xref: /linux/fs/xfs/xfs_inode.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_log.h"
24 #include "xfs_inum.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_attr_sf.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_btree.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_utils.h"
44 #include "xfs_quota.h"
45 #include "xfs_filestream.h"
46 #include "xfs_vnodeops.h"
47 #include "xfs_cksum.h"
48 #include "xfs_trace.h"
49 #include "xfs_icache.h"
50 
51 kmem_zone_t *xfs_ifork_zone;
52 kmem_zone_t *xfs_inode_zone;
53 
54 /*
55  * Used in xfs_itruncate_extents().  This is the maximum number of extents
56  * freed from a file in a single transaction.
57  */
58 #define	XFS_ITRUNC_MAX_EXTENTS	2
59 
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
62 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
63 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
64 
65 /*
66  * helper function to extract extent size hint from inode
67  */
68 xfs_extlen_t
69 xfs_get_extsz_hint(
70 	struct xfs_inode	*ip)
71 {
72 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
73 		return ip->i_d.di_extsize;
74 	if (XFS_IS_REALTIME_INODE(ip))
75 		return ip->i_mount->m_sb.sb_rextsize;
76 	return 0;
77 }
78 
79 /*
80  * This is a wrapper routine around the xfs_ilock() routine used to centralize
81  * some grungy code.  It is used in places that wish to lock the inode solely
82  * for reading the extents.  The reason these places can't just call
83  * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
84  * extents from disk for a file in b-tree format.  If the inode is in b-tree
85  * format, then we need to lock the inode exclusively until the extents are read
86  * in.  Locking it exclusively all the time would limit our parallelism
87  * unnecessarily, though.  What we do instead is check to see if the extents
88  * have been read in yet, and only lock the inode exclusively if they have not.
89  *
90  * The function returns a value which should be given to the corresponding
91  * xfs_iunlock_map_shared().  This value is the mode in which the lock was
92  * actually taken.
93  */
94 uint
95 xfs_ilock_map_shared(
96 	xfs_inode_t	*ip)
97 {
98 	uint	lock_mode;
99 
100 	if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
101 	    ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
102 		lock_mode = XFS_ILOCK_EXCL;
103 	} else {
104 		lock_mode = XFS_ILOCK_SHARED;
105 	}
106 
107 	xfs_ilock(ip, lock_mode);
108 
109 	return lock_mode;
110 }
111 
112 /*
113  * This is simply the unlock routine to go with xfs_ilock_map_shared().
114  * All it does is call xfs_iunlock() with the given lock_mode.
115  */
116 void
117 xfs_iunlock_map_shared(
118 	xfs_inode_t	*ip,
119 	unsigned int	lock_mode)
120 {
121 	xfs_iunlock(ip, lock_mode);
122 }
123 
124 /*
125  * The xfs inode contains 2 locks: a multi-reader lock called the
126  * i_iolock and a multi-reader lock called the i_lock.  This routine
127  * allows either or both of the locks to be obtained.
128  *
129  * The 2 locks should always be ordered so that the IO lock is
130  * obtained first in order to prevent deadlock.
131  *
132  * ip -- the inode being locked
133  * lock_flags -- this parameter indicates the inode's locks
134  *       to be locked.  It can be:
135  *		XFS_IOLOCK_SHARED,
136  *		XFS_IOLOCK_EXCL,
137  *		XFS_ILOCK_SHARED,
138  *		XFS_ILOCK_EXCL,
139  *		XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
140  *		XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
141  *		XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
142  *		XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
143  */
144 void
145 xfs_ilock(
146 	xfs_inode_t		*ip,
147 	uint			lock_flags)
148 {
149 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
150 
151 	/*
152 	 * You can't set both SHARED and EXCL for the same lock,
153 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
154 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
155 	 */
156 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
157 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
158 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
159 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
160 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
161 
162 	if (lock_flags & XFS_IOLOCK_EXCL)
163 		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
164 	else if (lock_flags & XFS_IOLOCK_SHARED)
165 		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
166 
167 	if (lock_flags & XFS_ILOCK_EXCL)
168 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
169 	else if (lock_flags & XFS_ILOCK_SHARED)
170 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
171 }
172 
173 /*
174  * This is just like xfs_ilock(), except that the caller
175  * is guaranteed not to sleep.  It returns 1 if it gets
176  * the requested locks and 0 otherwise.  If the IO lock is
177  * obtained but the inode lock cannot be, then the IO lock
178  * is dropped before returning.
179  *
180  * ip -- the inode being locked
181  * lock_flags -- this parameter indicates the inode's locks to be
182  *       to be locked.  See the comment for xfs_ilock() for a list
183  *	 of valid values.
184  */
185 int
186 xfs_ilock_nowait(
187 	xfs_inode_t		*ip,
188 	uint			lock_flags)
189 {
190 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
191 
192 	/*
193 	 * You can't set both SHARED and EXCL for the same lock,
194 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
195 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
196 	 */
197 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
198 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
199 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
200 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
201 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
202 
203 	if (lock_flags & XFS_IOLOCK_EXCL) {
204 		if (!mrtryupdate(&ip->i_iolock))
205 			goto out;
206 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
207 		if (!mrtryaccess(&ip->i_iolock))
208 			goto out;
209 	}
210 	if (lock_flags & XFS_ILOCK_EXCL) {
211 		if (!mrtryupdate(&ip->i_lock))
212 			goto out_undo_iolock;
213 	} else if (lock_flags & XFS_ILOCK_SHARED) {
214 		if (!mrtryaccess(&ip->i_lock))
215 			goto out_undo_iolock;
216 	}
217 	return 1;
218 
219  out_undo_iolock:
220 	if (lock_flags & XFS_IOLOCK_EXCL)
221 		mrunlock_excl(&ip->i_iolock);
222 	else if (lock_flags & XFS_IOLOCK_SHARED)
223 		mrunlock_shared(&ip->i_iolock);
224  out:
225 	return 0;
226 }
227 
228 /*
229  * xfs_iunlock() is used to drop the inode locks acquired with
230  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
231  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
232  * that we know which locks to drop.
233  *
234  * ip -- the inode being unlocked
235  * lock_flags -- this parameter indicates the inode's locks to be
236  *       to be unlocked.  See the comment for xfs_ilock() for a list
237  *	 of valid values for this parameter.
238  *
239  */
240 void
241 xfs_iunlock(
242 	xfs_inode_t		*ip,
243 	uint			lock_flags)
244 {
245 	/*
246 	 * You can't set both SHARED and EXCL for the same lock,
247 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
248 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
249 	 */
250 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
251 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
252 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
253 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
254 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
255 	ASSERT(lock_flags != 0);
256 
257 	if (lock_flags & XFS_IOLOCK_EXCL)
258 		mrunlock_excl(&ip->i_iolock);
259 	else if (lock_flags & XFS_IOLOCK_SHARED)
260 		mrunlock_shared(&ip->i_iolock);
261 
262 	if (lock_flags & XFS_ILOCK_EXCL)
263 		mrunlock_excl(&ip->i_lock);
264 	else if (lock_flags & XFS_ILOCK_SHARED)
265 		mrunlock_shared(&ip->i_lock);
266 
267 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
268 }
269 
270 /*
271  * give up write locks.  the i/o lock cannot be held nested
272  * if it is being demoted.
273  */
274 void
275 xfs_ilock_demote(
276 	xfs_inode_t		*ip,
277 	uint			lock_flags)
278 {
279 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
280 	ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
281 
282 	if (lock_flags & XFS_ILOCK_EXCL)
283 		mrdemote(&ip->i_lock);
284 	if (lock_flags & XFS_IOLOCK_EXCL)
285 		mrdemote(&ip->i_iolock);
286 
287 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
288 }
289 
290 #if defined(DEBUG) || defined(XFS_WARN)
291 int
292 xfs_isilocked(
293 	xfs_inode_t		*ip,
294 	uint			lock_flags)
295 {
296 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
297 		if (!(lock_flags & XFS_ILOCK_SHARED))
298 			return !!ip->i_lock.mr_writer;
299 		return rwsem_is_locked(&ip->i_lock.mr_lock);
300 	}
301 
302 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
303 		if (!(lock_flags & XFS_IOLOCK_SHARED))
304 			return !!ip->i_iolock.mr_writer;
305 		return rwsem_is_locked(&ip->i_iolock.mr_lock);
306 	}
307 
308 	ASSERT(0);
309 	return 0;
310 }
311 #endif
312 
313 void
314 __xfs_iflock(
315 	struct xfs_inode	*ip)
316 {
317 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
318 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
319 
320 	do {
321 		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
322 		if (xfs_isiflocked(ip))
323 			io_schedule();
324 	} while (!xfs_iflock_nowait(ip));
325 
326 	finish_wait(wq, &wait.wait);
327 }
328 
329 #ifdef DEBUG
330 /*
331  * Make sure that the extents in the given memory buffer
332  * are valid.
333  */
334 STATIC void
335 xfs_validate_extents(
336 	xfs_ifork_t		*ifp,
337 	int			nrecs,
338 	xfs_exntfmt_t		fmt)
339 {
340 	xfs_bmbt_irec_t		irec;
341 	xfs_bmbt_rec_host_t	rec;
342 	int			i;
343 
344 	for (i = 0; i < nrecs; i++) {
345 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
346 		rec.l0 = get_unaligned(&ep->l0);
347 		rec.l1 = get_unaligned(&ep->l1);
348 		xfs_bmbt_get_all(&rec, &irec);
349 		if (fmt == XFS_EXTFMT_NOSTATE)
350 			ASSERT(irec.br_state == XFS_EXT_NORM);
351 	}
352 }
353 #else /* DEBUG */
354 #define xfs_validate_extents(ifp, nrecs, fmt)
355 #endif /* DEBUG */
356 
357 /*
358  * Check that none of the inode's in the buffer have a next
359  * unlinked field of 0.
360  */
361 #if defined(DEBUG)
362 void
363 xfs_inobp_check(
364 	xfs_mount_t	*mp,
365 	xfs_buf_t	*bp)
366 {
367 	int		i;
368 	int		j;
369 	xfs_dinode_t	*dip;
370 
371 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
372 
373 	for (i = 0; i < j; i++) {
374 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
375 					i * mp->m_sb.sb_inodesize);
376 		if (!dip->di_next_unlinked)  {
377 			xfs_alert(mp,
378 	"Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
379 				bp);
380 			ASSERT(dip->di_next_unlinked);
381 		}
382 	}
383 }
384 #endif
385 
386 static void
387 xfs_inode_buf_verify(
388 	struct xfs_buf	*bp)
389 {
390 	struct xfs_mount *mp = bp->b_target->bt_mount;
391 	int		i;
392 	int		ni;
393 
394 	/*
395 	 * Validate the magic number and version of every inode in the buffer
396 	 */
397 	ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
398 	for (i = 0; i < ni; i++) {
399 		int		di_ok;
400 		xfs_dinode_t	*dip;
401 
402 		dip = (struct xfs_dinode *)xfs_buf_offset(bp,
403 					(i << mp->m_sb.sb_inodelog));
404 		di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
405 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
406 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
407 						XFS_ERRTAG_ITOBP_INOTOBP,
408 						XFS_RANDOM_ITOBP_INOTOBP))) {
409 			xfs_buf_ioerror(bp, EFSCORRUPTED);
410 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_HIGH,
411 					     mp, dip);
412 #ifdef DEBUG
413 			xfs_emerg(mp,
414 				"bad inode magic/vsn daddr %lld #%d (magic=%x)",
415 				(unsigned long long)bp->b_bn, i,
416 				be16_to_cpu(dip->di_magic));
417 			ASSERT(0);
418 #endif
419 		}
420 	}
421 	xfs_inobp_check(mp, bp);
422 }
423 
424 
425 static void
426 xfs_inode_buf_read_verify(
427 	struct xfs_buf	*bp)
428 {
429 	xfs_inode_buf_verify(bp);
430 }
431 
432 static void
433 xfs_inode_buf_write_verify(
434 	struct xfs_buf	*bp)
435 {
436 	xfs_inode_buf_verify(bp);
437 }
438 
439 const struct xfs_buf_ops xfs_inode_buf_ops = {
440 	.verify_read = xfs_inode_buf_read_verify,
441 	.verify_write = xfs_inode_buf_write_verify,
442 };
443 
444 
445 /*
446  * This routine is called to map an inode to the buffer containing the on-disk
447  * version of the inode.  It returns a pointer to the buffer containing the
448  * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
449  * pointer to the on-disk inode within that buffer.
450  *
451  * If a non-zero error is returned, then the contents of bpp and dipp are
452  * undefined.
453  */
454 int
455 xfs_imap_to_bp(
456 	struct xfs_mount	*mp,
457 	struct xfs_trans	*tp,
458 	struct xfs_imap		*imap,
459 	struct xfs_dinode       **dipp,
460 	struct xfs_buf		**bpp,
461 	uint			buf_flags,
462 	uint			iget_flags)
463 {
464 	struct xfs_buf		*bp;
465 	int			error;
466 
467 	buf_flags |= XBF_UNMAPPED;
468 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
469 				   (int)imap->im_len, buf_flags, &bp,
470 				   &xfs_inode_buf_ops);
471 	if (error) {
472 		if (error == EAGAIN) {
473 			ASSERT(buf_flags & XBF_TRYLOCK);
474 			return error;
475 		}
476 
477 		if (error == EFSCORRUPTED &&
478 		    (iget_flags & XFS_IGET_UNTRUSTED))
479 			return XFS_ERROR(EINVAL);
480 
481 		xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.",
482 			__func__, error);
483 		return error;
484 	}
485 
486 	*bpp = bp;
487 	*dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset);
488 	return 0;
489 }
490 
491 /*
492  * Move inode type and inode format specific information from the
493  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
494  * this means set if_rdev to the proper value.  For files, directories,
495  * and symlinks this means to bring in the in-line data or extent
496  * pointers.  For a file in B-tree format, only the root is immediately
497  * brought in-core.  The rest will be in-lined in if_extents when it
498  * is first referenced (see xfs_iread_extents()).
499  */
500 STATIC int
501 xfs_iformat(
502 	xfs_inode_t		*ip,
503 	xfs_dinode_t		*dip)
504 {
505 	xfs_attr_shortform_t	*atp;
506 	int			size;
507 	int			error = 0;
508 	xfs_fsize_t             di_size;
509 
510 	if (unlikely(be32_to_cpu(dip->di_nextents) +
511 		     be16_to_cpu(dip->di_anextents) >
512 		     be64_to_cpu(dip->di_nblocks))) {
513 		xfs_warn(ip->i_mount,
514 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
515 			(unsigned long long)ip->i_ino,
516 			(int)(be32_to_cpu(dip->di_nextents) +
517 			      be16_to_cpu(dip->di_anextents)),
518 			(unsigned long long)
519 				be64_to_cpu(dip->di_nblocks));
520 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
521 				     ip->i_mount, dip);
522 		return XFS_ERROR(EFSCORRUPTED);
523 	}
524 
525 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
526 		xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
527 			(unsigned long long)ip->i_ino,
528 			dip->di_forkoff);
529 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
530 				     ip->i_mount, dip);
531 		return XFS_ERROR(EFSCORRUPTED);
532 	}
533 
534 	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
535 		     !ip->i_mount->m_rtdev_targp)) {
536 		xfs_warn(ip->i_mount,
537 			"corrupt dinode %Lu, has realtime flag set.",
538 			ip->i_ino);
539 		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
540 				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
541 		return XFS_ERROR(EFSCORRUPTED);
542 	}
543 
544 	switch (ip->i_d.di_mode & S_IFMT) {
545 	case S_IFIFO:
546 	case S_IFCHR:
547 	case S_IFBLK:
548 	case S_IFSOCK:
549 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
550 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
551 					      ip->i_mount, dip);
552 			return XFS_ERROR(EFSCORRUPTED);
553 		}
554 		ip->i_d.di_size = 0;
555 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
556 		break;
557 
558 	case S_IFREG:
559 	case S_IFLNK:
560 	case S_IFDIR:
561 		switch (dip->di_format) {
562 		case XFS_DINODE_FMT_LOCAL:
563 			/*
564 			 * no local regular files yet
565 			 */
566 			if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
567 				xfs_warn(ip->i_mount,
568 			"corrupt inode %Lu (local format for regular file).",
569 					(unsigned long long) ip->i_ino);
570 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
571 						     XFS_ERRLEVEL_LOW,
572 						     ip->i_mount, dip);
573 				return XFS_ERROR(EFSCORRUPTED);
574 			}
575 
576 			di_size = be64_to_cpu(dip->di_size);
577 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
578 				xfs_warn(ip->i_mount,
579 			"corrupt inode %Lu (bad size %Ld for local inode).",
580 					(unsigned long long) ip->i_ino,
581 					(long long) di_size);
582 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
583 						     XFS_ERRLEVEL_LOW,
584 						     ip->i_mount, dip);
585 				return XFS_ERROR(EFSCORRUPTED);
586 			}
587 
588 			size = (int)di_size;
589 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
590 			break;
591 		case XFS_DINODE_FMT_EXTENTS:
592 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
593 			break;
594 		case XFS_DINODE_FMT_BTREE:
595 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
596 			break;
597 		default:
598 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
599 					 ip->i_mount);
600 			return XFS_ERROR(EFSCORRUPTED);
601 		}
602 		break;
603 
604 	default:
605 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
606 		return XFS_ERROR(EFSCORRUPTED);
607 	}
608 	if (error) {
609 		return error;
610 	}
611 	if (!XFS_DFORK_Q(dip))
612 		return 0;
613 
614 	ASSERT(ip->i_afp == NULL);
615 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
616 
617 	switch (dip->di_aformat) {
618 	case XFS_DINODE_FMT_LOCAL:
619 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
620 		size = be16_to_cpu(atp->hdr.totsize);
621 
622 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
623 			xfs_warn(ip->i_mount,
624 				"corrupt inode %Lu (bad attr fork size %Ld).",
625 				(unsigned long long) ip->i_ino,
626 				(long long) size);
627 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
628 					     XFS_ERRLEVEL_LOW,
629 					     ip->i_mount, dip);
630 			return XFS_ERROR(EFSCORRUPTED);
631 		}
632 
633 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
634 		break;
635 	case XFS_DINODE_FMT_EXTENTS:
636 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
637 		break;
638 	case XFS_DINODE_FMT_BTREE:
639 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
640 		break;
641 	default:
642 		error = XFS_ERROR(EFSCORRUPTED);
643 		break;
644 	}
645 	if (error) {
646 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
647 		ip->i_afp = NULL;
648 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
649 	}
650 	return error;
651 }
652 
653 /*
654  * The file is in-lined in the on-disk inode.
655  * If it fits into if_inline_data, then copy
656  * it there, otherwise allocate a buffer for it
657  * and copy the data there.  Either way, set
658  * if_data to point at the data.
659  * If we allocate a buffer for the data, make
660  * sure that its size is a multiple of 4 and
661  * record the real size in i_real_bytes.
662  */
663 STATIC int
664 xfs_iformat_local(
665 	xfs_inode_t	*ip,
666 	xfs_dinode_t	*dip,
667 	int		whichfork,
668 	int		size)
669 {
670 	xfs_ifork_t	*ifp;
671 	int		real_size;
672 
673 	/*
674 	 * If the size is unreasonable, then something
675 	 * is wrong and we just bail out rather than crash in
676 	 * kmem_alloc() or memcpy() below.
677 	 */
678 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
679 		xfs_warn(ip->i_mount,
680 	"corrupt inode %Lu (bad size %d for local fork, size = %d).",
681 			(unsigned long long) ip->i_ino, size,
682 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
683 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
684 				     ip->i_mount, dip);
685 		return XFS_ERROR(EFSCORRUPTED);
686 	}
687 	ifp = XFS_IFORK_PTR(ip, whichfork);
688 	real_size = 0;
689 	if (size == 0)
690 		ifp->if_u1.if_data = NULL;
691 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
692 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
693 	else {
694 		real_size = roundup(size, 4);
695 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
696 	}
697 	ifp->if_bytes = size;
698 	ifp->if_real_bytes = real_size;
699 	if (size)
700 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
701 	ifp->if_flags &= ~XFS_IFEXTENTS;
702 	ifp->if_flags |= XFS_IFINLINE;
703 	return 0;
704 }
705 
706 /*
707  * The file consists of a set of extents all
708  * of which fit into the on-disk inode.
709  * If there are few enough extents to fit into
710  * the if_inline_ext, then copy them there.
711  * Otherwise allocate a buffer for them and copy
712  * them into it.  Either way, set if_extents
713  * to point at the extents.
714  */
715 STATIC int
716 xfs_iformat_extents(
717 	xfs_inode_t	*ip,
718 	xfs_dinode_t	*dip,
719 	int		whichfork)
720 {
721 	xfs_bmbt_rec_t	*dp;
722 	xfs_ifork_t	*ifp;
723 	int		nex;
724 	int		size;
725 	int		i;
726 
727 	ifp = XFS_IFORK_PTR(ip, whichfork);
728 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
729 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
730 
731 	/*
732 	 * If the number of extents is unreasonable, then something
733 	 * is wrong and we just bail out rather than crash in
734 	 * kmem_alloc() or memcpy() below.
735 	 */
736 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
737 		xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
738 			(unsigned long long) ip->i_ino, nex);
739 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
740 				     ip->i_mount, dip);
741 		return XFS_ERROR(EFSCORRUPTED);
742 	}
743 
744 	ifp->if_real_bytes = 0;
745 	if (nex == 0)
746 		ifp->if_u1.if_extents = NULL;
747 	else if (nex <= XFS_INLINE_EXTS)
748 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
749 	else
750 		xfs_iext_add(ifp, 0, nex);
751 
752 	ifp->if_bytes = size;
753 	if (size) {
754 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
755 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
756 		for (i = 0; i < nex; i++, dp++) {
757 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
758 			ep->l0 = get_unaligned_be64(&dp->l0);
759 			ep->l1 = get_unaligned_be64(&dp->l1);
760 		}
761 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
762 		if (whichfork != XFS_DATA_FORK ||
763 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
764 				if (unlikely(xfs_check_nostate_extents(
765 				    ifp, 0, nex))) {
766 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
767 							 XFS_ERRLEVEL_LOW,
768 							 ip->i_mount);
769 					return XFS_ERROR(EFSCORRUPTED);
770 				}
771 	}
772 	ifp->if_flags |= XFS_IFEXTENTS;
773 	return 0;
774 }
775 
776 /*
777  * The file has too many extents to fit into
778  * the inode, so they are in B-tree format.
779  * Allocate a buffer for the root of the B-tree
780  * and copy the root into it.  The i_extents
781  * field will remain NULL until all of the
782  * extents are read in (when they are needed).
783  */
784 STATIC int
785 xfs_iformat_btree(
786 	xfs_inode_t		*ip,
787 	xfs_dinode_t		*dip,
788 	int			whichfork)
789 {
790 	struct xfs_mount	*mp = ip->i_mount;
791 	xfs_bmdr_block_t	*dfp;
792 	xfs_ifork_t		*ifp;
793 	/* REFERENCED */
794 	int			nrecs;
795 	int			size;
796 
797 	ifp = XFS_IFORK_PTR(ip, whichfork);
798 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
799 	size = XFS_BMAP_BROOT_SPACE(mp, dfp);
800 	nrecs = be16_to_cpu(dfp->bb_numrecs);
801 
802 	/*
803 	 * blow out if -- fork has less extents than can fit in
804 	 * fork (fork shouldn't be a btree format), root btree
805 	 * block has more records than can fit into the fork,
806 	 * or the number of extents is greater than the number of
807 	 * blocks.
808 	 */
809 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
810 					XFS_IFORK_MAXEXT(ip, whichfork) ||
811 		     XFS_BMDR_SPACE_CALC(nrecs) >
812 					XFS_DFORK_SIZE(dip, mp, whichfork) ||
813 		     XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
814 		xfs_warn(mp, "corrupt inode %Lu (btree).",
815 					(unsigned long long) ip->i_ino);
816 		XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
817 					 mp, dip);
818 		return XFS_ERROR(EFSCORRUPTED);
819 	}
820 
821 	ifp->if_broot_bytes = size;
822 	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
823 	ASSERT(ifp->if_broot != NULL);
824 	/*
825 	 * Copy and convert from the on-disk structure
826 	 * to the in-memory structure.
827 	 */
828 	xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
829 			 ifp->if_broot, size);
830 	ifp->if_flags &= ~XFS_IFEXTENTS;
831 	ifp->if_flags |= XFS_IFBROOT;
832 
833 	return 0;
834 }
835 
836 STATIC void
837 xfs_dinode_from_disk(
838 	xfs_icdinode_t		*to,
839 	xfs_dinode_t		*from)
840 {
841 	to->di_magic = be16_to_cpu(from->di_magic);
842 	to->di_mode = be16_to_cpu(from->di_mode);
843 	to->di_version = from ->di_version;
844 	to->di_format = from->di_format;
845 	to->di_onlink = be16_to_cpu(from->di_onlink);
846 	to->di_uid = be32_to_cpu(from->di_uid);
847 	to->di_gid = be32_to_cpu(from->di_gid);
848 	to->di_nlink = be32_to_cpu(from->di_nlink);
849 	to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
850 	to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
851 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
852 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
853 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
854 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
855 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
856 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
857 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
858 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
859 	to->di_size = be64_to_cpu(from->di_size);
860 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
861 	to->di_extsize = be32_to_cpu(from->di_extsize);
862 	to->di_nextents = be32_to_cpu(from->di_nextents);
863 	to->di_anextents = be16_to_cpu(from->di_anextents);
864 	to->di_forkoff = from->di_forkoff;
865 	to->di_aformat	= from->di_aformat;
866 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
867 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
868 	to->di_flags	= be16_to_cpu(from->di_flags);
869 	to->di_gen	= be32_to_cpu(from->di_gen);
870 
871 	if (to->di_version == 3) {
872 		to->di_changecount = be64_to_cpu(from->di_changecount);
873 		to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec);
874 		to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec);
875 		to->di_flags2 = be64_to_cpu(from->di_flags2);
876 		to->di_ino = be64_to_cpu(from->di_ino);
877 		to->di_lsn = be64_to_cpu(from->di_lsn);
878 		memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
879 		uuid_copy(&to->di_uuid, &from->di_uuid);
880 	}
881 }
882 
883 void
884 xfs_dinode_to_disk(
885 	xfs_dinode_t		*to,
886 	xfs_icdinode_t		*from)
887 {
888 	to->di_magic = cpu_to_be16(from->di_magic);
889 	to->di_mode = cpu_to_be16(from->di_mode);
890 	to->di_version = from ->di_version;
891 	to->di_format = from->di_format;
892 	to->di_onlink = cpu_to_be16(from->di_onlink);
893 	to->di_uid = cpu_to_be32(from->di_uid);
894 	to->di_gid = cpu_to_be32(from->di_gid);
895 	to->di_nlink = cpu_to_be32(from->di_nlink);
896 	to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
897 	to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
898 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
899 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
900 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
901 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
902 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
903 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
904 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
905 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
906 	to->di_size = cpu_to_be64(from->di_size);
907 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
908 	to->di_extsize = cpu_to_be32(from->di_extsize);
909 	to->di_nextents = cpu_to_be32(from->di_nextents);
910 	to->di_anextents = cpu_to_be16(from->di_anextents);
911 	to->di_forkoff = from->di_forkoff;
912 	to->di_aformat = from->di_aformat;
913 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
914 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
915 	to->di_flags = cpu_to_be16(from->di_flags);
916 	to->di_gen = cpu_to_be32(from->di_gen);
917 
918 	if (from->di_version == 3) {
919 		to->di_changecount = cpu_to_be64(from->di_changecount);
920 		to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
921 		to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
922 		to->di_flags2 = cpu_to_be64(from->di_flags2);
923 		to->di_ino = cpu_to_be64(from->di_ino);
924 		to->di_lsn = cpu_to_be64(from->di_lsn);
925 		memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
926 		uuid_copy(&to->di_uuid, &from->di_uuid);
927 	}
928 }
929 
930 STATIC uint
931 _xfs_dic2xflags(
932 	__uint16_t		di_flags)
933 {
934 	uint			flags = 0;
935 
936 	if (di_flags & XFS_DIFLAG_ANY) {
937 		if (di_flags & XFS_DIFLAG_REALTIME)
938 			flags |= XFS_XFLAG_REALTIME;
939 		if (di_flags & XFS_DIFLAG_PREALLOC)
940 			flags |= XFS_XFLAG_PREALLOC;
941 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
942 			flags |= XFS_XFLAG_IMMUTABLE;
943 		if (di_flags & XFS_DIFLAG_APPEND)
944 			flags |= XFS_XFLAG_APPEND;
945 		if (di_flags & XFS_DIFLAG_SYNC)
946 			flags |= XFS_XFLAG_SYNC;
947 		if (di_flags & XFS_DIFLAG_NOATIME)
948 			flags |= XFS_XFLAG_NOATIME;
949 		if (di_flags & XFS_DIFLAG_NODUMP)
950 			flags |= XFS_XFLAG_NODUMP;
951 		if (di_flags & XFS_DIFLAG_RTINHERIT)
952 			flags |= XFS_XFLAG_RTINHERIT;
953 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
954 			flags |= XFS_XFLAG_PROJINHERIT;
955 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
956 			flags |= XFS_XFLAG_NOSYMLINKS;
957 		if (di_flags & XFS_DIFLAG_EXTSIZE)
958 			flags |= XFS_XFLAG_EXTSIZE;
959 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
960 			flags |= XFS_XFLAG_EXTSZINHERIT;
961 		if (di_flags & XFS_DIFLAG_NODEFRAG)
962 			flags |= XFS_XFLAG_NODEFRAG;
963 		if (di_flags & XFS_DIFLAG_FILESTREAM)
964 			flags |= XFS_XFLAG_FILESTREAM;
965 	}
966 
967 	return flags;
968 }
969 
970 uint
971 xfs_ip2xflags(
972 	xfs_inode_t		*ip)
973 {
974 	xfs_icdinode_t		*dic = &ip->i_d;
975 
976 	return _xfs_dic2xflags(dic->di_flags) |
977 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
978 }
979 
980 uint
981 xfs_dic2xflags(
982 	xfs_dinode_t		*dip)
983 {
984 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
985 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
986 }
987 
988 static bool
989 xfs_dinode_verify(
990 	struct xfs_mount	*mp,
991 	struct xfs_inode	*ip,
992 	struct xfs_dinode	*dip)
993 {
994 	if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
995 		return false;
996 
997 	/* only version 3 or greater inodes are extensively verified here */
998 	if (dip->di_version < 3)
999 		return true;
1000 
1001 	if (!xfs_sb_version_hascrc(&mp->m_sb))
1002 		return false;
1003 	if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
1004 			      offsetof(struct xfs_dinode, di_crc)))
1005 		return false;
1006 	if (be64_to_cpu(dip->di_ino) != ip->i_ino)
1007 		return false;
1008 	if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_uuid))
1009 		return false;
1010 	return true;
1011 }
1012 
1013 void
1014 xfs_dinode_calc_crc(
1015 	struct xfs_mount	*mp,
1016 	struct xfs_dinode	*dip)
1017 {
1018 	__uint32_t		crc;
1019 
1020 	if (dip->di_version < 3)
1021 		return;
1022 
1023 	ASSERT(xfs_sb_version_hascrc(&mp->m_sb));
1024 	crc = xfs_start_cksum((char *)dip, mp->m_sb.sb_inodesize,
1025 			      offsetof(struct xfs_dinode, di_crc));
1026 	dip->di_crc = xfs_end_cksum(crc);
1027 }
1028 
1029 /*
1030  * Read the disk inode attributes into the in-core inode structure.
1031  *
1032  * If we are initialising a new inode and we are not utilising the
1033  * XFS_MOUNT_IKEEP inode cluster mode, we can simple build the new inode core
1034  * with a random generation number. If we are keeping inodes around, we need to
1035  * read the inode cluster to get the existing generation number off disk.
1036  */
1037 int
1038 xfs_iread(
1039 	xfs_mount_t	*mp,
1040 	xfs_trans_t	*tp,
1041 	xfs_inode_t	*ip,
1042 	uint		iget_flags)
1043 {
1044 	xfs_buf_t	*bp;
1045 	xfs_dinode_t	*dip;
1046 	int		error;
1047 
1048 	/*
1049 	 * Fill in the location information in the in-core inode.
1050 	 */
1051 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
1052 	if (error)
1053 		return error;
1054 
1055 	/* shortcut IO on inode allocation if possible */
1056 	if ((iget_flags & XFS_IGET_CREATE) &&
1057 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
1058 		/* initialise the on-disk inode core */
1059 		memset(&ip->i_d, 0, sizeof(ip->i_d));
1060 		ip->i_d.di_magic = XFS_DINODE_MAGIC;
1061 		ip->i_d.di_gen = prandom_u32();
1062 		if (xfs_sb_version_hascrc(&mp->m_sb)) {
1063 			ip->i_d.di_version = 3;
1064 			ip->i_d.di_ino = ip->i_ino;
1065 			uuid_copy(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid);
1066 		} else
1067 			ip->i_d.di_version = 2;
1068 		return 0;
1069 	}
1070 
1071 	/*
1072 	 * Get pointers to the on-disk inode and the buffer containing it.
1073 	 */
1074 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
1075 	if (error)
1076 		return error;
1077 
1078 	/* even unallocated inodes are verified */
1079 	if (!xfs_dinode_verify(mp, ip, dip)) {
1080 		xfs_alert(mp, "%s: validation failed for inode %lld failed",
1081 				__func__, ip->i_ino);
1082 
1083 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, dip);
1084 		error = XFS_ERROR(EFSCORRUPTED);
1085 		goto out_brelse;
1086 	}
1087 
1088 	/*
1089 	 * If the on-disk inode is already linked to a directory
1090 	 * entry, copy all of the inode into the in-core inode.
1091 	 * xfs_iformat() handles copying in the inode format
1092 	 * specific information.
1093 	 * Otherwise, just get the truly permanent information.
1094 	 */
1095 	if (dip->di_mode) {
1096 		xfs_dinode_from_disk(&ip->i_d, dip);
1097 		error = xfs_iformat(ip, dip);
1098 		if (error)  {
1099 #ifdef DEBUG
1100 			xfs_alert(mp, "%s: xfs_iformat() returned error %d",
1101 				__func__, error);
1102 #endif /* DEBUG */
1103 			goto out_brelse;
1104 		}
1105 	} else {
1106 		/*
1107 		 * Partial initialisation of the in-core inode. Just the bits
1108 		 * that xfs_ialloc won't overwrite or relies on being correct.
1109 		 */
1110 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
1111 		ip->i_d.di_version = dip->di_version;
1112 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
1113 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
1114 
1115 		if (dip->di_version == 3) {
1116 			ip->i_d.di_ino = be64_to_cpu(dip->di_ino);
1117 			uuid_copy(&ip->i_d.di_uuid, &dip->di_uuid);
1118 		}
1119 
1120 		/*
1121 		 * Make sure to pull in the mode here as well in
1122 		 * case the inode is released without being used.
1123 		 * This ensures that xfs_inactive() will see that
1124 		 * the inode is already free and not try to mess
1125 		 * with the uninitialized part of it.
1126 		 */
1127 		ip->i_d.di_mode = 0;
1128 	}
1129 
1130 	/*
1131 	 * The inode format changed when we moved the link count and
1132 	 * made it 32 bits long.  If this is an old format inode,
1133 	 * convert it in memory to look like a new one.  If it gets
1134 	 * flushed to disk we will convert back before flushing or
1135 	 * logging it.  We zero out the new projid field and the old link
1136 	 * count field.  We'll handle clearing the pad field (the remains
1137 	 * of the old uuid field) when we actually convert the inode to
1138 	 * the new format. We don't change the version number so that we
1139 	 * can distinguish this from a real new format inode.
1140 	 */
1141 	if (ip->i_d.di_version == 1) {
1142 		ip->i_d.di_nlink = ip->i_d.di_onlink;
1143 		ip->i_d.di_onlink = 0;
1144 		xfs_set_projid(ip, 0);
1145 	}
1146 
1147 	ip->i_delayed_blks = 0;
1148 
1149 	/*
1150 	 * Mark the buffer containing the inode as something to keep
1151 	 * around for a while.  This helps to keep recently accessed
1152 	 * meta-data in-core longer.
1153 	 */
1154 	xfs_buf_set_ref(bp, XFS_INO_REF);
1155 
1156 	/*
1157 	 * Use xfs_trans_brelse() to release the buffer containing the on-disk
1158 	 * inode, because it was acquired with xfs_trans_read_buf() in
1159 	 * xfs_imap_to_bp() above.  If tp is NULL, this is just a normal
1160 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
1161 	 * will only release the buffer if it is not dirty within the
1162 	 * transaction.  It will be OK to release the buffer in this case,
1163 	 * because inodes on disk are never destroyed and we will be locking the
1164 	 * new in-core inode before putting it in the cache where other
1165 	 * processes can find it.  Thus we don't have to worry about the inode
1166 	 * being changed just because we released the buffer.
1167 	 */
1168  out_brelse:
1169 	xfs_trans_brelse(tp, bp);
1170 	return error;
1171 }
1172 
1173 /*
1174  * Read in extents from a btree-format inode.
1175  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
1176  */
1177 int
1178 xfs_iread_extents(
1179 	xfs_trans_t	*tp,
1180 	xfs_inode_t	*ip,
1181 	int		whichfork)
1182 {
1183 	int		error;
1184 	xfs_ifork_t	*ifp;
1185 	xfs_extnum_t	nextents;
1186 
1187 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1188 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1189 				 ip->i_mount);
1190 		return XFS_ERROR(EFSCORRUPTED);
1191 	}
1192 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1193 	ifp = XFS_IFORK_PTR(ip, whichfork);
1194 
1195 	/*
1196 	 * We know that the size is valid (it's checked in iformat_btree)
1197 	 */
1198 	ifp->if_bytes = ifp->if_real_bytes = 0;
1199 	ifp->if_flags |= XFS_IFEXTENTS;
1200 	xfs_iext_add(ifp, 0, nextents);
1201 	error = xfs_bmap_read_extents(tp, ip, whichfork);
1202 	if (error) {
1203 		xfs_iext_destroy(ifp);
1204 		ifp->if_flags &= ~XFS_IFEXTENTS;
1205 		return error;
1206 	}
1207 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1208 	return 0;
1209 }
1210 
1211 /*
1212  * Allocate an inode on disk and return a copy of its in-core version.
1213  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
1214  * appropriately within the inode.  The uid and gid for the inode are
1215  * set according to the contents of the given cred structure.
1216  *
1217  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1218  * has a free inode available, call xfs_iget() to obtain the in-core
1219  * version of the allocated inode.  Finally, fill in the inode and
1220  * log its initial contents.  In this case, ialloc_context would be
1221  * set to NULL.
1222  *
1223  * If xfs_dialloc() does not have an available inode, it will replenish
1224  * its supply by doing an allocation. Since we can only do one
1225  * allocation within a transaction without deadlocks, we must commit
1226  * the current transaction before returning the inode itself.
1227  * In this case, therefore, we will set ialloc_context and return.
1228  * The caller should then commit the current transaction, start a new
1229  * transaction, and call xfs_ialloc() again to actually get the inode.
1230  *
1231  * To ensure that some other process does not grab the inode that
1232  * was allocated during the first call to xfs_ialloc(), this routine
1233  * also returns the [locked] bp pointing to the head of the freelist
1234  * as ialloc_context.  The caller should hold this buffer across
1235  * the commit and pass it back into this routine on the second call.
1236  *
1237  * If we are allocating quota inodes, we do not have a parent inode
1238  * to attach to or associate with (i.e. pip == NULL) because they
1239  * are not linked into the directory structure - they are attached
1240  * directly to the superblock - and so have no parent.
1241  */
1242 int
1243 xfs_ialloc(
1244 	xfs_trans_t	*tp,
1245 	xfs_inode_t	*pip,
1246 	umode_t		mode,
1247 	xfs_nlink_t	nlink,
1248 	xfs_dev_t	rdev,
1249 	prid_t		prid,
1250 	int		okalloc,
1251 	xfs_buf_t	**ialloc_context,
1252 	xfs_inode_t	**ipp)
1253 {
1254 	struct xfs_mount *mp = tp->t_mountp;
1255 	xfs_ino_t	ino;
1256 	xfs_inode_t	*ip;
1257 	uint		flags;
1258 	int		error;
1259 	timespec_t	tv;
1260 	int		filestreams = 0;
1261 
1262 	/*
1263 	 * Call the space management code to pick
1264 	 * the on-disk inode to be allocated.
1265 	 */
1266 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1267 			    ialloc_context, &ino);
1268 	if (error)
1269 		return error;
1270 	if (*ialloc_context || ino == NULLFSINO) {
1271 		*ipp = NULL;
1272 		return 0;
1273 	}
1274 	ASSERT(*ialloc_context == NULL);
1275 
1276 	/*
1277 	 * Get the in-core inode with the lock held exclusively.
1278 	 * This is because we're setting fields here we need
1279 	 * to prevent others from looking at until we're done.
1280 	 */
1281 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
1282 			 XFS_ILOCK_EXCL, &ip);
1283 	if (error)
1284 		return error;
1285 	ASSERT(ip != NULL);
1286 
1287 	ip->i_d.di_mode = mode;
1288 	ip->i_d.di_onlink = 0;
1289 	ip->i_d.di_nlink = nlink;
1290 	ASSERT(ip->i_d.di_nlink == nlink);
1291 	ip->i_d.di_uid = current_fsuid();
1292 	ip->i_d.di_gid = current_fsgid();
1293 	xfs_set_projid(ip, prid);
1294 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1295 
1296 	/*
1297 	 * If the superblock version is up to where we support new format
1298 	 * inodes and this is currently an old format inode, then change
1299 	 * the inode version number now.  This way we only do the conversion
1300 	 * here rather than here and in the flush/logging code.
1301 	 */
1302 	if (xfs_sb_version_hasnlink(&mp->m_sb) &&
1303 	    ip->i_d.di_version == 1) {
1304 		ip->i_d.di_version = 2;
1305 		/*
1306 		 * We've already zeroed the old link count, the projid field,
1307 		 * and the pad field.
1308 		 */
1309 	}
1310 
1311 	/*
1312 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1313 	 */
1314 	if ((prid != 0) && (ip->i_d.di_version == 1))
1315 		xfs_bump_ino_vers2(tp, ip);
1316 
1317 	if (pip && XFS_INHERIT_GID(pip)) {
1318 		ip->i_d.di_gid = pip->i_d.di_gid;
1319 		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1320 			ip->i_d.di_mode |= S_ISGID;
1321 		}
1322 	}
1323 
1324 	/*
1325 	 * If the group ID of the new file does not match the effective group
1326 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1327 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1328 	 */
1329 	if ((irix_sgid_inherit) &&
1330 	    (ip->i_d.di_mode & S_ISGID) &&
1331 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1332 		ip->i_d.di_mode &= ~S_ISGID;
1333 	}
1334 
1335 	ip->i_d.di_size = 0;
1336 	ip->i_d.di_nextents = 0;
1337 	ASSERT(ip->i_d.di_nblocks == 0);
1338 
1339 	nanotime(&tv);
1340 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1341 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1342 	ip->i_d.di_atime = ip->i_d.di_mtime;
1343 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1344 
1345 	/*
1346 	 * di_gen will have been taken care of in xfs_iread.
1347 	 */
1348 	ip->i_d.di_extsize = 0;
1349 	ip->i_d.di_dmevmask = 0;
1350 	ip->i_d.di_dmstate = 0;
1351 	ip->i_d.di_flags = 0;
1352 
1353 	if (ip->i_d.di_version == 3) {
1354 		ASSERT(ip->i_d.di_ino == ino);
1355 		ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
1356 		ip->i_d.di_crc = 0;
1357 		ip->i_d.di_changecount = 1;
1358 		ip->i_d.di_lsn = 0;
1359 		ip->i_d.di_flags2 = 0;
1360 		memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
1361 		ip->i_d.di_crtime = ip->i_d.di_mtime;
1362 	}
1363 
1364 
1365 	flags = XFS_ILOG_CORE;
1366 	switch (mode & S_IFMT) {
1367 	case S_IFIFO:
1368 	case S_IFCHR:
1369 	case S_IFBLK:
1370 	case S_IFSOCK:
1371 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1372 		ip->i_df.if_u2.if_rdev = rdev;
1373 		ip->i_df.if_flags = 0;
1374 		flags |= XFS_ILOG_DEV;
1375 		break;
1376 	case S_IFREG:
1377 		/*
1378 		 * we can't set up filestreams until after the VFS inode
1379 		 * is set up properly.
1380 		 */
1381 		if (pip && xfs_inode_is_filestream(pip))
1382 			filestreams = 1;
1383 		/* fall through */
1384 	case S_IFDIR:
1385 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1386 			uint	di_flags = 0;
1387 
1388 			if (S_ISDIR(mode)) {
1389 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1390 					di_flags |= XFS_DIFLAG_RTINHERIT;
1391 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1392 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1393 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1394 				}
1395 			} else if (S_ISREG(mode)) {
1396 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1397 					di_flags |= XFS_DIFLAG_REALTIME;
1398 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1399 					di_flags |= XFS_DIFLAG_EXTSIZE;
1400 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1401 				}
1402 			}
1403 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1404 			    xfs_inherit_noatime)
1405 				di_flags |= XFS_DIFLAG_NOATIME;
1406 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1407 			    xfs_inherit_nodump)
1408 				di_flags |= XFS_DIFLAG_NODUMP;
1409 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1410 			    xfs_inherit_sync)
1411 				di_flags |= XFS_DIFLAG_SYNC;
1412 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1413 			    xfs_inherit_nosymlinks)
1414 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1415 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1416 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1417 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1418 			    xfs_inherit_nodefrag)
1419 				di_flags |= XFS_DIFLAG_NODEFRAG;
1420 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1421 				di_flags |= XFS_DIFLAG_FILESTREAM;
1422 			ip->i_d.di_flags |= di_flags;
1423 		}
1424 		/* FALLTHROUGH */
1425 	case S_IFLNK:
1426 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1427 		ip->i_df.if_flags = XFS_IFEXTENTS;
1428 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1429 		ip->i_df.if_u1.if_extents = NULL;
1430 		break;
1431 	default:
1432 		ASSERT(0);
1433 	}
1434 	/*
1435 	 * Attribute fork settings for new inode.
1436 	 */
1437 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1438 	ip->i_d.di_anextents = 0;
1439 
1440 	/*
1441 	 * Log the new values stuffed into the inode.
1442 	 */
1443 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1444 	xfs_trans_log_inode(tp, ip, flags);
1445 
1446 	/* now that we have an i_mode we can setup inode ops and unlock */
1447 	xfs_setup_inode(ip);
1448 
1449 	/* now we have set up the vfs inode we can associate the filestream */
1450 	if (filestreams) {
1451 		error = xfs_filestream_associate(pip, ip);
1452 		if (error < 0)
1453 			return -error;
1454 		if (!error)
1455 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1456 	}
1457 
1458 	*ipp = ip;
1459 	return 0;
1460 }
1461 
1462 /*
1463  * Free up the underlying blocks past new_size.  The new size must be smaller
1464  * than the current size.  This routine can be used both for the attribute and
1465  * data fork, and does not modify the inode size, which is left to the caller.
1466  *
1467  * The transaction passed to this routine must have made a permanent log
1468  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1469  * given transaction and start new ones, so make sure everything involved in
1470  * the transaction is tidy before calling here.  Some transaction will be
1471  * returned to the caller to be committed.  The incoming transaction must
1472  * already include the inode, and both inode locks must be held exclusively.
1473  * The inode must also be "held" within the transaction.  On return the inode
1474  * will be "held" within the returned transaction.  This routine does NOT
1475  * require any disk space to be reserved for it within the transaction.
1476  *
1477  * If we get an error, we must return with the inode locked and linked into the
1478  * current transaction. This keeps things simple for the higher level code,
1479  * because it always knows that the inode is locked and held in the transaction
1480  * that returns to it whether errors occur or not.  We don't mark the inode
1481  * dirty on error so that transactions can be easily aborted if possible.
1482  */
1483 int
1484 xfs_itruncate_extents(
1485 	struct xfs_trans	**tpp,
1486 	struct xfs_inode	*ip,
1487 	int			whichfork,
1488 	xfs_fsize_t		new_size)
1489 {
1490 	struct xfs_mount	*mp = ip->i_mount;
1491 	struct xfs_trans	*tp = *tpp;
1492 	struct xfs_trans	*ntp;
1493 	xfs_bmap_free_t		free_list;
1494 	xfs_fsblock_t		first_block;
1495 	xfs_fileoff_t		first_unmap_block;
1496 	xfs_fileoff_t		last_block;
1497 	xfs_filblks_t		unmap_len;
1498 	int			committed;
1499 	int			error = 0;
1500 	int			done = 0;
1501 
1502 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1503 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1504 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1505 	ASSERT(new_size <= XFS_ISIZE(ip));
1506 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1507 	ASSERT(ip->i_itemp != NULL);
1508 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1509 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1510 
1511 	trace_xfs_itruncate_extents_start(ip, new_size);
1512 
1513 	/*
1514 	 * Since it is possible for space to become allocated beyond
1515 	 * the end of the file (in a crash where the space is allocated
1516 	 * but the inode size is not yet updated), simply remove any
1517 	 * blocks which show up between the new EOF and the maximum
1518 	 * possible file size.  If the first block to be removed is
1519 	 * beyond the maximum file size (ie it is the same as last_block),
1520 	 * then there is nothing to do.
1521 	 */
1522 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1523 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1524 	if (first_unmap_block == last_block)
1525 		return 0;
1526 
1527 	ASSERT(first_unmap_block < last_block);
1528 	unmap_len = last_block - first_unmap_block + 1;
1529 	while (!done) {
1530 		xfs_bmap_init(&free_list, &first_block);
1531 		error = xfs_bunmapi(tp, ip,
1532 				    first_unmap_block, unmap_len,
1533 				    xfs_bmapi_aflag(whichfork),
1534 				    XFS_ITRUNC_MAX_EXTENTS,
1535 				    &first_block, &free_list,
1536 				    &done);
1537 		if (error)
1538 			goto out_bmap_cancel;
1539 
1540 		/*
1541 		 * Duplicate the transaction that has the permanent
1542 		 * reservation and commit the old transaction.
1543 		 */
1544 		error = xfs_bmap_finish(&tp, &free_list, &committed);
1545 		if (committed)
1546 			xfs_trans_ijoin(tp, ip, 0);
1547 		if (error)
1548 			goto out_bmap_cancel;
1549 
1550 		if (committed) {
1551 			/*
1552 			 * Mark the inode dirty so it will be logged and
1553 			 * moved forward in the log as part of every commit.
1554 			 */
1555 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1556 		}
1557 
1558 		ntp = xfs_trans_dup(tp);
1559 		error = xfs_trans_commit(tp, 0);
1560 		tp = ntp;
1561 
1562 		xfs_trans_ijoin(tp, ip, 0);
1563 
1564 		if (error)
1565 			goto out;
1566 
1567 		/*
1568 		 * Transaction commit worked ok so we can drop the extra ticket
1569 		 * reference that we gained in xfs_trans_dup()
1570 		 */
1571 		xfs_log_ticket_put(tp->t_ticket);
1572 		error = xfs_trans_reserve(tp, 0,
1573 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1574 					XFS_TRANS_PERM_LOG_RES,
1575 					XFS_ITRUNCATE_LOG_COUNT);
1576 		if (error)
1577 			goto out;
1578 	}
1579 
1580 	/*
1581 	 * Always re-log the inode so that our permanent transaction can keep
1582 	 * on rolling it forward in the log.
1583 	 */
1584 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1585 
1586 	trace_xfs_itruncate_extents_end(ip, new_size);
1587 
1588 out:
1589 	*tpp = tp;
1590 	return error;
1591 out_bmap_cancel:
1592 	/*
1593 	 * If the bunmapi call encounters an error, return to the caller where
1594 	 * the transaction can be properly aborted.  We just need to make sure
1595 	 * we're not holding any resources that we were not when we came in.
1596 	 */
1597 	xfs_bmap_cancel(&free_list);
1598 	goto out;
1599 }
1600 
1601 /*
1602  * This is called when the inode's link count goes to 0.
1603  * We place the on-disk inode on a list in the AGI.  It
1604  * will be pulled from this list when the inode is freed.
1605  */
1606 int
1607 xfs_iunlink(
1608 	xfs_trans_t	*tp,
1609 	xfs_inode_t	*ip)
1610 {
1611 	xfs_mount_t	*mp;
1612 	xfs_agi_t	*agi;
1613 	xfs_dinode_t	*dip;
1614 	xfs_buf_t	*agibp;
1615 	xfs_buf_t	*ibp;
1616 	xfs_agino_t	agino;
1617 	short		bucket_index;
1618 	int		offset;
1619 	int		error;
1620 
1621 	ASSERT(ip->i_d.di_nlink == 0);
1622 	ASSERT(ip->i_d.di_mode != 0);
1623 
1624 	mp = tp->t_mountp;
1625 
1626 	/*
1627 	 * Get the agi buffer first.  It ensures lock ordering
1628 	 * on the list.
1629 	 */
1630 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1631 	if (error)
1632 		return error;
1633 	agi = XFS_BUF_TO_AGI(agibp);
1634 
1635 	/*
1636 	 * Get the index into the agi hash table for the
1637 	 * list this inode will go on.
1638 	 */
1639 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1640 	ASSERT(agino != 0);
1641 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1642 	ASSERT(agi->agi_unlinked[bucket_index]);
1643 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1644 
1645 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1646 		/*
1647 		 * There is already another inode in the bucket we need
1648 		 * to add ourselves to.  Add us at the front of the list.
1649 		 * Here we put the head pointer into our next pointer,
1650 		 * and then we fall through to point the head at us.
1651 		 */
1652 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1653 				       0, 0);
1654 		if (error)
1655 			return error;
1656 
1657 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1658 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1659 		offset = ip->i_imap.im_boffset +
1660 			offsetof(xfs_dinode_t, di_next_unlinked);
1661 
1662 		/* need to recalc the inode CRC if appropriate */
1663 		xfs_dinode_calc_crc(mp, dip);
1664 
1665 		xfs_trans_inode_buf(tp, ibp);
1666 		xfs_trans_log_buf(tp, ibp, offset,
1667 				  (offset + sizeof(xfs_agino_t) - 1));
1668 		xfs_inobp_check(mp, ibp);
1669 	}
1670 
1671 	/*
1672 	 * Point the bucket head pointer at the inode being inserted.
1673 	 */
1674 	ASSERT(agino != 0);
1675 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1676 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1677 		(sizeof(xfs_agino_t) * bucket_index);
1678 	xfs_trans_log_buf(tp, agibp, offset,
1679 			  (offset + sizeof(xfs_agino_t) - 1));
1680 	return 0;
1681 }
1682 
1683 /*
1684  * Pull the on-disk inode from the AGI unlinked list.
1685  */
1686 STATIC int
1687 xfs_iunlink_remove(
1688 	xfs_trans_t	*tp,
1689 	xfs_inode_t	*ip)
1690 {
1691 	xfs_ino_t	next_ino;
1692 	xfs_mount_t	*mp;
1693 	xfs_agi_t	*agi;
1694 	xfs_dinode_t	*dip;
1695 	xfs_buf_t	*agibp;
1696 	xfs_buf_t	*ibp;
1697 	xfs_agnumber_t	agno;
1698 	xfs_agino_t	agino;
1699 	xfs_agino_t	next_agino;
1700 	xfs_buf_t	*last_ibp;
1701 	xfs_dinode_t	*last_dip = NULL;
1702 	short		bucket_index;
1703 	int		offset, last_offset = 0;
1704 	int		error;
1705 
1706 	mp = tp->t_mountp;
1707 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1708 
1709 	/*
1710 	 * Get the agi buffer first.  It ensures lock ordering
1711 	 * on the list.
1712 	 */
1713 	error = xfs_read_agi(mp, tp, agno, &agibp);
1714 	if (error)
1715 		return error;
1716 
1717 	agi = XFS_BUF_TO_AGI(agibp);
1718 
1719 	/*
1720 	 * Get the index into the agi hash table for the
1721 	 * list this inode will go on.
1722 	 */
1723 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1724 	ASSERT(agino != 0);
1725 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1726 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1727 	ASSERT(agi->agi_unlinked[bucket_index]);
1728 
1729 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1730 		/*
1731 		 * We're at the head of the list.  Get the inode's on-disk
1732 		 * buffer to see if there is anyone after us on the list.
1733 		 * Only modify our next pointer if it is not already NULLAGINO.
1734 		 * This saves us the overhead of dealing with the buffer when
1735 		 * there is no need to change it.
1736 		 */
1737 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1738 				       0, 0);
1739 		if (error) {
1740 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
1741 				__func__, error);
1742 			return error;
1743 		}
1744 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1745 		ASSERT(next_agino != 0);
1746 		if (next_agino != NULLAGINO) {
1747 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1748 			offset = ip->i_imap.im_boffset +
1749 				offsetof(xfs_dinode_t, di_next_unlinked);
1750 
1751 			/* need to recalc the inode CRC if appropriate */
1752 			xfs_dinode_calc_crc(mp, dip);
1753 
1754 			xfs_trans_inode_buf(tp, ibp);
1755 			xfs_trans_log_buf(tp, ibp, offset,
1756 					  (offset + sizeof(xfs_agino_t) - 1));
1757 			xfs_inobp_check(mp, ibp);
1758 		} else {
1759 			xfs_trans_brelse(tp, ibp);
1760 		}
1761 		/*
1762 		 * Point the bucket head pointer at the next inode.
1763 		 */
1764 		ASSERT(next_agino != 0);
1765 		ASSERT(next_agino != agino);
1766 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1767 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1768 			(sizeof(xfs_agino_t) * bucket_index);
1769 		xfs_trans_log_buf(tp, agibp, offset,
1770 				  (offset + sizeof(xfs_agino_t) - 1));
1771 	} else {
1772 		/*
1773 		 * We need to search the list for the inode being freed.
1774 		 */
1775 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1776 		last_ibp = NULL;
1777 		while (next_agino != agino) {
1778 			struct xfs_imap	imap;
1779 
1780 			if (last_ibp)
1781 				xfs_trans_brelse(tp, last_ibp);
1782 
1783 			imap.im_blkno = 0;
1784 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1785 
1786 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
1787 			if (error) {
1788 				xfs_warn(mp,
1789 	"%s: xfs_imap returned error %d.",
1790 					 __func__, error);
1791 				return error;
1792 			}
1793 
1794 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
1795 					       &last_ibp, 0, 0);
1796 			if (error) {
1797 				xfs_warn(mp,
1798 	"%s: xfs_imap_to_bp returned error %d.",
1799 					__func__, error);
1800 				return error;
1801 			}
1802 
1803 			last_offset = imap.im_boffset;
1804 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1805 			ASSERT(next_agino != NULLAGINO);
1806 			ASSERT(next_agino != 0);
1807 		}
1808 
1809 		/*
1810 		 * Now last_ibp points to the buffer previous to us on the
1811 		 * unlinked list.  Pull us from the list.
1812 		 */
1813 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1814 				       0, 0);
1815 		if (error) {
1816 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
1817 				__func__, error);
1818 			return error;
1819 		}
1820 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1821 		ASSERT(next_agino != 0);
1822 		ASSERT(next_agino != agino);
1823 		if (next_agino != NULLAGINO) {
1824 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1825 			offset = ip->i_imap.im_boffset +
1826 				offsetof(xfs_dinode_t, di_next_unlinked);
1827 
1828 			/* need to recalc the inode CRC if appropriate */
1829 			xfs_dinode_calc_crc(mp, dip);
1830 
1831 			xfs_trans_inode_buf(tp, ibp);
1832 			xfs_trans_log_buf(tp, ibp, offset,
1833 					  (offset + sizeof(xfs_agino_t) - 1));
1834 			xfs_inobp_check(mp, ibp);
1835 		} else {
1836 			xfs_trans_brelse(tp, ibp);
1837 		}
1838 		/*
1839 		 * Point the previous inode on the list to the next inode.
1840 		 */
1841 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1842 		ASSERT(next_agino != 0);
1843 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1844 
1845 		/* need to recalc the inode CRC if appropriate */
1846 		xfs_dinode_calc_crc(mp, last_dip);
1847 
1848 		xfs_trans_inode_buf(tp, last_ibp);
1849 		xfs_trans_log_buf(tp, last_ibp, offset,
1850 				  (offset + sizeof(xfs_agino_t) - 1));
1851 		xfs_inobp_check(mp, last_ibp);
1852 	}
1853 	return 0;
1854 }
1855 
1856 /*
1857  * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1858  * inodes that are in memory - they all must be marked stale and attached to
1859  * the cluster buffer.
1860  */
1861 STATIC int
1862 xfs_ifree_cluster(
1863 	xfs_inode_t	*free_ip,
1864 	xfs_trans_t	*tp,
1865 	xfs_ino_t	inum)
1866 {
1867 	xfs_mount_t		*mp = free_ip->i_mount;
1868 	int			blks_per_cluster;
1869 	int			nbufs;
1870 	int			ninodes;
1871 	int			i, j;
1872 	xfs_daddr_t		blkno;
1873 	xfs_buf_t		*bp;
1874 	xfs_inode_t		*ip;
1875 	xfs_inode_log_item_t	*iip;
1876 	xfs_log_item_t		*lip;
1877 	struct xfs_perag	*pag;
1878 
1879 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1880 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1881 		blks_per_cluster = 1;
1882 		ninodes = mp->m_sb.sb_inopblock;
1883 		nbufs = XFS_IALLOC_BLOCKS(mp);
1884 	} else {
1885 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1886 					mp->m_sb.sb_blocksize;
1887 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1888 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1889 	}
1890 
1891 	for (j = 0; j < nbufs; j++, inum += ninodes) {
1892 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1893 					 XFS_INO_TO_AGBNO(mp, inum));
1894 
1895 		/*
1896 		 * We obtain and lock the backing buffer first in the process
1897 		 * here, as we have to ensure that any dirty inode that we
1898 		 * can't get the flush lock on is attached to the buffer.
1899 		 * If we scan the in-memory inodes first, then buffer IO can
1900 		 * complete before we get a lock on it, and hence we may fail
1901 		 * to mark all the active inodes on the buffer stale.
1902 		 */
1903 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1904 					mp->m_bsize * blks_per_cluster,
1905 					XBF_UNMAPPED);
1906 
1907 		if (!bp)
1908 			return ENOMEM;
1909 
1910 		/*
1911 		 * This buffer may not have been correctly initialised as we
1912 		 * didn't read it from disk. That's not important because we are
1913 		 * only using to mark the buffer as stale in the log, and to
1914 		 * attach stale cached inodes on it. That means it will never be
1915 		 * dispatched for IO. If it is, we want to know about it, and we
1916 		 * want it to fail. We can acheive this by adding a write
1917 		 * verifier to the buffer.
1918 		 */
1919 		 bp->b_ops = &xfs_inode_buf_ops;
1920 
1921 		/*
1922 		 * Walk the inodes already attached to the buffer and mark them
1923 		 * stale. These will all have the flush locks held, so an
1924 		 * in-memory inode walk can't lock them. By marking them all
1925 		 * stale first, we will not attempt to lock them in the loop
1926 		 * below as the XFS_ISTALE flag will be set.
1927 		 */
1928 		lip = bp->b_fspriv;
1929 		while (lip) {
1930 			if (lip->li_type == XFS_LI_INODE) {
1931 				iip = (xfs_inode_log_item_t *)lip;
1932 				ASSERT(iip->ili_logged == 1);
1933 				lip->li_cb = xfs_istale_done;
1934 				xfs_trans_ail_copy_lsn(mp->m_ail,
1935 							&iip->ili_flush_lsn,
1936 							&iip->ili_item.li_lsn);
1937 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1938 			}
1939 			lip = lip->li_bio_list;
1940 		}
1941 
1942 
1943 		/*
1944 		 * For each inode in memory attempt to add it to the inode
1945 		 * buffer and set it up for being staled on buffer IO
1946 		 * completion.  This is safe as we've locked out tail pushing
1947 		 * and flushing by locking the buffer.
1948 		 *
1949 		 * We have already marked every inode that was part of a
1950 		 * transaction stale above, which means there is no point in
1951 		 * even trying to lock them.
1952 		 */
1953 		for (i = 0; i < ninodes; i++) {
1954 retry:
1955 			rcu_read_lock();
1956 			ip = radix_tree_lookup(&pag->pag_ici_root,
1957 					XFS_INO_TO_AGINO(mp, (inum + i)));
1958 
1959 			/* Inode not in memory, nothing to do */
1960 			if (!ip) {
1961 				rcu_read_unlock();
1962 				continue;
1963 			}
1964 
1965 			/*
1966 			 * because this is an RCU protected lookup, we could
1967 			 * find a recently freed or even reallocated inode
1968 			 * during the lookup. We need to check under the
1969 			 * i_flags_lock for a valid inode here. Skip it if it
1970 			 * is not valid, the wrong inode or stale.
1971 			 */
1972 			spin_lock(&ip->i_flags_lock);
1973 			if (ip->i_ino != inum + i ||
1974 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
1975 				spin_unlock(&ip->i_flags_lock);
1976 				rcu_read_unlock();
1977 				continue;
1978 			}
1979 			spin_unlock(&ip->i_flags_lock);
1980 
1981 			/*
1982 			 * Don't try to lock/unlock the current inode, but we
1983 			 * _cannot_ skip the other inodes that we did not find
1984 			 * in the list attached to the buffer and are not
1985 			 * already marked stale. If we can't lock it, back off
1986 			 * and retry.
1987 			 */
1988 			if (ip != free_ip &&
1989 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1990 				rcu_read_unlock();
1991 				delay(1);
1992 				goto retry;
1993 			}
1994 			rcu_read_unlock();
1995 
1996 			xfs_iflock(ip);
1997 			xfs_iflags_set(ip, XFS_ISTALE);
1998 
1999 			/*
2000 			 * we don't need to attach clean inodes or those only
2001 			 * with unlogged changes (which we throw away, anyway).
2002 			 */
2003 			iip = ip->i_itemp;
2004 			if (!iip || xfs_inode_clean(ip)) {
2005 				ASSERT(ip != free_ip);
2006 				xfs_ifunlock(ip);
2007 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2008 				continue;
2009 			}
2010 
2011 			iip->ili_last_fields = iip->ili_fields;
2012 			iip->ili_fields = 0;
2013 			iip->ili_logged = 1;
2014 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2015 						&iip->ili_item.li_lsn);
2016 
2017 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2018 						  &iip->ili_item);
2019 
2020 			if (ip != free_ip)
2021 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2022 		}
2023 
2024 		xfs_trans_stale_inode_buf(tp, bp);
2025 		xfs_trans_binval(tp, bp);
2026 	}
2027 
2028 	xfs_perag_put(pag);
2029 	return 0;
2030 }
2031 
2032 /*
2033  * This is called to return an inode to the inode free list.
2034  * The inode should already be truncated to 0 length and have
2035  * no pages associated with it.  This routine also assumes that
2036  * the inode is already a part of the transaction.
2037  *
2038  * The on-disk copy of the inode will have been added to the list
2039  * of unlinked inodes in the AGI. We need to remove the inode from
2040  * that list atomically with respect to freeing it here.
2041  */
2042 int
2043 xfs_ifree(
2044 	xfs_trans_t	*tp,
2045 	xfs_inode_t	*ip,
2046 	xfs_bmap_free_t	*flist)
2047 {
2048 	int			error;
2049 	int			delete;
2050 	xfs_ino_t		first_ino;
2051 
2052 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2053 	ASSERT(ip->i_d.di_nlink == 0);
2054 	ASSERT(ip->i_d.di_nextents == 0);
2055 	ASSERT(ip->i_d.di_anextents == 0);
2056 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2057 	ASSERT(ip->i_d.di_nblocks == 0);
2058 
2059 	/*
2060 	 * Pull the on-disk inode from the AGI unlinked list.
2061 	 */
2062 	error = xfs_iunlink_remove(tp, ip);
2063 	if (error)
2064 		return error;
2065 
2066 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2067 	if (error)
2068 		return error;
2069 
2070 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2071 	ip->i_d.di_flags = 0;
2072 	ip->i_d.di_dmevmask = 0;
2073 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2074 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2075 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2076 	/*
2077 	 * Bump the generation count so no one will be confused
2078 	 * by reincarnations of this inode.
2079 	 */
2080 	ip->i_d.di_gen++;
2081 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2082 
2083 	if (delete)
2084 		error = xfs_ifree_cluster(ip, tp, first_ino);
2085 
2086 	return error;
2087 }
2088 
2089 /*
2090  * Reallocate the space for if_broot based on the number of records
2091  * being added or deleted as indicated in rec_diff.  Move the records
2092  * and pointers in if_broot to fit the new size.  When shrinking this
2093  * will eliminate holes between the records and pointers created by
2094  * the caller.  When growing this will create holes to be filled in
2095  * by the caller.
2096  *
2097  * The caller must not request to add more records than would fit in
2098  * the on-disk inode root.  If the if_broot is currently NULL, then
2099  * if we adding records one will be allocated.  The caller must also
2100  * not request that the number of records go below zero, although
2101  * it can go to zero.
2102  *
2103  * ip -- the inode whose if_broot area is changing
2104  * ext_diff -- the change in the number of records, positive or negative,
2105  *	 requested for the if_broot array.
2106  */
2107 void
2108 xfs_iroot_realloc(
2109 	xfs_inode_t		*ip,
2110 	int			rec_diff,
2111 	int			whichfork)
2112 {
2113 	struct xfs_mount	*mp = ip->i_mount;
2114 	int			cur_max;
2115 	xfs_ifork_t		*ifp;
2116 	struct xfs_btree_block	*new_broot;
2117 	int			new_max;
2118 	size_t			new_size;
2119 	char			*np;
2120 	char			*op;
2121 
2122 	/*
2123 	 * Handle the degenerate case quietly.
2124 	 */
2125 	if (rec_diff == 0) {
2126 		return;
2127 	}
2128 
2129 	ifp = XFS_IFORK_PTR(ip, whichfork);
2130 	if (rec_diff > 0) {
2131 		/*
2132 		 * If there wasn't any memory allocated before, just
2133 		 * allocate it now and get out.
2134 		 */
2135 		if (ifp->if_broot_bytes == 0) {
2136 			new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
2137 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2138 			ifp->if_broot_bytes = (int)new_size;
2139 			return;
2140 		}
2141 
2142 		/*
2143 		 * If there is already an existing if_broot, then we need
2144 		 * to realloc() it and shift the pointers to their new
2145 		 * location.  The records don't change location because
2146 		 * they are kept butted up against the btree block header.
2147 		 */
2148 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2149 		new_max = cur_max + rec_diff;
2150 		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
2151 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2152 				XFS_BMAP_BROOT_SPACE_CALC(mp, cur_max),
2153 				KM_SLEEP | KM_NOFS);
2154 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2155 						     ifp->if_broot_bytes);
2156 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2157 						     (int)new_size);
2158 		ifp->if_broot_bytes = (int)new_size;
2159 		ASSERT(ifp->if_broot_bytes <=
2160 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ(ip));
2161 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2162 		return;
2163 	}
2164 
2165 	/*
2166 	 * rec_diff is less than 0.  In this case, we are shrinking the
2167 	 * if_broot buffer.  It must already exist.  If we go to zero
2168 	 * records, just get rid of the root and clear the status bit.
2169 	 */
2170 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2171 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2172 	new_max = cur_max + rec_diff;
2173 	ASSERT(new_max >= 0);
2174 	if (new_max > 0)
2175 		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
2176 	else
2177 		new_size = 0;
2178 	if (new_size > 0) {
2179 		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2180 		/*
2181 		 * First copy over the btree block header.
2182 		 */
2183 		memcpy(new_broot, ifp->if_broot,
2184 			XFS_BMBT_BLOCK_LEN(ip->i_mount));
2185 	} else {
2186 		new_broot = NULL;
2187 		ifp->if_flags &= ~XFS_IFBROOT;
2188 	}
2189 
2190 	/*
2191 	 * Only copy the records and pointers if there are any.
2192 	 */
2193 	if (new_max > 0) {
2194 		/*
2195 		 * First copy the records.
2196 		 */
2197 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2198 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2199 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2200 
2201 		/*
2202 		 * Then copy the pointers.
2203 		 */
2204 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2205 						     ifp->if_broot_bytes);
2206 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2207 						     (int)new_size);
2208 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2209 	}
2210 	kmem_free(ifp->if_broot);
2211 	ifp->if_broot = new_broot;
2212 	ifp->if_broot_bytes = (int)new_size;
2213 	ASSERT(ifp->if_broot_bytes <=
2214 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ(ip));
2215 	return;
2216 }
2217 
2218 
2219 /*
2220  * This is called when the amount of space needed for if_data
2221  * is increased or decreased.  The change in size is indicated by
2222  * the number of bytes that need to be added or deleted in the
2223  * byte_diff parameter.
2224  *
2225  * If the amount of space needed has decreased below the size of the
2226  * inline buffer, then switch to using the inline buffer.  Otherwise,
2227  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2228  * to what is needed.
2229  *
2230  * ip -- the inode whose if_data area is changing
2231  * byte_diff -- the change in the number of bytes, positive or negative,
2232  *	 requested for the if_data array.
2233  */
2234 void
2235 xfs_idata_realloc(
2236 	xfs_inode_t	*ip,
2237 	int		byte_diff,
2238 	int		whichfork)
2239 {
2240 	xfs_ifork_t	*ifp;
2241 	int		new_size;
2242 	int		real_size;
2243 
2244 	if (byte_diff == 0) {
2245 		return;
2246 	}
2247 
2248 	ifp = XFS_IFORK_PTR(ip, whichfork);
2249 	new_size = (int)ifp->if_bytes + byte_diff;
2250 	ASSERT(new_size >= 0);
2251 
2252 	if (new_size == 0) {
2253 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2254 			kmem_free(ifp->if_u1.if_data);
2255 		}
2256 		ifp->if_u1.if_data = NULL;
2257 		real_size = 0;
2258 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2259 		/*
2260 		 * If the valid extents/data can fit in if_inline_ext/data,
2261 		 * copy them from the malloc'd vector and free it.
2262 		 */
2263 		if (ifp->if_u1.if_data == NULL) {
2264 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2265 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2266 			ASSERT(ifp->if_real_bytes != 0);
2267 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2268 			      new_size);
2269 			kmem_free(ifp->if_u1.if_data);
2270 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2271 		}
2272 		real_size = 0;
2273 	} else {
2274 		/*
2275 		 * Stuck with malloc/realloc.
2276 		 * For inline data, the underlying buffer must be
2277 		 * a multiple of 4 bytes in size so that it can be
2278 		 * logged and stay on word boundaries.  We enforce
2279 		 * that here.
2280 		 */
2281 		real_size = roundup(new_size, 4);
2282 		if (ifp->if_u1.if_data == NULL) {
2283 			ASSERT(ifp->if_real_bytes == 0);
2284 			ifp->if_u1.if_data = kmem_alloc(real_size,
2285 							KM_SLEEP | KM_NOFS);
2286 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2287 			/*
2288 			 * Only do the realloc if the underlying size
2289 			 * is really changing.
2290 			 */
2291 			if (ifp->if_real_bytes != real_size) {
2292 				ifp->if_u1.if_data =
2293 					kmem_realloc(ifp->if_u1.if_data,
2294 							real_size,
2295 							ifp->if_real_bytes,
2296 							KM_SLEEP | KM_NOFS);
2297 			}
2298 		} else {
2299 			ASSERT(ifp->if_real_bytes == 0);
2300 			ifp->if_u1.if_data = kmem_alloc(real_size,
2301 							KM_SLEEP | KM_NOFS);
2302 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2303 				ifp->if_bytes);
2304 		}
2305 	}
2306 	ifp->if_real_bytes = real_size;
2307 	ifp->if_bytes = new_size;
2308 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2309 }
2310 
2311 void
2312 xfs_idestroy_fork(
2313 	xfs_inode_t	*ip,
2314 	int		whichfork)
2315 {
2316 	xfs_ifork_t	*ifp;
2317 
2318 	ifp = XFS_IFORK_PTR(ip, whichfork);
2319 	if (ifp->if_broot != NULL) {
2320 		kmem_free(ifp->if_broot);
2321 		ifp->if_broot = NULL;
2322 	}
2323 
2324 	/*
2325 	 * If the format is local, then we can't have an extents
2326 	 * array so just look for an inline data array.  If we're
2327 	 * not local then we may or may not have an extents list,
2328 	 * so check and free it up if we do.
2329 	 */
2330 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2331 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2332 		    (ifp->if_u1.if_data != NULL)) {
2333 			ASSERT(ifp->if_real_bytes != 0);
2334 			kmem_free(ifp->if_u1.if_data);
2335 			ifp->if_u1.if_data = NULL;
2336 			ifp->if_real_bytes = 0;
2337 		}
2338 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2339 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2340 		    ((ifp->if_u1.if_extents != NULL) &&
2341 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2342 		ASSERT(ifp->if_real_bytes != 0);
2343 		xfs_iext_destroy(ifp);
2344 	}
2345 	ASSERT(ifp->if_u1.if_extents == NULL ||
2346 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2347 	ASSERT(ifp->if_real_bytes == 0);
2348 	if (whichfork == XFS_ATTR_FORK) {
2349 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2350 		ip->i_afp = NULL;
2351 	}
2352 }
2353 
2354 /*
2355  * This is called to unpin an inode.  The caller must have the inode locked
2356  * in at least shared mode so that the buffer cannot be subsequently pinned
2357  * once someone is waiting for it to be unpinned.
2358  */
2359 static void
2360 xfs_iunpin(
2361 	struct xfs_inode	*ip)
2362 {
2363 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2364 
2365 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2366 
2367 	/* Give the log a push to start the unpinning I/O */
2368 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2369 
2370 }
2371 
2372 static void
2373 __xfs_iunpin_wait(
2374 	struct xfs_inode	*ip)
2375 {
2376 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2377 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2378 
2379 	xfs_iunpin(ip);
2380 
2381 	do {
2382 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2383 		if (xfs_ipincount(ip))
2384 			io_schedule();
2385 	} while (xfs_ipincount(ip));
2386 	finish_wait(wq, &wait.wait);
2387 }
2388 
2389 void
2390 xfs_iunpin_wait(
2391 	struct xfs_inode	*ip)
2392 {
2393 	if (xfs_ipincount(ip))
2394 		__xfs_iunpin_wait(ip);
2395 }
2396 
2397 /*
2398  * xfs_iextents_copy()
2399  *
2400  * This is called to copy the REAL extents (as opposed to the delayed
2401  * allocation extents) from the inode into the given buffer.  It
2402  * returns the number of bytes copied into the buffer.
2403  *
2404  * If there are no delayed allocation extents, then we can just
2405  * memcpy() the extents into the buffer.  Otherwise, we need to
2406  * examine each extent in turn and skip those which are delayed.
2407  */
2408 int
2409 xfs_iextents_copy(
2410 	xfs_inode_t		*ip,
2411 	xfs_bmbt_rec_t		*dp,
2412 	int			whichfork)
2413 {
2414 	int			copied;
2415 	int			i;
2416 	xfs_ifork_t		*ifp;
2417 	int			nrecs;
2418 	xfs_fsblock_t		start_block;
2419 
2420 	ifp = XFS_IFORK_PTR(ip, whichfork);
2421 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2422 	ASSERT(ifp->if_bytes > 0);
2423 
2424 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2425 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2426 	ASSERT(nrecs > 0);
2427 
2428 	/*
2429 	 * There are some delayed allocation extents in the
2430 	 * inode, so copy the extents one at a time and skip
2431 	 * the delayed ones.  There must be at least one
2432 	 * non-delayed extent.
2433 	 */
2434 	copied = 0;
2435 	for (i = 0; i < nrecs; i++) {
2436 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2437 		start_block = xfs_bmbt_get_startblock(ep);
2438 		if (isnullstartblock(start_block)) {
2439 			/*
2440 			 * It's a delayed allocation extent, so skip it.
2441 			 */
2442 			continue;
2443 		}
2444 
2445 		/* Translate to on disk format */
2446 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2447 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2448 		dp++;
2449 		copied++;
2450 	}
2451 	ASSERT(copied != 0);
2452 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2453 
2454 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2455 }
2456 
2457 /*
2458  * Each of the following cases stores data into the same region
2459  * of the on-disk inode, so only one of them can be valid at
2460  * any given time. While it is possible to have conflicting formats
2461  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2462  * in EXTENTS format, this can only happen when the fork has
2463  * changed formats after being modified but before being flushed.
2464  * In these cases, the format always takes precedence, because the
2465  * format indicates the current state of the fork.
2466  */
2467 /*ARGSUSED*/
2468 STATIC void
2469 xfs_iflush_fork(
2470 	xfs_inode_t		*ip,
2471 	xfs_dinode_t		*dip,
2472 	xfs_inode_log_item_t	*iip,
2473 	int			whichfork,
2474 	xfs_buf_t		*bp)
2475 {
2476 	char			*cp;
2477 	xfs_ifork_t		*ifp;
2478 	xfs_mount_t		*mp;
2479 	static const short	brootflag[2] =
2480 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2481 	static const short	dataflag[2] =
2482 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2483 	static const short	extflag[2] =
2484 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2485 
2486 	if (!iip)
2487 		return;
2488 	ifp = XFS_IFORK_PTR(ip, whichfork);
2489 	/*
2490 	 * This can happen if we gave up in iformat in an error path,
2491 	 * for the attribute fork.
2492 	 */
2493 	if (!ifp) {
2494 		ASSERT(whichfork == XFS_ATTR_FORK);
2495 		return;
2496 	}
2497 	cp = XFS_DFORK_PTR(dip, whichfork);
2498 	mp = ip->i_mount;
2499 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2500 	case XFS_DINODE_FMT_LOCAL:
2501 		if ((iip->ili_fields & dataflag[whichfork]) &&
2502 		    (ifp->if_bytes > 0)) {
2503 			ASSERT(ifp->if_u1.if_data != NULL);
2504 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2505 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2506 		}
2507 		break;
2508 
2509 	case XFS_DINODE_FMT_EXTENTS:
2510 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2511 		       !(iip->ili_fields & extflag[whichfork]));
2512 		if ((iip->ili_fields & extflag[whichfork]) &&
2513 		    (ifp->if_bytes > 0)) {
2514 			ASSERT(xfs_iext_get_ext(ifp, 0));
2515 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2516 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2517 				whichfork);
2518 		}
2519 		break;
2520 
2521 	case XFS_DINODE_FMT_BTREE:
2522 		if ((iip->ili_fields & brootflag[whichfork]) &&
2523 		    (ifp->if_broot_bytes > 0)) {
2524 			ASSERT(ifp->if_broot != NULL);
2525 			ASSERT(ifp->if_broot_bytes <=
2526 			       (XFS_IFORK_SIZE(ip, whichfork) +
2527 				XFS_BROOT_SIZE_ADJ(ip)));
2528 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2529 				(xfs_bmdr_block_t *)cp,
2530 				XFS_DFORK_SIZE(dip, mp, whichfork));
2531 		}
2532 		break;
2533 
2534 	case XFS_DINODE_FMT_DEV:
2535 		if (iip->ili_fields & XFS_ILOG_DEV) {
2536 			ASSERT(whichfork == XFS_DATA_FORK);
2537 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2538 		}
2539 		break;
2540 
2541 	case XFS_DINODE_FMT_UUID:
2542 		if (iip->ili_fields & XFS_ILOG_UUID) {
2543 			ASSERT(whichfork == XFS_DATA_FORK);
2544 			memcpy(XFS_DFORK_DPTR(dip),
2545 			       &ip->i_df.if_u2.if_uuid,
2546 			       sizeof(uuid_t));
2547 		}
2548 		break;
2549 
2550 	default:
2551 		ASSERT(0);
2552 		break;
2553 	}
2554 }
2555 
2556 STATIC int
2557 xfs_iflush_cluster(
2558 	xfs_inode_t	*ip,
2559 	xfs_buf_t	*bp)
2560 {
2561 	xfs_mount_t		*mp = ip->i_mount;
2562 	struct xfs_perag	*pag;
2563 	unsigned long		first_index, mask;
2564 	unsigned long		inodes_per_cluster;
2565 	int			ilist_size;
2566 	xfs_inode_t		**ilist;
2567 	xfs_inode_t		*iq;
2568 	int			nr_found;
2569 	int			clcount = 0;
2570 	int			bufwasdelwri;
2571 	int			i;
2572 
2573 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2574 
2575 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2576 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2577 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2578 	if (!ilist)
2579 		goto out_put;
2580 
2581 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2582 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2583 	rcu_read_lock();
2584 	/* really need a gang lookup range call here */
2585 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2586 					first_index, inodes_per_cluster);
2587 	if (nr_found == 0)
2588 		goto out_free;
2589 
2590 	for (i = 0; i < nr_found; i++) {
2591 		iq = ilist[i];
2592 		if (iq == ip)
2593 			continue;
2594 
2595 		/*
2596 		 * because this is an RCU protected lookup, we could find a
2597 		 * recently freed or even reallocated inode during the lookup.
2598 		 * We need to check under the i_flags_lock for a valid inode
2599 		 * here. Skip it if it is not valid or the wrong inode.
2600 		 */
2601 		spin_lock(&ip->i_flags_lock);
2602 		if (!ip->i_ino ||
2603 		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2604 			spin_unlock(&ip->i_flags_lock);
2605 			continue;
2606 		}
2607 		spin_unlock(&ip->i_flags_lock);
2608 
2609 		/*
2610 		 * Do an un-protected check to see if the inode is dirty and
2611 		 * is a candidate for flushing.  These checks will be repeated
2612 		 * later after the appropriate locks are acquired.
2613 		 */
2614 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2615 			continue;
2616 
2617 		/*
2618 		 * Try to get locks.  If any are unavailable or it is pinned,
2619 		 * then this inode cannot be flushed and is skipped.
2620 		 */
2621 
2622 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2623 			continue;
2624 		if (!xfs_iflock_nowait(iq)) {
2625 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2626 			continue;
2627 		}
2628 		if (xfs_ipincount(iq)) {
2629 			xfs_ifunlock(iq);
2630 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2631 			continue;
2632 		}
2633 
2634 		/*
2635 		 * arriving here means that this inode can be flushed.  First
2636 		 * re-check that it's dirty before flushing.
2637 		 */
2638 		if (!xfs_inode_clean(iq)) {
2639 			int	error;
2640 			error = xfs_iflush_int(iq, bp);
2641 			if (error) {
2642 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2643 				goto cluster_corrupt_out;
2644 			}
2645 			clcount++;
2646 		} else {
2647 			xfs_ifunlock(iq);
2648 		}
2649 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2650 	}
2651 
2652 	if (clcount) {
2653 		XFS_STATS_INC(xs_icluster_flushcnt);
2654 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2655 	}
2656 
2657 out_free:
2658 	rcu_read_unlock();
2659 	kmem_free(ilist);
2660 out_put:
2661 	xfs_perag_put(pag);
2662 	return 0;
2663 
2664 
2665 cluster_corrupt_out:
2666 	/*
2667 	 * Corruption detected in the clustering loop.  Invalidate the
2668 	 * inode buffer and shut down the filesystem.
2669 	 */
2670 	rcu_read_unlock();
2671 	/*
2672 	 * Clean up the buffer.  If it was delwri, just release it --
2673 	 * brelse can handle it with no problems.  If not, shut down the
2674 	 * filesystem before releasing the buffer.
2675 	 */
2676 	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
2677 	if (bufwasdelwri)
2678 		xfs_buf_relse(bp);
2679 
2680 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2681 
2682 	if (!bufwasdelwri) {
2683 		/*
2684 		 * Just like incore_relse: if we have b_iodone functions,
2685 		 * mark the buffer as an error and call them.  Otherwise
2686 		 * mark it as stale and brelse.
2687 		 */
2688 		if (bp->b_iodone) {
2689 			XFS_BUF_UNDONE(bp);
2690 			xfs_buf_stale(bp);
2691 			xfs_buf_ioerror(bp, EIO);
2692 			xfs_buf_ioend(bp, 0);
2693 		} else {
2694 			xfs_buf_stale(bp);
2695 			xfs_buf_relse(bp);
2696 		}
2697 	}
2698 
2699 	/*
2700 	 * Unlocks the flush lock
2701 	 */
2702 	xfs_iflush_abort(iq, false);
2703 	kmem_free(ilist);
2704 	xfs_perag_put(pag);
2705 	return XFS_ERROR(EFSCORRUPTED);
2706 }
2707 
2708 /*
2709  * Flush dirty inode metadata into the backing buffer.
2710  *
2711  * The caller must have the inode lock and the inode flush lock held.  The
2712  * inode lock will still be held upon return to the caller, and the inode
2713  * flush lock will be released after the inode has reached the disk.
2714  *
2715  * The caller must write out the buffer returned in *bpp and release it.
2716  */
2717 int
2718 xfs_iflush(
2719 	struct xfs_inode	*ip,
2720 	struct xfs_buf		**bpp)
2721 {
2722 	struct xfs_mount	*mp = ip->i_mount;
2723 	struct xfs_buf		*bp;
2724 	struct xfs_dinode	*dip;
2725 	int			error;
2726 
2727 	XFS_STATS_INC(xs_iflush_count);
2728 
2729 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2730 	ASSERT(xfs_isiflocked(ip));
2731 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2732 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2733 
2734 	*bpp = NULL;
2735 
2736 	xfs_iunpin_wait(ip);
2737 
2738 	/*
2739 	 * For stale inodes we cannot rely on the backing buffer remaining
2740 	 * stale in cache for the remaining life of the stale inode and so
2741 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
2742 	 * inodes below. We have to check this after ensuring the inode is
2743 	 * unpinned so that it is safe to reclaim the stale inode after the
2744 	 * flush call.
2745 	 */
2746 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2747 		xfs_ifunlock(ip);
2748 		return 0;
2749 	}
2750 
2751 	/*
2752 	 * This may have been unpinned because the filesystem is shutting
2753 	 * down forcibly. If that's the case we must not write this inode
2754 	 * to disk, because the log record didn't make it to disk.
2755 	 *
2756 	 * We also have to remove the log item from the AIL in this case,
2757 	 * as we wait for an empty AIL as part of the unmount process.
2758 	 */
2759 	if (XFS_FORCED_SHUTDOWN(mp)) {
2760 		error = XFS_ERROR(EIO);
2761 		goto abort_out;
2762 	}
2763 
2764 	/*
2765 	 * Get the buffer containing the on-disk inode.
2766 	 */
2767 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
2768 			       0);
2769 	if (error || !bp) {
2770 		xfs_ifunlock(ip);
2771 		return error;
2772 	}
2773 
2774 	/*
2775 	 * First flush out the inode that xfs_iflush was called with.
2776 	 */
2777 	error = xfs_iflush_int(ip, bp);
2778 	if (error)
2779 		goto corrupt_out;
2780 
2781 	/*
2782 	 * If the buffer is pinned then push on the log now so we won't
2783 	 * get stuck waiting in the write for too long.
2784 	 */
2785 	if (xfs_buf_ispinned(bp))
2786 		xfs_log_force(mp, 0);
2787 
2788 	/*
2789 	 * inode clustering:
2790 	 * see if other inodes can be gathered into this write
2791 	 */
2792 	error = xfs_iflush_cluster(ip, bp);
2793 	if (error)
2794 		goto cluster_corrupt_out;
2795 
2796 	*bpp = bp;
2797 	return 0;
2798 
2799 corrupt_out:
2800 	xfs_buf_relse(bp);
2801 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2802 cluster_corrupt_out:
2803 	error = XFS_ERROR(EFSCORRUPTED);
2804 abort_out:
2805 	/*
2806 	 * Unlocks the flush lock
2807 	 */
2808 	xfs_iflush_abort(ip, false);
2809 	return error;
2810 }
2811 
2812 
2813 STATIC int
2814 xfs_iflush_int(
2815 	struct xfs_inode	*ip,
2816 	struct xfs_buf		*bp)
2817 {
2818 	struct xfs_inode_log_item *iip = ip->i_itemp;
2819 	struct xfs_dinode	*dip;
2820 	struct xfs_mount	*mp = ip->i_mount;
2821 
2822 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2823 	ASSERT(xfs_isiflocked(ip));
2824 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2825 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2826 	ASSERT(iip != NULL && iip->ili_fields != 0);
2827 
2828 	/* set *dip = inode's place in the buffer */
2829 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2830 
2831 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2832 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2833 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2834 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2835 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2836 		goto corrupt_out;
2837 	}
2838 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2839 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2840 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2841 			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2842 			__func__, ip->i_ino, ip, ip->i_d.di_magic);
2843 		goto corrupt_out;
2844 	}
2845 	if (S_ISREG(ip->i_d.di_mode)) {
2846 		if (XFS_TEST_ERROR(
2847 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2848 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2849 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2850 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2851 				"%s: Bad regular inode %Lu, ptr 0x%p",
2852 				__func__, ip->i_ino, ip);
2853 			goto corrupt_out;
2854 		}
2855 	} else if (S_ISDIR(ip->i_d.di_mode)) {
2856 		if (XFS_TEST_ERROR(
2857 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2858 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2859 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2860 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2861 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2862 				"%s: Bad directory inode %Lu, ptr 0x%p",
2863 				__func__, ip->i_ino, ip);
2864 			goto corrupt_out;
2865 		}
2866 	}
2867 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2868 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2869 				XFS_RANDOM_IFLUSH_5)) {
2870 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2871 			"%s: detected corrupt incore inode %Lu, "
2872 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
2873 			__func__, ip->i_ino,
2874 			ip->i_d.di_nextents + ip->i_d.di_anextents,
2875 			ip->i_d.di_nblocks, ip);
2876 		goto corrupt_out;
2877 	}
2878 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2879 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2880 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2881 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2882 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2883 		goto corrupt_out;
2884 	}
2885 	/*
2886 	 * bump the flush iteration count, used to detect flushes which
2887 	 * postdate a log record during recovery. This is redundant as we now
2888 	 * log every change and hence this can't happen. Still, it doesn't hurt.
2889 	 */
2890 	ip->i_d.di_flushiter++;
2891 
2892 	/*
2893 	 * Copy the dirty parts of the inode into the on-disk
2894 	 * inode.  We always copy out the core of the inode,
2895 	 * because if the inode is dirty at all the core must
2896 	 * be.
2897 	 */
2898 	xfs_dinode_to_disk(dip, &ip->i_d);
2899 
2900 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2901 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2902 		ip->i_d.di_flushiter = 0;
2903 
2904 	/*
2905 	 * If this is really an old format inode and the superblock version
2906 	 * has not been updated to support only new format inodes, then
2907 	 * convert back to the old inode format.  If the superblock version
2908 	 * has been updated, then make the conversion permanent.
2909 	 */
2910 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2911 	if (ip->i_d.di_version == 1) {
2912 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2913 			/*
2914 			 * Convert it back.
2915 			 */
2916 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2917 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2918 		} else {
2919 			/*
2920 			 * The superblock version has already been bumped,
2921 			 * so just make the conversion to the new inode
2922 			 * format permanent.
2923 			 */
2924 			ip->i_d.di_version = 2;
2925 			dip->di_version = 2;
2926 			ip->i_d.di_onlink = 0;
2927 			dip->di_onlink = 0;
2928 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
2929 			memset(&(dip->di_pad[0]), 0,
2930 			      sizeof(dip->di_pad));
2931 			ASSERT(xfs_get_projid(ip) == 0);
2932 		}
2933 	}
2934 
2935 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2936 	if (XFS_IFORK_Q(ip))
2937 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
2938 	xfs_inobp_check(mp, bp);
2939 
2940 	/*
2941 	 * We've recorded everything logged in the inode, so we'd like to clear
2942 	 * the ili_fields bits so we don't log and flush things unnecessarily.
2943 	 * However, we can't stop logging all this information until the data
2944 	 * we've copied into the disk buffer is written to disk.  If we did we
2945 	 * might overwrite the copy of the inode in the log with all the data
2946 	 * after re-logging only part of it, and in the face of a crash we
2947 	 * wouldn't have all the data we need to recover.
2948 	 *
2949 	 * What we do is move the bits to the ili_last_fields field.  When
2950 	 * logging the inode, these bits are moved back to the ili_fields field.
2951 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2952 	 * know that the information those bits represent is permanently on
2953 	 * disk.  As long as the flush completes before the inode is logged
2954 	 * again, then both ili_fields and ili_last_fields will be cleared.
2955 	 *
2956 	 * We can play with the ili_fields bits here, because the inode lock
2957 	 * must be held exclusively in order to set bits there and the flush
2958 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
2959 	 * done routine can tell whether or not to look in the AIL.  Also, store
2960 	 * the current LSN of the inode so that we can tell whether the item has
2961 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
2962 	 * need the AIL lock, because it is a 64 bit value that cannot be read
2963 	 * atomically.
2964 	 */
2965 	iip->ili_last_fields = iip->ili_fields;
2966 	iip->ili_fields = 0;
2967 	iip->ili_logged = 1;
2968 
2969 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2970 				&iip->ili_item.li_lsn);
2971 
2972 	/*
2973 	 * Attach the function xfs_iflush_done to the inode's
2974 	 * buffer.  This will remove the inode from the AIL
2975 	 * and unlock the inode's flush lock when the inode is
2976 	 * completely written to disk.
2977 	 */
2978 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
2979 
2980 	/* update the lsn in the on disk inode if required */
2981 	if (ip->i_d.di_version == 3)
2982 		dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
2983 
2984 	/* generate the checksum. */
2985 	xfs_dinode_calc_crc(mp, dip);
2986 
2987 	ASSERT(bp->b_fspriv != NULL);
2988 	ASSERT(bp->b_iodone != NULL);
2989 	return 0;
2990 
2991 corrupt_out:
2992 	return XFS_ERROR(EFSCORRUPTED);
2993 }
2994 
2995 /*
2996  * Return a pointer to the extent record at file index idx.
2997  */
2998 xfs_bmbt_rec_host_t *
2999 xfs_iext_get_ext(
3000 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3001 	xfs_extnum_t	idx)		/* index of target extent */
3002 {
3003 	ASSERT(idx >= 0);
3004 	ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3005 
3006 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3007 		return ifp->if_u1.if_ext_irec->er_extbuf;
3008 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3009 		xfs_ext_irec_t	*erp;		/* irec pointer */
3010 		int		erp_idx = 0;	/* irec index */
3011 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3012 
3013 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3014 		return &erp->er_extbuf[page_idx];
3015 	} else if (ifp->if_bytes) {
3016 		return &ifp->if_u1.if_extents[idx];
3017 	} else {
3018 		return NULL;
3019 	}
3020 }
3021 
3022 /*
3023  * Insert new item(s) into the extent records for incore inode
3024  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3025  */
3026 void
3027 xfs_iext_insert(
3028 	xfs_inode_t	*ip,		/* incore inode pointer */
3029 	xfs_extnum_t	idx,		/* starting index of new items */
3030 	xfs_extnum_t	count,		/* number of inserted items */
3031 	xfs_bmbt_irec_t	*new,		/* items to insert */
3032 	int		state)		/* type of extent conversion */
3033 {
3034 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3035 	xfs_extnum_t	i;		/* extent record index */
3036 
3037 	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3038 
3039 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3040 	xfs_iext_add(ifp, idx, count);
3041 	for (i = idx; i < idx + count; i++, new++)
3042 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3043 }
3044 
3045 /*
3046  * This is called when the amount of space required for incore file
3047  * extents needs to be increased. The ext_diff parameter stores the
3048  * number of new extents being added and the idx parameter contains
3049  * the extent index where the new extents will be added. If the new
3050  * extents are being appended, then we just need to (re)allocate and
3051  * initialize the space. Otherwise, if the new extents are being
3052  * inserted into the middle of the existing entries, a bit more work
3053  * is required to make room for the new extents to be inserted. The
3054  * caller is responsible for filling in the new extent entries upon
3055  * return.
3056  */
3057 void
3058 xfs_iext_add(
3059 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3060 	xfs_extnum_t	idx,		/* index to begin adding exts */
3061 	int		ext_diff)	/* number of extents to add */
3062 {
3063 	int		byte_diff;	/* new bytes being added */
3064 	int		new_size;	/* size of extents after adding */
3065 	xfs_extnum_t	nextents;	/* number of extents in file */
3066 
3067 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3068 	ASSERT((idx >= 0) && (idx <= nextents));
3069 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3070 	new_size = ifp->if_bytes + byte_diff;
3071 	/*
3072 	 * If the new number of extents (nextents + ext_diff)
3073 	 * fits inside the inode, then continue to use the inline
3074 	 * extent buffer.
3075 	 */
3076 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3077 		if (idx < nextents) {
3078 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3079 				&ifp->if_u2.if_inline_ext[idx],
3080 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3081 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3082 		}
3083 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3084 		ifp->if_real_bytes = 0;
3085 	}
3086 	/*
3087 	 * Otherwise use a linear (direct) extent list.
3088 	 * If the extents are currently inside the inode,
3089 	 * xfs_iext_realloc_direct will switch us from
3090 	 * inline to direct extent allocation mode.
3091 	 */
3092 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3093 		xfs_iext_realloc_direct(ifp, new_size);
3094 		if (idx < nextents) {
3095 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3096 				&ifp->if_u1.if_extents[idx],
3097 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3098 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3099 		}
3100 	}
3101 	/* Indirection array */
3102 	else {
3103 		xfs_ext_irec_t	*erp;
3104 		int		erp_idx = 0;
3105 		int		page_idx = idx;
3106 
3107 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3108 		if (ifp->if_flags & XFS_IFEXTIREC) {
3109 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3110 		} else {
3111 			xfs_iext_irec_init(ifp);
3112 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3113 			erp = ifp->if_u1.if_ext_irec;
3114 		}
3115 		/* Extents fit in target extent page */
3116 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3117 			if (page_idx < erp->er_extcount) {
3118 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3119 					&erp->er_extbuf[page_idx],
3120 					(erp->er_extcount - page_idx) *
3121 					sizeof(xfs_bmbt_rec_t));
3122 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3123 			}
3124 			erp->er_extcount += ext_diff;
3125 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3126 		}
3127 		/* Insert a new extent page */
3128 		else if (erp) {
3129 			xfs_iext_add_indirect_multi(ifp,
3130 				erp_idx, page_idx, ext_diff);
3131 		}
3132 		/*
3133 		 * If extent(s) are being appended to the last page in
3134 		 * the indirection array and the new extent(s) don't fit
3135 		 * in the page, then erp is NULL and erp_idx is set to
3136 		 * the next index needed in the indirection array.
3137 		 */
3138 		else {
3139 			int	count = ext_diff;
3140 
3141 			while (count) {
3142 				erp = xfs_iext_irec_new(ifp, erp_idx);
3143 				erp->er_extcount = count;
3144 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3145 				if (count) {
3146 					erp_idx++;
3147 				}
3148 			}
3149 		}
3150 	}
3151 	ifp->if_bytes = new_size;
3152 }
3153 
3154 /*
3155  * This is called when incore extents are being added to the indirection
3156  * array and the new extents do not fit in the target extent list. The
3157  * erp_idx parameter contains the irec index for the target extent list
3158  * in the indirection array, and the idx parameter contains the extent
3159  * index within the list. The number of extents being added is stored
3160  * in the count parameter.
3161  *
3162  *    |-------|   |-------|
3163  *    |       |   |       |    idx - number of extents before idx
3164  *    |  idx  |   | count |
3165  *    |       |   |       |    count - number of extents being inserted at idx
3166  *    |-------|   |-------|
3167  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3168  *    |-------|   |-------|
3169  */
3170 void
3171 xfs_iext_add_indirect_multi(
3172 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3173 	int		erp_idx,		/* target extent irec index */
3174 	xfs_extnum_t	idx,			/* index within target list */
3175 	int		count)			/* new extents being added */
3176 {
3177 	int		byte_diff;		/* new bytes being added */
3178 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3179 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3180 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3181 	xfs_extnum_t	nex2;			/* extents after idx + count */
3182 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3183 	int		nlists;			/* number of irec's (lists) */
3184 
3185 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3186 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3187 	nex2 = erp->er_extcount - idx;
3188 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3189 
3190 	/*
3191 	 * Save second part of target extent list
3192 	 * (all extents past */
3193 	if (nex2) {
3194 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3195 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3196 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3197 		erp->er_extcount -= nex2;
3198 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3199 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3200 	}
3201 
3202 	/*
3203 	 * Add the new extents to the end of the target
3204 	 * list, then allocate new irec record(s) and
3205 	 * extent buffer(s) as needed to store the rest
3206 	 * of the new extents.
3207 	 */
3208 	ext_cnt = count;
3209 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3210 	if (ext_diff) {
3211 		erp->er_extcount += ext_diff;
3212 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3213 		ext_cnt -= ext_diff;
3214 	}
3215 	while (ext_cnt) {
3216 		erp_idx++;
3217 		erp = xfs_iext_irec_new(ifp, erp_idx);
3218 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3219 		erp->er_extcount = ext_diff;
3220 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3221 		ext_cnt -= ext_diff;
3222 	}
3223 
3224 	/* Add nex2 extents back to indirection array */
3225 	if (nex2) {
3226 		xfs_extnum_t	ext_avail;
3227 		int		i;
3228 
3229 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3230 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3231 		i = 0;
3232 		/*
3233 		 * If nex2 extents fit in the current page, append
3234 		 * nex2_ep after the new extents.
3235 		 */
3236 		if (nex2 <= ext_avail) {
3237 			i = erp->er_extcount;
3238 		}
3239 		/*
3240 		 * Otherwise, check if space is available in the
3241 		 * next page.
3242 		 */
3243 		else if ((erp_idx < nlists - 1) &&
3244 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3245 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3246 			erp_idx++;
3247 			erp++;
3248 			/* Create a hole for nex2 extents */
3249 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3250 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3251 		}
3252 		/*
3253 		 * Final choice, create a new extent page for
3254 		 * nex2 extents.
3255 		 */
3256 		else {
3257 			erp_idx++;
3258 			erp = xfs_iext_irec_new(ifp, erp_idx);
3259 		}
3260 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3261 		kmem_free(nex2_ep);
3262 		erp->er_extcount += nex2;
3263 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3264 	}
3265 }
3266 
3267 /*
3268  * This is called when the amount of space required for incore file
3269  * extents needs to be decreased. The ext_diff parameter stores the
3270  * number of extents to be removed and the idx parameter contains
3271  * the extent index where the extents will be removed from.
3272  *
3273  * If the amount of space needed has decreased below the linear
3274  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3275  * extent array.  Otherwise, use kmem_realloc() to adjust the
3276  * size to what is needed.
3277  */
3278 void
3279 xfs_iext_remove(
3280 	xfs_inode_t	*ip,		/* incore inode pointer */
3281 	xfs_extnum_t	idx,		/* index to begin removing exts */
3282 	int		ext_diff,	/* number of extents to remove */
3283 	int		state)		/* type of extent conversion */
3284 {
3285 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3286 	xfs_extnum_t	nextents;	/* number of extents in file */
3287 	int		new_size;	/* size of extents after removal */
3288 
3289 	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3290 
3291 	ASSERT(ext_diff > 0);
3292 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3293 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3294 
3295 	if (new_size == 0) {
3296 		xfs_iext_destroy(ifp);
3297 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3298 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3299 	} else if (ifp->if_real_bytes) {
3300 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3301 	} else {
3302 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3303 	}
3304 	ifp->if_bytes = new_size;
3305 }
3306 
3307 /*
3308  * This removes ext_diff extents from the inline buffer, beginning
3309  * at extent index idx.
3310  */
3311 void
3312 xfs_iext_remove_inline(
3313 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3314 	xfs_extnum_t	idx,		/* index to begin removing exts */
3315 	int		ext_diff)	/* number of extents to remove */
3316 {
3317 	int		nextents;	/* number of extents in file */
3318 
3319 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3320 	ASSERT(idx < XFS_INLINE_EXTS);
3321 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3322 	ASSERT(((nextents - ext_diff) > 0) &&
3323 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3324 
3325 	if (idx + ext_diff < nextents) {
3326 		memmove(&ifp->if_u2.if_inline_ext[idx],
3327 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3328 			(nextents - (idx + ext_diff)) *
3329 			 sizeof(xfs_bmbt_rec_t));
3330 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3331 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3332 	} else {
3333 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3334 			ext_diff * sizeof(xfs_bmbt_rec_t));
3335 	}
3336 }
3337 
3338 /*
3339  * This removes ext_diff extents from a linear (direct) extent list,
3340  * beginning at extent index idx. If the extents are being removed
3341  * from the end of the list (ie. truncate) then we just need to re-
3342  * allocate the list to remove the extra space. Otherwise, if the
3343  * extents are being removed from the middle of the existing extent
3344  * entries, then we first need to move the extent records beginning
3345  * at idx + ext_diff up in the list to overwrite the records being
3346  * removed, then remove the extra space via kmem_realloc.
3347  */
3348 void
3349 xfs_iext_remove_direct(
3350 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3351 	xfs_extnum_t	idx,		/* index to begin removing exts */
3352 	int		ext_diff)	/* number of extents to remove */
3353 {
3354 	xfs_extnum_t	nextents;	/* number of extents in file */
3355 	int		new_size;	/* size of extents after removal */
3356 
3357 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3358 	new_size = ifp->if_bytes -
3359 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3360 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3361 
3362 	if (new_size == 0) {
3363 		xfs_iext_destroy(ifp);
3364 		return;
3365 	}
3366 	/* Move extents up in the list (if needed) */
3367 	if (idx + ext_diff < nextents) {
3368 		memmove(&ifp->if_u1.if_extents[idx],
3369 			&ifp->if_u1.if_extents[idx + ext_diff],
3370 			(nextents - (idx + ext_diff)) *
3371 			 sizeof(xfs_bmbt_rec_t));
3372 	}
3373 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3374 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3375 	/*
3376 	 * Reallocate the direct extent list. If the extents
3377 	 * will fit inside the inode then xfs_iext_realloc_direct
3378 	 * will switch from direct to inline extent allocation
3379 	 * mode for us.
3380 	 */
3381 	xfs_iext_realloc_direct(ifp, new_size);
3382 	ifp->if_bytes = new_size;
3383 }
3384 
3385 /*
3386  * This is called when incore extents are being removed from the
3387  * indirection array and the extents being removed span multiple extent
3388  * buffers. The idx parameter contains the file extent index where we
3389  * want to begin removing extents, and the count parameter contains
3390  * how many extents need to be removed.
3391  *
3392  *    |-------|   |-------|
3393  *    | nex1  |   |       |    nex1 - number of extents before idx
3394  *    |-------|   | count |
3395  *    |       |   |       |    count - number of extents being removed at idx
3396  *    | count |   |-------|
3397  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3398  *    |-------|   |-------|
3399  */
3400 void
3401 xfs_iext_remove_indirect(
3402 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3403 	xfs_extnum_t	idx,		/* index to begin removing extents */
3404 	int		count)		/* number of extents to remove */
3405 {
3406 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3407 	int		erp_idx = 0;	/* indirection array index */
3408 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3409 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3410 	xfs_extnum_t	nex1;		/* number of extents before idx */
3411 	xfs_extnum_t	nex2;		/* extents after idx + count */
3412 	int		page_idx = idx;	/* index in target extent list */
3413 
3414 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3415 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3416 	ASSERT(erp != NULL);
3417 	nex1 = page_idx;
3418 	ext_cnt = count;
3419 	while (ext_cnt) {
3420 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3421 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3422 		/*
3423 		 * Check for deletion of entire list;
3424 		 * xfs_iext_irec_remove() updates extent offsets.
3425 		 */
3426 		if (ext_diff == erp->er_extcount) {
3427 			xfs_iext_irec_remove(ifp, erp_idx);
3428 			ext_cnt -= ext_diff;
3429 			nex1 = 0;
3430 			if (ext_cnt) {
3431 				ASSERT(erp_idx < ifp->if_real_bytes /
3432 					XFS_IEXT_BUFSZ);
3433 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3434 				nex1 = 0;
3435 				continue;
3436 			} else {
3437 				break;
3438 			}
3439 		}
3440 		/* Move extents up (if needed) */
3441 		if (nex2) {
3442 			memmove(&erp->er_extbuf[nex1],
3443 				&erp->er_extbuf[nex1 + ext_diff],
3444 				nex2 * sizeof(xfs_bmbt_rec_t));
3445 		}
3446 		/* Zero out rest of page */
3447 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3448 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3449 		/* Update remaining counters */
3450 		erp->er_extcount -= ext_diff;
3451 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3452 		ext_cnt -= ext_diff;
3453 		nex1 = 0;
3454 		erp_idx++;
3455 		erp++;
3456 	}
3457 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3458 	xfs_iext_irec_compact(ifp);
3459 }
3460 
3461 /*
3462  * Create, destroy, or resize a linear (direct) block of extents.
3463  */
3464 void
3465 xfs_iext_realloc_direct(
3466 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3467 	int		new_size)	/* new size of extents */
3468 {
3469 	int		rnew_size;	/* real new size of extents */
3470 
3471 	rnew_size = new_size;
3472 
3473 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3474 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3475 		 (new_size != ifp->if_real_bytes)));
3476 
3477 	/* Free extent records */
3478 	if (new_size == 0) {
3479 		xfs_iext_destroy(ifp);
3480 	}
3481 	/* Resize direct extent list and zero any new bytes */
3482 	else if (ifp->if_real_bytes) {
3483 		/* Check if extents will fit inside the inode */
3484 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3485 			xfs_iext_direct_to_inline(ifp, new_size /
3486 				(uint)sizeof(xfs_bmbt_rec_t));
3487 			ifp->if_bytes = new_size;
3488 			return;
3489 		}
3490 		if (!is_power_of_2(new_size)){
3491 			rnew_size = roundup_pow_of_two(new_size);
3492 		}
3493 		if (rnew_size != ifp->if_real_bytes) {
3494 			ifp->if_u1.if_extents =
3495 				kmem_realloc(ifp->if_u1.if_extents,
3496 						rnew_size,
3497 						ifp->if_real_bytes, KM_NOFS);
3498 		}
3499 		if (rnew_size > ifp->if_real_bytes) {
3500 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3501 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3502 				rnew_size - ifp->if_real_bytes);
3503 		}
3504 	}
3505 	/*
3506 	 * Switch from the inline extent buffer to a direct
3507 	 * extent list. Be sure to include the inline extent
3508 	 * bytes in new_size.
3509 	 */
3510 	else {
3511 		new_size += ifp->if_bytes;
3512 		if (!is_power_of_2(new_size)) {
3513 			rnew_size = roundup_pow_of_two(new_size);
3514 		}
3515 		xfs_iext_inline_to_direct(ifp, rnew_size);
3516 	}
3517 	ifp->if_real_bytes = rnew_size;
3518 	ifp->if_bytes = new_size;
3519 }
3520 
3521 /*
3522  * Switch from linear (direct) extent records to inline buffer.
3523  */
3524 void
3525 xfs_iext_direct_to_inline(
3526 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3527 	xfs_extnum_t	nextents)	/* number of extents in file */
3528 {
3529 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3530 	ASSERT(nextents <= XFS_INLINE_EXTS);
3531 	/*
3532 	 * The inline buffer was zeroed when we switched
3533 	 * from inline to direct extent allocation mode,
3534 	 * so we don't need to clear it here.
3535 	 */
3536 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3537 		nextents * sizeof(xfs_bmbt_rec_t));
3538 	kmem_free(ifp->if_u1.if_extents);
3539 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3540 	ifp->if_real_bytes = 0;
3541 }
3542 
3543 /*
3544  * Switch from inline buffer to linear (direct) extent records.
3545  * new_size should already be rounded up to the next power of 2
3546  * by the caller (when appropriate), so use new_size as it is.
3547  * However, since new_size may be rounded up, we can't update
3548  * if_bytes here. It is the caller's responsibility to update
3549  * if_bytes upon return.
3550  */
3551 void
3552 xfs_iext_inline_to_direct(
3553 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3554 	int		new_size)	/* number of extents in file */
3555 {
3556 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3557 	memset(ifp->if_u1.if_extents, 0, new_size);
3558 	if (ifp->if_bytes) {
3559 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3560 			ifp->if_bytes);
3561 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3562 			sizeof(xfs_bmbt_rec_t));
3563 	}
3564 	ifp->if_real_bytes = new_size;
3565 }
3566 
3567 /*
3568  * Resize an extent indirection array to new_size bytes.
3569  */
3570 STATIC void
3571 xfs_iext_realloc_indirect(
3572 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3573 	int		new_size)	/* new indirection array size */
3574 {
3575 	int		nlists;		/* number of irec's (ex lists) */
3576 	int		size;		/* current indirection array size */
3577 
3578 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3579 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3580 	size = nlists * sizeof(xfs_ext_irec_t);
3581 	ASSERT(ifp->if_real_bytes);
3582 	ASSERT((new_size >= 0) && (new_size != size));
3583 	if (new_size == 0) {
3584 		xfs_iext_destroy(ifp);
3585 	} else {
3586 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3587 			kmem_realloc(ifp->if_u1.if_ext_irec,
3588 				new_size, size, KM_NOFS);
3589 	}
3590 }
3591 
3592 /*
3593  * Switch from indirection array to linear (direct) extent allocations.
3594  */
3595 STATIC void
3596 xfs_iext_indirect_to_direct(
3597 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3598 {
3599 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3600 	xfs_extnum_t	nextents;	/* number of extents in file */
3601 	int		size;		/* size of file extents */
3602 
3603 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3604 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3605 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3606 	size = nextents * sizeof(xfs_bmbt_rec_t);
3607 
3608 	xfs_iext_irec_compact_pages(ifp);
3609 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3610 
3611 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3612 	kmem_free(ifp->if_u1.if_ext_irec);
3613 	ifp->if_flags &= ~XFS_IFEXTIREC;
3614 	ifp->if_u1.if_extents = ep;
3615 	ifp->if_bytes = size;
3616 	if (nextents < XFS_LINEAR_EXTS) {
3617 		xfs_iext_realloc_direct(ifp, size);
3618 	}
3619 }
3620 
3621 /*
3622  * Free incore file extents.
3623  */
3624 void
3625 xfs_iext_destroy(
3626 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3627 {
3628 	if (ifp->if_flags & XFS_IFEXTIREC) {
3629 		int	erp_idx;
3630 		int	nlists;
3631 
3632 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3633 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3634 			xfs_iext_irec_remove(ifp, erp_idx);
3635 		}
3636 		ifp->if_flags &= ~XFS_IFEXTIREC;
3637 	} else if (ifp->if_real_bytes) {
3638 		kmem_free(ifp->if_u1.if_extents);
3639 	} else if (ifp->if_bytes) {
3640 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3641 			sizeof(xfs_bmbt_rec_t));
3642 	}
3643 	ifp->if_u1.if_extents = NULL;
3644 	ifp->if_real_bytes = 0;
3645 	ifp->if_bytes = 0;
3646 }
3647 
3648 /*
3649  * Return a pointer to the extent record for file system block bno.
3650  */
3651 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3652 xfs_iext_bno_to_ext(
3653 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3654 	xfs_fileoff_t	bno,		/* block number to search for */
3655 	xfs_extnum_t	*idxp)		/* index of target extent */
3656 {
3657 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3658 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3659 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3660 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3661 	int		high;		/* upper boundary in search */
3662 	xfs_extnum_t	idx = 0;	/* index of target extent */
3663 	int		low;		/* lower boundary in search */
3664 	xfs_extnum_t	nextents;	/* number of file extents */
3665 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3666 
3667 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3668 	if (nextents == 0) {
3669 		*idxp = 0;
3670 		return NULL;
3671 	}
3672 	low = 0;
3673 	if (ifp->if_flags & XFS_IFEXTIREC) {
3674 		/* Find target extent list */
3675 		int	erp_idx = 0;
3676 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3677 		base = erp->er_extbuf;
3678 		high = erp->er_extcount - 1;
3679 	} else {
3680 		base = ifp->if_u1.if_extents;
3681 		high = nextents - 1;
3682 	}
3683 	/* Binary search extent records */
3684 	while (low <= high) {
3685 		idx = (low + high) >> 1;
3686 		ep = base + idx;
3687 		startoff = xfs_bmbt_get_startoff(ep);
3688 		blockcount = xfs_bmbt_get_blockcount(ep);
3689 		if (bno < startoff) {
3690 			high = idx - 1;
3691 		} else if (bno >= startoff + blockcount) {
3692 			low = idx + 1;
3693 		} else {
3694 			/* Convert back to file-based extent index */
3695 			if (ifp->if_flags & XFS_IFEXTIREC) {
3696 				idx += erp->er_extoff;
3697 			}
3698 			*idxp = idx;
3699 			return ep;
3700 		}
3701 	}
3702 	/* Convert back to file-based extent index */
3703 	if (ifp->if_flags & XFS_IFEXTIREC) {
3704 		idx += erp->er_extoff;
3705 	}
3706 	if (bno >= startoff + blockcount) {
3707 		if (++idx == nextents) {
3708 			ep = NULL;
3709 		} else {
3710 			ep = xfs_iext_get_ext(ifp, idx);
3711 		}
3712 	}
3713 	*idxp = idx;
3714 	return ep;
3715 }
3716 
3717 /*
3718  * Return a pointer to the indirection array entry containing the
3719  * extent record for filesystem block bno. Store the index of the
3720  * target irec in *erp_idxp.
3721  */
3722 xfs_ext_irec_t *			/* pointer to found extent record */
3723 xfs_iext_bno_to_irec(
3724 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3725 	xfs_fileoff_t	bno,		/* block number to search for */
3726 	int		*erp_idxp)	/* irec index of target ext list */
3727 {
3728 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3729 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3730 	int		erp_idx;	/* indirection array index */
3731 	int		nlists;		/* number of extent irec's (lists) */
3732 	int		high;		/* binary search upper limit */
3733 	int		low;		/* binary search lower limit */
3734 
3735 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3736 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3737 	erp_idx = 0;
3738 	low = 0;
3739 	high = nlists - 1;
3740 	while (low <= high) {
3741 		erp_idx = (low + high) >> 1;
3742 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3743 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3744 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3745 			high = erp_idx - 1;
3746 		} else if (erp_next && bno >=
3747 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3748 			low = erp_idx + 1;
3749 		} else {
3750 			break;
3751 		}
3752 	}
3753 	*erp_idxp = erp_idx;
3754 	return erp;
3755 }
3756 
3757 /*
3758  * Return a pointer to the indirection array entry containing the
3759  * extent record at file extent index *idxp. Store the index of the
3760  * target irec in *erp_idxp and store the page index of the target
3761  * extent record in *idxp.
3762  */
3763 xfs_ext_irec_t *
3764 xfs_iext_idx_to_irec(
3765 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3766 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3767 	int		*erp_idxp,	/* pointer to target irec */
3768 	int		realloc)	/* new bytes were just added */
3769 {
3770 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3771 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3772 	int		erp_idx;	/* indirection array index */
3773 	int		nlists;		/* number of irec's (ex lists) */
3774 	int		high;		/* binary search upper limit */
3775 	int		low;		/* binary search lower limit */
3776 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3777 
3778 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3779 	ASSERT(page_idx >= 0);
3780 	ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3781 	ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3782 
3783 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3784 	erp_idx = 0;
3785 	low = 0;
3786 	high = nlists - 1;
3787 
3788 	/* Binary search extent irec's */
3789 	while (low <= high) {
3790 		erp_idx = (low + high) >> 1;
3791 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3792 		prev = erp_idx > 0 ? erp - 1 : NULL;
3793 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3794 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3795 			high = erp_idx - 1;
3796 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3797 			   (page_idx == erp->er_extoff + erp->er_extcount &&
3798 			    !realloc)) {
3799 			low = erp_idx + 1;
3800 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3801 			   erp->er_extcount == XFS_LINEAR_EXTS) {
3802 			ASSERT(realloc);
3803 			page_idx = 0;
3804 			erp_idx++;
3805 			erp = erp_idx < nlists ? erp + 1 : NULL;
3806 			break;
3807 		} else {
3808 			page_idx -= erp->er_extoff;
3809 			break;
3810 		}
3811 	}
3812 	*idxp = page_idx;
3813 	*erp_idxp = erp_idx;
3814 	return(erp);
3815 }
3816 
3817 /*
3818  * Allocate and initialize an indirection array once the space needed
3819  * for incore extents increases above XFS_IEXT_BUFSZ.
3820  */
3821 void
3822 xfs_iext_irec_init(
3823 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3824 {
3825 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3826 	xfs_extnum_t	nextents;	/* number of extents in file */
3827 
3828 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3829 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3830 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3831 
3832 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3833 
3834 	if (nextents == 0) {
3835 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3836 	} else if (!ifp->if_real_bytes) {
3837 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3838 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3839 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3840 	}
3841 	erp->er_extbuf = ifp->if_u1.if_extents;
3842 	erp->er_extcount = nextents;
3843 	erp->er_extoff = 0;
3844 
3845 	ifp->if_flags |= XFS_IFEXTIREC;
3846 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3847 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3848 	ifp->if_u1.if_ext_irec = erp;
3849 
3850 	return;
3851 }
3852 
3853 /*
3854  * Allocate and initialize a new entry in the indirection array.
3855  */
3856 xfs_ext_irec_t *
3857 xfs_iext_irec_new(
3858 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3859 	int		erp_idx)	/* index for new irec */
3860 {
3861 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3862 	int		i;		/* loop counter */
3863 	int		nlists;		/* number of irec's (ex lists) */
3864 
3865 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3866 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3867 
3868 	/* Resize indirection array */
3869 	xfs_iext_realloc_indirect(ifp, ++nlists *
3870 				  sizeof(xfs_ext_irec_t));
3871 	/*
3872 	 * Move records down in the array so the
3873 	 * new page can use erp_idx.
3874 	 */
3875 	erp = ifp->if_u1.if_ext_irec;
3876 	for (i = nlists - 1; i > erp_idx; i--) {
3877 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3878 	}
3879 	ASSERT(i == erp_idx);
3880 
3881 	/* Initialize new extent record */
3882 	erp = ifp->if_u1.if_ext_irec;
3883 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3884 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3885 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3886 	erp[erp_idx].er_extcount = 0;
3887 	erp[erp_idx].er_extoff = erp_idx > 0 ?
3888 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3889 	return (&erp[erp_idx]);
3890 }
3891 
3892 /*
3893  * Remove a record from the indirection array.
3894  */
3895 void
3896 xfs_iext_irec_remove(
3897 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3898 	int		erp_idx)	/* irec index to remove */
3899 {
3900 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3901 	int		i;		/* loop counter */
3902 	int		nlists;		/* number of irec's (ex lists) */
3903 
3904 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3905 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3906 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3907 	if (erp->er_extbuf) {
3908 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3909 			-erp->er_extcount);
3910 		kmem_free(erp->er_extbuf);
3911 	}
3912 	/* Compact extent records */
3913 	erp = ifp->if_u1.if_ext_irec;
3914 	for (i = erp_idx; i < nlists - 1; i++) {
3915 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3916 	}
3917 	/*
3918 	 * Manually free the last extent record from the indirection
3919 	 * array.  A call to xfs_iext_realloc_indirect() with a size
3920 	 * of zero would result in a call to xfs_iext_destroy() which
3921 	 * would in turn call this function again, creating a nasty
3922 	 * infinite loop.
3923 	 */
3924 	if (--nlists) {
3925 		xfs_iext_realloc_indirect(ifp,
3926 			nlists * sizeof(xfs_ext_irec_t));
3927 	} else {
3928 		kmem_free(ifp->if_u1.if_ext_irec);
3929 	}
3930 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3931 }
3932 
3933 /*
3934  * This is called to clean up large amounts of unused memory allocated
3935  * by the indirection array.  Before compacting anything though, verify
3936  * that the indirection array is still needed and switch back to the
3937  * linear extent list (or even the inline buffer) if possible.  The
3938  * compaction policy is as follows:
3939  *
3940  *    Full Compaction: Extents fit into a single page (or inline buffer)
3941  * Partial Compaction: Extents occupy less than 50% of allocated space
3942  *      No Compaction: Extents occupy at least 50% of allocated space
3943  */
3944 void
3945 xfs_iext_irec_compact(
3946 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3947 {
3948 	xfs_extnum_t	nextents;	/* number of extents in file */
3949 	int		nlists;		/* number of irec's (ex lists) */
3950 
3951 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3952 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3953 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3954 
3955 	if (nextents == 0) {
3956 		xfs_iext_destroy(ifp);
3957 	} else if (nextents <= XFS_INLINE_EXTS) {
3958 		xfs_iext_indirect_to_direct(ifp);
3959 		xfs_iext_direct_to_inline(ifp, nextents);
3960 	} else if (nextents <= XFS_LINEAR_EXTS) {
3961 		xfs_iext_indirect_to_direct(ifp);
3962 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3963 		xfs_iext_irec_compact_pages(ifp);
3964 	}
3965 }
3966 
3967 /*
3968  * Combine extents from neighboring extent pages.
3969  */
3970 void
3971 xfs_iext_irec_compact_pages(
3972 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3973 {
3974 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
3975 	int		erp_idx = 0;	/* indirection array index */
3976 	int		nlists;		/* number of irec's (ex lists) */
3977 
3978 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3979 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3980 	while (erp_idx < nlists - 1) {
3981 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3982 		erp_next = erp + 1;
3983 		if (erp_next->er_extcount <=
3984 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
3985 			memcpy(&erp->er_extbuf[erp->er_extcount],
3986 				erp_next->er_extbuf, erp_next->er_extcount *
3987 				sizeof(xfs_bmbt_rec_t));
3988 			erp->er_extcount += erp_next->er_extcount;
3989 			/*
3990 			 * Free page before removing extent record
3991 			 * so er_extoffs don't get modified in
3992 			 * xfs_iext_irec_remove.
3993 			 */
3994 			kmem_free(erp_next->er_extbuf);
3995 			erp_next->er_extbuf = NULL;
3996 			xfs_iext_irec_remove(ifp, erp_idx + 1);
3997 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3998 		} else {
3999 			erp_idx++;
4000 		}
4001 	}
4002 }
4003 
4004 /*
4005  * This is called to update the er_extoff field in the indirection
4006  * array when extents have been added or removed from one of the
4007  * extent lists. erp_idx contains the irec index to begin updating
4008  * at and ext_diff contains the number of extents that were added
4009  * or removed.
4010  */
4011 void
4012 xfs_iext_irec_update_extoffs(
4013 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4014 	int		erp_idx,	/* irec index to update */
4015 	int		ext_diff)	/* number of new extents */
4016 {
4017 	int		i;		/* loop counter */
4018 	int		nlists;		/* number of irec's (ex lists */
4019 
4020 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4021 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4022 	for (i = erp_idx; i < nlists; i++) {
4023 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4024 	}
4025 }
4026 
4027 /*
4028  * Test whether it is appropriate to check an inode for and free post EOF
4029  * blocks. The 'force' parameter determines whether we should also consider
4030  * regular files that are marked preallocated or append-only.
4031  */
4032 bool
4033 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
4034 {
4035 	/* prealloc/delalloc exists only on regular files */
4036 	if (!S_ISREG(ip->i_d.di_mode))
4037 		return false;
4038 
4039 	/*
4040 	 * Zero sized files with no cached pages and delalloc blocks will not
4041 	 * have speculative prealloc/delalloc blocks to remove.
4042 	 */
4043 	if (VFS_I(ip)->i_size == 0 &&
4044 	    VN_CACHED(VFS_I(ip)) == 0 &&
4045 	    ip->i_delayed_blks == 0)
4046 		return false;
4047 
4048 	/* If we haven't read in the extent list, then don't do it now. */
4049 	if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
4050 		return false;
4051 
4052 	/*
4053 	 * Do not free real preallocated or append-only files unless the file
4054 	 * has delalloc blocks and we are forced to remove them.
4055 	 */
4056 	if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
4057 		if (!force || ip->i_delayed_blks == 0)
4058 			return false;
4059 
4060 	return true;
4061 }
4062 
4063