xref: /linux/fs/xfs/xfs_inode_item.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 #include "xfs_log_priv.h"
21 #include "xfs_error.h"
22 #include "xfs_rtbitmap.h"
23 
24 #include <linux/iversion.h>
25 
26 struct kmem_cache	*xfs_ili_cache;		/* inode log item */
27 
28 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
29 {
30 	return container_of(lip, struct xfs_inode_log_item, ili_item);
31 }
32 
33 static uint64_t
34 xfs_inode_item_sort(
35 	struct xfs_log_item	*lip)
36 {
37 	return INODE_ITEM(lip)->ili_inode->i_ino;
38 }
39 
40 /*
41  * Prior to finally logging the inode, we have to ensure that all the
42  * per-modification inode state changes are applied. This includes VFS inode
43  * state updates, format conversions, verifier state synchronisation and
44  * ensuring the inode buffer remains in memory whilst the inode is dirty.
45  *
46  * We have to be careful when we grab the inode cluster buffer due to lock
47  * ordering constraints. The unlinked inode modifications (xfs_iunlink_item)
48  * require AGI -> inode cluster buffer lock order. The inode cluster buffer is
49  * not locked until ->precommit, so it happens after everything else has been
50  * modified.
51  *
52  * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we
53  * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we
54  * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because
55  * it can be called on a inode (e.g. via bumplink/droplink) before we take the
56  * AGF lock modifying directory blocks.
57  *
58  * Rather than force a complete rework of all the transactions to call
59  * xfs_trans_log_inode() once and once only at the end of every transaction, we
60  * move the pinning of the inode cluster buffer to a ->precommit operation. This
61  * matches how the xfs_iunlink_item locks the inode cluster buffer, and it
62  * ensures that the inode cluster buffer locking is always done last in a
63  * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode
64  * cluster buffer.
65  *
66  * If we return the inode number as the precommit sort key then we'll also
67  * guarantee that the order all inode cluster buffer locking is the same all the
68  * inodes and unlink items in the transaction.
69  */
70 static int
71 xfs_inode_item_precommit(
72 	struct xfs_trans	*tp,
73 	struct xfs_log_item	*lip)
74 {
75 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
76 	struct xfs_inode	*ip = iip->ili_inode;
77 	struct inode		*inode = VFS_I(ip);
78 	unsigned int		flags = iip->ili_dirty_flags;
79 
80 	/*
81 	 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races
82 	 * don't matter - we either will need an extra transaction in 24 hours
83 	 * to log the timestamps, or will clear already cleared fields in the
84 	 * worst case.
85 	 */
86 	if (inode->i_state & I_DIRTY_TIME) {
87 		spin_lock(&inode->i_lock);
88 		inode->i_state &= ~I_DIRTY_TIME;
89 		spin_unlock(&inode->i_lock);
90 	}
91 
92 	/*
93 	 * If we're updating the inode core or the timestamps and it's possible
94 	 * to upgrade this inode to bigtime format, do so now.
95 	 */
96 	if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) &&
97 	    xfs_has_bigtime(ip->i_mount) &&
98 	    !xfs_inode_has_bigtime(ip)) {
99 		ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME;
100 		flags |= XFS_ILOG_CORE;
101 	}
102 
103 	/*
104 	 * Inode verifiers do not check that the extent size hint is an integer
105 	 * multiple of the rt extent size on a directory with both rtinherit
106 	 * and extszinherit flags set.  If we're logging a directory that is
107 	 * misconfigured in this way, clear the hint.
108 	 */
109 	if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
110 	    (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) &&
111 	    xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) {
112 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
113 				   XFS_DIFLAG_EXTSZINHERIT);
114 		ip->i_extsize = 0;
115 		flags |= XFS_ILOG_CORE;
116 	}
117 
118 	/*
119 	 * Record the specific change for fdatasync optimisation. This allows
120 	 * fdatasync to skip log forces for inodes that are only timestamp
121 	 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it
122 	 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking
123 	 * (ili_fields) correctly tracks that the version has changed.
124 	 */
125 	spin_lock(&iip->ili_lock);
126 	iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION);
127 	if (flags & XFS_ILOG_IVERSION)
128 		flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE);
129 
130 	if (!iip->ili_item.li_buf) {
131 		struct xfs_buf	*bp;
132 		int		error;
133 
134 		/*
135 		 * We hold the ILOCK here, so this inode is not going to be
136 		 * flushed while we are here. Further, because there is no
137 		 * buffer attached to the item, we know that there is no IO in
138 		 * progress, so nothing will clear the ili_fields while we read
139 		 * in the buffer. Hence we can safely drop the spin lock and
140 		 * read the buffer knowing that the state will not change from
141 		 * here.
142 		 */
143 		spin_unlock(&iip->ili_lock);
144 		error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp);
145 		if (error)
146 			return error;
147 
148 		/*
149 		 * We need an explicit buffer reference for the log item but
150 		 * don't want the buffer to remain attached to the transaction.
151 		 * Hold the buffer but release the transaction reference once
152 		 * we've attached the inode log item to the buffer log item
153 		 * list.
154 		 */
155 		xfs_buf_hold(bp);
156 		spin_lock(&iip->ili_lock);
157 		iip->ili_item.li_buf = bp;
158 		bp->b_flags |= _XBF_INODES;
159 		list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list);
160 		xfs_trans_brelse(tp, bp);
161 	}
162 
163 	/*
164 	 * Always OR in the bits from the ili_last_fields field.  This is to
165 	 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
166 	 * in the eventual clearing of the ili_fields bits.  See the big comment
167 	 * in xfs_iflush() for an explanation of this coordination mechanism.
168 	 */
169 	iip->ili_fields |= (flags | iip->ili_last_fields);
170 	spin_unlock(&iip->ili_lock);
171 
172 	/*
173 	 * We are done with the log item transaction dirty state, so clear it so
174 	 * that it doesn't pollute future transactions.
175 	 */
176 	iip->ili_dirty_flags = 0;
177 	return 0;
178 }
179 
180 /*
181  * The logged size of an inode fork is always the current size of the inode
182  * fork. This means that when an inode fork is relogged, the size of the logged
183  * region is determined by the current state, not the combination of the
184  * previously logged state + the current state. This is different relogging
185  * behaviour to most other log items which will retain the size of the
186  * previously logged changes when smaller regions are relogged.
187  *
188  * Hence operations that remove data from the inode fork (e.g. shortform
189  * dir/attr remove, extent form extent removal, etc), the size of the relogged
190  * inode gets -smaller- rather than stays the same size as the previously logged
191  * size and this can result in the committing transaction reducing the amount of
192  * space being consumed by the CIL.
193  */
194 STATIC void
195 xfs_inode_item_data_fork_size(
196 	struct xfs_inode_log_item *iip,
197 	int			*nvecs,
198 	int			*nbytes)
199 {
200 	struct xfs_inode	*ip = iip->ili_inode;
201 
202 	switch (ip->i_df.if_format) {
203 	case XFS_DINODE_FMT_EXTENTS:
204 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
205 		    ip->i_df.if_nextents > 0 &&
206 		    ip->i_df.if_bytes > 0) {
207 			/* worst case, doesn't subtract delalloc extents */
208 			*nbytes += xfs_inode_data_fork_size(ip);
209 			*nvecs += 1;
210 		}
211 		break;
212 	case XFS_DINODE_FMT_BTREE:
213 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
214 		    ip->i_df.if_broot_bytes > 0) {
215 			*nbytes += ip->i_df.if_broot_bytes;
216 			*nvecs += 1;
217 		}
218 		break;
219 	case XFS_DINODE_FMT_LOCAL:
220 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
221 		    ip->i_df.if_bytes > 0) {
222 			*nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
223 			*nvecs += 1;
224 		}
225 		break;
226 
227 	case XFS_DINODE_FMT_DEV:
228 		break;
229 	default:
230 		ASSERT(0);
231 		break;
232 	}
233 }
234 
235 STATIC void
236 xfs_inode_item_attr_fork_size(
237 	struct xfs_inode_log_item *iip,
238 	int			*nvecs,
239 	int			*nbytes)
240 {
241 	struct xfs_inode	*ip = iip->ili_inode;
242 
243 	switch (ip->i_af.if_format) {
244 	case XFS_DINODE_FMT_EXTENTS:
245 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
246 		    ip->i_af.if_nextents > 0 &&
247 		    ip->i_af.if_bytes > 0) {
248 			/* worst case, doesn't subtract unused space */
249 			*nbytes += xfs_inode_attr_fork_size(ip);
250 			*nvecs += 1;
251 		}
252 		break;
253 	case XFS_DINODE_FMT_BTREE:
254 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
255 		    ip->i_af.if_broot_bytes > 0) {
256 			*nbytes += ip->i_af.if_broot_bytes;
257 			*nvecs += 1;
258 		}
259 		break;
260 	case XFS_DINODE_FMT_LOCAL:
261 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
262 		    ip->i_af.if_bytes > 0) {
263 			*nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
264 			*nvecs += 1;
265 		}
266 		break;
267 	default:
268 		ASSERT(0);
269 		break;
270 	}
271 }
272 
273 /*
274  * This returns the number of iovecs needed to log the given inode item.
275  *
276  * We need one iovec for the inode log format structure, one for the
277  * inode core, and possibly one for the inode data/extents/b-tree root
278  * and one for the inode attribute data/extents/b-tree root.
279  */
280 STATIC void
281 xfs_inode_item_size(
282 	struct xfs_log_item	*lip,
283 	int			*nvecs,
284 	int			*nbytes)
285 {
286 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
287 	struct xfs_inode	*ip = iip->ili_inode;
288 
289 	*nvecs += 2;
290 	*nbytes += sizeof(struct xfs_inode_log_format) +
291 		   xfs_log_dinode_size(ip->i_mount);
292 
293 	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
294 	if (xfs_inode_has_attr_fork(ip))
295 		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
296 }
297 
298 STATIC void
299 xfs_inode_item_format_data_fork(
300 	struct xfs_inode_log_item *iip,
301 	struct xfs_inode_log_format *ilf,
302 	struct xfs_log_vec	*lv,
303 	struct xfs_log_iovec	**vecp)
304 {
305 	struct xfs_inode	*ip = iip->ili_inode;
306 	size_t			data_bytes;
307 
308 	switch (ip->i_df.if_format) {
309 	case XFS_DINODE_FMT_EXTENTS:
310 		iip->ili_fields &=
311 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
312 
313 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
314 		    ip->i_df.if_nextents > 0 &&
315 		    ip->i_df.if_bytes > 0) {
316 			struct xfs_bmbt_rec *p;
317 
318 			ASSERT(xfs_iext_count(&ip->i_df) > 0);
319 
320 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
321 			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
322 			xlog_finish_iovec(lv, *vecp, data_bytes);
323 
324 			ASSERT(data_bytes <= ip->i_df.if_bytes);
325 
326 			ilf->ilf_dsize = data_bytes;
327 			ilf->ilf_size++;
328 		} else {
329 			iip->ili_fields &= ~XFS_ILOG_DEXT;
330 		}
331 		break;
332 	case XFS_DINODE_FMT_BTREE:
333 		iip->ili_fields &=
334 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
335 
336 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
337 		    ip->i_df.if_broot_bytes > 0) {
338 			ASSERT(ip->i_df.if_broot != NULL);
339 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
340 					ip->i_df.if_broot,
341 					ip->i_df.if_broot_bytes);
342 			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
343 			ilf->ilf_size++;
344 		} else {
345 			ASSERT(!(iip->ili_fields &
346 				 XFS_ILOG_DBROOT));
347 			iip->ili_fields &= ~XFS_ILOG_DBROOT;
348 		}
349 		break;
350 	case XFS_DINODE_FMT_LOCAL:
351 		iip->ili_fields &=
352 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
353 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
354 		    ip->i_df.if_bytes > 0) {
355 			ASSERT(ip->i_df.if_u1.if_data != NULL);
356 			ASSERT(ip->i_disk_size > 0);
357 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
358 					ip->i_df.if_u1.if_data,
359 					ip->i_df.if_bytes);
360 			ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
361 			ilf->ilf_size++;
362 		} else {
363 			iip->ili_fields &= ~XFS_ILOG_DDATA;
364 		}
365 		break;
366 	case XFS_DINODE_FMT_DEV:
367 		iip->ili_fields &=
368 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
369 		if (iip->ili_fields & XFS_ILOG_DEV)
370 			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
371 		break;
372 	default:
373 		ASSERT(0);
374 		break;
375 	}
376 }
377 
378 STATIC void
379 xfs_inode_item_format_attr_fork(
380 	struct xfs_inode_log_item *iip,
381 	struct xfs_inode_log_format *ilf,
382 	struct xfs_log_vec	*lv,
383 	struct xfs_log_iovec	**vecp)
384 {
385 	struct xfs_inode	*ip = iip->ili_inode;
386 	size_t			data_bytes;
387 
388 	switch (ip->i_af.if_format) {
389 	case XFS_DINODE_FMT_EXTENTS:
390 		iip->ili_fields &=
391 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
392 
393 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
394 		    ip->i_af.if_nextents > 0 &&
395 		    ip->i_af.if_bytes > 0) {
396 			struct xfs_bmbt_rec *p;
397 
398 			ASSERT(xfs_iext_count(&ip->i_af) ==
399 				ip->i_af.if_nextents);
400 
401 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
402 			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
403 			xlog_finish_iovec(lv, *vecp, data_bytes);
404 
405 			ilf->ilf_asize = data_bytes;
406 			ilf->ilf_size++;
407 		} else {
408 			iip->ili_fields &= ~XFS_ILOG_AEXT;
409 		}
410 		break;
411 	case XFS_DINODE_FMT_BTREE:
412 		iip->ili_fields &=
413 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
414 
415 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
416 		    ip->i_af.if_broot_bytes > 0) {
417 			ASSERT(ip->i_af.if_broot != NULL);
418 
419 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
420 					ip->i_af.if_broot,
421 					ip->i_af.if_broot_bytes);
422 			ilf->ilf_asize = ip->i_af.if_broot_bytes;
423 			ilf->ilf_size++;
424 		} else {
425 			iip->ili_fields &= ~XFS_ILOG_ABROOT;
426 		}
427 		break;
428 	case XFS_DINODE_FMT_LOCAL:
429 		iip->ili_fields &=
430 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
431 
432 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
433 		    ip->i_af.if_bytes > 0) {
434 			ASSERT(ip->i_af.if_u1.if_data != NULL);
435 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
436 					ip->i_af.if_u1.if_data,
437 					ip->i_af.if_bytes);
438 			ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
439 			ilf->ilf_size++;
440 		} else {
441 			iip->ili_fields &= ~XFS_ILOG_ADATA;
442 		}
443 		break;
444 	default:
445 		ASSERT(0);
446 		break;
447 	}
448 }
449 
450 /*
451  * Convert an incore timestamp to a log timestamp.  Note that the log format
452  * specifies host endian format!
453  */
454 static inline xfs_log_timestamp_t
455 xfs_inode_to_log_dinode_ts(
456 	struct xfs_inode		*ip,
457 	const struct timespec64		tv)
458 {
459 	struct xfs_log_legacy_timestamp	*lits;
460 	xfs_log_timestamp_t		its;
461 
462 	if (xfs_inode_has_bigtime(ip))
463 		return xfs_inode_encode_bigtime(tv);
464 
465 	lits = (struct xfs_log_legacy_timestamp *)&its;
466 	lits->t_sec = tv.tv_sec;
467 	lits->t_nsec = tv.tv_nsec;
468 
469 	return its;
470 }
471 
472 /*
473  * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
474  * but not in the in-memory one.  But we are guaranteed to have an inode buffer
475  * in memory when logging an inode, so we can just copy it from the on-disk
476  * inode to the in-log inode here so that recovery of file system with these
477  * fields set to non-zero values doesn't lose them.  For all other cases we zero
478  * the fields.
479  */
480 static void
481 xfs_copy_dm_fields_to_log_dinode(
482 	struct xfs_inode	*ip,
483 	struct xfs_log_dinode	*to)
484 {
485 	struct xfs_dinode	*dip;
486 
487 	dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
488 			     ip->i_imap.im_boffset);
489 
490 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
491 		to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
492 		to->di_dmstate = be16_to_cpu(dip->di_dmstate);
493 	} else {
494 		to->di_dmevmask = 0;
495 		to->di_dmstate = 0;
496 	}
497 }
498 
499 static inline void
500 xfs_inode_to_log_dinode_iext_counters(
501 	struct xfs_inode	*ip,
502 	struct xfs_log_dinode	*to)
503 {
504 	if (xfs_inode_has_large_extent_counts(ip)) {
505 		to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
506 		to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
507 		to->di_nrext64_pad = 0;
508 	} else {
509 		to->di_nextents = xfs_ifork_nextents(&ip->i_df);
510 		to->di_anextents = xfs_ifork_nextents(&ip->i_af);
511 	}
512 }
513 
514 static void
515 xfs_inode_to_log_dinode(
516 	struct xfs_inode	*ip,
517 	struct xfs_log_dinode	*to,
518 	xfs_lsn_t		lsn)
519 {
520 	struct inode		*inode = VFS_I(ip);
521 
522 	to->di_magic = XFS_DINODE_MAGIC;
523 	to->di_format = xfs_ifork_format(&ip->i_df);
524 	to->di_uid = i_uid_read(inode);
525 	to->di_gid = i_gid_read(inode);
526 	to->di_projid_lo = ip->i_projid & 0xffff;
527 	to->di_projid_hi = ip->i_projid >> 16;
528 
529 	memset(to->di_pad3, 0, sizeof(to->di_pad3));
530 	to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode));
531 	to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode));
532 	to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode));
533 	to->di_nlink = inode->i_nlink;
534 	to->di_gen = inode->i_generation;
535 	to->di_mode = inode->i_mode;
536 
537 	to->di_size = ip->i_disk_size;
538 	to->di_nblocks = ip->i_nblocks;
539 	to->di_extsize = ip->i_extsize;
540 	to->di_forkoff = ip->i_forkoff;
541 	to->di_aformat = xfs_ifork_format(&ip->i_af);
542 	to->di_flags = ip->i_diflags;
543 
544 	xfs_copy_dm_fields_to_log_dinode(ip, to);
545 
546 	/* log a dummy value to ensure log structure is fully initialised */
547 	to->di_next_unlinked = NULLAGINO;
548 
549 	if (xfs_has_v3inodes(ip->i_mount)) {
550 		to->di_version = 3;
551 		to->di_changecount = inode_peek_iversion(inode);
552 		to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
553 		to->di_flags2 = ip->i_diflags2;
554 		to->di_cowextsize = ip->i_cowextsize;
555 		to->di_ino = ip->i_ino;
556 		to->di_lsn = lsn;
557 		memset(to->di_pad2, 0, sizeof(to->di_pad2));
558 		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
559 		to->di_v3_pad = 0;
560 	} else {
561 		to->di_version = 2;
562 		to->di_flushiter = ip->i_flushiter;
563 		memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
564 	}
565 
566 	xfs_inode_to_log_dinode_iext_counters(ip, to);
567 }
568 
569 /*
570  * Format the inode core. Current timestamp data is only in the VFS inode
571  * fields, so we need to grab them from there. Hence rather than just copying
572  * the XFS inode core structure, format the fields directly into the iovec.
573  */
574 static void
575 xfs_inode_item_format_core(
576 	struct xfs_inode	*ip,
577 	struct xfs_log_vec	*lv,
578 	struct xfs_log_iovec	**vecp)
579 {
580 	struct xfs_log_dinode	*dic;
581 
582 	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
583 	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
584 	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
585 }
586 
587 /*
588  * This is called to fill in the vector of log iovecs for the given inode
589  * log item.  It fills the first item with an inode log format structure,
590  * the second with the on-disk inode structure, and a possible third and/or
591  * fourth with the inode data/extents/b-tree root and inode attributes
592  * data/extents/b-tree root.
593  *
594  * Note: Always use the 64 bit inode log format structure so we don't
595  * leave an uninitialised hole in the format item on 64 bit systems. Log
596  * recovery on 32 bit systems handles this just fine, so there's no reason
597  * for not using an initialising the properly padded structure all the time.
598  */
599 STATIC void
600 xfs_inode_item_format(
601 	struct xfs_log_item	*lip,
602 	struct xfs_log_vec	*lv)
603 {
604 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
605 	struct xfs_inode	*ip = iip->ili_inode;
606 	struct xfs_log_iovec	*vecp = NULL;
607 	struct xfs_inode_log_format *ilf;
608 
609 	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
610 	ilf->ilf_type = XFS_LI_INODE;
611 	ilf->ilf_ino = ip->i_ino;
612 	ilf->ilf_blkno = ip->i_imap.im_blkno;
613 	ilf->ilf_len = ip->i_imap.im_len;
614 	ilf->ilf_boffset = ip->i_imap.im_boffset;
615 	ilf->ilf_fields = XFS_ILOG_CORE;
616 	ilf->ilf_size = 2; /* format + core */
617 
618 	/*
619 	 * make sure we don't leak uninitialised data into the log in the case
620 	 * when we don't log every field in the inode.
621 	 */
622 	ilf->ilf_dsize = 0;
623 	ilf->ilf_asize = 0;
624 	ilf->ilf_pad = 0;
625 	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
626 
627 	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
628 
629 	xfs_inode_item_format_core(ip, lv, &vecp);
630 	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
631 	if (xfs_inode_has_attr_fork(ip)) {
632 		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
633 	} else {
634 		iip->ili_fields &=
635 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
636 	}
637 
638 	/* update the format with the exact fields we actually logged */
639 	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
640 }
641 
642 /*
643  * This is called to pin the inode associated with the inode log
644  * item in memory so it cannot be written out.
645  */
646 STATIC void
647 xfs_inode_item_pin(
648 	struct xfs_log_item	*lip)
649 {
650 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
651 
652 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
653 	ASSERT(lip->li_buf);
654 
655 	trace_xfs_inode_pin(ip, _RET_IP_);
656 	atomic_inc(&ip->i_pincount);
657 }
658 
659 
660 /*
661  * This is called to unpin the inode associated with the inode log
662  * item which was previously pinned with a call to xfs_inode_item_pin().
663  *
664  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
665  *
666  * Note that unpin can race with inode cluster buffer freeing marking the buffer
667  * stale. In that case, flush completions are run from the buffer unpin call,
668  * which may happen before the inode is unpinned. If we lose the race, there
669  * will be no buffer attached to the log item, but the inode will be marked
670  * XFS_ISTALE.
671  */
672 STATIC void
673 xfs_inode_item_unpin(
674 	struct xfs_log_item	*lip,
675 	int			remove)
676 {
677 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
678 
679 	trace_xfs_inode_unpin(ip, _RET_IP_);
680 	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
681 	ASSERT(atomic_read(&ip->i_pincount) > 0);
682 	if (atomic_dec_and_test(&ip->i_pincount))
683 		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
684 }
685 
686 STATIC uint
687 xfs_inode_item_push(
688 	struct xfs_log_item	*lip,
689 	struct list_head	*buffer_list)
690 		__releases(&lip->li_ailp->ail_lock)
691 		__acquires(&lip->li_ailp->ail_lock)
692 {
693 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
694 	struct xfs_inode	*ip = iip->ili_inode;
695 	struct xfs_buf		*bp = lip->li_buf;
696 	uint			rval = XFS_ITEM_SUCCESS;
697 	int			error;
698 
699 	if (!bp || (ip->i_flags & XFS_ISTALE)) {
700 		/*
701 		 * Inode item/buffer is being aborted due to cluster
702 		 * buffer deletion. Trigger a log force to have that operation
703 		 * completed and items removed from the AIL before the next push
704 		 * attempt.
705 		 */
706 		return XFS_ITEM_PINNED;
707 	}
708 
709 	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
710 		return XFS_ITEM_PINNED;
711 
712 	if (xfs_iflags_test(ip, XFS_IFLUSHING))
713 		return XFS_ITEM_FLUSHING;
714 
715 	if (!xfs_buf_trylock(bp))
716 		return XFS_ITEM_LOCKED;
717 
718 	spin_unlock(&lip->li_ailp->ail_lock);
719 
720 	/*
721 	 * We need to hold a reference for flushing the cluster buffer as it may
722 	 * fail the buffer without IO submission. In which case, we better get a
723 	 * reference for that completion because otherwise we don't get a
724 	 * reference for IO until we queue the buffer for delwri submission.
725 	 */
726 	xfs_buf_hold(bp);
727 	error = xfs_iflush_cluster(bp);
728 	if (!error) {
729 		if (!xfs_buf_delwri_queue(bp, buffer_list))
730 			rval = XFS_ITEM_FLUSHING;
731 		xfs_buf_relse(bp);
732 	} else {
733 		/*
734 		 * Release the buffer if we were unable to flush anything. On
735 		 * any other error, the buffer has already been released.
736 		 */
737 		if (error == -EAGAIN)
738 			xfs_buf_relse(bp);
739 		rval = XFS_ITEM_LOCKED;
740 	}
741 
742 	spin_lock(&lip->li_ailp->ail_lock);
743 	return rval;
744 }
745 
746 /*
747  * Unlock the inode associated with the inode log item.
748  */
749 STATIC void
750 xfs_inode_item_release(
751 	struct xfs_log_item	*lip)
752 {
753 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
754 	struct xfs_inode	*ip = iip->ili_inode;
755 	unsigned short		lock_flags;
756 
757 	ASSERT(ip->i_itemp != NULL);
758 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
759 
760 	lock_flags = iip->ili_lock_flags;
761 	iip->ili_lock_flags = 0;
762 	if (lock_flags)
763 		xfs_iunlock(ip, lock_flags);
764 }
765 
766 /*
767  * This is called to find out where the oldest active copy of the inode log
768  * item in the on disk log resides now that the last log write of it completed
769  * at the given lsn.  Since we always re-log all dirty data in an inode, the
770  * latest copy in the on disk log is the only one that matters.  Therefore,
771  * simply return the given lsn.
772  *
773  * If the inode has been marked stale because the cluster is being freed, we
774  * don't want to (re-)insert this inode into the AIL. There is a race condition
775  * where the cluster buffer may be unpinned before the inode is inserted into
776  * the AIL during transaction committed processing. If the buffer is unpinned
777  * before the inode item has been committed and inserted, then it is possible
778  * for the buffer to be written and IO completes before the inode is inserted
779  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
780  * AIL which will never get removed. It will, however, get reclaimed which
781  * triggers an assert in xfs_inode_free() complaining about freein an inode
782  * still in the AIL.
783  *
784  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
785  * transaction committed code knows that it does not need to do any further
786  * processing on the item.
787  */
788 STATIC xfs_lsn_t
789 xfs_inode_item_committed(
790 	struct xfs_log_item	*lip,
791 	xfs_lsn_t		lsn)
792 {
793 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
794 	struct xfs_inode	*ip = iip->ili_inode;
795 
796 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
797 		xfs_inode_item_unpin(lip, 0);
798 		return -1;
799 	}
800 	return lsn;
801 }
802 
803 STATIC void
804 xfs_inode_item_committing(
805 	struct xfs_log_item	*lip,
806 	xfs_csn_t		seq)
807 {
808 	INODE_ITEM(lip)->ili_commit_seq = seq;
809 	return xfs_inode_item_release(lip);
810 }
811 
812 static const struct xfs_item_ops xfs_inode_item_ops = {
813 	.iop_sort	= xfs_inode_item_sort,
814 	.iop_precommit	= xfs_inode_item_precommit,
815 	.iop_size	= xfs_inode_item_size,
816 	.iop_format	= xfs_inode_item_format,
817 	.iop_pin	= xfs_inode_item_pin,
818 	.iop_unpin	= xfs_inode_item_unpin,
819 	.iop_release	= xfs_inode_item_release,
820 	.iop_committed	= xfs_inode_item_committed,
821 	.iop_push	= xfs_inode_item_push,
822 	.iop_committing	= xfs_inode_item_committing,
823 };
824 
825 
826 /*
827  * Initialize the inode log item for a newly allocated (in-core) inode.
828  */
829 void
830 xfs_inode_item_init(
831 	struct xfs_inode	*ip,
832 	struct xfs_mount	*mp)
833 {
834 	struct xfs_inode_log_item *iip;
835 
836 	ASSERT(ip->i_itemp == NULL);
837 	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
838 					      GFP_KERNEL | __GFP_NOFAIL);
839 
840 	iip->ili_inode = ip;
841 	spin_lock_init(&iip->ili_lock);
842 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
843 						&xfs_inode_item_ops);
844 }
845 
846 /*
847  * Free the inode log item and any memory hanging off of it.
848  */
849 void
850 xfs_inode_item_destroy(
851 	struct xfs_inode	*ip)
852 {
853 	struct xfs_inode_log_item *iip = ip->i_itemp;
854 
855 	ASSERT(iip->ili_item.li_buf == NULL);
856 
857 	ip->i_itemp = NULL;
858 	kmem_free(iip->ili_item.li_lv_shadow);
859 	kmem_cache_free(xfs_ili_cache, iip);
860 }
861 
862 
863 /*
864  * We only want to pull the item from the AIL if it is actually there
865  * and its location in the log has not changed since we started the
866  * flush.  Thus, we only bother if the inode's lsn has not changed.
867  */
868 static void
869 xfs_iflush_ail_updates(
870 	struct xfs_ail		*ailp,
871 	struct list_head	*list)
872 {
873 	struct xfs_log_item	*lip;
874 	xfs_lsn_t		tail_lsn = 0;
875 
876 	/* this is an opencoded batch version of xfs_trans_ail_delete */
877 	spin_lock(&ailp->ail_lock);
878 	list_for_each_entry(lip, list, li_bio_list) {
879 		xfs_lsn_t	lsn;
880 
881 		clear_bit(XFS_LI_FAILED, &lip->li_flags);
882 		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
883 			continue;
884 
885 		/*
886 		 * dgc: Not sure how this happens, but it happens very
887 		 * occassionaly via generic/388.  xfs_iflush_abort() also
888 		 * silently handles this same "under writeback but not in AIL at
889 		 * shutdown" condition via xfs_trans_ail_delete().
890 		 */
891 		if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
892 			ASSERT(xlog_is_shutdown(lip->li_log));
893 			continue;
894 		}
895 
896 		lsn = xfs_ail_delete_one(ailp, lip);
897 		if (!tail_lsn && lsn)
898 			tail_lsn = lsn;
899 	}
900 	xfs_ail_update_finish(ailp, tail_lsn);
901 }
902 
903 /*
904  * Walk the list of inodes that have completed their IOs. If they are clean
905  * remove them from the list and dissociate them from the buffer. Buffers that
906  * are still dirty remain linked to the buffer and on the list. Caller must
907  * handle them appropriately.
908  */
909 static void
910 xfs_iflush_finish(
911 	struct xfs_buf		*bp,
912 	struct list_head	*list)
913 {
914 	struct xfs_log_item	*lip, *n;
915 
916 	list_for_each_entry_safe(lip, n, list, li_bio_list) {
917 		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
918 		bool	drop_buffer = false;
919 
920 		spin_lock(&iip->ili_lock);
921 
922 		/*
923 		 * Remove the reference to the cluster buffer if the inode is
924 		 * clean in memory and drop the buffer reference once we've
925 		 * dropped the locks we hold.
926 		 */
927 		ASSERT(iip->ili_item.li_buf == bp);
928 		if (!iip->ili_fields) {
929 			iip->ili_item.li_buf = NULL;
930 			list_del_init(&lip->li_bio_list);
931 			drop_buffer = true;
932 		}
933 		iip->ili_last_fields = 0;
934 		iip->ili_flush_lsn = 0;
935 		spin_unlock(&iip->ili_lock);
936 		xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
937 		if (drop_buffer)
938 			xfs_buf_rele(bp);
939 	}
940 }
941 
942 /*
943  * Inode buffer IO completion routine.  It is responsible for removing inodes
944  * attached to the buffer from the AIL if they have not been re-logged and
945  * completing the inode flush.
946  */
947 void
948 xfs_buf_inode_iodone(
949 	struct xfs_buf		*bp)
950 {
951 	struct xfs_log_item	*lip, *n;
952 	LIST_HEAD(flushed_inodes);
953 	LIST_HEAD(ail_updates);
954 
955 	/*
956 	 * Pull the attached inodes from the buffer one at a time and take the
957 	 * appropriate action on them.
958 	 */
959 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
960 		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
961 
962 		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
963 			xfs_iflush_abort(iip->ili_inode);
964 			continue;
965 		}
966 		if (!iip->ili_last_fields)
967 			continue;
968 
969 		/* Do an unlocked check for needing the AIL lock. */
970 		if (iip->ili_flush_lsn == lip->li_lsn ||
971 		    test_bit(XFS_LI_FAILED, &lip->li_flags))
972 			list_move_tail(&lip->li_bio_list, &ail_updates);
973 		else
974 			list_move_tail(&lip->li_bio_list, &flushed_inodes);
975 	}
976 
977 	if (!list_empty(&ail_updates)) {
978 		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
979 		list_splice_tail(&ail_updates, &flushed_inodes);
980 	}
981 
982 	xfs_iflush_finish(bp, &flushed_inodes);
983 	if (!list_empty(&flushed_inodes))
984 		list_splice_tail(&flushed_inodes, &bp->b_li_list);
985 }
986 
987 void
988 xfs_buf_inode_io_fail(
989 	struct xfs_buf		*bp)
990 {
991 	struct xfs_log_item	*lip;
992 
993 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
994 		set_bit(XFS_LI_FAILED, &lip->li_flags);
995 }
996 
997 /*
998  * Clear the inode logging fields so no more flushes are attempted.  If we are
999  * on a buffer list, it is now safe to remove it because the buffer is
1000  * guaranteed to be locked. The caller will drop the reference to the buffer
1001  * the log item held.
1002  */
1003 static void
1004 xfs_iflush_abort_clean(
1005 	struct xfs_inode_log_item *iip)
1006 {
1007 	iip->ili_last_fields = 0;
1008 	iip->ili_fields = 0;
1009 	iip->ili_fsync_fields = 0;
1010 	iip->ili_flush_lsn = 0;
1011 	iip->ili_item.li_buf = NULL;
1012 	list_del_init(&iip->ili_item.li_bio_list);
1013 }
1014 
1015 /*
1016  * Abort flushing the inode from a context holding the cluster buffer locked.
1017  *
1018  * This is the normal runtime method of aborting writeback of an inode that is
1019  * attached to a cluster buffer. It occurs when the inode and the backing
1020  * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
1021  * flushing or buffer IO completion encounters a log shutdown situation.
1022  *
1023  * If we need to abort inode writeback and we don't already hold the buffer
1024  * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
1025  * necessary in a shutdown situation.
1026  */
1027 void
1028 xfs_iflush_abort(
1029 	struct xfs_inode	*ip)
1030 {
1031 	struct xfs_inode_log_item *iip = ip->i_itemp;
1032 	struct xfs_buf		*bp;
1033 
1034 	if (!iip) {
1035 		/* clean inode, nothing to do */
1036 		xfs_iflags_clear(ip, XFS_IFLUSHING);
1037 		return;
1038 	}
1039 
1040 	/*
1041 	 * Remove the inode item from the AIL before we clear its internal
1042 	 * state. Whilst the inode is in the AIL, it should have a valid buffer
1043 	 * pointer for push operations to access - it is only safe to remove the
1044 	 * inode from the buffer once it has been removed from the AIL.
1045 	 *
1046 	 * We also clear the failed bit before removing the item from the AIL
1047 	 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
1048 	 * references the inode item owns and needs to hold until we've fully
1049 	 * aborted the inode log item and detached it from the buffer.
1050 	 */
1051 	clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
1052 	xfs_trans_ail_delete(&iip->ili_item, 0);
1053 
1054 	/*
1055 	 * Grab the inode buffer so can we release the reference the inode log
1056 	 * item holds on it.
1057 	 */
1058 	spin_lock(&iip->ili_lock);
1059 	bp = iip->ili_item.li_buf;
1060 	xfs_iflush_abort_clean(iip);
1061 	spin_unlock(&iip->ili_lock);
1062 
1063 	xfs_iflags_clear(ip, XFS_IFLUSHING);
1064 	if (bp)
1065 		xfs_buf_rele(bp);
1066 }
1067 
1068 /*
1069  * Abort an inode flush in the case of a shutdown filesystem. This can be called
1070  * from anywhere with just an inode reference and does not require holding the
1071  * inode cluster buffer locked. If the inode is attached to a cluster buffer,
1072  * it will grab and lock it safely, then abort the inode flush.
1073  */
1074 void
1075 xfs_iflush_shutdown_abort(
1076 	struct xfs_inode	*ip)
1077 {
1078 	struct xfs_inode_log_item *iip = ip->i_itemp;
1079 	struct xfs_buf		*bp;
1080 
1081 	if (!iip) {
1082 		/* clean inode, nothing to do */
1083 		xfs_iflags_clear(ip, XFS_IFLUSHING);
1084 		return;
1085 	}
1086 
1087 	spin_lock(&iip->ili_lock);
1088 	bp = iip->ili_item.li_buf;
1089 	if (!bp) {
1090 		spin_unlock(&iip->ili_lock);
1091 		xfs_iflush_abort(ip);
1092 		return;
1093 	}
1094 
1095 	/*
1096 	 * We have to take a reference to the buffer so that it doesn't get
1097 	 * freed when we drop the ili_lock and then wait to lock the buffer.
1098 	 * We'll clean up the extra reference after we pick up the ili_lock
1099 	 * again.
1100 	 */
1101 	xfs_buf_hold(bp);
1102 	spin_unlock(&iip->ili_lock);
1103 	xfs_buf_lock(bp);
1104 
1105 	spin_lock(&iip->ili_lock);
1106 	if (!iip->ili_item.li_buf) {
1107 		/*
1108 		 * Raced with another removal, hold the only reference
1109 		 * to bp now. Inode should not be in the AIL now, so just clean
1110 		 * up and return;
1111 		 */
1112 		ASSERT(list_empty(&iip->ili_item.li_bio_list));
1113 		ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
1114 		xfs_iflush_abort_clean(iip);
1115 		spin_unlock(&iip->ili_lock);
1116 		xfs_iflags_clear(ip, XFS_IFLUSHING);
1117 		xfs_buf_relse(bp);
1118 		return;
1119 	}
1120 
1121 	/*
1122 	 * Got two references to bp. The first will get dropped by
1123 	 * xfs_iflush_abort() when the item is removed from the buffer list, but
1124 	 * we can't drop our reference until _abort() returns because we have to
1125 	 * unlock the buffer as well. Hence we abort and then unlock and release
1126 	 * our reference to the buffer.
1127 	 */
1128 	ASSERT(iip->ili_item.li_buf == bp);
1129 	spin_unlock(&iip->ili_lock);
1130 	xfs_iflush_abort(ip);
1131 	xfs_buf_relse(bp);
1132 }
1133 
1134 
1135 /*
1136  * convert an xfs_inode_log_format struct from the old 32 bit version
1137  * (which can have different field alignments) to the native 64 bit version
1138  */
1139 int
1140 xfs_inode_item_format_convert(
1141 	struct xfs_log_iovec		*buf,
1142 	struct xfs_inode_log_format	*in_f)
1143 {
1144 	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
1145 
1146 	if (buf->i_len != sizeof(*in_f32)) {
1147 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
1148 		return -EFSCORRUPTED;
1149 	}
1150 
1151 	in_f->ilf_type = in_f32->ilf_type;
1152 	in_f->ilf_size = in_f32->ilf_size;
1153 	in_f->ilf_fields = in_f32->ilf_fields;
1154 	in_f->ilf_asize = in_f32->ilf_asize;
1155 	in_f->ilf_dsize = in_f32->ilf_dsize;
1156 	in_f->ilf_ino = in_f32->ilf_ino;
1157 	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1158 	in_f->ilf_blkno = in_f32->ilf_blkno;
1159 	in_f->ilf_len = in_f32->ilf_len;
1160 	in_f->ilf_boffset = in_f32->ilf_boffset;
1161 	return 0;
1162 }
1163