1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_trace.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_buf_item.h" 19 #include "xfs_log.h" 20 #include "xfs_log_priv.h" 21 #include "xfs_error.h" 22 #include "xfs_rtbitmap.h" 23 24 #include <linux/iversion.h> 25 26 struct kmem_cache *xfs_ili_cache; /* inode log item */ 27 28 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 29 { 30 return container_of(lip, struct xfs_inode_log_item, ili_item); 31 } 32 33 static uint64_t 34 xfs_inode_item_sort( 35 struct xfs_log_item *lip) 36 { 37 return INODE_ITEM(lip)->ili_inode->i_ino; 38 } 39 40 #ifdef DEBUG_EXPENSIVE 41 static void 42 xfs_inode_item_precommit_check( 43 struct xfs_inode *ip) 44 { 45 struct xfs_mount *mp = ip->i_mount; 46 struct xfs_dinode *dip; 47 xfs_failaddr_t fa; 48 49 dip = kzalloc(mp->m_sb.sb_inodesize, GFP_KERNEL | GFP_NOFS); 50 if (!dip) { 51 ASSERT(dip != NULL); 52 return; 53 } 54 55 xfs_inode_to_disk(ip, dip, 0); 56 xfs_dinode_calc_crc(mp, dip); 57 fa = xfs_dinode_verify(mp, ip->i_ino, dip); 58 if (fa) { 59 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 60 sizeof(*dip), fa); 61 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 62 ASSERT(fa == NULL); 63 } 64 kfree(dip); 65 } 66 #else 67 # define xfs_inode_item_precommit_check(ip) ((void)0) 68 #endif 69 70 /* 71 * Prior to finally logging the inode, we have to ensure that all the 72 * per-modification inode state changes are applied. This includes VFS inode 73 * state updates, format conversions, verifier state synchronisation and 74 * ensuring the inode buffer remains in memory whilst the inode is dirty. 75 * 76 * We have to be careful when we grab the inode cluster buffer due to lock 77 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item) 78 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is 79 * not locked until ->precommit, so it happens after everything else has been 80 * modified. 81 * 82 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we 83 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we 84 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because 85 * it can be called on a inode (e.g. via bumplink/droplink) before we take the 86 * AGF lock modifying directory blocks. 87 * 88 * Rather than force a complete rework of all the transactions to call 89 * xfs_trans_log_inode() once and once only at the end of every transaction, we 90 * move the pinning of the inode cluster buffer to a ->precommit operation. This 91 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it 92 * ensures that the inode cluster buffer locking is always done last in a 93 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode 94 * cluster buffer. 95 * 96 * If we return the inode number as the precommit sort key then we'll also 97 * guarantee that the order all inode cluster buffer locking is the same all the 98 * inodes and unlink items in the transaction. 99 */ 100 static int 101 xfs_inode_item_precommit( 102 struct xfs_trans *tp, 103 struct xfs_log_item *lip) 104 { 105 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 106 struct xfs_inode *ip = iip->ili_inode; 107 struct inode *inode = VFS_I(ip); 108 unsigned int flags = iip->ili_dirty_flags; 109 110 /* 111 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races 112 * don't matter - we either will need an extra transaction in 24 hours 113 * to log the timestamps, or will clear already cleared fields in the 114 * worst case. 115 */ 116 if (inode->i_state & I_DIRTY_TIME) { 117 spin_lock(&inode->i_lock); 118 inode->i_state &= ~I_DIRTY_TIME; 119 spin_unlock(&inode->i_lock); 120 } 121 122 /* 123 * If we're updating the inode core or the timestamps and it's possible 124 * to upgrade this inode to bigtime format, do so now. 125 */ 126 if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) && 127 xfs_has_bigtime(ip->i_mount) && 128 !xfs_inode_has_bigtime(ip)) { 129 ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME; 130 flags |= XFS_ILOG_CORE; 131 } 132 133 /* 134 * Inode verifiers do not check that the extent size hints are an 135 * integer multiple of the rt extent size on a directory with 136 * rtinherit flags set. If we're logging a directory that is 137 * misconfigured in this way, clear the bad hints. 138 */ 139 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) { 140 if ((ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) && 141 xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) { 142 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 143 XFS_DIFLAG_EXTSZINHERIT); 144 ip->i_extsize = 0; 145 flags |= XFS_ILOG_CORE; 146 } 147 if ((ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) && 148 xfs_extlen_to_rtxmod(ip->i_mount, ip->i_cowextsize) > 0) { 149 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE; 150 ip->i_cowextsize = 0; 151 flags |= XFS_ILOG_CORE; 152 } 153 } 154 155 spin_lock(&iip->ili_lock); 156 if (!iip->ili_item.li_buf) { 157 struct xfs_buf *bp; 158 int error; 159 160 /* 161 * We hold the ILOCK here, so this inode is not going to be 162 * flushed while we are here. Further, because there is no 163 * buffer attached to the item, we know that there is no IO in 164 * progress, so nothing will clear the ili_fields while we read 165 * in the buffer. Hence we can safely drop the spin lock and 166 * read the buffer knowing that the state will not change from 167 * here. 168 */ 169 spin_unlock(&iip->ili_lock); 170 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp); 171 if (error) 172 return error; 173 174 /* 175 * We need an explicit buffer reference for the log item but 176 * don't want the buffer to remain attached to the transaction. 177 * Hold the buffer but release the transaction reference once 178 * we've attached the inode log item to the buffer log item 179 * list. 180 */ 181 xfs_buf_hold(bp); 182 spin_lock(&iip->ili_lock); 183 iip->ili_item.li_buf = bp; 184 bp->b_iodone = xfs_buf_inode_iodone; 185 list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list); 186 xfs_trans_brelse(tp, bp); 187 } 188 189 /* 190 * Store the dirty flags back into the inode item as this state is used 191 * later on in xfs_inode_item_committing() to determine whether the 192 * transaction is relevant to fsync state or not. 193 */ 194 iip->ili_dirty_flags = flags; 195 196 /* 197 * Convert the flags on-disk fields that have been modified in the 198 * transaction so that ili_fields tracks the changes correctly. 199 */ 200 if (flags & XFS_ILOG_IVERSION) 201 flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE); 202 203 /* 204 * Always OR in the bits from the ili_last_fields field. This is to 205 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines 206 * in the eventual clearing of the ili_fields bits. See the big comment 207 * in xfs_iflush() for an explanation of this coordination mechanism. 208 */ 209 iip->ili_fields |= (flags | iip->ili_last_fields); 210 spin_unlock(&iip->ili_lock); 211 212 xfs_inode_item_precommit_check(ip); 213 return 0; 214 } 215 216 /* 217 * The logged size of an inode fork is always the current size of the inode 218 * fork. This means that when an inode fork is relogged, the size of the logged 219 * region is determined by the current state, not the combination of the 220 * previously logged state + the current state. This is different relogging 221 * behaviour to most other log items which will retain the size of the 222 * previously logged changes when smaller regions are relogged. 223 * 224 * Hence operations that remove data from the inode fork (e.g. shortform 225 * dir/attr remove, extent form extent removal, etc), the size of the relogged 226 * inode gets -smaller- rather than stays the same size as the previously logged 227 * size and this can result in the committing transaction reducing the amount of 228 * space being consumed by the CIL. 229 */ 230 STATIC void 231 xfs_inode_item_data_fork_size( 232 struct xfs_inode_log_item *iip, 233 int *nvecs, 234 int *nbytes) 235 { 236 struct xfs_inode *ip = iip->ili_inode; 237 238 switch (ip->i_df.if_format) { 239 case XFS_DINODE_FMT_EXTENTS: 240 if ((iip->ili_fields & XFS_ILOG_DEXT) && 241 ip->i_df.if_nextents > 0 && 242 ip->i_df.if_bytes > 0) { 243 /* worst case, doesn't subtract delalloc extents */ 244 *nbytes += xfs_inode_data_fork_size(ip); 245 *nvecs += 1; 246 } 247 break; 248 case XFS_DINODE_FMT_BTREE: 249 case XFS_DINODE_FMT_META_BTREE: 250 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 251 ip->i_df.if_broot_bytes > 0) { 252 *nbytes += ip->i_df.if_broot_bytes; 253 *nvecs += 1; 254 } 255 break; 256 case XFS_DINODE_FMT_LOCAL: 257 if ((iip->ili_fields & XFS_ILOG_DDATA) && 258 ip->i_df.if_bytes > 0) { 259 *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes); 260 *nvecs += 1; 261 } 262 break; 263 264 case XFS_DINODE_FMT_DEV: 265 break; 266 default: 267 ASSERT(0); 268 break; 269 } 270 } 271 272 STATIC void 273 xfs_inode_item_attr_fork_size( 274 struct xfs_inode_log_item *iip, 275 int *nvecs, 276 int *nbytes) 277 { 278 struct xfs_inode *ip = iip->ili_inode; 279 280 switch (ip->i_af.if_format) { 281 case XFS_DINODE_FMT_EXTENTS: 282 if ((iip->ili_fields & XFS_ILOG_AEXT) && 283 ip->i_af.if_nextents > 0 && 284 ip->i_af.if_bytes > 0) { 285 /* worst case, doesn't subtract unused space */ 286 *nbytes += xfs_inode_attr_fork_size(ip); 287 *nvecs += 1; 288 } 289 break; 290 case XFS_DINODE_FMT_BTREE: 291 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 292 ip->i_af.if_broot_bytes > 0) { 293 *nbytes += ip->i_af.if_broot_bytes; 294 *nvecs += 1; 295 } 296 break; 297 case XFS_DINODE_FMT_LOCAL: 298 if ((iip->ili_fields & XFS_ILOG_ADATA) && 299 ip->i_af.if_bytes > 0) { 300 *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes); 301 *nvecs += 1; 302 } 303 break; 304 default: 305 ASSERT(0); 306 break; 307 } 308 } 309 310 /* 311 * This returns the number of iovecs needed to log the given inode item. 312 * 313 * We need one iovec for the inode log format structure, one for the 314 * inode core, and possibly one for the inode data/extents/b-tree root 315 * and one for the inode attribute data/extents/b-tree root. 316 */ 317 STATIC void 318 xfs_inode_item_size( 319 struct xfs_log_item *lip, 320 int *nvecs, 321 int *nbytes) 322 { 323 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 324 struct xfs_inode *ip = iip->ili_inode; 325 326 *nvecs += 2; 327 *nbytes += sizeof(struct xfs_inode_log_format) + 328 xfs_log_dinode_size(ip->i_mount); 329 330 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 331 if (xfs_inode_has_attr_fork(ip)) 332 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 333 } 334 335 STATIC void 336 xfs_inode_item_format_data_fork( 337 struct xfs_inode_log_item *iip, 338 struct xfs_inode_log_format *ilf, 339 struct xfs_log_vec *lv, 340 struct xfs_log_iovec **vecp) 341 { 342 struct xfs_inode *ip = iip->ili_inode; 343 size_t data_bytes; 344 345 switch (ip->i_df.if_format) { 346 case XFS_DINODE_FMT_EXTENTS: 347 iip->ili_fields &= 348 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 349 350 if ((iip->ili_fields & XFS_ILOG_DEXT) && 351 ip->i_df.if_nextents > 0 && 352 ip->i_df.if_bytes > 0) { 353 struct xfs_bmbt_rec *p; 354 355 ASSERT(xfs_iext_count(&ip->i_df) > 0); 356 357 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 358 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 359 xlog_finish_iovec(lv, *vecp, data_bytes); 360 361 ASSERT(data_bytes <= ip->i_df.if_bytes); 362 363 ilf->ilf_dsize = data_bytes; 364 ilf->ilf_size++; 365 } else { 366 iip->ili_fields &= ~XFS_ILOG_DEXT; 367 } 368 break; 369 case XFS_DINODE_FMT_BTREE: 370 case XFS_DINODE_FMT_META_BTREE: 371 iip->ili_fields &= 372 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); 373 374 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 375 ip->i_df.if_broot_bytes > 0) { 376 ASSERT(ip->i_df.if_broot != NULL); 377 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 378 ip->i_df.if_broot, 379 ip->i_df.if_broot_bytes); 380 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 381 ilf->ilf_size++; 382 } else { 383 ASSERT(!(iip->ili_fields & 384 XFS_ILOG_DBROOT)); 385 iip->ili_fields &= ~XFS_ILOG_DBROOT; 386 } 387 break; 388 case XFS_DINODE_FMT_LOCAL: 389 iip->ili_fields &= 390 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 391 if ((iip->ili_fields & XFS_ILOG_DDATA) && 392 ip->i_df.if_bytes > 0) { 393 ASSERT(ip->i_df.if_data != NULL); 394 ASSERT(ip->i_disk_size > 0); 395 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 396 ip->i_df.if_data, ip->i_df.if_bytes); 397 ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes; 398 ilf->ilf_size++; 399 } else { 400 iip->ili_fields &= ~XFS_ILOG_DDATA; 401 } 402 break; 403 case XFS_DINODE_FMT_DEV: 404 iip->ili_fields &= 405 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); 406 if (iip->ili_fields & XFS_ILOG_DEV) 407 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); 408 break; 409 default: 410 ASSERT(0); 411 break; 412 } 413 } 414 415 STATIC void 416 xfs_inode_item_format_attr_fork( 417 struct xfs_inode_log_item *iip, 418 struct xfs_inode_log_format *ilf, 419 struct xfs_log_vec *lv, 420 struct xfs_log_iovec **vecp) 421 { 422 struct xfs_inode *ip = iip->ili_inode; 423 size_t data_bytes; 424 425 switch (ip->i_af.if_format) { 426 case XFS_DINODE_FMT_EXTENTS: 427 iip->ili_fields &= 428 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 429 430 if ((iip->ili_fields & XFS_ILOG_AEXT) && 431 ip->i_af.if_nextents > 0 && 432 ip->i_af.if_bytes > 0) { 433 struct xfs_bmbt_rec *p; 434 435 ASSERT(xfs_iext_count(&ip->i_af) == 436 ip->i_af.if_nextents); 437 438 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 439 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 440 xlog_finish_iovec(lv, *vecp, data_bytes); 441 442 ilf->ilf_asize = data_bytes; 443 ilf->ilf_size++; 444 } else { 445 iip->ili_fields &= ~XFS_ILOG_AEXT; 446 } 447 break; 448 case XFS_DINODE_FMT_BTREE: 449 iip->ili_fields &= 450 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 451 452 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 453 ip->i_af.if_broot_bytes > 0) { 454 ASSERT(ip->i_af.if_broot != NULL); 455 456 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 457 ip->i_af.if_broot, 458 ip->i_af.if_broot_bytes); 459 ilf->ilf_asize = ip->i_af.if_broot_bytes; 460 ilf->ilf_size++; 461 } else { 462 iip->ili_fields &= ~XFS_ILOG_ABROOT; 463 } 464 break; 465 case XFS_DINODE_FMT_LOCAL: 466 iip->ili_fields &= 467 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 468 469 if ((iip->ili_fields & XFS_ILOG_ADATA) && 470 ip->i_af.if_bytes > 0) { 471 ASSERT(ip->i_af.if_data != NULL); 472 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 473 ip->i_af.if_data, ip->i_af.if_bytes); 474 ilf->ilf_asize = (unsigned)ip->i_af.if_bytes; 475 ilf->ilf_size++; 476 } else { 477 iip->ili_fields &= ~XFS_ILOG_ADATA; 478 } 479 break; 480 default: 481 ASSERT(0); 482 break; 483 } 484 } 485 486 /* 487 * Convert an incore timestamp to a log timestamp. Note that the log format 488 * specifies host endian format! 489 */ 490 static inline xfs_log_timestamp_t 491 xfs_inode_to_log_dinode_ts( 492 struct xfs_inode *ip, 493 const struct timespec64 tv) 494 { 495 struct xfs_log_legacy_timestamp *lits; 496 xfs_log_timestamp_t its; 497 498 if (xfs_inode_has_bigtime(ip)) 499 return xfs_inode_encode_bigtime(tv); 500 501 lits = (struct xfs_log_legacy_timestamp *)&its; 502 lits->t_sec = tv.tv_sec; 503 lits->t_nsec = tv.tv_nsec; 504 505 return its; 506 } 507 508 /* 509 * The legacy DMAPI fields are only present in the on-disk and in-log inodes, 510 * but not in the in-memory one. But we are guaranteed to have an inode buffer 511 * in memory when logging an inode, so we can just copy it from the on-disk 512 * inode to the in-log inode here so that recovery of file system with these 513 * fields set to non-zero values doesn't lose them. For all other cases we zero 514 * the fields. 515 */ 516 static void 517 xfs_copy_dm_fields_to_log_dinode( 518 struct xfs_inode *ip, 519 struct xfs_log_dinode *to) 520 { 521 struct xfs_dinode *dip; 522 523 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf, 524 ip->i_imap.im_boffset); 525 526 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) { 527 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask); 528 to->di_dmstate = be16_to_cpu(dip->di_dmstate); 529 } else { 530 to->di_dmevmask = 0; 531 to->di_dmstate = 0; 532 } 533 } 534 535 static inline void 536 xfs_inode_to_log_dinode_iext_counters( 537 struct xfs_inode *ip, 538 struct xfs_log_dinode *to) 539 { 540 if (xfs_inode_has_large_extent_counts(ip)) { 541 to->di_big_nextents = xfs_ifork_nextents(&ip->i_df); 542 to->di_big_anextents = xfs_ifork_nextents(&ip->i_af); 543 to->di_nrext64_pad = 0; 544 } else { 545 to->di_nextents = xfs_ifork_nextents(&ip->i_df); 546 to->di_anextents = xfs_ifork_nextents(&ip->i_af); 547 } 548 } 549 550 static void 551 xfs_inode_to_log_dinode( 552 struct xfs_inode *ip, 553 struct xfs_log_dinode *to, 554 xfs_lsn_t lsn) 555 { 556 struct inode *inode = VFS_I(ip); 557 558 to->di_magic = XFS_DINODE_MAGIC; 559 to->di_format = xfs_ifork_format(&ip->i_df); 560 to->di_uid = i_uid_read(inode); 561 to->di_gid = i_gid_read(inode); 562 to->di_projid_lo = ip->i_projid & 0xffff; 563 to->di_projid_hi = ip->i_projid >> 16; 564 565 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode)); 566 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode)); 567 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode)); 568 to->di_nlink = inode->i_nlink; 569 to->di_gen = inode->i_generation; 570 to->di_mode = inode->i_mode; 571 572 to->di_size = ip->i_disk_size; 573 to->di_nblocks = ip->i_nblocks; 574 to->di_extsize = ip->i_extsize; 575 to->di_forkoff = ip->i_forkoff; 576 to->di_aformat = xfs_ifork_format(&ip->i_af); 577 to->di_flags = ip->i_diflags; 578 579 xfs_copy_dm_fields_to_log_dinode(ip, to); 580 581 /* log a dummy value to ensure log structure is fully initialised */ 582 to->di_next_unlinked = NULLAGINO; 583 584 if (xfs_has_v3inodes(ip->i_mount)) { 585 to->di_version = 3; 586 to->di_changecount = inode_peek_iversion(inode); 587 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime); 588 to->di_flags2 = ip->i_diflags2; 589 /* also covers the di_used_blocks union arm: */ 590 to->di_cowextsize = ip->i_cowextsize; 591 to->di_ino = ip->i_ino; 592 to->di_lsn = lsn; 593 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 594 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 595 to->di_v3_pad = 0; 596 597 /* dummy value for initialisation */ 598 to->di_crc = 0; 599 600 if (xfs_is_metadir_inode(ip)) 601 to->di_metatype = ip->i_metatype; 602 else 603 to->di_metatype = 0; 604 } else { 605 to->di_version = 2; 606 to->di_flushiter = ip->i_flushiter; 607 memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad)); 608 to->di_metatype = 0; 609 } 610 611 xfs_inode_to_log_dinode_iext_counters(ip, to); 612 } 613 614 /* 615 * Format the inode core. Current timestamp data is only in the VFS inode 616 * fields, so we need to grab them from there. Hence rather than just copying 617 * the XFS inode core structure, format the fields directly into the iovec. 618 */ 619 static void 620 xfs_inode_item_format_core( 621 struct xfs_inode *ip, 622 struct xfs_log_vec *lv, 623 struct xfs_log_iovec **vecp) 624 { 625 struct xfs_log_dinode *dic; 626 627 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 628 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 629 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount)); 630 } 631 632 /* 633 * This is called to fill in the vector of log iovecs for the given inode 634 * log item. It fills the first item with an inode log format structure, 635 * the second with the on-disk inode structure, and a possible third and/or 636 * fourth with the inode data/extents/b-tree root and inode attributes 637 * data/extents/b-tree root. 638 * 639 * Note: Always use the 64 bit inode log format structure so we don't 640 * leave an uninitialised hole in the format item on 64 bit systems. Log 641 * recovery on 32 bit systems handles this just fine, so there's no reason 642 * for not using an initialising the properly padded structure all the time. 643 */ 644 STATIC void 645 xfs_inode_item_format( 646 struct xfs_log_item *lip, 647 struct xfs_log_vec *lv) 648 { 649 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 650 struct xfs_inode *ip = iip->ili_inode; 651 struct xfs_log_iovec *vecp = NULL; 652 struct xfs_inode_log_format *ilf; 653 654 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 655 ilf->ilf_type = XFS_LI_INODE; 656 ilf->ilf_ino = ip->i_ino; 657 ilf->ilf_blkno = ip->i_imap.im_blkno; 658 ilf->ilf_len = ip->i_imap.im_len; 659 ilf->ilf_boffset = ip->i_imap.im_boffset; 660 ilf->ilf_fields = XFS_ILOG_CORE; 661 ilf->ilf_size = 2; /* format + core */ 662 663 /* 664 * make sure we don't leak uninitialised data into the log in the case 665 * when we don't log every field in the inode. 666 */ 667 ilf->ilf_dsize = 0; 668 ilf->ilf_asize = 0; 669 ilf->ilf_pad = 0; 670 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); 671 672 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 673 674 xfs_inode_item_format_core(ip, lv, &vecp); 675 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 676 if (xfs_inode_has_attr_fork(ip)) { 677 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 678 } else { 679 iip->ili_fields &= 680 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 681 } 682 683 /* update the format with the exact fields we actually logged */ 684 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 685 } 686 687 /* 688 * This is called to pin the inode associated with the inode log 689 * item in memory so it cannot be written out. 690 */ 691 STATIC void 692 xfs_inode_item_pin( 693 struct xfs_log_item *lip) 694 { 695 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 696 697 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 698 ASSERT(lip->li_buf); 699 700 trace_xfs_inode_pin(ip, _RET_IP_); 701 atomic_inc(&ip->i_pincount); 702 } 703 704 705 /* 706 * This is called to unpin the inode associated with the inode log 707 * item which was previously pinned with a call to xfs_inode_item_pin(). 708 * 709 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 710 * 711 * Note that unpin can race with inode cluster buffer freeing marking the buffer 712 * stale. In that case, flush completions are run from the buffer unpin call, 713 * which may happen before the inode is unpinned. If we lose the race, there 714 * will be no buffer attached to the log item, but the inode will be marked 715 * XFS_ISTALE. 716 */ 717 STATIC void 718 xfs_inode_item_unpin( 719 struct xfs_log_item *lip, 720 int remove) 721 { 722 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 723 struct xfs_inode *ip = iip->ili_inode; 724 725 trace_xfs_inode_unpin(ip, _RET_IP_); 726 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE)); 727 ASSERT(atomic_read(&ip->i_pincount) > 0); 728 729 /* 730 * If this is the last unpin, then the inode no longer needs a journal 731 * flush to persist it. Hence we can clear the commit sequence numbers 732 * as a fsync/fdatasync operation on the inode at this point is a no-op. 733 */ 734 if (atomic_dec_and_lock(&ip->i_pincount, &iip->ili_lock)) { 735 iip->ili_commit_seq = 0; 736 iip->ili_datasync_seq = 0; 737 spin_unlock(&iip->ili_lock); 738 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 739 } 740 } 741 742 STATIC uint 743 xfs_inode_item_push( 744 struct xfs_log_item *lip, 745 struct list_head *buffer_list) 746 __releases(&lip->li_ailp->ail_lock) 747 __acquires(&lip->li_ailp->ail_lock) 748 { 749 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 750 struct xfs_inode *ip = iip->ili_inode; 751 struct xfs_buf *bp = lip->li_buf; 752 uint rval = XFS_ITEM_SUCCESS; 753 int error; 754 755 if (!bp || (ip->i_flags & XFS_ISTALE)) { 756 /* 757 * Inode item/buffer is being aborted due to cluster 758 * buffer deletion. Trigger a log force to have that operation 759 * completed and items removed from the AIL before the next push 760 * attempt. 761 */ 762 trace_xfs_inode_push_stale(ip, _RET_IP_); 763 return XFS_ITEM_PINNED; 764 } 765 766 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp)) { 767 trace_xfs_inode_push_pinned(ip, _RET_IP_); 768 return XFS_ITEM_PINNED; 769 } 770 771 if (xfs_iflags_test(ip, XFS_IFLUSHING)) 772 return XFS_ITEM_FLUSHING; 773 774 if (!xfs_buf_trylock(bp)) 775 return XFS_ITEM_LOCKED; 776 777 spin_unlock(&lip->li_ailp->ail_lock); 778 779 /* 780 * We need to hold a reference for flushing the cluster buffer as it may 781 * fail the buffer without IO submission. In which case, we better get a 782 * reference for that completion because otherwise we don't get a 783 * reference for IO until we queue the buffer for delwri submission. 784 */ 785 xfs_buf_hold(bp); 786 error = xfs_iflush_cluster(bp); 787 if (!error) { 788 if (!xfs_buf_delwri_queue(bp, buffer_list)) 789 rval = XFS_ITEM_FLUSHING; 790 xfs_buf_relse(bp); 791 } else { 792 /* 793 * Release the buffer if we were unable to flush anything. On 794 * any other error, the buffer has already been released. 795 */ 796 if (error == -EAGAIN) 797 xfs_buf_relse(bp); 798 rval = XFS_ITEM_LOCKED; 799 } 800 801 spin_lock(&lip->li_ailp->ail_lock); 802 return rval; 803 } 804 805 /* 806 * Unlock the inode associated with the inode log item. 807 */ 808 STATIC void 809 xfs_inode_item_release( 810 struct xfs_log_item *lip) 811 { 812 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 813 struct xfs_inode *ip = iip->ili_inode; 814 unsigned short lock_flags; 815 816 ASSERT(ip->i_itemp != NULL); 817 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 818 819 lock_flags = iip->ili_lock_flags; 820 iip->ili_lock_flags = 0; 821 if (lock_flags) 822 xfs_iunlock(ip, lock_flags); 823 } 824 825 /* 826 * This is called to find out where the oldest active copy of the inode log 827 * item in the on disk log resides now that the last log write of it completed 828 * at the given lsn. Since we always re-log all dirty data in an inode, the 829 * latest copy in the on disk log is the only one that matters. Therefore, 830 * simply return the given lsn. 831 * 832 * If the inode has been marked stale because the cluster is being freed, we 833 * don't want to (re-)insert this inode into the AIL. There is a race condition 834 * where the cluster buffer may be unpinned before the inode is inserted into 835 * the AIL during transaction committed processing. If the buffer is unpinned 836 * before the inode item has been committed and inserted, then it is possible 837 * for the buffer to be written and IO completes before the inode is inserted 838 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 839 * AIL which will never get removed. It will, however, get reclaimed which 840 * triggers an assert in xfs_inode_free() complaining about freein an inode 841 * still in the AIL. 842 * 843 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 844 * transaction committed code knows that it does not need to do any further 845 * processing on the item. 846 */ 847 STATIC xfs_lsn_t 848 xfs_inode_item_committed( 849 struct xfs_log_item *lip, 850 xfs_lsn_t lsn) 851 { 852 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 853 struct xfs_inode *ip = iip->ili_inode; 854 855 if (xfs_iflags_test(ip, XFS_ISTALE)) { 856 xfs_inode_item_unpin(lip, 0); 857 return -1; 858 } 859 return lsn; 860 } 861 862 /* 863 * The modification is now complete, so before we unlock the inode we need to 864 * update the commit sequence numbers for data integrity journal flushes. We 865 * always record the commit sequence number (ili_commit_seq) so that anything 866 * that needs a full journal sync will capture all of this modification. 867 * 868 * We then 869 * check if the changes will impact a datasync (O_DSYNC) journal flush. If the 870 * changes will require a datasync flush, then we also record the sequence in 871 * ili_datasync_seq. 872 * 873 * These commit sequence numbers will get cleared atomically with the inode being 874 * unpinned (i.e. pin count goes to zero), and so it will only be set when the 875 * inode is dirty in the journal. This removes the need for checking if the 876 * inode is pinned to determine if a journal flush is necessary, and hence 877 * removes the need for holding the ILOCK_SHARED in xfs_file_fsync() to 878 * serialise pin counts against commit sequence number updates. 879 * 880 */ 881 STATIC void 882 xfs_inode_item_committing( 883 struct xfs_log_item *lip, 884 xfs_csn_t seq) 885 { 886 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 887 888 spin_lock(&iip->ili_lock); 889 iip->ili_commit_seq = seq; 890 if (iip->ili_dirty_flags & ~(XFS_ILOG_IVERSION | XFS_ILOG_TIMESTAMP)) 891 iip->ili_datasync_seq = seq; 892 spin_unlock(&iip->ili_lock); 893 894 /* 895 * Clear the per-transaction dirty flags now that we have finished 896 * recording the transaction's inode modifications in the CIL and are 897 * about to release and (maybe) unlock the inode. 898 */ 899 iip->ili_dirty_flags = 0; 900 901 return xfs_inode_item_release(lip); 902 } 903 904 static const struct xfs_item_ops xfs_inode_item_ops = { 905 .iop_sort = xfs_inode_item_sort, 906 .iop_precommit = xfs_inode_item_precommit, 907 .iop_size = xfs_inode_item_size, 908 .iop_format = xfs_inode_item_format, 909 .iop_pin = xfs_inode_item_pin, 910 .iop_unpin = xfs_inode_item_unpin, 911 .iop_release = xfs_inode_item_release, 912 .iop_committed = xfs_inode_item_committed, 913 .iop_push = xfs_inode_item_push, 914 .iop_committing = xfs_inode_item_committing, 915 }; 916 917 918 /* 919 * Initialize the inode log item for a newly allocated (in-core) inode. 920 */ 921 void 922 xfs_inode_item_init( 923 struct xfs_inode *ip, 924 struct xfs_mount *mp) 925 { 926 struct xfs_inode_log_item *iip; 927 928 ASSERT(ip->i_itemp == NULL); 929 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache, 930 GFP_KERNEL | __GFP_NOFAIL); 931 932 iip->ili_inode = ip; 933 spin_lock_init(&iip->ili_lock); 934 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 935 &xfs_inode_item_ops); 936 } 937 938 /* 939 * Free the inode log item and any memory hanging off of it. 940 */ 941 void 942 xfs_inode_item_destroy( 943 struct xfs_inode *ip) 944 { 945 struct xfs_inode_log_item *iip = ip->i_itemp; 946 947 ASSERT(iip->ili_item.li_buf == NULL); 948 949 ip->i_itemp = NULL; 950 kvfree(iip->ili_item.li_lv_shadow); 951 kmem_cache_free(xfs_ili_cache, iip); 952 } 953 954 955 /* 956 * We only want to pull the item from the AIL if it is actually there 957 * and its location in the log has not changed since we started the 958 * flush. Thus, we only bother if the inode's lsn has not changed. 959 */ 960 static void 961 xfs_iflush_ail_updates( 962 struct xfs_ail *ailp, 963 struct list_head *list) 964 { 965 struct xfs_log_item *lip; 966 xfs_lsn_t tail_lsn = 0; 967 968 /* this is an opencoded batch version of xfs_trans_ail_delete */ 969 spin_lock(&ailp->ail_lock); 970 list_for_each_entry(lip, list, li_bio_list) { 971 xfs_lsn_t lsn; 972 973 clear_bit(XFS_LI_FAILED, &lip->li_flags); 974 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn) 975 continue; 976 977 /* 978 * dgc: Not sure how this happens, but it happens very 979 * occassionaly via generic/388. xfs_iflush_abort() also 980 * silently handles this same "under writeback but not in AIL at 981 * shutdown" condition via xfs_trans_ail_delete(). 982 */ 983 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) { 984 ASSERT(xlog_is_shutdown(lip->li_log)); 985 continue; 986 } 987 988 lsn = xfs_ail_delete_one(ailp, lip); 989 if (!tail_lsn && lsn) 990 tail_lsn = lsn; 991 } 992 xfs_ail_update_finish(ailp, tail_lsn); 993 } 994 995 /* 996 * Walk the list of inodes that have completed their IOs. If they are clean 997 * remove them from the list and dissociate them from the buffer. Buffers that 998 * are still dirty remain linked to the buffer and on the list. Caller must 999 * handle them appropriately. 1000 */ 1001 static void 1002 xfs_iflush_finish( 1003 struct xfs_buf *bp, 1004 struct list_head *list) 1005 { 1006 struct xfs_log_item *lip, *n; 1007 1008 list_for_each_entry_safe(lip, n, list, li_bio_list) { 1009 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 1010 bool drop_buffer = false; 1011 1012 spin_lock(&iip->ili_lock); 1013 1014 /* 1015 * Remove the reference to the cluster buffer if the inode is 1016 * clean in memory and drop the buffer reference once we've 1017 * dropped the locks we hold. 1018 */ 1019 ASSERT(iip->ili_item.li_buf == bp); 1020 if (!iip->ili_fields) { 1021 iip->ili_item.li_buf = NULL; 1022 list_del_init(&lip->li_bio_list); 1023 drop_buffer = true; 1024 } 1025 iip->ili_last_fields = 0; 1026 iip->ili_flush_lsn = 0; 1027 clear_bit(XFS_LI_FLUSHING, &lip->li_flags); 1028 spin_unlock(&iip->ili_lock); 1029 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING); 1030 if (drop_buffer) 1031 xfs_buf_rele(bp); 1032 } 1033 } 1034 1035 /* 1036 * Inode buffer IO completion routine. It is responsible for removing inodes 1037 * attached to the buffer from the AIL if they have not been re-logged and 1038 * completing the inode flush. 1039 */ 1040 void 1041 xfs_buf_inode_iodone( 1042 struct xfs_buf *bp) 1043 { 1044 struct xfs_log_item *lip, *n; 1045 LIST_HEAD(flushed_inodes); 1046 LIST_HEAD(ail_updates); 1047 1048 /* 1049 * Pull the attached inodes from the buffer one at a time and take the 1050 * appropriate action on them. 1051 */ 1052 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 1053 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 1054 1055 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) { 1056 xfs_iflush_abort(iip->ili_inode); 1057 continue; 1058 } 1059 if (!iip->ili_last_fields) 1060 continue; 1061 1062 /* Do an unlocked check for needing the AIL lock. */ 1063 if (iip->ili_flush_lsn == lip->li_lsn || 1064 test_bit(XFS_LI_FAILED, &lip->li_flags)) 1065 list_move_tail(&lip->li_bio_list, &ail_updates); 1066 else 1067 list_move_tail(&lip->li_bio_list, &flushed_inodes); 1068 } 1069 1070 if (!list_empty(&ail_updates)) { 1071 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates); 1072 list_splice_tail(&ail_updates, &flushed_inodes); 1073 } 1074 1075 xfs_iflush_finish(bp, &flushed_inodes); 1076 if (!list_empty(&flushed_inodes)) 1077 list_splice_tail(&flushed_inodes, &bp->b_li_list); 1078 } 1079 1080 /* 1081 * Clear the inode logging fields so no more flushes are attempted. If we are 1082 * on a buffer list, it is now safe to remove it because the buffer is 1083 * guaranteed to be locked. The caller will drop the reference to the buffer 1084 * the log item held. 1085 */ 1086 static void 1087 xfs_iflush_abort_clean( 1088 struct xfs_inode_log_item *iip) 1089 { 1090 iip->ili_last_fields = 0; 1091 iip->ili_fields = 0; 1092 iip->ili_flush_lsn = 0; 1093 iip->ili_item.li_buf = NULL; 1094 list_del_init(&iip->ili_item.li_bio_list); 1095 clear_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags); 1096 } 1097 1098 /* 1099 * Abort flushing the inode from a context holding the cluster buffer locked. 1100 * 1101 * This is the normal runtime method of aborting writeback of an inode that is 1102 * attached to a cluster buffer. It occurs when the inode and the backing 1103 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster 1104 * flushing or buffer IO completion encounters a log shutdown situation. 1105 * 1106 * If we need to abort inode writeback and we don't already hold the buffer 1107 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be 1108 * necessary in a shutdown situation. 1109 */ 1110 void 1111 xfs_iflush_abort( 1112 struct xfs_inode *ip) 1113 { 1114 struct xfs_inode_log_item *iip = ip->i_itemp; 1115 struct xfs_buf *bp; 1116 1117 if (!iip) { 1118 /* clean inode, nothing to do */ 1119 xfs_iflags_clear(ip, XFS_IFLUSHING); 1120 return; 1121 } 1122 1123 /* 1124 * Remove the inode item from the AIL before we clear its internal 1125 * state. Whilst the inode is in the AIL, it should have a valid buffer 1126 * pointer for push operations to access - it is only safe to remove the 1127 * inode from the buffer once it has been removed from the AIL. 1128 */ 1129 xfs_trans_ail_delete(&iip->ili_item, 0); 1130 1131 /* 1132 * Grab the inode buffer so can we release the reference the inode log 1133 * item holds on it. 1134 */ 1135 spin_lock(&iip->ili_lock); 1136 bp = iip->ili_item.li_buf; 1137 xfs_iflush_abort_clean(iip); 1138 spin_unlock(&iip->ili_lock); 1139 1140 xfs_iflags_clear(ip, XFS_IFLUSHING); 1141 if (bp) 1142 xfs_buf_rele(bp); 1143 } 1144 1145 /* 1146 * Abort an inode flush in the case of a shutdown filesystem. This can be called 1147 * from anywhere with just an inode reference and does not require holding the 1148 * inode cluster buffer locked. If the inode is attached to a cluster buffer, 1149 * it will grab and lock it safely, then abort the inode flush. 1150 */ 1151 void 1152 xfs_iflush_shutdown_abort( 1153 struct xfs_inode *ip) 1154 { 1155 struct xfs_inode_log_item *iip = ip->i_itemp; 1156 struct xfs_buf *bp; 1157 1158 if (!iip) { 1159 /* clean inode, nothing to do */ 1160 xfs_iflags_clear(ip, XFS_IFLUSHING); 1161 return; 1162 } 1163 1164 spin_lock(&iip->ili_lock); 1165 bp = iip->ili_item.li_buf; 1166 if (!bp) { 1167 spin_unlock(&iip->ili_lock); 1168 xfs_iflush_abort(ip); 1169 return; 1170 } 1171 1172 /* 1173 * We have to take a reference to the buffer so that it doesn't get 1174 * freed when we drop the ili_lock and then wait to lock the buffer. 1175 * We'll clean up the extra reference after we pick up the ili_lock 1176 * again. 1177 */ 1178 xfs_buf_hold(bp); 1179 spin_unlock(&iip->ili_lock); 1180 xfs_buf_lock(bp); 1181 1182 spin_lock(&iip->ili_lock); 1183 if (!iip->ili_item.li_buf) { 1184 /* 1185 * Raced with another removal, hold the only reference 1186 * to bp now. Inode should not be in the AIL now, so just clean 1187 * up and return; 1188 */ 1189 ASSERT(list_empty(&iip->ili_item.li_bio_list)); 1190 ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)); 1191 xfs_iflush_abort_clean(iip); 1192 spin_unlock(&iip->ili_lock); 1193 xfs_iflags_clear(ip, XFS_IFLUSHING); 1194 xfs_buf_relse(bp); 1195 return; 1196 } 1197 1198 /* 1199 * Got two references to bp. The first will get dropped by 1200 * xfs_iflush_abort() when the item is removed from the buffer list, but 1201 * we can't drop our reference until _abort() returns because we have to 1202 * unlock the buffer as well. Hence we abort and then unlock and release 1203 * our reference to the buffer. 1204 */ 1205 ASSERT(iip->ili_item.li_buf == bp); 1206 spin_unlock(&iip->ili_lock); 1207 xfs_iflush_abort(ip); 1208 xfs_buf_relse(bp); 1209 } 1210 1211 1212 /* 1213 * convert an xfs_inode_log_format struct from the old 32 bit version 1214 * (which can have different field alignments) to the native 64 bit version 1215 */ 1216 int 1217 xfs_inode_item_format_convert( 1218 struct kvec *buf, 1219 struct xfs_inode_log_format *in_f) 1220 { 1221 struct xfs_inode_log_format_32 *in_f32 = buf->iov_base; 1222 1223 if (buf->iov_len != sizeof(*in_f32)) { 1224 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 1225 return -EFSCORRUPTED; 1226 } 1227 1228 in_f->ilf_type = in_f32->ilf_type; 1229 in_f->ilf_size = in_f32->ilf_size; 1230 in_f->ilf_fields = in_f32->ilf_fields; 1231 in_f->ilf_asize = in_f32->ilf_asize; 1232 in_f->ilf_dsize = in_f32->ilf_dsize; 1233 in_f->ilf_ino = in_f32->ilf_ino; 1234 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); 1235 in_f->ilf_blkno = in_f32->ilf_blkno; 1236 in_f->ilf_len = in_f32->ilf_len; 1237 in_f->ilf_boffset = in_f32->ilf_boffset; 1238 return 0; 1239 } 1240