1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_trace.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_buf_item.h" 19 #include "xfs_log.h" 20 #include "xfs_log_priv.h" 21 #include "xfs_error.h" 22 #include "xfs_rtbitmap.h" 23 24 #include <linux/iversion.h> 25 26 struct kmem_cache *xfs_ili_cache; /* inode log item */ 27 28 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 29 { 30 return container_of(lip, struct xfs_inode_log_item, ili_item); 31 } 32 33 static uint64_t 34 xfs_inode_item_sort( 35 struct xfs_log_item *lip) 36 { 37 return INODE_ITEM(lip)->ili_inode->i_ino; 38 } 39 40 /* 41 * Prior to finally logging the inode, we have to ensure that all the 42 * per-modification inode state changes are applied. This includes VFS inode 43 * state updates, format conversions, verifier state synchronisation and 44 * ensuring the inode buffer remains in memory whilst the inode is dirty. 45 * 46 * We have to be careful when we grab the inode cluster buffer due to lock 47 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item) 48 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is 49 * not locked until ->precommit, so it happens after everything else has been 50 * modified. 51 * 52 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we 53 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we 54 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because 55 * it can be called on a inode (e.g. via bumplink/droplink) before we take the 56 * AGF lock modifying directory blocks. 57 * 58 * Rather than force a complete rework of all the transactions to call 59 * xfs_trans_log_inode() once and once only at the end of every transaction, we 60 * move the pinning of the inode cluster buffer to a ->precommit operation. This 61 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it 62 * ensures that the inode cluster buffer locking is always done last in a 63 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode 64 * cluster buffer. 65 * 66 * If we return the inode number as the precommit sort key then we'll also 67 * guarantee that the order all inode cluster buffer locking is the same all the 68 * inodes and unlink items in the transaction. 69 */ 70 static int 71 xfs_inode_item_precommit( 72 struct xfs_trans *tp, 73 struct xfs_log_item *lip) 74 { 75 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 76 struct xfs_inode *ip = iip->ili_inode; 77 struct inode *inode = VFS_I(ip); 78 unsigned int flags = iip->ili_dirty_flags; 79 80 /* 81 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races 82 * don't matter - we either will need an extra transaction in 24 hours 83 * to log the timestamps, or will clear already cleared fields in the 84 * worst case. 85 */ 86 if (inode->i_state & I_DIRTY_TIME) { 87 spin_lock(&inode->i_lock); 88 inode->i_state &= ~I_DIRTY_TIME; 89 spin_unlock(&inode->i_lock); 90 } 91 92 /* 93 * If we're updating the inode core or the timestamps and it's possible 94 * to upgrade this inode to bigtime format, do so now. 95 */ 96 if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) && 97 xfs_has_bigtime(ip->i_mount) && 98 !xfs_inode_has_bigtime(ip)) { 99 ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME; 100 flags |= XFS_ILOG_CORE; 101 } 102 103 /* 104 * Inode verifiers do not check that the extent size hint is an integer 105 * multiple of the rt extent size on a directory with both rtinherit 106 * and extszinherit flags set. If we're logging a directory that is 107 * misconfigured in this way, clear the hint. 108 */ 109 if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) && 110 (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) && 111 xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) { 112 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 113 XFS_DIFLAG_EXTSZINHERIT); 114 ip->i_extsize = 0; 115 flags |= XFS_ILOG_CORE; 116 } 117 118 /* 119 * Record the specific change for fdatasync optimisation. This allows 120 * fdatasync to skip log forces for inodes that are only timestamp 121 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it 122 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking 123 * (ili_fields) correctly tracks that the version has changed. 124 */ 125 spin_lock(&iip->ili_lock); 126 iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION); 127 if (flags & XFS_ILOG_IVERSION) 128 flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE); 129 130 if (!iip->ili_item.li_buf) { 131 struct xfs_buf *bp; 132 int error; 133 134 /* 135 * We hold the ILOCK here, so this inode is not going to be 136 * flushed while we are here. Further, because there is no 137 * buffer attached to the item, we know that there is no IO in 138 * progress, so nothing will clear the ili_fields while we read 139 * in the buffer. Hence we can safely drop the spin lock and 140 * read the buffer knowing that the state will not change from 141 * here. 142 */ 143 spin_unlock(&iip->ili_lock); 144 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp); 145 if (error) 146 return error; 147 148 /* 149 * We need an explicit buffer reference for the log item but 150 * don't want the buffer to remain attached to the transaction. 151 * Hold the buffer but release the transaction reference once 152 * we've attached the inode log item to the buffer log item 153 * list. 154 */ 155 xfs_buf_hold(bp); 156 spin_lock(&iip->ili_lock); 157 iip->ili_item.li_buf = bp; 158 bp->b_flags |= _XBF_INODES; 159 list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list); 160 xfs_trans_brelse(tp, bp); 161 } 162 163 /* 164 * Always OR in the bits from the ili_last_fields field. This is to 165 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines 166 * in the eventual clearing of the ili_fields bits. See the big comment 167 * in xfs_iflush() for an explanation of this coordination mechanism. 168 */ 169 iip->ili_fields |= (flags | iip->ili_last_fields); 170 spin_unlock(&iip->ili_lock); 171 172 /* 173 * We are done with the log item transaction dirty state, so clear it so 174 * that it doesn't pollute future transactions. 175 */ 176 iip->ili_dirty_flags = 0; 177 return 0; 178 } 179 180 /* 181 * The logged size of an inode fork is always the current size of the inode 182 * fork. This means that when an inode fork is relogged, the size of the logged 183 * region is determined by the current state, not the combination of the 184 * previously logged state + the current state. This is different relogging 185 * behaviour to most other log items which will retain the size of the 186 * previously logged changes when smaller regions are relogged. 187 * 188 * Hence operations that remove data from the inode fork (e.g. shortform 189 * dir/attr remove, extent form extent removal, etc), the size of the relogged 190 * inode gets -smaller- rather than stays the same size as the previously logged 191 * size and this can result in the committing transaction reducing the amount of 192 * space being consumed by the CIL. 193 */ 194 STATIC void 195 xfs_inode_item_data_fork_size( 196 struct xfs_inode_log_item *iip, 197 int *nvecs, 198 int *nbytes) 199 { 200 struct xfs_inode *ip = iip->ili_inode; 201 202 switch (ip->i_df.if_format) { 203 case XFS_DINODE_FMT_EXTENTS: 204 if ((iip->ili_fields & XFS_ILOG_DEXT) && 205 ip->i_df.if_nextents > 0 && 206 ip->i_df.if_bytes > 0) { 207 /* worst case, doesn't subtract delalloc extents */ 208 *nbytes += xfs_inode_data_fork_size(ip); 209 *nvecs += 1; 210 } 211 break; 212 case XFS_DINODE_FMT_BTREE: 213 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 214 ip->i_df.if_broot_bytes > 0) { 215 *nbytes += ip->i_df.if_broot_bytes; 216 *nvecs += 1; 217 } 218 break; 219 case XFS_DINODE_FMT_LOCAL: 220 if ((iip->ili_fields & XFS_ILOG_DDATA) && 221 ip->i_df.if_bytes > 0) { 222 *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes); 223 *nvecs += 1; 224 } 225 break; 226 227 case XFS_DINODE_FMT_DEV: 228 break; 229 default: 230 ASSERT(0); 231 break; 232 } 233 } 234 235 STATIC void 236 xfs_inode_item_attr_fork_size( 237 struct xfs_inode_log_item *iip, 238 int *nvecs, 239 int *nbytes) 240 { 241 struct xfs_inode *ip = iip->ili_inode; 242 243 switch (ip->i_af.if_format) { 244 case XFS_DINODE_FMT_EXTENTS: 245 if ((iip->ili_fields & XFS_ILOG_AEXT) && 246 ip->i_af.if_nextents > 0 && 247 ip->i_af.if_bytes > 0) { 248 /* worst case, doesn't subtract unused space */ 249 *nbytes += xfs_inode_attr_fork_size(ip); 250 *nvecs += 1; 251 } 252 break; 253 case XFS_DINODE_FMT_BTREE: 254 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 255 ip->i_af.if_broot_bytes > 0) { 256 *nbytes += ip->i_af.if_broot_bytes; 257 *nvecs += 1; 258 } 259 break; 260 case XFS_DINODE_FMT_LOCAL: 261 if ((iip->ili_fields & XFS_ILOG_ADATA) && 262 ip->i_af.if_bytes > 0) { 263 *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes); 264 *nvecs += 1; 265 } 266 break; 267 default: 268 ASSERT(0); 269 break; 270 } 271 } 272 273 /* 274 * This returns the number of iovecs needed to log the given inode item. 275 * 276 * We need one iovec for the inode log format structure, one for the 277 * inode core, and possibly one for the inode data/extents/b-tree root 278 * and one for the inode attribute data/extents/b-tree root. 279 */ 280 STATIC void 281 xfs_inode_item_size( 282 struct xfs_log_item *lip, 283 int *nvecs, 284 int *nbytes) 285 { 286 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 287 struct xfs_inode *ip = iip->ili_inode; 288 289 *nvecs += 2; 290 *nbytes += sizeof(struct xfs_inode_log_format) + 291 xfs_log_dinode_size(ip->i_mount); 292 293 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 294 if (xfs_inode_has_attr_fork(ip)) 295 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 296 } 297 298 STATIC void 299 xfs_inode_item_format_data_fork( 300 struct xfs_inode_log_item *iip, 301 struct xfs_inode_log_format *ilf, 302 struct xfs_log_vec *lv, 303 struct xfs_log_iovec **vecp) 304 { 305 struct xfs_inode *ip = iip->ili_inode; 306 size_t data_bytes; 307 308 switch (ip->i_df.if_format) { 309 case XFS_DINODE_FMT_EXTENTS: 310 iip->ili_fields &= 311 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 312 313 if ((iip->ili_fields & XFS_ILOG_DEXT) && 314 ip->i_df.if_nextents > 0 && 315 ip->i_df.if_bytes > 0) { 316 struct xfs_bmbt_rec *p; 317 318 ASSERT(xfs_iext_count(&ip->i_df) > 0); 319 320 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 321 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 322 xlog_finish_iovec(lv, *vecp, data_bytes); 323 324 ASSERT(data_bytes <= ip->i_df.if_bytes); 325 326 ilf->ilf_dsize = data_bytes; 327 ilf->ilf_size++; 328 } else { 329 iip->ili_fields &= ~XFS_ILOG_DEXT; 330 } 331 break; 332 case XFS_DINODE_FMT_BTREE: 333 iip->ili_fields &= 334 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); 335 336 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 337 ip->i_df.if_broot_bytes > 0) { 338 ASSERT(ip->i_df.if_broot != NULL); 339 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 340 ip->i_df.if_broot, 341 ip->i_df.if_broot_bytes); 342 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 343 ilf->ilf_size++; 344 } else { 345 ASSERT(!(iip->ili_fields & 346 XFS_ILOG_DBROOT)); 347 iip->ili_fields &= ~XFS_ILOG_DBROOT; 348 } 349 break; 350 case XFS_DINODE_FMT_LOCAL: 351 iip->ili_fields &= 352 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 353 if ((iip->ili_fields & XFS_ILOG_DDATA) && 354 ip->i_df.if_bytes > 0) { 355 ASSERT(ip->i_df.if_u1.if_data != NULL); 356 ASSERT(ip->i_disk_size > 0); 357 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 358 ip->i_df.if_u1.if_data, 359 ip->i_df.if_bytes); 360 ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes; 361 ilf->ilf_size++; 362 } else { 363 iip->ili_fields &= ~XFS_ILOG_DDATA; 364 } 365 break; 366 case XFS_DINODE_FMT_DEV: 367 iip->ili_fields &= 368 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); 369 if (iip->ili_fields & XFS_ILOG_DEV) 370 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); 371 break; 372 default: 373 ASSERT(0); 374 break; 375 } 376 } 377 378 STATIC void 379 xfs_inode_item_format_attr_fork( 380 struct xfs_inode_log_item *iip, 381 struct xfs_inode_log_format *ilf, 382 struct xfs_log_vec *lv, 383 struct xfs_log_iovec **vecp) 384 { 385 struct xfs_inode *ip = iip->ili_inode; 386 size_t data_bytes; 387 388 switch (ip->i_af.if_format) { 389 case XFS_DINODE_FMT_EXTENTS: 390 iip->ili_fields &= 391 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 392 393 if ((iip->ili_fields & XFS_ILOG_AEXT) && 394 ip->i_af.if_nextents > 0 && 395 ip->i_af.if_bytes > 0) { 396 struct xfs_bmbt_rec *p; 397 398 ASSERT(xfs_iext_count(&ip->i_af) == 399 ip->i_af.if_nextents); 400 401 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 402 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 403 xlog_finish_iovec(lv, *vecp, data_bytes); 404 405 ilf->ilf_asize = data_bytes; 406 ilf->ilf_size++; 407 } else { 408 iip->ili_fields &= ~XFS_ILOG_AEXT; 409 } 410 break; 411 case XFS_DINODE_FMT_BTREE: 412 iip->ili_fields &= 413 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 414 415 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 416 ip->i_af.if_broot_bytes > 0) { 417 ASSERT(ip->i_af.if_broot != NULL); 418 419 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 420 ip->i_af.if_broot, 421 ip->i_af.if_broot_bytes); 422 ilf->ilf_asize = ip->i_af.if_broot_bytes; 423 ilf->ilf_size++; 424 } else { 425 iip->ili_fields &= ~XFS_ILOG_ABROOT; 426 } 427 break; 428 case XFS_DINODE_FMT_LOCAL: 429 iip->ili_fields &= 430 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 431 432 if ((iip->ili_fields & XFS_ILOG_ADATA) && 433 ip->i_af.if_bytes > 0) { 434 ASSERT(ip->i_af.if_u1.if_data != NULL); 435 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 436 ip->i_af.if_u1.if_data, 437 ip->i_af.if_bytes); 438 ilf->ilf_asize = (unsigned)ip->i_af.if_bytes; 439 ilf->ilf_size++; 440 } else { 441 iip->ili_fields &= ~XFS_ILOG_ADATA; 442 } 443 break; 444 default: 445 ASSERT(0); 446 break; 447 } 448 } 449 450 /* 451 * Convert an incore timestamp to a log timestamp. Note that the log format 452 * specifies host endian format! 453 */ 454 static inline xfs_log_timestamp_t 455 xfs_inode_to_log_dinode_ts( 456 struct xfs_inode *ip, 457 const struct timespec64 tv) 458 { 459 struct xfs_log_legacy_timestamp *lits; 460 xfs_log_timestamp_t its; 461 462 if (xfs_inode_has_bigtime(ip)) 463 return xfs_inode_encode_bigtime(tv); 464 465 lits = (struct xfs_log_legacy_timestamp *)&its; 466 lits->t_sec = tv.tv_sec; 467 lits->t_nsec = tv.tv_nsec; 468 469 return its; 470 } 471 472 /* 473 * The legacy DMAPI fields are only present in the on-disk and in-log inodes, 474 * but not in the in-memory one. But we are guaranteed to have an inode buffer 475 * in memory when logging an inode, so we can just copy it from the on-disk 476 * inode to the in-log inode here so that recovery of file system with these 477 * fields set to non-zero values doesn't lose them. For all other cases we zero 478 * the fields. 479 */ 480 static void 481 xfs_copy_dm_fields_to_log_dinode( 482 struct xfs_inode *ip, 483 struct xfs_log_dinode *to) 484 { 485 struct xfs_dinode *dip; 486 487 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf, 488 ip->i_imap.im_boffset); 489 490 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) { 491 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask); 492 to->di_dmstate = be16_to_cpu(dip->di_dmstate); 493 } else { 494 to->di_dmevmask = 0; 495 to->di_dmstate = 0; 496 } 497 } 498 499 static inline void 500 xfs_inode_to_log_dinode_iext_counters( 501 struct xfs_inode *ip, 502 struct xfs_log_dinode *to) 503 { 504 if (xfs_inode_has_large_extent_counts(ip)) { 505 to->di_big_nextents = xfs_ifork_nextents(&ip->i_df); 506 to->di_big_anextents = xfs_ifork_nextents(&ip->i_af); 507 to->di_nrext64_pad = 0; 508 } else { 509 to->di_nextents = xfs_ifork_nextents(&ip->i_df); 510 to->di_anextents = xfs_ifork_nextents(&ip->i_af); 511 } 512 } 513 514 static void 515 xfs_inode_to_log_dinode( 516 struct xfs_inode *ip, 517 struct xfs_log_dinode *to, 518 xfs_lsn_t lsn) 519 { 520 struct inode *inode = VFS_I(ip); 521 522 to->di_magic = XFS_DINODE_MAGIC; 523 to->di_format = xfs_ifork_format(&ip->i_df); 524 to->di_uid = i_uid_read(inode); 525 to->di_gid = i_gid_read(inode); 526 to->di_projid_lo = ip->i_projid & 0xffff; 527 to->di_projid_hi = ip->i_projid >> 16; 528 529 memset(to->di_pad3, 0, sizeof(to->di_pad3)); 530 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode)); 531 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode)); 532 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode)); 533 to->di_nlink = inode->i_nlink; 534 to->di_gen = inode->i_generation; 535 to->di_mode = inode->i_mode; 536 537 to->di_size = ip->i_disk_size; 538 to->di_nblocks = ip->i_nblocks; 539 to->di_extsize = ip->i_extsize; 540 to->di_forkoff = ip->i_forkoff; 541 to->di_aformat = xfs_ifork_format(&ip->i_af); 542 to->di_flags = ip->i_diflags; 543 544 xfs_copy_dm_fields_to_log_dinode(ip, to); 545 546 /* log a dummy value to ensure log structure is fully initialised */ 547 to->di_next_unlinked = NULLAGINO; 548 549 if (xfs_has_v3inodes(ip->i_mount)) { 550 to->di_version = 3; 551 to->di_changecount = inode_peek_iversion(inode); 552 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime); 553 to->di_flags2 = ip->i_diflags2; 554 to->di_cowextsize = ip->i_cowextsize; 555 to->di_ino = ip->i_ino; 556 to->di_lsn = lsn; 557 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 558 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 559 to->di_v3_pad = 0; 560 } else { 561 to->di_version = 2; 562 to->di_flushiter = ip->i_flushiter; 563 memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad)); 564 } 565 566 xfs_inode_to_log_dinode_iext_counters(ip, to); 567 } 568 569 /* 570 * Format the inode core. Current timestamp data is only in the VFS inode 571 * fields, so we need to grab them from there. Hence rather than just copying 572 * the XFS inode core structure, format the fields directly into the iovec. 573 */ 574 static void 575 xfs_inode_item_format_core( 576 struct xfs_inode *ip, 577 struct xfs_log_vec *lv, 578 struct xfs_log_iovec **vecp) 579 { 580 struct xfs_log_dinode *dic; 581 582 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 583 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 584 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount)); 585 } 586 587 /* 588 * This is called to fill in the vector of log iovecs for the given inode 589 * log item. It fills the first item with an inode log format structure, 590 * the second with the on-disk inode structure, and a possible third and/or 591 * fourth with the inode data/extents/b-tree root and inode attributes 592 * data/extents/b-tree root. 593 * 594 * Note: Always use the 64 bit inode log format structure so we don't 595 * leave an uninitialised hole in the format item on 64 bit systems. Log 596 * recovery on 32 bit systems handles this just fine, so there's no reason 597 * for not using an initialising the properly padded structure all the time. 598 */ 599 STATIC void 600 xfs_inode_item_format( 601 struct xfs_log_item *lip, 602 struct xfs_log_vec *lv) 603 { 604 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 605 struct xfs_inode *ip = iip->ili_inode; 606 struct xfs_log_iovec *vecp = NULL; 607 struct xfs_inode_log_format *ilf; 608 609 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 610 ilf->ilf_type = XFS_LI_INODE; 611 ilf->ilf_ino = ip->i_ino; 612 ilf->ilf_blkno = ip->i_imap.im_blkno; 613 ilf->ilf_len = ip->i_imap.im_len; 614 ilf->ilf_boffset = ip->i_imap.im_boffset; 615 ilf->ilf_fields = XFS_ILOG_CORE; 616 ilf->ilf_size = 2; /* format + core */ 617 618 /* 619 * make sure we don't leak uninitialised data into the log in the case 620 * when we don't log every field in the inode. 621 */ 622 ilf->ilf_dsize = 0; 623 ilf->ilf_asize = 0; 624 ilf->ilf_pad = 0; 625 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); 626 627 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 628 629 xfs_inode_item_format_core(ip, lv, &vecp); 630 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 631 if (xfs_inode_has_attr_fork(ip)) { 632 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 633 } else { 634 iip->ili_fields &= 635 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 636 } 637 638 /* update the format with the exact fields we actually logged */ 639 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 640 } 641 642 /* 643 * This is called to pin the inode associated with the inode log 644 * item in memory so it cannot be written out. 645 */ 646 STATIC void 647 xfs_inode_item_pin( 648 struct xfs_log_item *lip) 649 { 650 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 651 652 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 653 ASSERT(lip->li_buf); 654 655 trace_xfs_inode_pin(ip, _RET_IP_); 656 atomic_inc(&ip->i_pincount); 657 } 658 659 660 /* 661 * This is called to unpin the inode associated with the inode log 662 * item which was previously pinned with a call to xfs_inode_item_pin(). 663 * 664 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 665 * 666 * Note that unpin can race with inode cluster buffer freeing marking the buffer 667 * stale. In that case, flush completions are run from the buffer unpin call, 668 * which may happen before the inode is unpinned. If we lose the race, there 669 * will be no buffer attached to the log item, but the inode will be marked 670 * XFS_ISTALE. 671 */ 672 STATIC void 673 xfs_inode_item_unpin( 674 struct xfs_log_item *lip, 675 int remove) 676 { 677 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 678 679 trace_xfs_inode_unpin(ip, _RET_IP_); 680 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE)); 681 ASSERT(atomic_read(&ip->i_pincount) > 0); 682 if (atomic_dec_and_test(&ip->i_pincount)) 683 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 684 } 685 686 STATIC uint 687 xfs_inode_item_push( 688 struct xfs_log_item *lip, 689 struct list_head *buffer_list) 690 __releases(&lip->li_ailp->ail_lock) 691 __acquires(&lip->li_ailp->ail_lock) 692 { 693 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 694 struct xfs_inode *ip = iip->ili_inode; 695 struct xfs_buf *bp = lip->li_buf; 696 uint rval = XFS_ITEM_SUCCESS; 697 int error; 698 699 if (!bp || (ip->i_flags & XFS_ISTALE)) { 700 /* 701 * Inode item/buffer is being aborted due to cluster 702 * buffer deletion. Trigger a log force to have that operation 703 * completed and items removed from the AIL before the next push 704 * attempt. 705 */ 706 return XFS_ITEM_PINNED; 707 } 708 709 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp)) 710 return XFS_ITEM_PINNED; 711 712 if (xfs_iflags_test(ip, XFS_IFLUSHING)) 713 return XFS_ITEM_FLUSHING; 714 715 if (!xfs_buf_trylock(bp)) 716 return XFS_ITEM_LOCKED; 717 718 spin_unlock(&lip->li_ailp->ail_lock); 719 720 /* 721 * We need to hold a reference for flushing the cluster buffer as it may 722 * fail the buffer without IO submission. In which case, we better get a 723 * reference for that completion because otherwise we don't get a 724 * reference for IO until we queue the buffer for delwri submission. 725 */ 726 xfs_buf_hold(bp); 727 error = xfs_iflush_cluster(bp); 728 if (!error) { 729 if (!xfs_buf_delwri_queue(bp, buffer_list)) 730 rval = XFS_ITEM_FLUSHING; 731 xfs_buf_relse(bp); 732 } else { 733 /* 734 * Release the buffer if we were unable to flush anything. On 735 * any other error, the buffer has already been released. 736 */ 737 if (error == -EAGAIN) 738 xfs_buf_relse(bp); 739 rval = XFS_ITEM_LOCKED; 740 } 741 742 spin_lock(&lip->li_ailp->ail_lock); 743 return rval; 744 } 745 746 /* 747 * Unlock the inode associated with the inode log item. 748 */ 749 STATIC void 750 xfs_inode_item_release( 751 struct xfs_log_item *lip) 752 { 753 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 754 struct xfs_inode *ip = iip->ili_inode; 755 unsigned short lock_flags; 756 757 ASSERT(ip->i_itemp != NULL); 758 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 759 760 lock_flags = iip->ili_lock_flags; 761 iip->ili_lock_flags = 0; 762 if (lock_flags) 763 xfs_iunlock(ip, lock_flags); 764 } 765 766 /* 767 * This is called to find out where the oldest active copy of the inode log 768 * item in the on disk log resides now that the last log write of it completed 769 * at the given lsn. Since we always re-log all dirty data in an inode, the 770 * latest copy in the on disk log is the only one that matters. Therefore, 771 * simply return the given lsn. 772 * 773 * If the inode has been marked stale because the cluster is being freed, we 774 * don't want to (re-)insert this inode into the AIL. There is a race condition 775 * where the cluster buffer may be unpinned before the inode is inserted into 776 * the AIL during transaction committed processing. If the buffer is unpinned 777 * before the inode item has been committed and inserted, then it is possible 778 * for the buffer to be written and IO completes before the inode is inserted 779 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 780 * AIL which will never get removed. It will, however, get reclaimed which 781 * triggers an assert in xfs_inode_free() complaining about freein an inode 782 * still in the AIL. 783 * 784 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 785 * transaction committed code knows that it does not need to do any further 786 * processing on the item. 787 */ 788 STATIC xfs_lsn_t 789 xfs_inode_item_committed( 790 struct xfs_log_item *lip, 791 xfs_lsn_t lsn) 792 { 793 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 794 struct xfs_inode *ip = iip->ili_inode; 795 796 if (xfs_iflags_test(ip, XFS_ISTALE)) { 797 xfs_inode_item_unpin(lip, 0); 798 return -1; 799 } 800 return lsn; 801 } 802 803 STATIC void 804 xfs_inode_item_committing( 805 struct xfs_log_item *lip, 806 xfs_csn_t seq) 807 { 808 INODE_ITEM(lip)->ili_commit_seq = seq; 809 return xfs_inode_item_release(lip); 810 } 811 812 static const struct xfs_item_ops xfs_inode_item_ops = { 813 .iop_sort = xfs_inode_item_sort, 814 .iop_precommit = xfs_inode_item_precommit, 815 .iop_size = xfs_inode_item_size, 816 .iop_format = xfs_inode_item_format, 817 .iop_pin = xfs_inode_item_pin, 818 .iop_unpin = xfs_inode_item_unpin, 819 .iop_release = xfs_inode_item_release, 820 .iop_committed = xfs_inode_item_committed, 821 .iop_push = xfs_inode_item_push, 822 .iop_committing = xfs_inode_item_committing, 823 }; 824 825 826 /* 827 * Initialize the inode log item for a newly allocated (in-core) inode. 828 */ 829 void 830 xfs_inode_item_init( 831 struct xfs_inode *ip, 832 struct xfs_mount *mp) 833 { 834 struct xfs_inode_log_item *iip; 835 836 ASSERT(ip->i_itemp == NULL); 837 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache, 838 GFP_KERNEL | __GFP_NOFAIL); 839 840 iip->ili_inode = ip; 841 spin_lock_init(&iip->ili_lock); 842 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 843 &xfs_inode_item_ops); 844 } 845 846 /* 847 * Free the inode log item and any memory hanging off of it. 848 */ 849 void 850 xfs_inode_item_destroy( 851 struct xfs_inode *ip) 852 { 853 struct xfs_inode_log_item *iip = ip->i_itemp; 854 855 ASSERT(iip->ili_item.li_buf == NULL); 856 857 ip->i_itemp = NULL; 858 kmem_free(iip->ili_item.li_lv_shadow); 859 kmem_cache_free(xfs_ili_cache, iip); 860 } 861 862 863 /* 864 * We only want to pull the item from the AIL if it is actually there 865 * and its location in the log has not changed since we started the 866 * flush. Thus, we only bother if the inode's lsn has not changed. 867 */ 868 static void 869 xfs_iflush_ail_updates( 870 struct xfs_ail *ailp, 871 struct list_head *list) 872 { 873 struct xfs_log_item *lip; 874 xfs_lsn_t tail_lsn = 0; 875 876 /* this is an opencoded batch version of xfs_trans_ail_delete */ 877 spin_lock(&ailp->ail_lock); 878 list_for_each_entry(lip, list, li_bio_list) { 879 xfs_lsn_t lsn; 880 881 clear_bit(XFS_LI_FAILED, &lip->li_flags); 882 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn) 883 continue; 884 885 /* 886 * dgc: Not sure how this happens, but it happens very 887 * occassionaly via generic/388. xfs_iflush_abort() also 888 * silently handles this same "under writeback but not in AIL at 889 * shutdown" condition via xfs_trans_ail_delete(). 890 */ 891 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) { 892 ASSERT(xlog_is_shutdown(lip->li_log)); 893 continue; 894 } 895 896 lsn = xfs_ail_delete_one(ailp, lip); 897 if (!tail_lsn && lsn) 898 tail_lsn = lsn; 899 } 900 xfs_ail_update_finish(ailp, tail_lsn); 901 } 902 903 /* 904 * Walk the list of inodes that have completed their IOs. If they are clean 905 * remove them from the list and dissociate them from the buffer. Buffers that 906 * are still dirty remain linked to the buffer and on the list. Caller must 907 * handle them appropriately. 908 */ 909 static void 910 xfs_iflush_finish( 911 struct xfs_buf *bp, 912 struct list_head *list) 913 { 914 struct xfs_log_item *lip, *n; 915 916 list_for_each_entry_safe(lip, n, list, li_bio_list) { 917 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 918 bool drop_buffer = false; 919 920 spin_lock(&iip->ili_lock); 921 922 /* 923 * Remove the reference to the cluster buffer if the inode is 924 * clean in memory and drop the buffer reference once we've 925 * dropped the locks we hold. 926 */ 927 ASSERT(iip->ili_item.li_buf == bp); 928 if (!iip->ili_fields) { 929 iip->ili_item.li_buf = NULL; 930 list_del_init(&lip->li_bio_list); 931 drop_buffer = true; 932 } 933 iip->ili_last_fields = 0; 934 iip->ili_flush_lsn = 0; 935 spin_unlock(&iip->ili_lock); 936 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING); 937 if (drop_buffer) 938 xfs_buf_rele(bp); 939 } 940 } 941 942 /* 943 * Inode buffer IO completion routine. It is responsible for removing inodes 944 * attached to the buffer from the AIL if they have not been re-logged and 945 * completing the inode flush. 946 */ 947 void 948 xfs_buf_inode_iodone( 949 struct xfs_buf *bp) 950 { 951 struct xfs_log_item *lip, *n; 952 LIST_HEAD(flushed_inodes); 953 LIST_HEAD(ail_updates); 954 955 /* 956 * Pull the attached inodes from the buffer one at a time and take the 957 * appropriate action on them. 958 */ 959 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 960 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 961 962 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) { 963 xfs_iflush_abort(iip->ili_inode); 964 continue; 965 } 966 if (!iip->ili_last_fields) 967 continue; 968 969 /* Do an unlocked check for needing the AIL lock. */ 970 if (iip->ili_flush_lsn == lip->li_lsn || 971 test_bit(XFS_LI_FAILED, &lip->li_flags)) 972 list_move_tail(&lip->li_bio_list, &ail_updates); 973 else 974 list_move_tail(&lip->li_bio_list, &flushed_inodes); 975 } 976 977 if (!list_empty(&ail_updates)) { 978 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates); 979 list_splice_tail(&ail_updates, &flushed_inodes); 980 } 981 982 xfs_iflush_finish(bp, &flushed_inodes); 983 if (!list_empty(&flushed_inodes)) 984 list_splice_tail(&flushed_inodes, &bp->b_li_list); 985 } 986 987 void 988 xfs_buf_inode_io_fail( 989 struct xfs_buf *bp) 990 { 991 struct xfs_log_item *lip; 992 993 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) 994 set_bit(XFS_LI_FAILED, &lip->li_flags); 995 } 996 997 /* 998 * Clear the inode logging fields so no more flushes are attempted. If we are 999 * on a buffer list, it is now safe to remove it because the buffer is 1000 * guaranteed to be locked. The caller will drop the reference to the buffer 1001 * the log item held. 1002 */ 1003 static void 1004 xfs_iflush_abort_clean( 1005 struct xfs_inode_log_item *iip) 1006 { 1007 iip->ili_last_fields = 0; 1008 iip->ili_fields = 0; 1009 iip->ili_fsync_fields = 0; 1010 iip->ili_flush_lsn = 0; 1011 iip->ili_item.li_buf = NULL; 1012 list_del_init(&iip->ili_item.li_bio_list); 1013 } 1014 1015 /* 1016 * Abort flushing the inode from a context holding the cluster buffer locked. 1017 * 1018 * This is the normal runtime method of aborting writeback of an inode that is 1019 * attached to a cluster buffer. It occurs when the inode and the backing 1020 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster 1021 * flushing or buffer IO completion encounters a log shutdown situation. 1022 * 1023 * If we need to abort inode writeback and we don't already hold the buffer 1024 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be 1025 * necessary in a shutdown situation. 1026 */ 1027 void 1028 xfs_iflush_abort( 1029 struct xfs_inode *ip) 1030 { 1031 struct xfs_inode_log_item *iip = ip->i_itemp; 1032 struct xfs_buf *bp; 1033 1034 if (!iip) { 1035 /* clean inode, nothing to do */ 1036 xfs_iflags_clear(ip, XFS_IFLUSHING); 1037 return; 1038 } 1039 1040 /* 1041 * Remove the inode item from the AIL before we clear its internal 1042 * state. Whilst the inode is in the AIL, it should have a valid buffer 1043 * pointer for push operations to access - it is only safe to remove the 1044 * inode from the buffer once it has been removed from the AIL. 1045 * 1046 * We also clear the failed bit before removing the item from the AIL 1047 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer 1048 * references the inode item owns and needs to hold until we've fully 1049 * aborted the inode log item and detached it from the buffer. 1050 */ 1051 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags); 1052 xfs_trans_ail_delete(&iip->ili_item, 0); 1053 1054 /* 1055 * Grab the inode buffer so can we release the reference the inode log 1056 * item holds on it. 1057 */ 1058 spin_lock(&iip->ili_lock); 1059 bp = iip->ili_item.li_buf; 1060 xfs_iflush_abort_clean(iip); 1061 spin_unlock(&iip->ili_lock); 1062 1063 xfs_iflags_clear(ip, XFS_IFLUSHING); 1064 if (bp) 1065 xfs_buf_rele(bp); 1066 } 1067 1068 /* 1069 * Abort an inode flush in the case of a shutdown filesystem. This can be called 1070 * from anywhere with just an inode reference and does not require holding the 1071 * inode cluster buffer locked. If the inode is attached to a cluster buffer, 1072 * it will grab and lock it safely, then abort the inode flush. 1073 */ 1074 void 1075 xfs_iflush_shutdown_abort( 1076 struct xfs_inode *ip) 1077 { 1078 struct xfs_inode_log_item *iip = ip->i_itemp; 1079 struct xfs_buf *bp; 1080 1081 if (!iip) { 1082 /* clean inode, nothing to do */ 1083 xfs_iflags_clear(ip, XFS_IFLUSHING); 1084 return; 1085 } 1086 1087 spin_lock(&iip->ili_lock); 1088 bp = iip->ili_item.li_buf; 1089 if (!bp) { 1090 spin_unlock(&iip->ili_lock); 1091 xfs_iflush_abort(ip); 1092 return; 1093 } 1094 1095 /* 1096 * We have to take a reference to the buffer so that it doesn't get 1097 * freed when we drop the ili_lock and then wait to lock the buffer. 1098 * We'll clean up the extra reference after we pick up the ili_lock 1099 * again. 1100 */ 1101 xfs_buf_hold(bp); 1102 spin_unlock(&iip->ili_lock); 1103 xfs_buf_lock(bp); 1104 1105 spin_lock(&iip->ili_lock); 1106 if (!iip->ili_item.li_buf) { 1107 /* 1108 * Raced with another removal, hold the only reference 1109 * to bp now. Inode should not be in the AIL now, so just clean 1110 * up and return; 1111 */ 1112 ASSERT(list_empty(&iip->ili_item.li_bio_list)); 1113 ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)); 1114 xfs_iflush_abort_clean(iip); 1115 spin_unlock(&iip->ili_lock); 1116 xfs_iflags_clear(ip, XFS_IFLUSHING); 1117 xfs_buf_relse(bp); 1118 return; 1119 } 1120 1121 /* 1122 * Got two references to bp. The first will get dropped by 1123 * xfs_iflush_abort() when the item is removed from the buffer list, but 1124 * we can't drop our reference until _abort() returns because we have to 1125 * unlock the buffer as well. Hence we abort and then unlock and release 1126 * our reference to the buffer. 1127 */ 1128 ASSERT(iip->ili_item.li_buf == bp); 1129 spin_unlock(&iip->ili_lock); 1130 xfs_iflush_abort(ip); 1131 xfs_buf_relse(bp); 1132 } 1133 1134 1135 /* 1136 * convert an xfs_inode_log_format struct from the old 32 bit version 1137 * (which can have different field alignments) to the native 64 bit version 1138 */ 1139 int 1140 xfs_inode_item_format_convert( 1141 struct xfs_log_iovec *buf, 1142 struct xfs_inode_log_format *in_f) 1143 { 1144 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; 1145 1146 if (buf->i_len != sizeof(*in_f32)) { 1147 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 1148 return -EFSCORRUPTED; 1149 } 1150 1151 in_f->ilf_type = in_f32->ilf_type; 1152 in_f->ilf_size = in_f32->ilf_size; 1153 in_f->ilf_fields = in_f32->ilf_fields; 1154 in_f->ilf_asize = in_f32->ilf_asize; 1155 in_f->ilf_dsize = in_f32->ilf_dsize; 1156 in_f->ilf_ino = in_f32->ilf_ino; 1157 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); 1158 in_f->ilf_blkno = in_f32->ilf_blkno; 1159 in_f->ilf_len = in_f32->ilf_len; 1160 in_f->ilf_boffset = in_f32->ilf_boffset; 1161 return 0; 1162 } 1163