG
471 			nrecs = ip->i_afp->if_bytes /
472 				(uint)sizeof(xfs_bmbt_rec_t);
473 #endif
474 			ASSERT(nrecs > 0);
475 			ASSERT(nrecs == ip->i_d.di_anextents);
476 #ifdef XFS_NATIVE_HOST
477 			/*
478 			 * There are not delayed allocation extents
479 			 * for attributes, so just point at the array.
480 			 */
481 			vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents);
482 			vecp->i_len = ip->i_afp->if_bytes;
483 #else
484 			ASSERT(iip->ili_aextents_buf == NULL);
485 			/*
486 			 * Need to endian flip before logging
487 			 */
488 			ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
489 				KM_SLEEP);
490 			iip->ili_aextents_buf = ext_buffer;
491 			vecp->i_addr = (xfs_caddr_t)ext_buffer;
492 			vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
493 					XFS_ATTR_FORK);
494 #endif
495 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT);
496 			iip->ili_format.ilf_asize = vecp->i_len;
497 			vecp++;
498 			nvecs++;
499 		}
500 		break;
501 
502 	case XFS_DINODE_FMT_BTREE:
503 		ASSERT(!(iip->ili_format.ilf_fields &
504 			 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
505 		if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
506 			ASSERT(ip->i_afp->if_broot_bytes > 0);
507 			ASSERT(ip->i_afp->if_broot != NULL);
508 			vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot;
509 			vecp->i_len = ip->i_afp->if_broot_bytes;
510 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT);
511 			vecp++;
512 			nvecs++;
513 			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
514 		}
515 		break;
516 
517 	case XFS_DINODE_FMT_LOCAL:
518 		ASSERT(!(iip->ili_format.ilf_fields &
519 			 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
520 		if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
521 			ASSERT(ip->i_afp->if_bytes > 0);
522 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
523 
524 			vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data;
525 			/*
526 			 * Round i_bytes up to a word boundary.
527 			 * The underlying memory is guaranteed to
528 			 * to be there by xfs_idata_realloc().
529 			 */
530 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
531 			ASSERT((ip->i_afp->if_real_bytes == 0) ||
532 			       (ip->i_afp->if_real_bytes == data_bytes));
533 			vecp->i_len = (int)data_bytes;
534 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL);
535 			vecp++;
536 			nvecs++;
537 			iip->ili_format.ilf_asize = (unsigned)data_bytes;
538 		}
539 		break;
540 
541 	default:
542 		ASSERT(0);
543 		break;
544 	}
545 
546 	ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
547 	iip->ili_format.ilf_size = nvecs;
548 }
549 
550 
551 /*
552  * This is called to pin the inode associated with the inode log
553  * item in memory so it cannot be written out.  Do this by calling
554  * xfs_ipin() to bump the pin count in the inode while holding the
555  * inode pin lock.
556  */
557 STATIC void
558 xfs_inode_item_pin(
559 	xfs_inode_log_item_t	*iip)
560 {
561 	ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE));
562 	xfs_ipin(iip->ili_inode);
563 }
564 
565 
566 /*
567  * This is called to unpin the inode associated with the inode log
568  * item which was previously pinned with a call to xfs_inode_item_pin().
569  * Just call xfs_iunpin() on the inode to do this.
570  */
571 /* ARGSUSED */
572 STATIC void
573 xfs_inode_item_unpin(
574 	xfs_inode_log_item_t	*iip,
575 	int			stale)
576 {
577 	xfs_iunpin(iip->ili_inode);
578 }
579 
580 /* ARGSUSED */
581 STATIC void
582 xfs_inode_item_unpin_remove(
583 	xfs_inode_log_item_t	*iip,
584 	xfs_trans_t		*tp)
585 {
586 	xfs_iunpin(iip->ili_inode);
587 }
588 
589 /*
590  * This is called to attempt to lock the inode associated with this
591  * inode log item, in preparation for the push routine which does the actual
592  * iflush.  Don't sleep on the inode lock or the flush lock.
593  *
594  * If the flush lock is already held, indicating that the inode has
595  * been or is in the process of being flushed, then (ideally) we'd like to
596  * see if the inode's buffer is still incore, and if so give it a nudge.
597  * We delay doing so until the pushbuf routine, though, to avoid holding
598  * the AIL lock across a call to the blackhole which is the buffercache.
599  * Also we don't want to sleep in any device strategy routines, which can happen
600  * if we do the subsequent bawrite in here.
601  */
602 STATIC uint
603 xfs_inode_item_trylock(
604 	xfs_inode_log_item_t	*iip)
605 {
606 	register xfs_inode_t	*ip;
607 
608 	ip = iip->ili_inode;
609 
610 	if (xfs_ipincount(ip) > 0) {
611 		return XFS_ITEM_PINNED;
612 	}
613 
614 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
615 		return XFS_ITEM_LOCKED;
616 	}
617 
618 	if (!xfs_iflock_nowait(ip)) {
619 		/*
620 		 * If someone else isn't already trying to push the inode
621 		 * buffer, we get to do it.
622 		 */
623 		if (iip->ili_pushbuf_flag == 0) {
624 			iip->ili_pushbuf_flag = 1;
625 #ifdef DEBUG
626 			iip->ili_push_owner = get_thread_id();
627 #endif
628 			/*
629 			 * Inode is left locked in shared mode.
630 			 * Pushbuf routine gets to unlock it.
631 			 */
632 			return XFS_ITEM_PUSHBUF;
633 		} else {
634 			/*
635 			 * We hold the AIL_LOCK, so we must specify the
636 			 * NONOTIFY flag so that we won't double trip.
637 			 */
638 			xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
639 			return XFS_ITEM_FLUSHING;
640 		}
641 		/* NOTREACHED */
642 	}
643 
644 	/* Stale items should force out the iclog */
645 	if (ip->i_flags & XFS_ISTALE) {
646 		xfs_ifunlock(ip);
647 		xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
648 		return XFS_ITEM_PINNED;
649 	}
650 
651 #ifdef DEBUG
652 	if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
653 		ASSERT(iip->ili_format.ilf_fields != 0);
654 		ASSERT(iip->ili_logged == 0);
655 		ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL);
656 	}
657 #endif
658 	return XFS_ITEM_SUCCESS;
659 }
660 
661 /*
662  * Unlock the inode associated with the inode log item.
663  * Clear the fields of the inode and inode log item that
664  * are specific to the current transaction.  If the
665  * hold flags is set, do not unlock the inode.
666  */
667 STATIC void
668 xfs_inode_item_unlock(
669 	xfs_inode_log_item_t	*iip)
670 {
671 	uint		hold;
672 	uint		iolocked;
673 	uint		lock_flags;
674 	xfs_inode_t	*ip;
675 
676 	ASSERT(iip != NULL);
677 	ASSERT(iip->ili_inode->i_itemp != NULL);
678 	ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE));
679 	ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
680 		  XFS_ILI_IOLOCKED_EXCL)) ||
681 	       ismrlocked(&(iip->ili_inode->i_iolock), MR_UPDATE));
682 	ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
683 		  XFS_ILI_IOLOCKED_SHARED)) ||
684 	       ismrlocked(&(iip->ili_inode->i_iolock), MR_ACCESS));
685 	/*
686 	 * Clear the transaction pointer in the inode.
687 	 */
688 	ip = iip->ili_inode;
689 	ip->i_transp = NULL;
690 
691 	/*
692 	 * If the inode needed a separate buffer with which to log
693 	 * its extents, then free it now.
694 	 */
695 	if (iip->ili_extents_buf != NULL) {
696 		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
697 		ASSERT(ip->i_d.di_nextents > 0);
698 		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
699 		ASSERT(ip->i_df.if_bytes > 0);
700 		kmem_free(iip->ili_extents_buf, ip->i_df.if_bytes);
701 		iip->ili_extents_buf = NULL;
702 	}
703 	if (iip->ili_aextents_buf != NULL) {
704 		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
705 		ASSERT(ip->i_d.di_anextents > 0);
706 		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
707 		ASSERT(ip->i_afp->if_bytes > 0);
708 		kmem_free(iip->ili_aextents_buf, ip->i_afp->if_bytes);
709 		iip->ili_aextents_buf = NULL;
710 	}
711 
712 	/*
713 	 * Figure out if we should unlock the inode or not.
714 	 */
715 	hold = iip->ili_flags & XFS_ILI_HOLD;
716 
717 	/*
718 	 * Before clearing out the flags, remember whether we
719 	 * are holding the inode's IO lock.
720 	 */
721 	iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY;
722 
723 	/*
724 	 * Clear out the fields of the inode log item particular
725 	 * to the current transaction.
726 	 */
727 	iip->ili_ilock_recur = 0;
728 	iip->ili_iolock_recur = 0;
729 	iip->ili_flags = 0;
730 
731 	/*
732 	 * Unlock the inode if XFS_ILI_HOLD was not set.
733 	 */
734 	if (!hold) {
735 		lock_flags = XFS_ILOCK_EXCL;
736 		if (iolocked & XFS_ILI_IOLOCKED_EXCL) {
737 			lock_flags |= XFS_IOLOCK_EXCL;
738 		} else if (iolocked & XFS_ILI_IOLOCKED_SHARED) {
739 			lock_flags |= XFS_IOLOCK_SHARED;
740 		}
741 		xfs_iput(iip->ili_inode, lock_flags);
742 	}
743 }
744 
745 /*
746  * This is called to find out where the oldest active copy of the
747  * inode log item in the on disk log resides now that the last log
748  * write of it completed at the given lsn.  Since we always re-log
749  * all dirty data in an inode, the latest copy in the on disk log
750  * is the only one that matters.  Therefore, simply return the
751  * given lsn.
752  */
753 /*ARGSUSED*/
754 STATIC xfs_lsn_t
755 xfs_inode_item_committed(
756 	xfs_inode_log_item_t	*iip,
757 	xfs_lsn_t		lsn)
758 {
759 	return (lsn);
760 }
761 
762 /*
763  * The transaction with the inode locked has aborted.  The inode
764  * must not be dirty within the transaction (unless we're forcibly
765  * shutting down).  We simply unlock just as if the transaction
766  * had been cancelled.
767  */
768 STATIC void
769 xfs_inode_item_abort(
770 	xfs_inode_log_item_t	*iip)
771 {
772 	xfs_inode_item_unlock(iip);
773 	return;
774 }
775 
776 
777 /*
778  * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
779  * failed to get the inode flush lock but did get the inode locked SHARED.
780  * Here we're trying to see if the inode buffer is incore, and if so whether it's
781  * marked delayed write. If that's the case, we'll initiate a bawrite on that
782  * buffer to expedite the process.
783  *
784  * We aren't holding the AIL_LOCK (or the flush lock) when this gets called,
785  * so it is inherently race-y.
786  */
787 STATIC void
788 xfs_inode_item_pushbuf(
789 	xfs_inode_log_item_t	*iip)
790 {
791 	xfs_inode_t	*ip;
792 	xfs_mount_t	*mp;
793 	xfs_buf_t	*bp;
794 	uint		dopush;
795 
796 	ip = iip->ili_inode;
797 
798 	ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));
799 
800 	/*
801 	 * The ili_pushbuf_flag keeps others from
802 	 * trying to duplicate our effort.
803 	 */
804 	ASSERT(iip->ili_pushbuf_flag != 0);
805 	ASSERT(iip->ili_push_owner == get_thread_id());
806 
807 	/*
808 	 * If flushlock isn't locked anymore, chances are that the
809 	 * inode flush completed and the inode was taken off the AIL.
810 	 * So, just get out.
811 	 */
812 	if ((valusema(&(ip->i_flock)) > 0)  ||
813 	    ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
814 		iip->ili_pushbuf_flag = 0;
815 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
816 		return;
817 	}
818 
819 	mp = ip->i_mount;
820 	bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
821 		    iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);
822 
823 	if (bp != NULL) {
824 		if (XFS_BUF_ISDELAYWRITE(bp)) {
825 			/*
826 			 * We were racing with iflush because we don't hold
827 			 * the AIL_LOCK or the flush lock. However, at this point,
828 			 * we have the buffer, and we know that it's dirty.
829 			 * So, it's possible that iflush raced with us, and
830 			 * this item is already taken off the AIL.
831 			 * If not, we can flush it async.
832 			 */
833 			dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) &&
834 				  (valusema(&(ip->i_flock)) <= 0));
835 			iip->ili_pushbuf_flag = 0;
836 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
837 			xfs_buftrace("INODE ITEM PUSH", bp);
838 			if (XFS_BUF_ISPINNED(bp)) {
839 				xfs_log_force(mp, (xfs_lsn_t)0,
840 					      XFS_LOG_FORCE);
841 			}
842 			if (dopush) {
843 				xfs_bawrite(mp, bp);
844 			} else {
845 				xfs_buf_relse(bp);
846 			}
847 		} else {
848 			iip->ili_pushbuf_flag = 0;
849 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
850 			xfs_buf_relse(bp);
851 		}
852 		return;
853 	}
854 	/*
855 	 * We have to be careful about resetting pushbuf flag too early (above).
856 	 * Even though in theory we can do it as soon as we have the buflock,
857 	 * we don't want others to be doing work needlessly. They'll come to
858 	 * this function thinking that pushing the buffer is their
859 	 * responsibility only to find that the buffer is still locked by
860 	 * another doing the same thing
861 	 */
862 	iip->ili_pushbuf_flag = 0;
863 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
864 	return;
865 }
866 
867 
868 /*
869  * This is called to asynchronously write the inode associated with this
870  * inode log item out to disk. The inode will already have been locked by
871  * a successful call to xfs_inode_item_trylock().
872  */
873 STATIC void
874 xfs_inode_item_push(
875 	xfs_inode_log_item_t	*iip)
876 {
877 	xfs_inode_t	*ip;
878 
879 	ip = iip->ili_inode;
880 
881 	ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));
882 	ASSERT(valusema(&(ip->i_flock)) <= 0);
883 	/*
884 	 * Since we were able to lock the inode's flush lock and
885 	 * we found it on the AIL, the inode must be dirty.  This
886 	 * is because the inode is removed from the AIL while still
887 	 * holding the flush lock in xfs_iflush_done().  Thus, if
888 	 * we found it in the AIL and were able to obtain the flush
889 	 * lock without sleeping, then there must not have been
890 	 * anyone in the process of flushing the inode.
891 	 */
892 	ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
893 	       iip->ili_format.ilf_fields != 0);
894 
895 	/*
896 	 * Write out the inode.  The completion routine ('iflush_done') will
897 	 * pull it from the AIL, mark it clean, unlock the flush lock.
898 	 */
899 	(void) xfs_iflush(ip, XFS_IFLUSH_ASYNC);
900 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
901 
902 	return;
903 }
904 
905 /*
906  * XXX rcc - this one really has to do something.  Probably needs
907  * to stamp in a new field in the incore inode.
908  */
909 /* ARGSUSED */
910 STATIC void
911 xfs_inode_item_committing(
912 	xfs_inode_log_item_t	*iip,
913 	xfs_lsn_t		lsn)
914 {
915 	iip->ili_last_lsn = lsn;
916 	return;
917 }
918 
919 /*
920  * This is the ops vector shared by all buf log items.
921  */
922 STATIC struct xfs_item_ops xfs_inode_item_ops = {
923 	.iop_size	= (uint(*)(xfs_log_item_t*))xfs_inode_item_size,
924 	.iop_format	= (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
925 					xfs_inode_item_format,
926 	.iop_pin	= (void(*)(xfs_log_item_t*))xfs_inode_item_pin,
927 	.iop_unpin	= (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin,
928 	.iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
929 					xfs_inode_item_unpin_remove,
930 	.iop_trylock	= (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock,
931 	.iop_unlock	= (void(*)(xfs_log_item_t*))xfs_inode_item_unlock,
932 	.iop_committed	= (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
933 					xfs_inode_item_committed,
934 	.iop_push	= (void(*)(xfs_log_item_t*))xfs_inode_item_push,
935 	.iop_abort	= (void(*)(xfs_log_item_t*))xfs_inode_item_abort,
936 	.iop_pushbuf	= (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf,
937 	.iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
938 					xfs_inode_item_committing
939 };
940 
941 
942 /*
943  * Initialize the inode log item for a newly allocated (in-core) inode.
944  */
945 void
946 xfs_inode_item_init(
947 	xfs_inode_t	*ip,
948 	xfs_mount_t	*mp)
949 {
950 	xfs_inode_log_item_t	*iip;
951 
952 	ASSERT(ip->i_itemp == NULL);
953 	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
954 
955 	iip->ili_item.li_type = XFS_LI_INODE;
956 	iip->ili_item.li_ops = &xfs_inode_item_ops;
957 	iip->ili_item.li_mountp = mp;
958 	iip->ili_inode = ip;
959 
960 	/*
961 	   We have zeroed memory. No need ...
962 	   iip->ili_extents_buf = NULL;
963 	   iip->ili_pushbuf_flag = 0;
964 	 */
965 
966 	iip->ili_format.ilf_type = XFS_LI_INODE;
967 	iip->ili_format.ilf_ino = ip->i_ino;
968 	iip->ili_format.ilf_blkno = ip->i_blkno;
969 	iip->ili_format.ilf_len = ip->i_len;
970 	iip->ili_format.ilf_boffset = ip->i_boffset;
971 }
972 
973 /*
974  * Free the inode log item and any memory hanging off of it.
975  */
976 void
977 xfs_inode_item_destroy(
978 	xfs_inode_t	*ip)
979 {
980 #ifdef XFS_TRANS_DEBUG
981 	if (ip->i_itemp->ili_root_size != 0) {
982 		kmem_free(ip->i_itemp->ili_orig_root,
983 			  ip->i_itemp->ili_root_size);
984 	}
985 #endif
986 	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
987 }
988 
989 
990 /*
991  * This is the inode flushing I/O completion routine.  It is called
992  * from interrupt level when the buffer containing the inode is
993  * flushed to disk.  It is responsible for removing the inode item
994  * from the AIL if it has not been re-logged, and unlocking the inode's
995  * flush lock.
996  */
997 /*ARGSUSED*/
998 void
999 xfs_iflush_done(
1000 	xfs_buf_t		*bp,
1001 	xfs_inode_log_item_t	*iip)
1002 {
1003 	xfs_inode_t	*ip;
1004 	SPLDECL(s);
1005 
1006 	ip = iip->ili_inode;
1007 
1008 	/*
1009 	 * We only want to pull the item from the AIL if it is
1010 	 * actually there and its location in the log has not
1011 	 * changed since we started the flush.  Thus, we only bother
1012 	 * if the ili_logged flag is set and the inode's lsn has not
1013 	 * changed.  First we check the lsn outside
1014 	 * the lock since it's cheaper, and then we recheck while
1015 	 * holding the lock before removing the inode from the AIL.
1016 	 */
1017 	if (iip->ili_logged &&
1018 	    (iip->ili_item.li_lsn == iip->ili_flush_lsn)) {
1019 		AIL_LOCK(ip->i_mount, s);
1020 		if (iip->ili_item.li_lsn == iip->ili_flush_lsn) {
1021 			/*
1022 			 * xfs_trans_delete_ail() drops the AIL lock.
1023 			 */
1024 			xfs_trans_delete_ail(ip->i_mount,
1025 					     (xfs_log_item_t*)iip, s);
1026 		} else {
1027 			AIL_UNLOCK(ip->i_mount, s);
1028 		}
1029 	}
1030 
1031 	iip->ili_logged = 0;
1032 
1033 	/*
1034 	 * Clear the ili_last_fields bits now that we know that the
1035 	 * data corresponding to them is safely on disk.
1036 	 */
1037 	iip->ili_last_fields = 0;
1038 
1039 	/*
1040 	 * Release the inode's flush lock since we're done with it.
1041 	 */
1042 	xfs_ifunlock(ip);
1043 
1044 	return;
1045 }
1046 
1047 /*
1048  * This is the inode flushing abort routine.  It is called
1049  * from xfs_iflush when the filesystem is shutting down to clean
1050  * up the inode state.
1051  * It is responsible for removing the inode item
1052  * from the AIL if it has not been re-logged, and unlocking the inode's
1053  * flush lock.
1054  */
1055 void
1056 xfs_iflush_abort(
1057 	xfs_inode_t		*ip)
1058 {
1059 	xfs_inode_log_item_t	*iip;
1060 	xfs_mount_t		*mp;
1061 	SPLDECL(s);
1062 
1063 	iip = ip->i_itemp;
1064 	mp = ip->i_mount;
1065 	if (iip) {
1066 		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1067 			AIL_LOCK(mp, s);
1068 			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1069 				/*
1070 				 * xfs_trans_delete_ail() drops the AIL lock.
1071 				 */
1072 				xfs_trans_delete_ail(mp, (xfs_log_item_t *)iip,
1073 					s);
1074 			} else
1075 				AIL_UNLOCK(mp, s);
1076 		}
1077 		iip->ili_logged = 0;
1078 		/*
1079 		 * Clear the ili_last_fields bits now that we know that the
1080 		 * data corresponding to them is safely on disk.
1081 		 */
1082 		iip->ili_last_fields = 0;
1083 		/*
1084 		 * Clear the inode logging fields so no more flushes are
1085 		 * attempted.
1086 		 */
1087 		iip->ili_format.ilf_fields = 0;
1088 	}
1089 	/*
1090 	 * Release the inode's flush lock since we're done with it.
1091 	 */
1092 	xfs_ifunlock(ip);
1093 }
1094 
1095 void
1096 xfs_istale_done(
1097 	xfs_buf_t		*bp,
1098 	xfs_inode_log_item_t	*iip)
1099 {
1100 	xfs_iflush_abort(iip->ili_inode);
1101 }
1102