1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_types.h" 23 #include "xfs_log.h" 24 #include "xfs_inum.h" 25 #include "xfs_trans.h" 26 #include "xfs_trans_priv.h" 27 #include "xfs_sb.h" 28 #include "xfs_ag.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_alloc_btree.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_attr_sf.h" 34 #include "xfs_dinode.h" 35 #include "xfs_inode.h" 36 #include "xfs_buf_item.h" 37 #include "xfs_inode_item.h" 38 #include "xfs_btree.h" 39 #include "xfs_alloc.h" 40 #include "xfs_ialloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_error.h" 43 #include "xfs_utils.h" 44 #include "xfs_quota.h" 45 #include "xfs_filestream.h" 46 #include "xfs_vnodeops.h" 47 #include "xfs_cksum.h" 48 #include "xfs_trace.h" 49 #include "xfs_icache.h" 50 51 kmem_zone_t *xfs_ifork_zone; 52 kmem_zone_t *xfs_inode_zone; 53 54 /* 55 * Used in xfs_itruncate_extents(). This is the maximum number of extents 56 * freed from a file in a single transaction. 57 */ 58 #define XFS_ITRUNC_MAX_EXTENTS 2 59 60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 61 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 62 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 63 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 64 65 /* 66 * helper function to extract extent size hint from inode 67 */ 68 xfs_extlen_t 69 xfs_get_extsz_hint( 70 struct xfs_inode *ip) 71 { 72 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 73 return ip->i_d.di_extsize; 74 if (XFS_IS_REALTIME_INODE(ip)) 75 return ip->i_mount->m_sb.sb_rextsize; 76 return 0; 77 } 78 79 /* 80 * This is a wrapper routine around the xfs_ilock() routine used to centralize 81 * some grungy code. It is used in places that wish to lock the inode solely 82 * for reading the extents. The reason these places can't just call 83 * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the 84 * extents from disk for a file in b-tree format. If the inode is in b-tree 85 * format, then we need to lock the inode exclusively until the extents are read 86 * in. Locking it exclusively all the time would limit our parallelism 87 * unnecessarily, though. What we do instead is check to see if the extents 88 * have been read in yet, and only lock the inode exclusively if they have not. 89 * 90 * The function returns a value which should be given to the corresponding 91 * xfs_iunlock_map_shared(). This value is the mode in which the lock was 92 * actually taken. 93 */ 94 uint 95 xfs_ilock_map_shared( 96 xfs_inode_t *ip) 97 { 98 uint lock_mode; 99 100 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) && 101 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) { 102 lock_mode = XFS_ILOCK_EXCL; 103 } else { 104 lock_mode = XFS_ILOCK_SHARED; 105 } 106 107 xfs_ilock(ip, lock_mode); 108 109 return lock_mode; 110 } 111 112 /* 113 * This is simply the unlock routine to go with xfs_ilock_map_shared(). 114 * All it does is call xfs_iunlock() with the given lock_mode. 115 */ 116 void 117 xfs_iunlock_map_shared( 118 xfs_inode_t *ip, 119 unsigned int lock_mode) 120 { 121 xfs_iunlock(ip, lock_mode); 122 } 123 124 /* 125 * The xfs inode contains 2 locks: a multi-reader lock called the 126 * i_iolock and a multi-reader lock called the i_lock. This routine 127 * allows either or both of the locks to be obtained. 128 * 129 * The 2 locks should always be ordered so that the IO lock is 130 * obtained first in order to prevent deadlock. 131 * 132 * ip -- the inode being locked 133 * lock_flags -- this parameter indicates the inode's locks 134 * to be locked. It can be: 135 * XFS_IOLOCK_SHARED, 136 * XFS_IOLOCK_EXCL, 137 * XFS_ILOCK_SHARED, 138 * XFS_ILOCK_EXCL, 139 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED, 140 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL, 141 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED, 142 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL 143 */ 144 void 145 xfs_ilock( 146 xfs_inode_t *ip, 147 uint lock_flags) 148 { 149 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 150 151 /* 152 * You can't set both SHARED and EXCL for the same lock, 153 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 154 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 155 */ 156 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 157 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 158 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 159 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 160 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 161 162 if (lock_flags & XFS_IOLOCK_EXCL) 163 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 164 else if (lock_flags & XFS_IOLOCK_SHARED) 165 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 166 167 if (lock_flags & XFS_ILOCK_EXCL) 168 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 169 else if (lock_flags & XFS_ILOCK_SHARED) 170 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 171 } 172 173 /* 174 * This is just like xfs_ilock(), except that the caller 175 * is guaranteed not to sleep. It returns 1 if it gets 176 * the requested locks and 0 otherwise. If the IO lock is 177 * obtained but the inode lock cannot be, then the IO lock 178 * is dropped before returning. 179 * 180 * ip -- the inode being locked 181 * lock_flags -- this parameter indicates the inode's locks to be 182 * to be locked. See the comment for xfs_ilock() for a list 183 * of valid values. 184 */ 185 int 186 xfs_ilock_nowait( 187 xfs_inode_t *ip, 188 uint lock_flags) 189 { 190 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 191 192 /* 193 * You can't set both SHARED and EXCL for the same lock, 194 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 195 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 196 */ 197 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 198 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 199 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 200 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 201 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 202 203 if (lock_flags & XFS_IOLOCK_EXCL) { 204 if (!mrtryupdate(&ip->i_iolock)) 205 goto out; 206 } else if (lock_flags & XFS_IOLOCK_SHARED) { 207 if (!mrtryaccess(&ip->i_iolock)) 208 goto out; 209 } 210 if (lock_flags & XFS_ILOCK_EXCL) { 211 if (!mrtryupdate(&ip->i_lock)) 212 goto out_undo_iolock; 213 } else if (lock_flags & XFS_ILOCK_SHARED) { 214 if (!mrtryaccess(&ip->i_lock)) 215 goto out_undo_iolock; 216 } 217 return 1; 218 219 out_undo_iolock: 220 if (lock_flags & XFS_IOLOCK_EXCL) 221 mrunlock_excl(&ip->i_iolock); 222 else if (lock_flags & XFS_IOLOCK_SHARED) 223 mrunlock_shared(&ip->i_iolock); 224 out: 225 return 0; 226 } 227 228 /* 229 * xfs_iunlock() is used to drop the inode locks acquired with 230 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 231 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 232 * that we know which locks to drop. 233 * 234 * ip -- the inode being unlocked 235 * lock_flags -- this parameter indicates the inode's locks to be 236 * to be unlocked. See the comment for xfs_ilock() for a list 237 * of valid values for this parameter. 238 * 239 */ 240 void 241 xfs_iunlock( 242 xfs_inode_t *ip, 243 uint lock_flags) 244 { 245 /* 246 * You can't set both SHARED and EXCL for the same lock, 247 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 248 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 249 */ 250 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 251 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 252 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 253 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 254 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 255 ASSERT(lock_flags != 0); 256 257 if (lock_flags & XFS_IOLOCK_EXCL) 258 mrunlock_excl(&ip->i_iolock); 259 else if (lock_flags & XFS_IOLOCK_SHARED) 260 mrunlock_shared(&ip->i_iolock); 261 262 if (lock_flags & XFS_ILOCK_EXCL) 263 mrunlock_excl(&ip->i_lock); 264 else if (lock_flags & XFS_ILOCK_SHARED) 265 mrunlock_shared(&ip->i_lock); 266 267 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 268 } 269 270 /* 271 * give up write locks. the i/o lock cannot be held nested 272 * if it is being demoted. 273 */ 274 void 275 xfs_ilock_demote( 276 xfs_inode_t *ip, 277 uint lock_flags) 278 { 279 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)); 280 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 281 282 if (lock_flags & XFS_ILOCK_EXCL) 283 mrdemote(&ip->i_lock); 284 if (lock_flags & XFS_IOLOCK_EXCL) 285 mrdemote(&ip->i_iolock); 286 287 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 288 } 289 290 #if defined(DEBUG) || defined(XFS_WARN) 291 int 292 xfs_isilocked( 293 xfs_inode_t *ip, 294 uint lock_flags) 295 { 296 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 297 if (!(lock_flags & XFS_ILOCK_SHARED)) 298 return !!ip->i_lock.mr_writer; 299 return rwsem_is_locked(&ip->i_lock.mr_lock); 300 } 301 302 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 303 if (!(lock_flags & XFS_IOLOCK_SHARED)) 304 return !!ip->i_iolock.mr_writer; 305 return rwsem_is_locked(&ip->i_iolock.mr_lock); 306 } 307 308 ASSERT(0); 309 return 0; 310 } 311 #endif 312 313 void 314 __xfs_iflock( 315 struct xfs_inode *ip) 316 { 317 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 318 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 319 320 do { 321 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 322 if (xfs_isiflocked(ip)) 323 io_schedule(); 324 } while (!xfs_iflock_nowait(ip)); 325 326 finish_wait(wq, &wait.wait); 327 } 328 329 #ifdef DEBUG 330 /* 331 * Make sure that the extents in the given memory buffer 332 * are valid. 333 */ 334 STATIC void 335 xfs_validate_extents( 336 xfs_ifork_t *ifp, 337 int nrecs, 338 xfs_exntfmt_t fmt) 339 { 340 xfs_bmbt_irec_t irec; 341 xfs_bmbt_rec_host_t rec; 342 int i; 343 344 for (i = 0; i < nrecs; i++) { 345 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 346 rec.l0 = get_unaligned(&ep->l0); 347 rec.l1 = get_unaligned(&ep->l1); 348 xfs_bmbt_get_all(&rec, &irec); 349 if (fmt == XFS_EXTFMT_NOSTATE) 350 ASSERT(irec.br_state == XFS_EXT_NORM); 351 } 352 } 353 #else /* DEBUG */ 354 #define xfs_validate_extents(ifp, nrecs, fmt) 355 #endif /* DEBUG */ 356 357 /* 358 * Check that none of the inode's in the buffer have a next 359 * unlinked field of 0. 360 */ 361 #if defined(DEBUG) 362 void 363 xfs_inobp_check( 364 xfs_mount_t *mp, 365 xfs_buf_t *bp) 366 { 367 int i; 368 int j; 369 xfs_dinode_t *dip; 370 371 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 372 373 for (i = 0; i < j; i++) { 374 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 375 i * mp->m_sb.sb_inodesize); 376 if (!dip->di_next_unlinked) { 377 xfs_alert(mp, 378 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.", 379 bp); 380 ASSERT(dip->di_next_unlinked); 381 } 382 } 383 } 384 #endif 385 386 static void 387 xfs_inode_buf_verify( 388 struct xfs_buf *bp) 389 { 390 struct xfs_mount *mp = bp->b_target->bt_mount; 391 int i; 392 int ni; 393 394 /* 395 * Validate the magic number and version of every inode in the buffer 396 */ 397 ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock; 398 for (i = 0; i < ni; i++) { 399 int di_ok; 400 xfs_dinode_t *dip; 401 402 dip = (struct xfs_dinode *)xfs_buf_offset(bp, 403 (i << mp->m_sb.sb_inodelog)); 404 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) && 405 XFS_DINODE_GOOD_VERSION(dip->di_version); 406 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, 407 XFS_ERRTAG_ITOBP_INOTOBP, 408 XFS_RANDOM_ITOBP_INOTOBP))) { 409 xfs_buf_ioerror(bp, EFSCORRUPTED); 410 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_HIGH, 411 mp, dip); 412 #ifdef DEBUG 413 xfs_emerg(mp, 414 "bad inode magic/vsn daddr %lld #%d (magic=%x)", 415 (unsigned long long)bp->b_bn, i, 416 be16_to_cpu(dip->di_magic)); 417 ASSERT(0); 418 #endif 419 } 420 } 421 xfs_inobp_check(mp, bp); 422 } 423 424 425 static void 426 xfs_inode_buf_read_verify( 427 struct xfs_buf *bp) 428 { 429 xfs_inode_buf_verify(bp); 430 } 431 432 static void 433 xfs_inode_buf_write_verify( 434 struct xfs_buf *bp) 435 { 436 xfs_inode_buf_verify(bp); 437 } 438 439 const struct xfs_buf_ops xfs_inode_buf_ops = { 440 .verify_read = xfs_inode_buf_read_verify, 441 .verify_write = xfs_inode_buf_write_verify, 442 }; 443 444 445 /* 446 * This routine is called to map an inode to the buffer containing the on-disk 447 * version of the inode. It returns a pointer to the buffer containing the 448 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a 449 * pointer to the on-disk inode within that buffer. 450 * 451 * If a non-zero error is returned, then the contents of bpp and dipp are 452 * undefined. 453 */ 454 int 455 xfs_imap_to_bp( 456 struct xfs_mount *mp, 457 struct xfs_trans *tp, 458 struct xfs_imap *imap, 459 struct xfs_dinode **dipp, 460 struct xfs_buf **bpp, 461 uint buf_flags, 462 uint iget_flags) 463 { 464 struct xfs_buf *bp; 465 int error; 466 467 buf_flags |= XBF_UNMAPPED; 468 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, 469 (int)imap->im_len, buf_flags, &bp, 470 &xfs_inode_buf_ops); 471 if (error) { 472 if (error == EAGAIN) { 473 ASSERT(buf_flags & XBF_TRYLOCK); 474 return error; 475 } 476 477 if (error == EFSCORRUPTED && 478 (iget_flags & XFS_IGET_UNTRUSTED)) 479 return XFS_ERROR(EINVAL); 480 481 xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.", 482 __func__, error); 483 return error; 484 } 485 486 *bpp = bp; 487 *dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset); 488 return 0; 489 } 490 491 /* 492 * Move inode type and inode format specific information from the 493 * on-disk inode to the in-core inode. For fifos, devs, and sockets 494 * this means set if_rdev to the proper value. For files, directories, 495 * and symlinks this means to bring in the in-line data or extent 496 * pointers. For a file in B-tree format, only the root is immediately 497 * brought in-core. The rest will be in-lined in if_extents when it 498 * is first referenced (see xfs_iread_extents()). 499 */ 500 STATIC int 501 xfs_iformat( 502 xfs_inode_t *ip, 503 xfs_dinode_t *dip) 504 { 505 xfs_attr_shortform_t *atp; 506 int size; 507 int error = 0; 508 xfs_fsize_t di_size; 509 510 if (unlikely(be32_to_cpu(dip->di_nextents) + 511 be16_to_cpu(dip->di_anextents) > 512 be64_to_cpu(dip->di_nblocks))) { 513 xfs_warn(ip->i_mount, 514 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", 515 (unsigned long long)ip->i_ino, 516 (int)(be32_to_cpu(dip->di_nextents) + 517 be16_to_cpu(dip->di_anextents)), 518 (unsigned long long) 519 be64_to_cpu(dip->di_nblocks)); 520 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 521 ip->i_mount, dip); 522 return XFS_ERROR(EFSCORRUPTED); 523 } 524 525 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) { 526 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.", 527 (unsigned long long)ip->i_ino, 528 dip->di_forkoff); 529 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 530 ip->i_mount, dip); 531 return XFS_ERROR(EFSCORRUPTED); 532 } 533 534 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) && 535 !ip->i_mount->m_rtdev_targp)) { 536 xfs_warn(ip->i_mount, 537 "corrupt dinode %Lu, has realtime flag set.", 538 ip->i_ino); 539 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)", 540 XFS_ERRLEVEL_LOW, ip->i_mount, dip); 541 return XFS_ERROR(EFSCORRUPTED); 542 } 543 544 switch (ip->i_d.di_mode & S_IFMT) { 545 case S_IFIFO: 546 case S_IFCHR: 547 case S_IFBLK: 548 case S_IFSOCK: 549 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) { 550 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 551 ip->i_mount, dip); 552 return XFS_ERROR(EFSCORRUPTED); 553 } 554 ip->i_d.di_size = 0; 555 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip); 556 break; 557 558 case S_IFREG: 559 case S_IFLNK: 560 case S_IFDIR: 561 switch (dip->di_format) { 562 case XFS_DINODE_FMT_LOCAL: 563 /* 564 * no local regular files yet 565 */ 566 if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) { 567 xfs_warn(ip->i_mount, 568 "corrupt inode %Lu (local format for regular file).", 569 (unsigned long long) ip->i_ino); 570 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 571 XFS_ERRLEVEL_LOW, 572 ip->i_mount, dip); 573 return XFS_ERROR(EFSCORRUPTED); 574 } 575 576 di_size = be64_to_cpu(dip->di_size); 577 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 578 xfs_warn(ip->i_mount, 579 "corrupt inode %Lu (bad size %Ld for local inode).", 580 (unsigned long long) ip->i_ino, 581 (long long) di_size); 582 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 583 XFS_ERRLEVEL_LOW, 584 ip->i_mount, dip); 585 return XFS_ERROR(EFSCORRUPTED); 586 } 587 588 size = (int)di_size; 589 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 590 break; 591 case XFS_DINODE_FMT_EXTENTS: 592 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 593 break; 594 case XFS_DINODE_FMT_BTREE: 595 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 596 break; 597 default: 598 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 599 ip->i_mount); 600 return XFS_ERROR(EFSCORRUPTED); 601 } 602 break; 603 604 default: 605 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 606 return XFS_ERROR(EFSCORRUPTED); 607 } 608 if (error) { 609 return error; 610 } 611 if (!XFS_DFORK_Q(dip)) 612 return 0; 613 614 ASSERT(ip->i_afp == NULL); 615 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS); 616 617 switch (dip->di_aformat) { 618 case XFS_DINODE_FMT_LOCAL: 619 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 620 size = be16_to_cpu(atp->hdr.totsize); 621 622 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) { 623 xfs_warn(ip->i_mount, 624 "corrupt inode %Lu (bad attr fork size %Ld).", 625 (unsigned long long) ip->i_ino, 626 (long long) size); 627 XFS_CORRUPTION_ERROR("xfs_iformat(8)", 628 XFS_ERRLEVEL_LOW, 629 ip->i_mount, dip); 630 return XFS_ERROR(EFSCORRUPTED); 631 } 632 633 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 634 break; 635 case XFS_DINODE_FMT_EXTENTS: 636 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 637 break; 638 case XFS_DINODE_FMT_BTREE: 639 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 640 break; 641 default: 642 error = XFS_ERROR(EFSCORRUPTED); 643 break; 644 } 645 if (error) { 646 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 647 ip->i_afp = NULL; 648 xfs_idestroy_fork(ip, XFS_DATA_FORK); 649 } 650 return error; 651 } 652 653 /* 654 * The file is in-lined in the on-disk inode. 655 * If it fits into if_inline_data, then copy 656 * it there, otherwise allocate a buffer for it 657 * and copy the data there. Either way, set 658 * if_data to point at the data. 659 * If we allocate a buffer for the data, make 660 * sure that its size is a multiple of 4 and 661 * record the real size in i_real_bytes. 662 */ 663 STATIC int 664 xfs_iformat_local( 665 xfs_inode_t *ip, 666 xfs_dinode_t *dip, 667 int whichfork, 668 int size) 669 { 670 xfs_ifork_t *ifp; 671 int real_size; 672 673 /* 674 * If the size is unreasonable, then something 675 * is wrong and we just bail out rather than crash in 676 * kmem_alloc() or memcpy() below. 677 */ 678 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 679 xfs_warn(ip->i_mount, 680 "corrupt inode %Lu (bad size %d for local fork, size = %d).", 681 (unsigned long long) ip->i_ino, size, 682 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 683 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 684 ip->i_mount, dip); 685 return XFS_ERROR(EFSCORRUPTED); 686 } 687 ifp = XFS_IFORK_PTR(ip, whichfork); 688 real_size = 0; 689 if (size == 0) 690 ifp->if_u1.if_data = NULL; 691 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 692 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 693 else { 694 real_size = roundup(size, 4); 695 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS); 696 } 697 ifp->if_bytes = size; 698 ifp->if_real_bytes = real_size; 699 if (size) 700 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 701 ifp->if_flags &= ~XFS_IFEXTENTS; 702 ifp->if_flags |= XFS_IFINLINE; 703 return 0; 704 } 705 706 /* 707 * The file consists of a set of extents all 708 * of which fit into the on-disk inode. 709 * If there are few enough extents to fit into 710 * the if_inline_ext, then copy them there. 711 * Otherwise allocate a buffer for them and copy 712 * them into it. Either way, set if_extents 713 * to point at the extents. 714 */ 715 STATIC int 716 xfs_iformat_extents( 717 xfs_inode_t *ip, 718 xfs_dinode_t *dip, 719 int whichfork) 720 { 721 xfs_bmbt_rec_t *dp; 722 xfs_ifork_t *ifp; 723 int nex; 724 int size; 725 int i; 726 727 ifp = XFS_IFORK_PTR(ip, whichfork); 728 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 729 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 730 731 /* 732 * If the number of extents is unreasonable, then something 733 * is wrong and we just bail out rather than crash in 734 * kmem_alloc() or memcpy() below. 735 */ 736 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 737 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).", 738 (unsigned long long) ip->i_ino, nex); 739 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 740 ip->i_mount, dip); 741 return XFS_ERROR(EFSCORRUPTED); 742 } 743 744 ifp->if_real_bytes = 0; 745 if (nex == 0) 746 ifp->if_u1.if_extents = NULL; 747 else if (nex <= XFS_INLINE_EXTS) 748 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 749 else 750 xfs_iext_add(ifp, 0, nex); 751 752 ifp->if_bytes = size; 753 if (size) { 754 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 755 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip)); 756 for (i = 0; i < nex; i++, dp++) { 757 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 758 ep->l0 = get_unaligned_be64(&dp->l0); 759 ep->l1 = get_unaligned_be64(&dp->l1); 760 } 761 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork); 762 if (whichfork != XFS_DATA_FORK || 763 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 764 if (unlikely(xfs_check_nostate_extents( 765 ifp, 0, nex))) { 766 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 767 XFS_ERRLEVEL_LOW, 768 ip->i_mount); 769 return XFS_ERROR(EFSCORRUPTED); 770 } 771 } 772 ifp->if_flags |= XFS_IFEXTENTS; 773 return 0; 774 } 775 776 /* 777 * The file has too many extents to fit into 778 * the inode, so they are in B-tree format. 779 * Allocate a buffer for the root of the B-tree 780 * and copy the root into it. The i_extents 781 * field will remain NULL until all of the 782 * extents are read in (when they are needed). 783 */ 784 STATIC int 785 xfs_iformat_btree( 786 xfs_inode_t *ip, 787 xfs_dinode_t *dip, 788 int whichfork) 789 { 790 struct xfs_mount *mp = ip->i_mount; 791 xfs_bmdr_block_t *dfp; 792 xfs_ifork_t *ifp; 793 /* REFERENCED */ 794 int nrecs; 795 int size; 796 797 ifp = XFS_IFORK_PTR(ip, whichfork); 798 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 799 size = XFS_BMAP_BROOT_SPACE(mp, dfp); 800 nrecs = be16_to_cpu(dfp->bb_numrecs); 801 802 /* 803 * blow out if -- fork has less extents than can fit in 804 * fork (fork shouldn't be a btree format), root btree 805 * block has more records than can fit into the fork, 806 * or the number of extents is greater than the number of 807 * blocks. 808 */ 809 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= 810 XFS_IFORK_MAXEXT(ip, whichfork) || 811 XFS_BMDR_SPACE_CALC(nrecs) > 812 XFS_DFORK_SIZE(dip, mp, whichfork) || 813 XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 814 xfs_warn(mp, "corrupt inode %Lu (btree).", 815 (unsigned long long) ip->i_ino); 816 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 817 mp, dip); 818 return XFS_ERROR(EFSCORRUPTED); 819 } 820 821 ifp->if_broot_bytes = size; 822 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS); 823 ASSERT(ifp->if_broot != NULL); 824 /* 825 * Copy and convert from the on-disk structure 826 * to the in-memory structure. 827 */ 828 xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 829 ifp->if_broot, size); 830 ifp->if_flags &= ~XFS_IFEXTENTS; 831 ifp->if_flags |= XFS_IFBROOT; 832 833 return 0; 834 } 835 836 STATIC void 837 xfs_dinode_from_disk( 838 xfs_icdinode_t *to, 839 xfs_dinode_t *from) 840 { 841 to->di_magic = be16_to_cpu(from->di_magic); 842 to->di_mode = be16_to_cpu(from->di_mode); 843 to->di_version = from ->di_version; 844 to->di_format = from->di_format; 845 to->di_onlink = be16_to_cpu(from->di_onlink); 846 to->di_uid = be32_to_cpu(from->di_uid); 847 to->di_gid = be32_to_cpu(from->di_gid); 848 to->di_nlink = be32_to_cpu(from->di_nlink); 849 to->di_projid_lo = be16_to_cpu(from->di_projid_lo); 850 to->di_projid_hi = be16_to_cpu(from->di_projid_hi); 851 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 852 to->di_flushiter = be16_to_cpu(from->di_flushiter); 853 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec); 854 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec); 855 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec); 856 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec); 857 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec); 858 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec); 859 to->di_size = be64_to_cpu(from->di_size); 860 to->di_nblocks = be64_to_cpu(from->di_nblocks); 861 to->di_extsize = be32_to_cpu(from->di_extsize); 862 to->di_nextents = be32_to_cpu(from->di_nextents); 863 to->di_anextents = be16_to_cpu(from->di_anextents); 864 to->di_forkoff = from->di_forkoff; 865 to->di_aformat = from->di_aformat; 866 to->di_dmevmask = be32_to_cpu(from->di_dmevmask); 867 to->di_dmstate = be16_to_cpu(from->di_dmstate); 868 to->di_flags = be16_to_cpu(from->di_flags); 869 to->di_gen = be32_to_cpu(from->di_gen); 870 871 if (to->di_version == 3) { 872 to->di_changecount = be64_to_cpu(from->di_changecount); 873 to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec); 874 to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec); 875 to->di_flags2 = be64_to_cpu(from->di_flags2); 876 to->di_ino = be64_to_cpu(from->di_ino); 877 to->di_lsn = be64_to_cpu(from->di_lsn); 878 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2)); 879 uuid_copy(&to->di_uuid, &from->di_uuid); 880 } 881 } 882 883 void 884 xfs_dinode_to_disk( 885 xfs_dinode_t *to, 886 xfs_icdinode_t *from) 887 { 888 to->di_magic = cpu_to_be16(from->di_magic); 889 to->di_mode = cpu_to_be16(from->di_mode); 890 to->di_version = from ->di_version; 891 to->di_format = from->di_format; 892 to->di_onlink = cpu_to_be16(from->di_onlink); 893 to->di_uid = cpu_to_be32(from->di_uid); 894 to->di_gid = cpu_to_be32(from->di_gid); 895 to->di_nlink = cpu_to_be32(from->di_nlink); 896 to->di_projid_lo = cpu_to_be16(from->di_projid_lo); 897 to->di_projid_hi = cpu_to_be16(from->di_projid_hi); 898 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 899 to->di_flushiter = cpu_to_be16(from->di_flushiter); 900 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec); 901 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec); 902 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec); 903 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec); 904 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec); 905 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec); 906 to->di_size = cpu_to_be64(from->di_size); 907 to->di_nblocks = cpu_to_be64(from->di_nblocks); 908 to->di_extsize = cpu_to_be32(from->di_extsize); 909 to->di_nextents = cpu_to_be32(from->di_nextents); 910 to->di_anextents = cpu_to_be16(from->di_anextents); 911 to->di_forkoff = from->di_forkoff; 912 to->di_aformat = from->di_aformat; 913 to->di_dmevmask = cpu_to_be32(from->di_dmevmask); 914 to->di_dmstate = cpu_to_be16(from->di_dmstate); 915 to->di_flags = cpu_to_be16(from->di_flags); 916 to->di_gen = cpu_to_be32(from->di_gen); 917 918 if (from->di_version == 3) { 919 to->di_changecount = cpu_to_be64(from->di_changecount); 920 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec); 921 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec); 922 to->di_flags2 = cpu_to_be64(from->di_flags2); 923 to->di_ino = cpu_to_be64(from->di_ino); 924 to->di_lsn = cpu_to_be64(from->di_lsn); 925 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2)); 926 uuid_copy(&to->di_uuid, &from->di_uuid); 927 } 928 } 929 930 STATIC uint 931 _xfs_dic2xflags( 932 __uint16_t di_flags) 933 { 934 uint flags = 0; 935 936 if (di_flags & XFS_DIFLAG_ANY) { 937 if (di_flags & XFS_DIFLAG_REALTIME) 938 flags |= XFS_XFLAG_REALTIME; 939 if (di_flags & XFS_DIFLAG_PREALLOC) 940 flags |= XFS_XFLAG_PREALLOC; 941 if (di_flags & XFS_DIFLAG_IMMUTABLE) 942 flags |= XFS_XFLAG_IMMUTABLE; 943 if (di_flags & XFS_DIFLAG_APPEND) 944 flags |= XFS_XFLAG_APPEND; 945 if (di_flags & XFS_DIFLAG_SYNC) 946 flags |= XFS_XFLAG_SYNC; 947 if (di_flags & XFS_DIFLAG_NOATIME) 948 flags |= XFS_XFLAG_NOATIME; 949 if (di_flags & XFS_DIFLAG_NODUMP) 950 flags |= XFS_XFLAG_NODUMP; 951 if (di_flags & XFS_DIFLAG_RTINHERIT) 952 flags |= XFS_XFLAG_RTINHERIT; 953 if (di_flags & XFS_DIFLAG_PROJINHERIT) 954 flags |= XFS_XFLAG_PROJINHERIT; 955 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 956 flags |= XFS_XFLAG_NOSYMLINKS; 957 if (di_flags & XFS_DIFLAG_EXTSIZE) 958 flags |= XFS_XFLAG_EXTSIZE; 959 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 960 flags |= XFS_XFLAG_EXTSZINHERIT; 961 if (di_flags & XFS_DIFLAG_NODEFRAG) 962 flags |= XFS_XFLAG_NODEFRAG; 963 if (di_flags & XFS_DIFLAG_FILESTREAM) 964 flags |= XFS_XFLAG_FILESTREAM; 965 } 966 967 return flags; 968 } 969 970 uint 971 xfs_ip2xflags( 972 xfs_inode_t *ip) 973 { 974 xfs_icdinode_t *dic = &ip->i_d; 975 976 return _xfs_dic2xflags(dic->di_flags) | 977 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 978 } 979 980 uint 981 xfs_dic2xflags( 982 xfs_dinode_t *dip) 983 { 984 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 985 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 986 } 987 988 static bool 989 xfs_dinode_verify( 990 struct xfs_mount *mp, 991 struct xfs_inode *ip, 992 struct xfs_dinode *dip) 993 { 994 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) 995 return false; 996 997 /* only version 3 or greater inodes are extensively verified here */ 998 if (dip->di_version < 3) 999 return true; 1000 1001 if (!xfs_sb_version_hascrc(&mp->m_sb)) 1002 return false; 1003 if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize, 1004 offsetof(struct xfs_dinode, di_crc))) 1005 return false; 1006 if (be64_to_cpu(dip->di_ino) != ip->i_ino) 1007 return false; 1008 if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_uuid)) 1009 return false; 1010 return true; 1011 } 1012 1013 void 1014 xfs_dinode_calc_crc( 1015 struct xfs_mount *mp, 1016 struct xfs_dinode *dip) 1017 { 1018 __uint32_t crc; 1019 1020 if (dip->di_version < 3) 1021 return; 1022 1023 ASSERT(xfs_sb_version_hascrc(&mp->m_sb)); 1024 crc = xfs_start_cksum((char *)dip, mp->m_sb.sb_inodesize, 1025 offsetof(struct xfs_dinode, di_crc)); 1026 dip->di_crc = xfs_end_cksum(crc); 1027 } 1028 1029 /* 1030 * Read the disk inode attributes into the in-core inode structure. 1031 * 1032 * If we are initialising a new inode and we are not utilising the 1033 * XFS_MOUNT_IKEEP inode cluster mode, we can simple build the new inode core 1034 * with a random generation number. If we are keeping inodes around, we need to 1035 * read the inode cluster to get the existing generation number off disk. 1036 */ 1037 int 1038 xfs_iread( 1039 xfs_mount_t *mp, 1040 xfs_trans_t *tp, 1041 xfs_inode_t *ip, 1042 uint iget_flags) 1043 { 1044 xfs_buf_t *bp; 1045 xfs_dinode_t *dip; 1046 int error; 1047 1048 /* 1049 * Fill in the location information in the in-core inode. 1050 */ 1051 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags); 1052 if (error) 1053 return error; 1054 1055 /* shortcut IO on inode allocation if possible */ 1056 if ((iget_flags & XFS_IGET_CREATE) && 1057 !(mp->m_flags & XFS_MOUNT_IKEEP)) { 1058 /* initialise the on-disk inode core */ 1059 memset(&ip->i_d, 0, sizeof(ip->i_d)); 1060 ip->i_d.di_magic = XFS_DINODE_MAGIC; 1061 ip->i_d.di_gen = prandom_u32(); 1062 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1063 ip->i_d.di_version = 3; 1064 ip->i_d.di_ino = ip->i_ino; 1065 uuid_copy(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid); 1066 } else 1067 ip->i_d.di_version = 2; 1068 return 0; 1069 } 1070 1071 /* 1072 * Get pointers to the on-disk inode and the buffer containing it. 1073 */ 1074 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags); 1075 if (error) 1076 return error; 1077 1078 /* even unallocated inodes are verified */ 1079 if (!xfs_dinode_verify(mp, ip, dip)) { 1080 xfs_alert(mp, "%s: validation failed for inode %lld failed", 1081 __func__, ip->i_ino); 1082 1083 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, dip); 1084 error = XFS_ERROR(EFSCORRUPTED); 1085 goto out_brelse; 1086 } 1087 1088 /* 1089 * If the on-disk inode is already linked to a directory 1090 * entry, copy all of the inode into the in-core inode. 1091 * xfs_iformat() handles copying in the inode format 1092 * specific information. 1093 * Otherwise, just get the truly permanent information. 1094 */ 1095 if (dip->di_mode) { 1096 xfs_dinode_from_disk(&ip->i_d, dip); 1097 error = xfs_iformat(ip, dip); 1098 if (error) { 1099 #ifdef DEBUG 1100 xfs_alert(mp, "%s: xfs_iformat() returned error %d", 1101 __func__, error); 1102 #endif /* DEBUG */ 1103 goto out_brelse; 1104 } 1105 } else { 1106 /* 1107 * Partial initialisation of the in-core inode. Just the bits 1108 * that xfs_ialloc won't overwrite or relies on being correct. 1109 */ 1110 ip->i_d.di_magic = be16_to_cpu(dip->di_magic); 1111 ip->i_d.di_version = dip->di_version; 1112 ip->i_d.di_gen = be32_to_cpu(dip->di_gen); 1113 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter); 1114 1115 if (dip->di_version == 3) { 1116 ip->i_d.di_ino = be64_to_cpu(dip->di_ino); 1117 uuid_copy(&ip->i_d.di_uuid, &dip->di_uuid); 1118 } 1119 1120 /* 1121 * Make sure to pull in the mode here as well in 1122 * case the inode is released without being used. 1123 * This ensures that xfs_inactive() will see that 1124 * the inode is already free and not try to mess 1125 * with the uninitialized part of it. 1126 */ 1127 ip->i_d.di_mode = 0; 1128 } 1129 1130 /* 1131 * The inode format changed when we moved the link count and 1132 * made it 32 bits long. If this is an old format inode, 1133 * convert it in memory to look like a new one. If it gets 1134 * flushed to disk we will convert back before flushing or 1135 * logging it. We zero out the new projid field and the old link 1136 * count field. We'll handle clearing the pad field (the remains 1137 * of the old uuid field) when we actually convert the inode to 1138 * the new format. We don't change the version number so that we 1139 * can distinguish this from a real new format inode. 1140 */ 1141 if (ip->i_d.di_version == 1) { 1142 ip->i_d.di_nlink = ip->i_d.di_onlink; 1143 ip->i_d.di_onlink = 0; 1144 xfs_set_projid(ip, 0); 1145 } 1146 1147 ip->i_delayed_blks = 0; 1148 1149 /* 1150 * Mark the buffer containing the inode as something to keep 1151 * around for a while. This helps to keep recently accessed 1152 * meta-data in-core longer. 1153 */ 1154 xfs_buf_set_ref(bp, XFS_INO_REF); 1155 1156 /* 1157 * Use xfs_trans_brelse() to release the buffer containing the on-disk 1158 * inode, because it was acquired with xfs_trans_read_buf() in 1159 * xfs_imap_to_bp() above. If tp is NULL, this is just a normal 1160 * brelse(). If we're within a transaction, then xfs_trans_brelse() 1161 * will only release the buffer if it is not dirty within the 1162 * transaction. It will be OK to release the buffer in this case, 1163 * because inodes on disk are never destroyed and we will be locking the 1164 * new in-core inode before putting it in the cache where other 1165 * processes can find it. Thus we don't have to worry about the inode 1166 * being changed just because we released the buffer. 1167 */ 1168 out_brelse: 1169 xfs_trans_brelse(tp, bp); 1170 return error; 1171 } 1172 1173 /* 1174 * Read in extents from a btree-format inode. 1175 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 1176 */ 1177 int 1178 xfs_iread_extents( 1179 xfs_trans_t *tp, 1180 xfs_inode_t *ip, 1181 int whichfork) 1182 { 1183 int error; 1184 xfs_ifork_t *ifp; 1185 xfs_extnum_t nextents; 1186 1187 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 1188 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 1189 ip->i_mount); 1190 return XFS_ERROR(EFSCORRUPTED); 1191 } 1192 nextents = XFS_IFORK_NEXTENTS(ip, whichfork); 1193 ifp = XFS_IFORK_PTR(ip, whichfork); 1194 1195 /* 1196 * We know that the size is valid (it's checked in iformat_btree) 1197 */ 1198 ifp->if_bytes = ifp->if_real_bytes = 0; 1199 ifp->if_flags |= XFS_IFEXTENTS; 1200 xfs_iext_add(ifp, 0, nextents); 1201 error = xfs_bmap_read_extents(tp, ip, whichfork); 1202 if (error) { 1203 xfs_iext_destroy(ifp); 1204 ifp->if_flags &= ~XFS_IFEXTENTS; 1205 return error; 1206 } 1207 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip)); 1208 return 0; 1209 } 1210 1211 /* 1212 * Allocate an inode on disk and return a copy of its in-core version. 1213 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 1214 * appropriately within the inode. The uid and gid for the inode are 1215 * set according to the contents of the given cred structure. 1216 * 1217 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 1218 * has a free inode available, call xfs_iget() to obtain the in-core 1219 * version of the allocated inode. Finally, fill in the inode and 1220 * log its initial contents. In this case, ialloc_context would be 1221 * set to NULL. 1222 * 1223 * If xfs_dialloc() does not have an available inode, it will replenish 1224 * its supply by doing an allocation. Since we can only do one 1225 * allocation within a transaction without deadlocks, we must commit 1226 * the current transaction before returning the inode itself. 1227 * In this case, therefore, we will set ialloc_context and return. 1228 * The caller should then commit the current transaction, start a new 1229 * transaction, and call xfs_ialloc() again to actually get the inode. 1230 * 1231 * To ensure that some other process does not grab the inode that 1232 * was allocated during the first call to xfs_ialloc(), this routine 1233 * also returns the [locked] bp pointing to the head of the freelist 1234 * as ialloc_context. The caller should hold this buffer across 1235 * the commit and pass it back into this routine on the second call. 1236 * 1237 * If we are allocating quota inodes, we do not have a parent inode 1238 * to attach to or associate with (i.e. pip == NULL) because they 1239 * are not linked into the directory structure - they are attached 1240 * directly to the superblock - and so have no parent. 1241 */ 1242 int 1243 xfs_ialloc( 1244 xfs_trans_t *tp, 1245 xfs_inode_t *pip, 1246 umode_t mode, 1247 xfs_nlink_t nlink, 1248 xfs_dev_t rdev, 1249 prid_t prid, 1250 int okalloc, 1251 xfs_buf_t **ialloc_context, 1252 xfs_inode_t **ipp) 1253 { 1254 struct xfs_mount *mp = tp->t_mountp; 1255 xfs_ino_t ino; 1256 xfs_inode_t *ip; 1257 uint flags; 1258 int error; 1259 timespec_t tv; 1260 int filestreams = 0; 1261 1262 /* 1263 * Call the space management code to pick 1264 * the on-disk inode to be allocated. 1265 */ 1266 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 1267 ialloc_context, &ino); 1268 if (error) 1269 return error; 1270 if (*ialloc_context || ino == NULLFSINO) { 1271 *ipp = NULL; 1272 return 0; 1273 } 1274 ASSERT(*ialloc_context == NULL); 1275 1276 /* 1277 * Get the in-core inode with the lock held exclusively. 1278 * This is because we're setting fields here we need 1279 * to prevent others from looking at until we're done. 1280 */ 1281 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 1282 XFS_ILOCK_EXCL, &ip); 1283 if (error) 1284 return error; 1285 ASSERT(ip != NULL); 1286 1287 ip->i_d.di_mode = mode; 1288 ip->i_d.di_onlink = 0; 1289 ip->i_d.di_nlink = nlink; 1290 ASSERT(ip->i_d.di_nlink == nlink); 1291 ip->i_d.di_uid = current_fsuid(); 1292 ip->i_d.di_gid = current_fsgid(); 1293 xfs_set_projid(ip, prid); 1294 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1295 1296 /* 1297 * If the superblock version is up to where we support new format 1298 * inodes and this is currently an old format inode, then change 1299 * the inode version number now. This way we only do the conversion 1300 * here rather than here and in the flush/logging code. 1301 */ 1302 if (xfs_sb_version_hasnlink(&mp->m_sb) && 1303 ip->i_d.di_version == 1) { 1304 ip->i_d.di_version = 2; 1305 /* 1306 * We've already zeroed the old link count, the projid field, 1307 * and the pad field. 1308 */ 1309 } 1310 1311 /* 1312 * Project ids won't be stored on disk if we are using a version 1 inode. 1313 */ 1314 if ((prid != 0) && (ip->i_d.di_version == 1)) 1315 xfs_bump_ino_vers2(tp, ip); 1316 1317 if (pip && XFS_INHERIT_GID(pip)) { 1318 ip->i_d.di_gid = pip->i_d.di_gid; 1319 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) { 1320 ip->i_d.di_mode |= S_ISGID; 1321 } 1322 } 1323 1324 /* 1325 * If the group ID of the new file does not match the effective group 1326 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1327 * (and only if the irix_sgid_inherit compatibility variable is set). 1328 */ 1329 if ((irix_sgid_inherit) && 1330 (ip->i_d.di_mode & S_ISGID) && 1331 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1332 ip->i_d.di_mode &= ~S_ISGID; 1333 } 1334 1335 ip->i_d.di_size = 0; 1336 ip->i_d.di_nextents = 0; 1337 ASSERT(ip->i_d.di_nblocks == 0); 1338 1339 nanotime(&tv); 1340 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 1341 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 1342 ip->i_d.di_atime = ip->i_d.di_mtime; 1343 ip->i_d.di_ctime = ip->i_d.di_mtime; 1344 1345 /* 1346 * di_gen will have been taken care of in xfs_iread. 1347 */ 1348 ip->i_d.di_extsize = 0; 1349 ip->i_d.di_dmevmask = 0; 1350 ip->i_d.di_dmstate = 0; 1351 ip->i_d.di_flags = 0; 1352 1353 if (ip->i_d.di_version == 3) { 1354 ASSERT(ip->i_d.di_ino == ino); 1355 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid)); 1356 ip->i_d.di_crc = 0; 1357 ip->i_d.di_changecount = 1; 1358 ip->i_d.di_lsn = 0; 1359 ip->i_d.di_flags2 = 0; 1360 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2)); 1361 ip->i_d.di_crtime = ip->i_d.di_mtime; 1362 } 1363 1364 1365 flags = XFS_ILOG_CORE; 1366 switch (mode & S_IFMT) { 1367 case S_IFIFO: 1368 case S_IFCHR: 1369 case S_IFBLK: 1370 case S_IFSOCK: 1371 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1372 ip->i_df.if_u2.if_rdev = rdev; 1373 ip->i_df.if_flags = 0; 1374 flags |= XFS_ILOG_DEV; 1375 break; 1376 case S_IFREG: 1377 /* 1378 * we can't set up filestreams until after the VFS inode 1379 * is set up properly. 1380 */ 1381 if (pip && xfs_inode_is_filestream(pip)) 1382 filestreams = 1; 1383 /* fall through */ 1384 case S_IFDIR: 1385 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1386 uint di_flags = 0; 1387 1388 if (S_ISDIR(mode)) { 1389 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1390 di_flags |= XFS_DIFLAG_RTINHERIT; 1391 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1392 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 1393 ip->i_d.di_extsize = pip->i_d.di_extsize; 1394 } 1395 } else if (S_ISREG(mode)) { 1396 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1397 di_flags |= XFS_DIFLAG_REALTIME; 1398 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1399 di_flags |= XFS_DIFLAG_EXTSIZE; 1400 ip->i_d.di_extsize = pip->i_d.di_extsize; 1401 } 1402 } 1403 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1404 xfs_inherit_noatime) 1405 di_flags |= XFS_DIFLAG_NOATIME; 1406 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1407 xfs_inherit_nodump) 1408 di_flags |= XFS_DIFLAG_NODUMP; 1409 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1410 xfs_inherit_sync) 1411 di_flags |= XFS_DIFLAG_SYNC; 1412 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1413 xfs_inherit_nosymlinks) 1414 di_flags |= XFS_DIFLAG_NOSYMLINKS; 1415 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1416 di_flags |= XFS_DIFLAG_PROJINHERIT; 1417 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 1418 xfs_inherit_nodefrag) 1419 di_flags |= XFS_DIFLAG_NODEFRAG; 1420 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 1421 di_flags |= XFS_DIFLAG_FILESTREAM; 1422 ip->i_d.di_flags |= di_flags; 1423 } 1424 /* FALLTHROUGH */ 1425 case S_IFLNK: 1426 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1427 ip->i_df.if_flags = XFS_IFEXTENTS; 1428 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1429 ip->i_df.if_u1.if_extents = NULL; 1430 break; 1431 default: 1432 ASSERT(0); 1433 } 1434 /* 1435 * Attribute fork settings for new inode. 1436 */ 1437 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1438 ip->i_d.di_anextents = 0; 1439 1440 /* 1441 * Log the new values stuffed into the inode. 1442 */ 1443 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1444 xfs_trans_log_inode(tp, ip, flags); 1445 1446 /* now that we have an i_mode we can setup inode ops and unlock */ 1447 xfs_setup_inode(ip); 1448 1449 /* now we have set up the vfs inode we can associate the filestream */ 1450 if (filestreams) { 1451 error = xfs_filestream_associate(pip, ip); 1452 if (error < 0) 1453 return -error; 1454 if (!error) 1455 xfs_iflags_set(ip, XFS_IFILESTREAM); 1456 } 1457 1458 *ipp = ip; 1459 return 0; 1460 } 1461 1462 /* 1463 * Free up the underlying blocks past new_size. The new size must be smaller 1464 * than the current size. This routine can be used both for the attribute and 1465 * data fork, and does not modify the inode size, which is left to the caller. 1466 * 1467 * The transaction passed to this routine must have made a permanent log 1468 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1469 * given transaction and start new ones, so make sure everything involved in 1470 * the transaction is tidy before calling here. Some transaction will be 1471 * returned to the caller to be committed. The incoming transaction must 1472 * already include the inode, and both inode locks must be held exclusively. 1473 * The inode must also be "held" within the transaction. On return the inode 1474 * will be "held" within the returned transaction. This routine does NOT 1475 * require any disk space to be reserved for it within the transaction. 1476 * 1477 * If we get an error, we must return with the inode locked and linked into the 1478 * current transaction. This keeps things simple for the higher level code, 1479 * because it always knows that the inode is locked and held in the transaction 1480 * that returns to it whether errors occur or not. We don't mark the inode 1481 * dirty on error so that transactions can be easily aborted if possible. 1482 */ 1483 int 1484 xfs_itruncate_extents( 1485 struct xfs_trans **tpp, 1486 struct xfs_inode *ip, 1487 int whichfork, 1488 xfs_fsize_t new_size) 1489 { 1490 struct xfs_mount *mp = ip->i_mount; 1491 struct xfs_trans *tp = *tpp; 1492 struct xfs_trans *ntp; 1493 xfs_bmap_free_t free_list; 1494 xfs_fsblock_t first_block; 1495 xfs_fileoff_t first_unmap_block; 1496 xfs_fileoff_t last_block; 1497 xfs_filblks_t unmap_len; 1498 int committed; 1499 int error = 0; 1500 int done = 0; 1501 1502 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1503 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1504 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1505 ASSERT(new_size <= XFS_ISIZE(ip)); 1506 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1507 ASSERT(ip->i_itemp != NULL); 1508 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1509 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1510 1511 trace_xfs_itruncate_extents_start(ip, new_size); 1512 1513 /* 1514 * Since it is possible for space to become allocated beyond 1515 * the end of the file (in a crash where the space is allocated 1516 * but the inode size is not yet updated), simply remove any 1517 * blocks which show up between the new EOF and the maximum 1518 * possible file size. If the first block to be removed is 1519 * beyond the maximum file size (ie it is the same as last_block), 1520 * then there is nothing to do. 1521 */ 1522 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1523 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1524 if (first_unmap_block == last_block) 1525 return 0; 1526 1527 ASSERT(first_unmap_block < last_block); 1528 unmap_len = last_block - first_unmap_block + 1; 1529 while (!done) { 1530 xfs_bmap_init(&free_list, &first_block); 1531 error = xfs_bunmapi(tp, ip, 1532 first_unmap_block, unmap_len, 1533 xfs_bmapi_aflag(whichfork), 1534 XFS_ITRUNC_MAX_EXTENTS, 1535 &first_block, &free_list, 1536 &done); 1537 if (error) 1538 goto out_bmap_cancel; 1539 1540 /* 1541 * Duplicate the transaction that has the permanent 1542 * reservation and commit the old transaction. 1543 */ 1544 error = xfs_bmap_finish(&tp, &free_list, &committed); 1545 if (committed) 1546 xfs_trans_ijoin(tp, ip, 0); 1547 if (error) 1548 goto out_bmap_cancel; 1549 1550 if (committed) { 1551 /* 1552 * Mark the inode dirty so it will be logged and 1553 * moved forward in the log as part of every commit. 1554 */ 1555 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1556 } 1557 1558 ntp = xfs_trans_dup(tp); 1559 error = xfs_trans_commit(tp, 0); 1560 tp = ntp; 1561 1562 xfs_trans_ijoin(tp, ip, 0); 1563 1564 if (error) 1565 goto out; 1566 1567 /* 1568 * Transaction commit worked ok so we can drop the extra ticket 1569 * reference that we gained in xfs_trans_dup() 1570 */ 1571 xfs_log_ticket_put(tp->t_ticket); 1572 error = xfs_trans_reserve(tp, 0, 1573 XFS_ITRUNCATE_LOG_RES(mp), 0, 1574 XFS_TRANS_PERM_LOG_RES, 1575 XFS_ITRUNCATE_LOG_COUNT); 1576 if (error) 1577 goto out; 1578 } 1579 1580 /* 1581 * Always re-log the inode so that our permanent transaction can keep 1582 * on rolling it forward in the log. 1583 */ 1584 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1585 1586 trace_xfs_itruncate_extents_end(ip, new_size); 1587 1588 out: 1589 *tpp = tp; 1590 return error; 1591 out_bmap_cancel: 1592 /* 1593 * If the bunmapi call encounters an error, return to the caller where 1594 * the transaction can be properly aborted. We just need to make sure 1595 * we're not holding any resources that we were not when we came in. 1596 */ 1597 xfs_bmap_cancel(&free_list); 1598 goto out; 1599 } 1600 1601 /* 1602 * This is called when the inode's link count goes to 0. 1603 * We place the on-disk inode on a list in the AGI. It 1604 * will be pulled from this list when the inode is freed. 1605 */ 1606 int 1607 xfs_iunlink( 1608 xfs_trans_t *tp, 1609 xfs_inode_t *ip) 1610 { 1611 xfs_mount_t *mp; 1612 xfs_agi_t *agi; 1613 xfs_dinode_t *dip; 1614 xfs_buf_t *agibp; 1615 xfs_buf_t *ibp; 1616 xfs_agino_t agino; 1617 short bucket_index; 1618 int offset; 1619 int error; 1620 1621 ASSERT(ip->i_d.di_nlink == 0); 1622 ASSERT(ip->i_d.di_mode != 0); 1623 1624 mp = tp->t_mountp; 1625 1626 /* 1627 * Get the agi buffer first. It ensures lock ordering 1628 * on the list. 1629 */ 1630 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1631 if (error) 1632 return error; 1633 agi = XFS_BUF_TO_AGI(agibp); 1634 1635 /* 1636 * Get the index into the agi hash table for the 1637 * list this inode will go on. 1638 */ 1639 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1640 ASSERT(agino != 0); 1641 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1642 ASSERT(agi->agi_unlinked[bucket_index]); 1643 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1644 1645 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 1646 /* 1647 * There is already another inode in the bucket we need 1648 * to add ourselves to. Add us at the front of the list. 1649 * Here we put the head pointer into our next pointer, 1650 * and then we fall through to point the head at us. 1651 */ 1652 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 1653 0, 0); 1654 if (error) 1655 return error; 1656 1657 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 1658 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1659 offset = ip->i_imap.im_boffset + 1660 offsetof(xfs_dinode_t, di_next_unlinked); 1661 1662 /* need to recalc the inode CRC if appropriate */ 1663 xfs_dinode_calc_crc(mp, dip); 1664 1665 xfs_trans_inode_buf(tp, ibp); 1666 xfs_trans_log_buf(tp, ibp, offset, 1667 (offset + sizeof(xfs_agino_t) - 1)); 1668 xfs_inobp_check(mp, ibp); 1669 } 1670 1671 /* 1672 * Point the bucket head pointer at the inode being inserted. 1673 */ 1674 ASSERT(agino != 0); 1675 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1676 offset = offsetof(xfs_agi_t, agi_unlinked) + 1677 (sizeof(xfs_agino_t) * bucket_index); 1678 xfs_trans_log_buf(tp, agibp, offset, 1679 (offset + sizeof(xfs_agino_t) - 1)); 1680 return 0; 1681 } 1682 1683 /* 1684 * Pull the on-disk inode from the AGI unlinked list. 1685 */ 1686 STATIC int 1687 xfs_iunlink_remove( 1688 xfs_trans_t *tp, 1689 xfs_inode_t *ip) 1690 { 1691 xfs_ino_t next_ino; 1692 xfs_mount_t *mp; 1693 xfs_agi_t *agi; 1694 xfs_dinode_t *dip; 1695 xfs_buf_t *agibp; 1696 xfs_buf_t *ibp; 1697 xfs_agnumber_t agno; 1698 xfs_agino_t agino; 1699 xfs_agino_t next_agino; 1700 xfs_buf_t *last_ibp; 1701 xfs_dinode_t *last_dip = NULL; 1702 short bucket_index; 1703 int offset, last_offset = 0; 1704 int error; 1705 1706 mp = tp->t_mountp; 1707 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1708 1709 /* 1710 * Get the agi buffer first. It ensures lock ordering 1711 * on the list. 1712 */ 1713 error = xfs_read_agi(mp, tp, agno, &agibp); 1714 if (error) 1715 return error; 1716 1717 agi = XFS_BUF_TO_AGI(agibp); 1718 1719 /* 1720 * Get the index into the agi hash table for the 1721 * list this inode will go on. 1722 */ 1723 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1724 ASSERT(agino != 0); 1725 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1726 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 1727 ASSERT(agi->agi_unlinked[bucket_index]); 1728 1729 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 1730 /* 1731 * We're at the head of the list. Get the inode's on-disk 1732 * buffer to see if there is anyone after us on the list. 1733 * Only modify our next pointer if it is not already NULLAGINO. 1734 * This saves us the overhead of dealing with the buffer when 1735 * there is no need to change it. 1736 */ 1737 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 1738 0, 0); 1739 if (error) { 1740 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 1741 __func__, error); 1742 return error; 1743 } 1744 next_agino = be32_to_cpu(dip->di_next_unlinked); 1745 ASSERT(next_agino != 0); 1746 if (next_agino != NULLAGINO) { 1747 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1748 offset = ip->i_imap.im_boffset + 1749 offsetof(xfs_dinode_t, di_next_unlinked); 1750 1751 /* need to recalc the inode CRC if appropriate */ 1752 xfs_dinode_calc_crc(mp, dip); 1753 1754 xfs_trans_inode_buf(tp, ibp); 1755 xfs_trans_log_buf(tp, ibp, offset, 1756 (offset + sizeof(xfs_agino_t) - 1)); 1757 xfs_inobp_check(mp, ibp); 1758 } else { 1759 xfs_trans_brelse(tp, ibp); 1760 } 1761 /* 1762 * Point the bucket head pointer at the next inode. 1763 */ 1764 ASSERT(next_agino != 0); 1765 ASSERT(next_agino != agino); 1766 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 1767 offset = offsetof(xfs_agi_t, agi_unlinked) + 1768 (sizeof(xfs_agino_t) * bucket_index); 1769 xfs_trans_log_buf(tp, agibp, offset, 1770 (offset + sizeof(xfs_agino_t) - 1)); 1771 } else { 1772 /* 1773 * We need to search the list for the inode being freed. 1774 */ 1775 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1776 last_ibp = NULL; 1777 while (next_agino != agino) { 1778 struct xfs_imap imap; 1779 1780 if (last_ibp) 1781 xfs_trans_brelse(tp, last_ibp); 1782 1783 imap.im_blkno = 0; 1784 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 1785 1786 error = xfs_imap(mp, tp, next_ino, &imap, 0); 1787 if (error) { 1788 xfs_warn(mp, 1789 "%s: xfs_imap returned error %d.", 1790 __func__, error); 1791 return error; 1792 } 1793 1794 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 1795 &last_ibp, 0, 0); 1796 if (error) { 1797 xfs_warn(mp, 1798 "%s: xfs_imap_to_bp returned error %d.", 1799 __func__, error); 1800 return error; 1801 } 1802 1803 last_offset = imap.im_boffset; 1804 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 1805 ASSERT(next_agino != NULLAGINO); 1806 ASSERT(next_agino != 0); 1807 } 1808 1809 /* 1810 * Now last_ibp points to the buffer previous to us on the 1811 * unlinked list. Pull us from the list. 1812 */ 1813 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 1814 0, 0); 1815 if (error) { 1816 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 1817 __func__, error); 1818 return error; 1819 } 1820 next_agino = be32_to_cpu(dip->di_next_unlinked); 1821 ASSERT(next_agino != 0); 1822 ASSERT(next_agino != agino); 1823 if (next_agino != NULLAGINO) { 1824 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1825 offset = ip->i_imap.im_boffset + 1826 offsetof(xfs_dinode_t, di_next_unlinked); 1827 1828 /* need to recalc the inode CRC if appropriate */ 1829 xfs_dinode_calc_crc(mp, dip); 1830 1831 xfs_trans_inode_buf(tp, ibp); 1832 xfs_trans_log_buf(tp, ibp, offset, 1833 (offset + sizeof(xfs_agino_t) - 1)); 1834 xfs_inobp_check(mp, ibp); 1835 } else { 1836 xfs_trans_brelse(tp, ibp); 1837 } 1838 /* 1839 * Point the previous inode on the list to the next inode. 1840 */ 1841 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 1842 ASSERT(next_agino != 0); 1843 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 1844 1845 /* need to recalc the inode CRC if appropriate */ 1846 xfs_dinode_calc_crc(mp, last_dip); 1847 1848 xfs_trans_inode_buf(tp, last_ibp); 1849 xfs_trans_log_buf(tp, last_ibp, offset, 1850 (offset + sizeof(xfs_agino_t) - 1)); 1851 xfs_inobp_check(mp, last_ibp); 1852 } 1853 return 0; 1854 } 1855 1856 /* 1857 * A big issue when freeing the inode cluster is is that we _cannot_ skip any 1858 * inodes that are in memory - they all must be marked stale and attached to 1859 * the cluster buffer. 1860 */ 1861 STATIC int 1862 xfs_ifree_cluster( 1863 xfs_inode_t *free_ip, 1864 xfs_trans_t *tp, 1865 xfs_ino_t inum) 1866 { 1867 xfs_mount_t *mp = free_ip->i_mount; 1868 int blks_per_cluster; 1869 int nbufs; 1870 int ninodes; 1871 int i, j; 1872 xfs_daddr_t blkno; 1873 xfs_buf_t *bp; 1874 xfs_inode_t *ip; 1875 xfs_inode_log_item_t *iip; 1876 xfs_log_item_t *lip; 1877 struct xfs_perag *pag; 1878 1879 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 1880 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 1881 blks_per_cluster = 1; 1882 ninodes = mp->m_sb.sb_inopblock; 1883 nbufs = XFS_IALLOC_BLOCKS(mp); 1884 } else { 1885 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 1886 mp->m_sb.sb_blocksize; 1887 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 1888 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 1889 } 1890 1891 for (j = 0; j < nbufs; j++, inum += ninodes) { 1892 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 1893 XFS_INO_TO_AGBNO(mp, inum)); 1894 1895 /* 1896 * We obtain and lock the backing buffer first in the process 1897 * here, as we have to ensure that any dirty inode that we 1898 * can't get the flush lock on is attached to the buffer. 1899 * If we scan the in-memory inodes first, then buffer IO can 1900 * complete before we get a lock on it, and hence we may fail 1901 * to mark all the active inodes on the buffer stale. 1902 */ 1903 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 1904 mp->m_bsize * blks_per_cluster, 1905 XBF_UNMAPPED); 1906 1907 if (!bp) 1908 return ENOMEM; 1909 1910 /* 1911 * This buffer may not have been correctly initialised as we 1912 * didn't read it from disk. That's not important because we are 1913 * only using to mark the buffer as stale in the log, and to 1914 * attach stale cached inodes on it. That means it will never be 1915 * dispatched for IO. If it is, we want to know about it, and we 1916 * want it to fail. We can acheive this by adding a write 1917 * verifier to the buffer. 1918 */ 1919 bp->b_ops = &xfs_inode_buf_ops; 1920 1921 /* 1922 * Walk the inodes already attached to the buffer and mark them 1923 * stale. These will all have the flush locks held, so an 1924 * in-memory inode walk can't lock them. By marking them all 1925 * stale first, we will not attempt to lock them in the loop 1926 * below as the XFS_ISTALE flag will be set. 1927 */ 1928 lip = bp->b_fspriv; 1929 while (lip) { 1930 if (lip->li_type == XFS_LI_INODE) { 1931 iip = (xfs_inode_log_item_t *)lip; 1932 ASSERT(iip->ili_logged == 1); 1933 lip->li_cb = xfs_istale_done; 1934 xfs_trans_ail_copy_lsn(mp->m_ail, 1935 &iip->ili_flush_lsn, 1936 &iip->ili_item.li_lsn); 1937 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 1938 } 1939 lip = lip->li_bio_list; 1940 } 1941 1942 1943 /* 1944 * For each inode in memory attempt to add it to the inode 1945 * buffer and set it up for being staled on buffer IO 1946 * completion. This is safe as we've locked out tail pushing 1947 * and flushing by locking the buffer. 1948 * 1949 * We have already marked every inode that was part of a 1950 * transaction stale above, which means there is no point in 1951 * even trying to lock them. 1952 */ 1953 for (i = 0; i < ninodes; i++) { 1954 retry: 1955 rcu_read_lock(); 1956 ip = radix_tree_lookup(&pag->pag_ici_root, 1957 XFS_INO_TO_AGINO(mp, (inum + i))); 1958 1959 /* Inode not in memory, nothing to do */ 1960 if (!ip) { 1961 rcu_read_unlock(); 1962 continue; 1963 } 1964 1965 /* 1966 * because this is an RCU protected lookup, we could 1967 * find a recently freed or even reallocated inode 1968 * during the lookup. We need to check under the 1969 * i_flags_lock for a valid inode here. Skip it if it 1970 * is not valid, the wrong inode or stale. 1971 */ 1972 spin_lock(&ip->i_flags_lock); 1973 if (ip->i_ino != inum + i || 1974 __xfs_iflags_test(ip, XFS_ISTALE)) { 1975 spin_unlock(&ip->i_flags_lock); 1976 rcu_read_unlock(); 1977 continue; 1978 } 1979 spin_unlock(&ip->i_flags_lock); 1980 1981 /* 1982 * Don't try to lock/unlock the current inode, but we 1983 * _cannot_ skip the other inodes that we did not find 1984 * in the list attached to the buffer and are not 1985 * already marked stale. If we can't lock it, back off 1986 * and retry. 1987 */ 1988 if (ip != free_ip && 1989 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 1990 rcu_read_unlock(); 1991 delay(1); 1992 goto retry; 1993 } 1994 rcu_read_unlock(); 1995 1996 xfs_iflock(ip); 1997 xfs_iflags_set(ip, XFS_ISTALE); 1998 1999 /* 2000 * we don't need to attach clean inodes or those only 2001 * with unlogged changes (which we throw away, anyway). 2002 */ 2003 iip = ip->i_itemp; 2004 if (!iip || xfs_inode_clean(ip)) { 2005 ASSERT(ip != free_ip); 2006 xfs_ifunlock(ip); 2007 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2008 continue; 2009 } 2010 2011 iip->ili_last_fields = iip->ili_fields; 2012 iip->ili_fields = 0; 2013 iip->ili_logged = 1; 2014 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2015 &iip->ili_item.li_lsn); 2016 2017 xfs_buf_attach_iodone(bp, xfs_istale_done, 2018 &iip->ili_item); 2019 2020 if (ip != free_ip) 2021 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2022 } 2023 2024 xfs_trans_stale_inode_buf(tp, bp); 2025 xfs_trans_binval(tp, bp); 2026 } 2027 2028 xfs_perag_put(pag); 2029 return 0; 2030 } 2031 2032 /* 2033 * This is called to return an inode to the inode free list. 2034 * The inode should already be truncated to 0 length and have 2035 * no pages associated with it. This routine also assumes that 2036 * the inode is already a part of the transaction. 2037 * 2038 * The on-disk copy of the inode will have been added to the list 2039 * of unlinked inodes in the AGI. We need to remove the inode from 2040 * that list atomically with respect to freeing it here. 2041 */ 2042 int 2043 xfs_ifree( 2044 xfs_trans_t *tp, 2045 xfs_inode_t *ip, 2046 xfs_bmap_free_t *flist) 2047 { 2048 int error; 2049 int delete; 2050 xfs_ino_t first_ino; 2051 2052 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2053 ASSERT(ip->i_d.di_nlink == 0); 2054 ASSERT(ip->i_d.di_nextents == 0); 2055 ASSERT(ip->i_d.di_anextents == 0); 2056 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode)); 2057 ASSERT(ip->i_d.di_nblocks == 0); 2058 2059 /* 2060 * Pull the on-disk inode from the AGI unlinked list. 2061 */ 2062 error = xfs_iunlink_remove(tp, ip); 2063 if (error) 2064 return error; 2065 2066 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2067 if (error) 2068 return error; 2069 2070 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2071 ip->i_d.di_flags = 0; 2072 ip->i_d.di_dmevmask = 0; 2073 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2074 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2075 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2076 /* 2077 * Bump the generation count so no one will be confused 2078 * by reincarnations of this inode. 2079 */ 2080 ip->i_d.di_gen++; 2081 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2082 2083 if (delete) 2084 error = xfs_ifree_cluster(ip, tp, first_ino); 2085 2086 return error; 2087 } 2088 2089 /* 2090 * Reallocate the space for if_broot based on the number of records 2091 * being added or deleted as indicated in rec_diff. Move the records 2092 * and pointers in if_broot to fit the new size. When shrinking this 2093 * will eliminate holes between the records and pointers created by 2094 * the caller. When growing this will create holes to be filled in 2095 * by the caller. 2096 * 2097 * The caller must not request to add more records than would fit in 2098 * the on-disk inode root. If the if_broot is currently NULL, then 2099 * if we adding records one will be allocated. The caller must also 2100 * not request that the number of records go below zero, although 2101 * it can go to zero. 2102 * 2103 * ip -- the inode whose if_broot area is changing 2104 * ext_diff -- the change in the number of records, positive or negative, 2105 * requested for the if_broot array. 2106 */ 2107 void 2108 xfs_iroot_realloc( 2109 xfs_inode_t *ip, 2110 int rec_diff, 2111 int whichfork) 2112 { 2113 struct xfs_mount *mp = ip->i_mount; 2114 int cur_max; 2115 xfs_ifork_t *ifp; 2116 struct xfs_btree_block *new_broot; 2117 int new_max; 2118 size_t new_size; 2119 char *np; 2120 char *op; 2121 2122 /* 2123 * Handle the degenerate case quietly. 2124 */ 2125 if (rec_diff == 0) { 2126 return; 2127 } 2128 2129 ifp = XFS_IFORK_PTR(ip, whichfork); 2130 if (rec_diff > 0) { 2131 /* 2132 * If there wasn't any memory allocated before, just 2133 * allocate it now and get out. 2134 */ 2135 if (ifp->if_broot_bytes == 0) { 2136 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff); 2137 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 2138 ifp->if_broot_bytes = (int)new_size; 2139 return; 2140 } 2141 2142 /* 2143 * If there is already an existing if_broot, then we need 2144 * to realloc() it and shift the pointers to their new 2145 * location. The records don't change location because 2146 * they are kept butted up against the btree block header. 2147 */ 2148 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 2149 new_max = cur_max + rec_diff; 2150 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 2151 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, 2152 XFS_BMAP_BROOT_SPACE_CALC(mp, cur_max), 2153 KM_SLEEP | KM_NOFS); 2154 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2155 ifp->if_broot_bytes); 2156 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2157 (int)new_size); 2158 ifp->if_broot_bytes = (int)new_size; 2159 ASSERT(ifp->if_broot_bytes <= 2160 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ(ip)); 2161 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 2162 return; 2163 } 2164 2165 /* 2166 * rec_diff is less than 0. In this case, we are shrinking the 2167 * if_broot buffer. It must already exist. If we go to zero 2168 * records, just get rid of the root and clear the status bit. 2169 */ 2170 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 2171 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 2172 new_max = cur_max + rec_diff; 2173 ASSERT(new_max >= 0); 2174 if (new_max > 0) 2175 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 2176 else 2177 new_size = 0; 2178 if (new_size > 0) { 2179 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 2180 /* 2181 * First copy over the btree block header. 2182 */ 2183 memcpy(new_broot, ifp->if_broot, 2184 XFS_BMBT_BLOCK_LEN(ip->i_mount)); 2185 } else { 2186 new_broot = NULL; 2187 ifp->if_flags &= ~XFS_IFBROOT; 2188 } 2189 2190 /* 2191 * Only copy the records and pointers if there are any. 2192 */ 2193 if (new_max > 0) { 2194 /* 2195 * First copy the records. 2196 */ 2197 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 2198 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 2199 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 2200 2201 /* 2202 * Then copy the pointers. 2203 */ 2204 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2205 ifp->if_broot_bytes); 2206 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 2207 (int)new_size); 2208 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 2209 } 2210 kmem_free(ifp->if_broot); 2211 ifp->if_broot = new_broot; 2212 ifp->if_broot_bytes = (int)new_size; 2213 ASSERT(ifp->if_broot_bytes <= 2214 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ(ip)); 2215 return; 2216 } 2217 2218 2219 /* 2220 * This is called when the amount of space needed for if_data 2221 * is increased or decreased. The change in size is indicated by 2222 * the number of bytes that need to be added or deleted in the 2223 * byte_diff parameter. 2224 * 2225 * If the amount of space needed has decreased below the size of the 2226 * inline buffer, then switch to using the inline buffer. Otherwise, 2227 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2228 * to what is needed. 2229 * 2230 * ip -- the inode whose if_data area is changing 2231 * byte_diff -- the change in the number of bytes, positive or negative, 2232 * requested for the if_data array. 2233 */ 2234 void 2235 xfs_idata_realloc( 2236 xfs_inode_t *ip, 2237 int byte_diff, 2238 int whichfork) 2239 { 2240 xfs_ifork_t *ifp; 2241 int new_size; 2242 int real_size; 2243 2244 if (byte_diff == 0) { 2245 return; 2246 } 2247 2248 ifp = XFS_IFORK_PTR(ip, whichfork); 2249 new_size = (int)ifp->if_bytes + byte_diff; 2250 ASSERT(new_size >= 0); 2251 2252 if (new_size == 0) { 2253 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2254 kmem_free(ifp->if_u1.if_data); 2255 } 2256 ifp->if_u1.if_data = NULL; 2257 real_size = 0; 2258 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 2259 /* 2260 * If the valid extents/data can fit in if_inline_ext/data, 2261 * copy them from the malloc'd vector and free it. 2262 */ 2263 if (ifp->if_u1.if_data == NULL) { 2264 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2265 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2266 ASSERT(ifp->if_real_bytes != 0); 2267 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 2268 new_size); 2269 kmem_free(ifp->if_u1.if_data); 2270 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2271 } 2272 real_size = 0; 2273 } else { 2274 /* 2275 * Stuck with malloc/realloc. 2276 * For inline data, the underlying buffer must be 2277 * a multiple of 4 bytes in size so that it can be 2278 * logged and stay on word boundaries. We enforce 2279 * that here. 2280 */ 2281 real_size = roundup(new_size, 4); 2282 if (ifp->if_u1.if_data == NULL) { 2283 ASSERT(ifp->if_real_bytes == 0); 2284 ifp->if_u1.if_data = kmem_alloc(real_size, 2285 KM_SLEEP | KM_NOFS); 2286 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2287 /* 2288 * Only do the realloc if the underlying size 2289 * is really changing. 2290 */ 2291 if (ifp->if_real_bytes != real_size) { 2292 ifp->if_u1.if_data = 2293 kmem_realloc(ifp->if_u1.if_data, 2294 real_size, 2295 ifp->if_real_bytes, 2296 KM_SLEEP | KM_NOFS); 2297 } 2298 } else { 2299 ASSERT(ifp->if_real_bytes == 0); 2300 ifp->if_u1.if_data = kmem_alloc(real_size, 2301 KM_SLEEP | KM_NOFS); 2302 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 2303 ifp->if_bytes); 2304 } 2305 } 2306 ifp->if_real_bytes = real_size; 2307 ifp->if_bytes = new_size; 2308 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2309 } 2310 2311 void 2312 xfs_idestroy_fork( 2313 xfs_inode_t *ip, 2314 int whichfork) 2315 { 2316 xfs_ifork_t *ifp; 2317 2318 ifp = XFS_IFORK_PTR(ip, whichfork); 2319 if (ifp->if_broot != NULL) { 2320 kmem_free(ifp->if_broot); 2321 ifp->if_broot = NULL; 2322 } 2323 2324 /* 2325 * If the format is local, then we can't have an extents 2326 * array so just look for an inline data array. If we're 2327 * not local then we may or may not have an extents list, 2328 * so check and free it up if we do. 2329 */ 2330 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2331 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2332 (ifp->if_u1.if_data != NULL)) { 2333 ASSERT(ifp->if_real_bytes != 0); 2334 kmem_free(ifp->if_u1.if_data); 2335 ifp->if_u1.if_data = NULL; 2336 ifp->if_real_bytes = 0; 2337 } 2338 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2339 ((ifp->if_flags & XFS_IFEXTIREC) || 2340 ((ifp->if_u1.if_extents != NULL) && 2341 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { 2342 ASSERT(ifp->if_real_bytes != 0); 2343 xfs_iext_destroy(ifp); 2344 } 2345 ASSERT(ifp->if_u1.if_extents == NULL || 2346 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2347 ASSERT(ifp->if_real_bytes == 0); 2348 if (whichfork == XFS_ATTR_FORK) { 2349 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2350 ip->i_afp = NULL; 2351 } 2352 } 2353 2354 /* 2355 * This is called to unpin an inode. The caller must have the inode locked 2356 * in at least shared mode so that the buffer cannot be subsequently pinned 2357 * once someone is waiting for it to be unpinned. 2358 */ 2359 static void 2360 xfs_iunpin( 2361 struct xfs_inode *ip) 2362 { 2363 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2364 2365 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2366 2367 /* Give the log a push to start the unpinning I/O */ 2368 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2369 2370 } 2371 2372 static void 2373 __xfs_iunpin_wait( 2374 struct xfs_inode *ip) 2375 { 2376 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2377 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2378 2379 xfs_iunpin(ip); 2380 2381 do { 2382 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2383 if (xfs_ipincount(ip)) 2384 io_schedule(); 2385 } while (xfs_ipincount(ip)); 2386 finish_wait(wq, &wait.wait); 2387 } 2388 2389 void 2390 xfs_iunpin_wait( 2391 struct xfs_inode *ip) 2392 { 2393 if (xfs_ipincount(ip)) 2394 __xfs_iunpin_wait(ip); 2395 } 2396 2397 /* 2398 * xfs_iextents_copy() 2399 * 2400 * This is called to copy the REAL extents (as opposed to the delayed 2401 * allocation extents) from the inode into the given buffer. It 2402 * returns the number of bytes copied into the buffer. 2403 * 2404 * If there are no delayed allocation extents, then we can just 2405 * memcpy() the extents into the buffer. Otherwise, we need to 2406 * examine each extent in turn and skip those which are delayed. 2407 */ 2408 int 2409 xfs_iextents_copy( 2410 xfs_inode_t *ip, 2411 xfs_bmbt_rec_t *dp, 2412 int whichfork) 2413 { 2414 int copied; 2415 int i; 2416 xfs_ifork_t *ifp; 2417 int nrecs; 2418 xfs_fsblock_t start_block; 2419 2420 ifp = XFS_IFORK_PTR(ip, whichfork); 2421 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2422 ASSERT(ifp->if_bytes > 0); 2423 2424 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2425 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork); 2426 ASSERT(nrecs > 0); 2427 2428 /* 2429 * There are some delayed allocation extents in the 2430 * inode, so copy the extents one at a time and skip 2431 * the delayed ones. There must be at least one 2432 * non-delayed extent. 2433 */ 2434 copied = 0; 2435 for (i = 0; i < nrecs; i++) { 2436 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 2437 start_block = xfs_bmbt_get_startblock(ep); 2438 if (isnullstartblock(start_block)) { 2439 /* 2440 * It's a delayed allocation extent, so skip it. 2441 */ 2442 continue; 2443 } 2444 2445 /* Translate to on disk format */ 2446 put_unaligned(cpu_to_be64(ep->l0), &dp->l0); 2447 put_unaligned(cpu_to_be64(ep->l1), &dp->l1); 2448 dp++; 2449 copied++; 2450 } 2451 ASSERT(copied != 0); 2452 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip)); 2453 2454 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2455 } 2456 2457 /* 2458 * Each of the following cases stores data into the same region 2459 * of the on-disk inode, so only one of them can be valid at 2460 * any given time. While it is possible to have conflicting formats 2461 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2462 * in EXTENTS format, this can only happen when the fork has 2463 * changed formats after being modified but before being flushed. 2464 * In these cases, the format always takes precedence, because the 2465 * format indicates the current state of the fork. 2466 */ 2467 /*ARGSUSED*/ 2468 STATIC void 2469 xfs_iflush_fork( 2470 xfs_inode_t *ip, 2471 xfs_dinode_t *dip, 2472 xfs_inode_log_item_t *iip, 2473 int whichfork, 2474 xfs_buf_t *bp) 2475 { 2476 char *cp; 2477 xfs_ifork_t *ifp; 2478 xfs_mount_t *mp; 2479 static const short brootflag[2] = 2480 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 2481 static const short dataflag[2] = 2482 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 2483 static const short extflag[2] = 2484 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 2485 2486 if (!iip) 2487 return; 2488 ifp = XFS_IFORK_PTR(ip, whichfork); 2489 /* 2490 * This can happen if we gave up in iformat in an error path, 2491 * for the attribute fork. 2492 */ 2493 if (!ifp) { 2494 ASSERT(whichfork == XFS_ATTR_FORK); 2495 return; 2496 } 2497 cp = XFS_DFORK_PTR(dip, whichfork); 2498 mp = ip->i_mount; 2499 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 2500 case XFS_DINODE_FMT_LOCAL: 2501 if ((iip->ili_fields & dataflag[whichfork]) && 2502 (ifp->if_bytes > 0)) { 2503 ASSERT(ifp->if_u1.if_data != NULL); 2504 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2505 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 2506 } 2507 break; 2508 2509 case XFS_DINODE_FMT_EXTENTS: 2510 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 2511 !(iip->ili_fields & extflag[whichfork])); 2512 if ((iip->ili_fields & extflag[whichfork]) && 2513 (ifp->if_bytes > 0)) { 2514 ASSERT(xfs_iext_get_ext(ifp, 0)); 2515 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 2516 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 2517 whichfork); 2518 } 2519 break; 2520 2521 case XFS_DINODE_FMT_BTREE: 2522 if ((iip->ili_fields & brootflag[whichfork]) && 2523 (ifp->if_broot_bytes > 0)) { 2524 ASSERT(ifp->if_broot != NULL); 2525 ASSERT(ifp->if_broot_bytes <= 2526 (XFS_IFORK_SIZE(ip, whichfork) + 2527 XFS_BROOT_SIZE_ADJ(ip))); 2528 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 2529 (xfs_bmdr_block_t *)cp, 2530 XFS_DFORK_SIZE(dip, mp, whichfork)); 2531 } 2532 break; 2533 2534 case XFS_DINODE_FMT_DEV: 2535 if (iip->ili_fields & XFS_ILOG_DEV) { 2536 ASSERT(whichfork == XFS_DATA_FORK); 2537 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev); 2538 } 2539 break; 2540 2541 case XFS_DINODE_FMT_UUID: 2542 if (iip->ili_fields & XFS_ILOG_UUID) { 2543 ASSERT(whichfork == XFS_DATA_FORK); 2544 memcpy(XFS_DFORK_DPTR(dip), 2545 &ip->i_df.if_u2.if_uuid, 2546 sizeof(uuid_t)); 2547 } 2548 break; 2549 2550 default: 2551 ASSERT(0); 2552 break; 2553 } 2554 } 2555 2556 STATIC int 2557 xfs_iflush_cluster( 2558 xfs_inode_t *ip, 2559 xfs_buf_t *bp) 2560 { 2561 xfs_mount_t *mp = ip->i_mount; 2562 struct xfs_perag *pag; 2563 unsigned long first_index, mask; 2564 unsigned long inodes_per_cluster; 2565 int ilist_size; 2566 xfs_inode_t **ilist; 2567 xfs_inode_t *iq; 2568 int nr_found; 2569 int clcount = 0; 2570 int bufwasdelwri; 2571 int i; 2572 2573 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2574 2575 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog; 2576 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 2577 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 2578 if (!ilist) 2579 goto out_put; 2580 2581 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1); 2582 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 2583 rcu_read_lock(); 2584 /* really need a gang lookup range call here */ 2585 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 2586 first_index, inodes_per_cluster); 2587 if (nr_found == 0) 2588 goto out_free; 2589 2590 for (i = 0; i < nr_found; i++) { 2591 iq = ilist[i]; 2592 if (iq == ip) 2593 continue; 2594 2595 /* 2596 * because this is an RCU protected lookup, we could find a 2597 * recently freed or even reallocated inode during the lookup. 2598 * We need to check under the i_flags_lock for a valid inode 2599 * here. Skip it if it is not valid or the wrong inode. 2600 */ 2601 spin_lock(&ip->i_flags_lock); 2602 if (!ip->i_ino || 2603 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) { 2604 spin_unlock(&ip->i_flags_lock); 2605 continue; 2606 } 2607 spin_unlock(&ip->i_flags_lock); 2608 2609 /* 2610 * Do an un-protected check to see if the inode is dirty and 2611 * is a candidate for flushing. These checks will be repeated 2612 * later after the appropriate locks are acquired. 2613 */ 2614 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 2615 continue; 2616 2617 /* 2618 * Try to get locks. If any are unavailable or it is pinned, 2619 * then this inode cannot be flushed and is skipped. 2620 */ 2621 2622 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 2623 continue; 2624 if (!xfs_iflock_nowait(iq)) { 2625 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2626 continue; 2627 } 2628 if (xfs_ipincount(iq)) { 2629 xfs_ifunlock(iq); 2630 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2631 continue; 2632 } 2633 2634 /* 2635 * arriving here means that this inode can be flushed. First 2636 * re-check that it's dirty before flushing. 2637 */ 2638 if (!xfs_inode_clean(iq)) { 2639 int error; 2640 error = xfs_iflush_int(iq, bp); 2641 if (error) { 2642 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2643 goto cluster_corrupt_out; 2644 } 2645 clcount++; 2646 } else { 2647 xfs_ifunlock(iq); 2648 } 2649 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2650 } 2651 2652 if (clcount) { 2653 XFS_STATS_INC(xs_icluster_flushcnt); 2654 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 2655 } 2656 2657 out_free: 2658 rcu_read_unlock(); 2659 kmem_free(ilist); 2660 out_put: 2661 xfs_perag_put(pag); 2662 return 0; 2663 2664 2665 cluster_corrupt_out: 2666 /* 2667 * Corruption detected in the clustering loop. Invalidate the 2668 * inode buffer and shut down the filesystem. 2669 */ 2670 rcu_read_unlock(); 2671 /* 2672 * Clean up the buffer. If it was delwri, just release it -- 2673 * brelse can handle it with no problems. If not, shut down the 2674 * filesystem before releasing the buffer. 2675 */ 2676 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 2677 if (bufwasdelwri) 2678 xfs_buf_relse(bp); 2679 2680 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2681 2682 if (!bufwasdelwri) { 2683 /* 2684 * Just like incore_relse: if we have b_iodone functions, 2685 * mark the buffer as an error and call them. Otherwise 2686 * mark it as stale and brelse. 2687 */ 2688 if (bp->b_iodone) { 2689 XFS_BUF_UNDONE(bp); 2690 xfs_buf_stale(bp); 2691 xfs_buf_ioerror(bp, EIO); 2692 xfs_buf_ioend(bp, 0); 2693 } else { 2694 xfs_buf_stale(bp); 2695 xfs_buf_relse(bp); 2696 } 2697 } 2698 2699 /* 2700 * Unlocks the flush lock 2701 */ 2702 xfs_iflush_abort(iq, false); 2703 kmem_free(ilist); 2704 xfs_perag_put(pag); 2705 return XFS_ERROR(EFSCORRUPTED); 2706 } 2707 2708 /* 2709 * Flush dirty inode metadata into the backing buffer. 2710 * 2711 * The caller must have the inode lock and the inode flush lock held. The 2712 * inode lock will still be held upon return to the caller, and the inode 2713 * flush lock will be released after the inode has reached the disk. 2714 * 2715 * The caller must write out the buffer returned in *bpp and release it. 2716 */ 2717 int 2718 xfs_iflush( 2719 struct xfs_inode *ip, 2720 struct xfs_buf **bpp) 2721 { 2722 struct xfs_mount *mp = ip->i_mount; 2723 struct xfs_buf *bp; 2724 struct xfs_dinode *dip; 2725 int error; 2726 2727 XFS_STATS_INC(xs_iflush_count); 2728 2729 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2730 ASSERT(xfs_isiflocked(ip)); 2731 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 2732 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 2733 2734 *bpp = NULL; 2735 2736 xfs_iunpin_wait(ip); 2737 2738 /* 2739 * For stale inodes we cannot rely on the backing buffer remaining 2740 * stale in cache for the remaining life of the stale inode and so 2741 * xfs_imap_to_bp() below may give us a buffer that no longer contains 2742 * inodes below. We have to check this after ensuring the inode is 2743 * unpinned so that it is safe to reclaim the stale inode after the 2744 * flush call. 2745 */ 2746 if (xfs_iflags_test(ip, XFS_ISTALE)) { 2747 xfs_ifunlock(ip); 2748 return 0; 2749 } 2750 2751 /* 2752 * This may have been unpinned because the filesystem is shutting 2753 * down forcibly. If that's the case we must not write this inode 2754 * to disk, because the log record didn't make it to disk. 2755 * 2756 * We also have to remove the log item from the AIL in this case, 2757 * as we wait for an empty AIL as part of the unmount process. 2758 */ 2759 if (XFS_FORCED_SHUTDOWN(mp)) { 2760 error = XFS_ERROR(EIO); 2761 goto abort_out; 2762 } 2763 2764 /* 2765 * Get the buffer containing the on-disk inode. 2766 */ 2767 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 2768 0); 2769 if (error || !bp) { 2770 xfs_ifunlock(ip); 2771 return error; 2772 } 2773 2774 /* 2775 * First flush out the inode that xfs_iflush was called with. 2776 */ 2777 error = xfs_iflush_int(ip, bp); 2778 if (error) 2779 goto corrupt_out; 2780 2781 /* 2782 * If the buffer is pinned then push on the log now so we won't 2783 * get stuck waiting in the write for too long. 2784 */ 2785 if (xfs_buf_ispinned(bp)) 2786 xfs_log_force(mp, 0); 2787 2788 /* 2789 * inode clustering: 2790 * see if other inodes can be gathered into this write 2791 */ 2792 error = xfs_iflush_cluster(ip, bp); 2793 if (error) 2794 goto cluster_corrupt_out; 2795 2796 *bpp = bp; 2797 return 0; 2798 2799 corrupt_out: 2800 xfs_buf_relse(bp); 2801 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2802 cluster_corrupt_out: 2803 error = XFS_ERROR(EFSCORRUPTED); 2804 abort_out: 2805 /* 2806 * Unlocks the flush lock 2807 */ 2808 xfs_iflush_abort(ip, false); 2809 return error; 2810 } 2811 2812 2813 STATIC int 2814 xfs_iflush_int( 2815 struct xfs_inode *ip, 2816 struct xfs_buf *bp) 2817 { 2818 struct xfs_inode_log_item *iip = ip->i_itemp; 2819 struct xfs_dinode *dip; 2820 struct xfs_mount *mp = ip->i_mount; 2821 2822 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2823 ASSERT(xfs_isiflocked(ip)); 2824 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 2825 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 2826 ASSERT(iip != NULL && iip->ili_fields != 0); 2827 2828 /* set *dip = inode's place in the buffer */ 2829 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 2830 2831 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 2832 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 2833 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2834 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 2835 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 2836 goto corrupt_out; 2837 } 2838 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 2839 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 2840 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2841 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 2842 __func__, ip->i_ino, ip, ip->i_d.di_magic); 2843 goto corrupt_out; 2844 } 2845 if (S_ISREG(ip->i_d.di_mode)) { 2846 if (XFS_TEST_ERROR( 2847 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 2848 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 2849 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 2850 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2851 "%s: Bad regular inode %Lu, ptr 0x%p", 2852 __func__, ip->i_ino, ip); 2853 goto corrupt_out; 2854 } 2855 } else if (S_ISDIR(ip->i_d.di_mode)) { 2856 if (XFS_TEST_ERROR( 2857 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 2858 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 2859 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 2860 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 2861 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2862 "%s: Bad directory inode %Lu, ptr 0x%p", 2863 __func__, ip->i_ino, ip); 2864 goto corrupt_out; 2865 } 2866 } 2867 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 2868 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 2869 XFS_RANDOM_IFLUSH_5)) { 2870 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2871 "%s: detected corrupt incore inode %Lu, " 2872 "total extents = %d, nblocks = %Ld, ptr 0x%p", 2873 __func__, ip->i_ino, 2874 ip->i_d.di_nextents + ip->i_d.di_anextents, 2875 ip->i_d.di_nblocks, ip); 2876 goto corrupt_out; 2877 } 2878 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 2879 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 2880 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2881 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 2882 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 2883 goto corrupt_out; 2884 } 2885 /* 2886 * bump the flush iteration count, used to detect flushes which 2887 * postdate a log record during recovery. This is redundant as we now 2888 * log every change and hence this can't happen. Still, it doesn't hurt. 2889 */ 2890 ip->i_d.di_flushiter++; 2891 2892 /* 2893 * Copy the dirty parts of the inode into the on-disk 2894 * inode. We always copy out the core of the inode, 2895 * because if the inode is dirty at all the core must 2896 * be. 2897 */ 2898 xfs_dinode_to_disk(dip, &ip->i_d); 2899 2900 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 2901 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 2902 ip->i_d.di_flushiter = 0; 2903 2904 /* 2905 * If this is really an old format inode and the superblock version 2906 * has not been updated to support only new format inodes, then 2907 * convert back to the old inode format. If the superblock version 2908 * has been updated, then make the conversion permanent. 2909 */ 2910 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 2911 if (ip->i_d.di_version == 1) { 2912 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 2913 /* 2914 * Convert it back. 2915 */ 2916 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 2917 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink); 2918 } else { 2919 /* 2920 * The superblock version has already been bumped, 2921 * so just make the conversion to the new inode 2922 * format permanent. 2923 */ 2924 ip->i_d.di_version = 2; 2925 dip->di_version = 2; 2926 ip->i_d.di_onlink = 0; 2927 dip->di_onlink = 0; 2928 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 2929 memset(&(dip->di_pad[0]), 0, 2930 sizeof(dip->di_pad)); 2931 ASSERT(xfs_get_projid(ip) == 0); 2932 } 2933 } 2934 2935 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp); 2936 if (XFS_IFORK_Q(ip)) 2937 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 2938 xfs_inobp_check(mp, bp); 2939 2940 /* 2941 * We've recorded everything logged in the inode, so we'd like to clear 2942 * the ili_fields bits so we don't log and flush things unnecessarily. 2943 * However, we can't stop logging all this information until the data 2944 * we've copied into the disk buffer is written to disk. If we did we 2945 * might overwrite the copy of the inode in the log with all the data 2946 * after re-logging only part of it, and in the face of a crash we 2947 * wouldn't have all the data we need to recover. 2948 * 2949 * What we do is move the bits to the ili_last_fields field. When 2950 * logging the inode, these bits are moved back to the ili_fields field. 2951 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 2952 * know that the information those bits represent is permanently on 2953 * disk. As long as the flush completes before the inode is logged 2954 * again, then both ili_fields and ili_last_fields will be cleared. 2955 * 2956 * We can play with the ili_fields bits here, because the inode lock 2957 * must be held exclusively in order to set bits there and the flush 2958 * lock protects the ili_last_fields bits. Set ili_logged so the flush 2959 * done routine can tell whether or not to look in the AIL. Also, store 2960 * the current LSN of the inode so that we can tell whether the item has 2961 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 2962 * need the AIL lock, because it is a 64 bit value that cannot be read 2963 * atomically. 2964 */ 2965 iip->ili_last_fields = iip->ili_fields; 2966 iip->ili_fields = 0; 2967 iip->ili_logged = 1; 2968 2969 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2970 &iip->ili_item.li_lsn); 2971 2972 /* 2973 * Attach the function xfs_iflush_done to the inode's 2974 * buffer. This will remove the inode from the AIL 2975 * and unlock the inode's flush lock when the inode is 2976 * completely written to disk. 2977 */ 2978 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 2979 2980 /* update the lsn in the on disk inode if required */ 2981 if (ip->i_d.di_version == 3) 2982 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn); 2983 2984 /* generate the checksum. */ 2985 xfs_dinode_calc_crc(mp, dip); 2986 2987 ASSERT(bp->b_fspriv != NULL); 2988 ASSERT(bp->b_iodone != NULL); 2989 return 0; 2990 2991 corrupt_out: 2992 return XFS_ERROR(EFSCORRUPTED); 2993 } 2994 2995 /* 2996 * Return a pointer to the extent record at file index idx. 2997 */ 2998 xfs_bmbt_rec_host_t * 2999 xfs_iext_get_ext( 3000 xfs_ifork_t *ifp, /* inode fork pointer */ 3001 xfs_extnum_t idx) /* index of target extent */ 3002 { 3003 ASSERT(idx >= 0); 3004 ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t)); 3005 3006 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { 3007 return ifp->if_u1.if_ext_irec->er_extbuf; 3008 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3009 xfs_ext_irec_t *erp; /* irec pointer */ 3010 int erp_idx = 0; /* irec index */ 3011 xfs_extnum_t page_idx = idx; /* ext index in target list */ 3012 3013 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3014 return &erp->er_extbuf[page_idx]; 3015 } else if (ifp->if_bytes) { 3016 return &ifp->if_u1.if_extents[idx]; 3017 } else { 3018 return NULL; 3019 } 3020 } 3021 3022 /* 3023 * Insert new item(s) into the extent records for incore inode 3024 * fork 'ifp'. 'count' new items are inserted at index 'idx'. 3025 */ 3026 void 3027 xfs_iext_insert( 3028 xfs_inode_t *ip, /* incore inode pointer */ 3029 xfs_extnum_t idx, /* starting index of new items */ 3030 xfs_extnum_t count, /* number of inserted items */ 3031 xfs_bmbt_irec_t *new, /* items to insert */ 3032 int state) /* type of extent conversion */ 3033 { 3034 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; 3035 xfs_extnum_t i; /* extent record index */ 3036 3037 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_); 3038 3039 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3040 xfs_iext_add(ifp, idx, count); 3041 for (i = idx; i < idx + count; i++, new++) 3042 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new); 3043 } 3044 3045 /* 3046 * This is called when the amount of space required for incore file 3047 * extents needs to be increased. The ext_diff parameter stores the 3048 * number of new extents being added and the idx parameter contains 3049 * the extent index where the new extents will be added. If the new 3050 * extents are being appended, then we just need to (re)allocate and 3051 * initialize the space. Otherwise, if the new extents are being 3052 * inserted into the middle of the existing entries, a bit more work 3053 * is required to make room for the new extents to be inserted. The 3054 * caller is responsible for filling in the new extent entries upon 3055 * return. 3056 */ 3057 void 3058 xfs_iext_add( 3059 xfs_ifork_t *ifp, /* inode fork pointer */ 3060 xfs_extnum_t idx, /* index to begin adding exts */ 3061 int ext_diff) /* number of extents to add */ 3062 { 3063 int byte_diff; /* new bytes being added */ 3064 int new_size; /* size of extents after adding */ 3065 xfs_extnum_t nextents; /* number of extents in file */ 3066 3067 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3068 ASSERT((idx >= 0) && (idx <= nextents)); 3069 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); 3070 new_size = ifp->if_bytes + byte_diff; 3071 /* 3072 * If the new number of extents (nextents + ext_diff) 3073 * fits inside the inode, then continue to use the inline 3074 * extent buffer. 3075 */ 3076 if (nextents + ext_diff <= XFS_INLINE_EXTS) { 3077 if (idx < nextents) { 3078 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], 3079 &ifp->if_u2.if_inline_ext[idx], 3080 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3081 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); 3082 } 3083 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3084 ifp->if_real_bytes = 0; 3085 } 3086 /* 3087 * Otherwise use a linear (direct) extent list. 3088 * If the extents are currently inside the inode, 3089 * xfs_iext_realloc_direct will switch us from 3090 * inline to direct extent allocation mode. 3091 */ 3092 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { 3093 xfs_iext_realloc_direct(ifp, new_size); 3094 if (idx < nextents) { 3095 memmove(&ifp->if_u1.if_extents[idx + ext_diff], 3096 &ifp->if_u1.if_extents[idx], 3097 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3098 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); 3099 } 3100 } 3101 /* Indirection array */ 3102 else { 3103 xfs_ext_irec_t *erp; 3104 int erp_idx = 0; 3105 int page_idx = idx; 3106 3107 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); 3108 if (ifp->if_flags & XFS_IFEXTIREC) { 3109 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); 3110 } else { 3111 xfs_iext_irec_init(ifp); 3112 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3113 erp = ifp->if_u1.if_ext_irec; 3114 } 3115 /* Extents fit in target extent page */ 3116 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { 3117 if (page_idx < erp->er_extcount) { 3118 memmove(&erp->er_extbuf[page_idx + ext_diff], 3119 &erp->er_extbuf[page_idx], 3120 (erp->er_extcount - page_idx) * 3121 sizeof(xfs_bmbt_rec_t)); 3122 memset(&erp->er_extbuf[page_idx], 0, byte_diff); 3123 } 3124 erp->er_extcount += ext_diff; 3125 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3126 } 3127 /* Insert a new extent page */ 3128 else if (erp) { 3129 xfs_iext_add_indirect_multi(ifp, 3130 erp_idx, page_idx, ext_diff); 3131 } 3132 /* 3133 * If extent(s) are being appended to the last page in 3134 * the indirection array and the new extent(s) don't fit 3135 * in the page, then erp is NULL and erp_idx is set to 3136 * the next index needed in the indirection array. 3137 */ 3138 else { 3139 int count = ext_diff; 3140 3141 while (count) { 3142 erp = xfs_iext_irec_new(ifp, erp_idx); 3143 erp->er_extcount = count; 3144 count -= MIN(count, (int)XFS_LINEAR_EXTS); 3145 if (count) { 3146 erp_idx++; 3147 } 3148 } 3149 } 3150 } 3151 ifp->if_bytes = new_size; 3152 } 3153 3154 /* 3155 * This is called when incore extents are being added to the indirection 3156 * array and the new extents do not fit in the target extent list. The 3157 * erp_idx parameter contains the irec index for the target extent list 3158 * in the indirection array, and the idx parameter contains the extent 3159 * index within the list. The number of extents being added is stored 3160 * in the count parameter. 3161 * 3162 * |-------| |-------| 3163 * | | | | idx - number of extents before idx 3164 * | idx | | count | 3165 * | | | | count - number of extents being inserted at idx 3166 * |-------| |-------| 3167 * | count | | nex2 | nex2 - number of extents after idx + count 3168 * |-------| |-------| 3169 */ 3170 void 3171 xfs_iext_add_indirect_multi( 3172 xfs_ifork_t *ifp, /* inode fork pointer */ 3173 int erp_idx, /* target extent irec index */ 3174 xfs_extnum_t idx, /* index within target list */ 3175 int count) /* new extents being added */ 3176 { 3177 int byte_diff; /* new bytes being added */ 3178 xfs_ext_irec_t *erp; /* pointer to irec entry */ 3179 xfs_extnum_t ext_diff; /* number of extents to add */ 3180 xfs_extnum_t ext_cnt; /* new extents still needed */ 3181 xfs_extnum_t nex2; /* extents after idx + count */ 3182 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ 3183 int nlists; /* number of irec's (lists) */ 3184 3185 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3186 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3187 nex2 = erp->er_extcount - idx; 3188 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3189 3190 /* 3191 * Save second part of target extent list 3192 * (all extents past */ 3193 if (nex2) { 3194 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3195 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS); 3196 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); 3197 erp->er_extcount -= nex2; 3198 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); 3199 memset(&erp->er_extbuf[idx], 0, byte_diff); 3200 } 3201 3202 /* 3203 * Add the new extents to the end of the target 3204 * list, then allocate new irec record(s) and 3205 * extent buffer(s) as needed to store the rest 3206 * of the new extents. 3207 */ 3208 ext_cnt = count; 3209 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); 3210 if (ext_diff) { 3211 erp->er_extcount += ext_diff; 3212 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3213 ext_cnt -= ext_diff; 3214 } 3215 while (ext_cnt) { 3216 erp_idx++; 3217 erp = xfs_iext_irec_new(ifp, erp_idx); 3218 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); 3219 erp->er_extcount = ext_diff; 3220 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3221 ext_cnt -= ext_diff; 3222 } 3223 3224 /* Add nex2 extents back to indirection array */ 3225 if (nex2) { 3226 xfs_extnum_t ext_avail; 3227 int i; 3228 3229 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3230 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 3231 i = 0; 3232 /* 3233 * If nex2 extents fit in the current page, append 3234 * nex2_ep after the new extents. 3235 */ 3236 if (nex2 <= ext_avail) { 3237 i = erp->er_extcount; 3238 } 3239 /* 3240 * Otherwise, check if space is available in the 3241 * next page. 3242 */ 3243 else if ((erp_idx < nlists - 1) && 3244 (nex2 <= (ext_avail = XFS_LINEAR_EXTS - 3245 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { 3246 erp_idx++; 3247 erp++; 3248 /* Create a hole for nex2 extents */ 3249 memmove(&erp->er_extbuf[nex2], erp->er_extbuf, 3250 erp->er_extcount * sizeof(xfs_bmbt_rec_t)); 3251 } 3252 /* 3253 * Final choice, create a new extent page for 3254 * nex2 extents. 3255 */ 3256 else { 3257 erp_idx++; 3258 erp = xfs_iext_irec_new(ifp, erp_idx); 3259 } 3260 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); 3261 kmem_free(nex2_ep); 3262 erp->er_extcount += nex2; 3263 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); 3264 } 3265 } 3266 3267 /* 3268 * This is called when the amount of space required for incore file 3269 * extents needs to be decreased. The ext_diff parameter stores the 3270 * number of extents to be removed and the idx parameter contains 3271 * the extent index where the extents will be removed from. 3272 * 3273 * If the amount of space needed has decreased below the linear 3274 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous 3275 * extent array. Otherwise, use kmem_realloc() to adjust the 3276 * size to what is needed. 3277 */ 3278 void 3279 xfs_iext_remove( 3280 xfs_inode_t *ip, /* incore inode pointer */ 3281 xfs_extnum_t idx, /* index to begin removing exts */ 3282 int ext_diff, /* number of extents to remove */ 3283 int state) /* type of extent conversion */ 3284 { 3285 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; 3286 xfs_extnum_t nextents; /* number of extents in file */ 3287 int new_size; /* size of extents after removal */ 3288 3289 trace_xfs_iext_remove(ip, idx, state, _RET_IP_); 3290 3291 ASSERT(ext_diff > 0); 3292 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3293 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); 3294 3295 if (new_size == 0) { 3296 xfs_iext_destroy(ifp); 3297 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3298 xfs_iext_remove_indirect(ifp, idx, ext_diff); 3299 } else if (ifp->if_real_bytes) { 3300 xfs_iext_remove_direct(ifp, idx, ext_diff); 3301 } else { 3302 xfs_iext_remove_inline(ifp, idx, ext_diff); 3303 } 3304 ifp->if_bytes = new_size; 3305 } 3306 3307 /* 3308 * This removes ext_diff extents from the inline buffer, beginning 3309 * at extent index idx. 3310 */ 3311 void 3312 xfs_iext_remove_inline( 3313 xfs_ifork_t *ifp, /* inode fork pointer */ 3314 xfs_extnum_t idx, /* index to begin removing exts */ 3315 int ext_diff) /* number of extents to remove */ 3316 { 3317 int nextents; /* number of extents in file */ 3318 3319 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3320 ASSERT(idx < XFS_INLINE_EXTS); 3321 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3322 ASSERT(((nextents - ext_diff) > 0) && 3323 (nextents - ext_diff) < XFS_INLINE_EXTS); 3324 3325 if (idx + ext_diff < nextents) { 3326 memmove(&ifp->if_u2.if_inline_ext[idx], 3327 &ifp->if_u2.if_inline_ext[idx + ext_diff], 3328 (nextents - (idx + ext_diff)) * 3329 sizeof(xfs_bmbt_rec_t)); 3330 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], 3331 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3332 } else { 3333 memset(&ifp->if_u2.if_inline_ext[idx], 0, 3334 ext_diff * sizeof(xfs_bmbt_rec_t)); 3335 } 3336 } 3337 3338 /* 3339 * This removes ext_diff extents from a linear (direct) extent list, 3340 * beginning at extent index idx. If the extents are being removed 3341 * from the end of the list (ie. truncate) then we just need to re- 3342 * allocate the list to remove the extra space. Otherwise, if the 3343 * extents are being removed from the middle of the existing extent 3344 * entries, then we first need to move the extent records beginning 3345 * at idx + ext_diff up in the list to overwrite the records being 3346 * removed, then remove the extra space via kmem_realloc. 3347 */ 3348 void 3349 xfs_iext_remove_direct( 3350 xfs_ifork_t *ifp, /* inode fork pointer */ 3351 xfs_extnum_t idx, /* index to begin removing exts */ 3352 int ext_diff) /* number of extents to remove */ 3353 { 3354 xfs_extnum_t nextents; /* number of extents in file */ 3355 int new_size; /* size of extents after removal */ 3356 3357 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3358 new_size = ifp->if_bytes - 3359 (ext_diff * sizeof(xfs_bmbt_rec_t)); 3360 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3361 3362 if (new_size == 0) { 3363 xfs_iext_destroy(ifp); 3364 return; 3365 } 3366 /* Move extents up in the list (if needed) */ 3367 if (idx + ext_diff < nextents) { 3368 memmove(&ifp->if_u1.if_extents[idx], 3369 &ifp->if_u1.if_extents[idx + ext_diff], 3370 (nextents - (idx + ext_diff)) * 3371 sizeof(xfs_bmbt_rec_t)); 3372 } 3373 memset(&ifp->if_u1.if_extents[nextents - ext_diff], 3374 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3375 /* 3376 * Reallocate the direct extent list. If the extents 3377 * will fit inside the inode then xfs_iext_realloc_direct 3378 * will switch from direct to inline extent allocation 3379 * mode for us. 3380 */ 3381 xfs_iext_realloc_direct(ifp, new_size); 3382 ifp->if_bytes = new_size; 3383 } 3384 3385 /* 3386 * This is called when incore extents are being removed from the 3387 * indirection array and the extents being removed span multiple extent 3388 * buffers. The idx parameter contains the file extent index where we 3389 * want to begin removing extents, and the count parameter contains 3390 * how many extents need to be removed. 3391 * 3392 * |-------| |-------| 3393 * | nex1 | | | nex1 - number of extents before idx 3394 * |-------| | count | 3395 * | | | | count - number of extents being removed at idx 3396 * | count | |-------| 3397 * | | | nex2 | nex2 - number of extents after idx + count 3398 * |-------| |-------| 3399 */ 3400 void 3401 xfs_iext_remove_indirect( 3402 xfs_ifork_t *ifp, /* inode fork pointer */ 3403 xfs_extnum_t idx, /* index to begin removing extents */ 3404 int count) /* number of extents to remove */ 3405 { 3406 xfs_ext_irec_t *erp; /* indirection array pointer */ 3407 int erp_idx = 0; /* indirection array index */ 3408 xfs_extnum_t ext_cnt; /* extents left to remove */ 3409 xfs_extnum_t ext_diff; /* extents to remove in current list */ 3410 xfs_extnum_t nex1; /* number of extents before idx */ 3411 xfs_extnum_t nex2; /* extents after idx + count */ 3412 int page_idx = idx; /* index in target extent list */ 3413 3414 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3415 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3416 ASSERT(erp != NULL); 3417 nex1 = page_idx; 3418 ext_cnt = count; 3419 while (ext_cnt) { 3420 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); 3421 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); 3422 /* 3423 * Check for deletion of entire list; 3424 * xfs_iext_irec_remove() updates extent offsets. 3425 */ 3426 if (ext_diff == erp->er_extcount) { 3427 xfs_iext_irec_remove(ifp, erp_idx); 3428 ext_cnt -= ext_diff; 3429 nex1 = 0; 3430 if (ext_cnt) { 3431 ASSERT(erp_idx < ifp->if_real_bytes / 3432 XFS_IEXT_BUFSZ); 3433 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3434 nex1 = 0; 3435 continue; 3436 } else { 3437 break; 3438 } 3439 } 3440 /* Move extents up (if needed) */ 3441 if (nex2) { 3442 memmove(&erp->er_extbuf[nex1], 3443 &erp->er_extbuf[nex1 + ext_diff], 3444 nex2 * sizeof(xfs_bmbt_rec_t)); 3445 } 3446 /* Zero out rest of page */ 3447 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - 3448 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); 3449 /* Update remaining counters */ 3450 erp->er_extcount -= ext_diff; 3451 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); 3452 ext_cnt -= ext_diff; 3453 nex1 = 0; 3454 erp_idx++; 3455 erp++; 3456 } 3457 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); 3458 xfs_iext_irec_compact(ifp); 3459 } 3460 3461 /* 3462 * Create, destroy, or resize a linear (direct) block of extents. 3463 */ 3464 void 3465 xfs_iext_realloc_direct( 3466 xfs_ifork_t *ifp, /* inode fork pointer */ 3467 int new_size) /* new size of extents */ 3468 { 3469 int rnew_size; /* real new size of extents */ 3470 3471 rnew_size = new_size; 3472 3473 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || 3474 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && 3475 (new_size != ifp->if_real_bytes))); 3476 3477 /* Free extent records */ 3478 if (new_size == 0) { 3479 xfs_iext_destroy(ifp); 3480 } 3481 /* Resize direct extent list and zero any new bytes */ 3482 else if (ifp->if_real_bytes) { 3483 /* Check if extents will fit inside the inode */ 3484 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { 3485 xfs_iext_direct_to_inline(ifp, new_size / 3486 (uint)sizeof(xfs_bmbt_rec_t)); 3487 ifp->if_bytes = new_size; 3488 return; 3489 } 3490 if (!is_power_of_2(new_size)){ 3491 rnew_size = roundup_pow_of_two(new_size); 3492 } 3493 if (rnew_size != ifp->if_real_bytes) { 3494 ifp->if_u1.if_extents = 3495 kmem_realloc(ifp->if_u1.if_extents, 3496 rnew_size, 3497 ifp->if_real_bytes, KM_NOFS); 3498 } 3499 if (rnew_size > ifp->if_real_bytes) { 3500 memset(&ifp->if_u1.if_extents[ifp->if_bytes / 3501 (uint)sizeof(xfs_bmbt_rec_t)], 0, 3502 rnew_size - ifp->if_real_bytes); 3503 } 3504 } 3505 /* 3506 * Switch from the inline extent buffer to a direct 3507 * extent list. Be sure to include the inline extent 3508 * bytes in new_size. 3509 */ 3510 else { 3511 new_size += ifp->if_bytes; 3512 if (!is_power_of_2(new_size)) { 3513 rnew_size = roundup_pow_of_two(new_size); 3514 } 3515 xfs_iext_inline_to_direct(ifp, rnew_size); 3516 } 3517 ifp->if_real_bytes = rnew_size; 3518 ifp->if_bytes = new_size; 3519 } 3520 3521 /* 3522 * Switch from linear (direct) extent records to inline buffer. 3523 */ 3524 void 3525 xfs_iext_direct_to_inline( 3526 xfs_ifork_t *ifp, /* inode fork pointer */ 3527 xfs_extnum_t nextents) /* number of extents in file */ 3528 { 3529 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3530 ASSERT(nextents <= XFS_INLINE_EXTS); 3531 /* 3532 * The inline buffer was zeroed when we switched 3533 * from inline to direct extent allocation mode, 3534 * so we don't need to clear it here. 3535 */ 3536 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, 3537 nextents * sizeof(xfs_bmbt_rec_t)); 3538 kmem_free(ifp->if_u1.if_extents); 3539 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3540 ifp->if_real_bytes = 0; 3541 } 3542 3543 /* 3544 * Switch from inline buffer to linear (direct) extent records. 3545 * new_size should already be rounded up to the next power of 2 3546 * by the caller (when appropriate), so use new_size as it is. 3547 * However, since new_size may be rounded up, we can't update 3548 * if_bytes here. It is the caller's responsibility to update 3549 * if_bytes upon return. 3550 */ 3551 void 3552 xfs_iext_inline_to_direct( 3553 xfs_ifork_t *ifp, /* inode fork pointer */ 3554 int new_size) /* number of extents in file */ 3555 { 3556 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS); 3557 memset(ifp->if_u1.if_extents, 0, new_size); 3558 if (ifp->if_bytes) { 3559 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 3560 ifp->if_bytes); 3561 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3562 sizeof(xfs_bmbt_rec_t)); 3563 } 3564 ifp->if_real_bytes = new_size; 3565 } 3566 3567 /* 3568 * Resize an extent indirection array to new_size bytes. 3569 */ 3570 STATIC void 3571 xfs_iext_realloc_indirect( 3572 xfs_ifork_t *ifp, /* inode fork pointer */ 3573 int new_size) /* new indirection array size */ 3574 { 3575 int nlists; /* number of irec's (ex lists) */ 3576 int size; /* current indirection array size */ 3577 3578 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3579 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3580 size = nlists * sizeof(xfs_ext_irec_t); 3581 ASSERT(ifp->if_real_bytes); 3582 ASSERT((new_size >= 0) && (new_size != size)); 3583 if (new_size == 0) { 3584 xfs_iext_destroy(ifp); 3585 } else { 3586 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) 3587 kmem_realloc(ifp->if_u1.if_ext_irec, 3588 new_size, size, KM_NOFS); 3589 } 3590 } 3591 3592 /* 3593 * Switch from indirection array to linear (direct) extent allocations. 3594 */ 3595 STATIC void 3596 xfs_iext_indirect_to_direct( 3597 xfs_ifork_t *ifp) /* inode fork pointer */ 3598 { 3599 xfs_bmbt_rec_host_t *ep; /* extent record pointer */ 3600 xfs_extnum_t nextents; /* number of extents in file */ 3601 int size; /* size of file extents */ 3602 3603 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3604 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3605 ASSERT(nextents <= XFS_LINEAR_EXTS); 3606 size = nextents * sizeof(xfs_bmbt_rec_t); 3607 3608 xfs_iext_irec_compact_pages(ifp); 3609 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); 3610 3611 ep = ifp->if_u1.if_ext_irec->er_extbuf; 3612 kmem_free(ifp->if_u1.if_ext_irec); 3613 ifp->if_flags &= ~XFS_IFEXTIREC; 3614 ifp->if_u1.if_extents = ep; 3615 ifp->if_bytes = size; 3616 if (nextents < XFS_LINEAR_EXTS) { 3617 xfs_iext_realloc_direct(ifp, size); 3618 } 3619 } 3620 3621 /* 3622 * Free incore file extents. 3623 */ 3624 void 3625 xfs_iext_destroy( 3626 xfs_ifork_t *ifp) /* inode fork pointer */ 3627 { 3628 if (ifp->if_flags & XFS_IFEXTIREC) { 3629 int erp_idx; 3630 int nlists; 3631 3632 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3633 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { 3634 xfs_iext_irec_remove(ifp, erp_idx); 3635 } 3636 ifp->if_flags &= ~XFS_IFEXTIREC; 3637 } else if (ifp->if_real_bytes) { 3638 kmem_free(ifp->if_u1.if_extents); 3639 } else if (ifp->if_bytes) { 3640 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3641 sizeof(xfs_bmbt_rec_t)); 3642 } 3643 ifp->if_u1.if_extents = NULL; 3644 ifp->if_real_bytes = 0; 3645 ifp->if_bytes = 0; 3646 } 3647 3648 /* 3649 * Return a pointer to the extent record for file system block bno. 3650 */ 3651 xfs_bmbt_rec_host_t * /* pointer to found extent record */ 3652 xfs_iext_bno_to_ext( 3653 xfs_ifork_t *ifp, /* inode fork pointer */ 3654 xfs_fileoff_t bno, /* block number to search for */ 3655 xfs_extnum_t *idxp) /* index of target extent */ 3656 { 3657 xfs_bmbt_rec_host_t *base; /* pointer to first extent */ 3658 xfs_filblks_t blockcount = 0; /* number of blocks in extent */ 3659 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */ 3660 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 3661 int high; /* upper boundary in search */ 3662 xfs_extnum_t idx = 0; /* index of target extent */ 3663 int low; /* lower boundary in search */ 3664 xfs_extnum_t nextents; /* number of file extents */ 3665 xfs_fileoff_t startoff = 0; /* start offset of extent */ 3666 3667 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3668 if (nextents == 0) { 3669 *idxp = 0; 3670 return NULL; 3671 } 3672 low = 0; 3673 if (ifp->if_flags & XFS_IFEXTIREC) { 3674 /* Find target extent list */ 3675 int erp_idx = 0; 3676 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); 3677 base = erp->er_extbuf; 3678 high = erp->er_extcount - 1; 3679 } else { 3680 base = ifp->if_u1.if_extents; 3681 high = nextents - 1; 3682 } 3683 /* Binary search extent records */ 3684 while (low <= high) { 3685 idx = (low + high) >> 1; 3686 ep = base + idx; 3687 startoff = xfs_bmbt_get_startoff(ep); 3688 blockcount = xfs_bmbt_get_blockcount(ep); 3689 if (bno < startoff) { 3690 high = idx - 1; 3691 } else if (bno >= startoff + blockcount) { 3692 low = idx + 1; 3693 } else { 3694 /* Convert back to file-based extent index */ 3695 if (ifp->if_flags & XFS_IFEXTIREC) { 3696 idx += erp->er_extoff; 3697 } 3698 *idxp = idx; 3699 return ep; 3700 } 3701 } 3702 /* Convert back to file-based extent index */ 3703 if (ifp->if_flags & XFS_IFEXTIREC) { 3704 idx += erp->er_extoff; 3705 } 3706 if (bno >= startoff + blockcount) { 3707 if (++idx == nextents) { 3708 ep = NULL; 3709 } else { 3710 ep = xfs_iext_get_ext(ifp, idx); 3711 } 3712 } 3713 *idxp = idx; 3714 return ep; 3715 } 3716 3717 /* 3718 * Return a pointer to the indirection array entry containing the 3719 * extent record for filesystem block bno. Store the index of the 3720 * target irec in *erp_idxp. 3721 */ 3722 xfs_ext_irec_t * /* pointer to found extent record */ 3723 xfs_iext_bno_to_irec( 3724 xfs_ifork_t *ifp, /* inode fork pointer */ 3725 xfs_fileoff_t bno, /* block number to search for */ 3726 int *erp_idxp) /* irec index of target ext list */ 3727 { 3728 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 3729 xfs_ext_irec_t *erp_next; /* next indirection array entry */ 3730 int erp_idx; /* indirection array index */ 3731 int nlists; /* number of extent irec's (lists) */ 3732 int high; /* binary search upper limit */ 3733 int low; /* binary search lower limit */ 3734 3735 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3736 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3737 erp_idx = 0; 3738 low = 0; 3739 high = nlists - 1; 3740 while (low <= high) { 3741 erp_idx = (low + high) >> 1; 3742 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3743 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; 3744 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { 3745 high = erp_idx - 1; 3746 } else if (erp_next && bno >= 3747 xfs_bmbt_get_startoff(erp_next->er_extbuf)) { 3748 low = erp_idx + 1; 3749 } else { 3750 break; 3751 } 3752 } 3753 *erp_idxp = erp_idx; 3754 return erp; 3755 } 3756 3757 /* 3758 * Return a pointer to the indirection array entry containing the 3759 * extent record at file extent index *idxp. Store the index of the 3760 * target irec in *erp_idxp and store the page index of the target 3761 * extent record in *idxp. 3762 */ 3763 xfs_ext_irec_t * 3764 xfs_iext_idx_to_irec( 3765 xfs_ifork_t *ifp, /* inode fork pointer */ 3766 xfs_extnum_t *idxp, /* extent index (file -> page) */ 3767 int *erp_idxp, /* pointer to target irec */ 3768 int realloc) /* new bytes were just added */ 3769 { 3770 xfs_ext_irec_t *prev; /* pointer to previous irec */ 3771 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ 3772 int erp_idx; /* indirection array index */ 3773 int nlists; /* number of irec's (ex lists) */ 3774 int high; /* binary search upper limit */ 3775 int low; /* binary search lower limit */ 3776 xfs_extnum_t page_idx = *idxp; /* extent index in target list */ 3777 3778 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3779 ASSERT(page_idx >= 0); 3780 ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t)); 3781 ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc); 3782 3783 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3784 erp_idx = 0; 3785 low = 0; 3786 high = nlists - 1; 3787 3788 /* Binary search extent irec's */ 3789 while (low <= high) { 3790 erp_idx = (low + high) >> 1; 3791 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3792 prev = erp_idx > 0 ? erp - 1 : NULL; 3793 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && 3794 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { 3795 high = erp_idx - 1; 3796 } else if (page_idx > erp->er_extoff + erp->er_extcount || 3797 (page_idx == erp->er_extoff + erp->er_extcount && 3798 !realloc)) { 3799 low = erp_idx + 1; 3800 } else if (page_idx == erp->er_extoff + erp->er_extcount && 3801 erp->er_extcount == XFS_LINEAR_EXTS) { 3802 ASSERT(realloc); 3803 page_idx = 0; 3804 erp_idx++; 3805 erp = erp_idx < nlists ? erp + 1 : NULL; 3806 break; 3807 } else { 3808 page_idx -= erp->er_extoff; 3809 break; 3810 } 3811 } 3812 *idxp = page_idx; 3813 *erp_idxp = erp_idx; 3814 return(erp); 3815 } 3816 3817 /* 3818 * Allocate and initialize an indirection array once the space needed 3819 * for incore extents increases above XFS_IEXT_BUFSZ. 3820 */ 3821 void 3822 xfs_iext_irec_init( 3823 xfs_ifork_t *ifp) /* inode fork pointer */ 3824 { 3825 xfs_ext_irec_t *erp; /* indirection array pointer */ 3826 xfs_extnum_t nextents; /* number of extents in file */ 3827 3828 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3829 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3830 ASSERT(nextents <= XFS_LINEAR_EXTS); 3831 3832 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS); 3833 3834 if (nextents == 0) { 3835 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 3836 } else if (!ifp->if_real_bytes) { 3837 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); 3838 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { 3839 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); 3840 } 3841 erp->er_extbuf = ifp->if_u1.if_extents; 3842 erp->er_extcount = nextents; 3843 erp->er_extoff = 0; 3844 3845 ifp->if_flags |= XFS_IFEXTIREC; 3846 ifp->if_real_bytes = XFS_IEXT_BUFSZ; 3847 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); 3848 ifp->if_u1.if_ext_irec = erp; 3849 3850 return; 3851 } 3852 3853 /* 3854 * Allocate and initialize a new entry in the indirection array. 3855 */ 3856 xfs_ext_irec_t * 3857 xfs_iext_irec_new( 3858 xfs_ifork_t *ifp, /* inode fork pointer */ 3859 int erp_idx) /* index for new irec */ 3860 { 3861 xfs_ext_irec_t *erp; /* indirection array pointer */ 3862 int i; /* loop counter */ 3863 int nlists; /* number of irec's (ex lists) */ 3864 3865 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3866 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3867 3868 /* Resize indirection array */ 3869 xfs_iext_realloc_indirect(ifp, ++nlists * 3870 sizeof(xfs_ext_irec_t)); 3871 /* 3872 * Move records down in the array so the 3873 * new page can use erp_idx. 3874 */ 3875 erp = ifp->if_u1.if_ext_irec; 3876 for (i = nlists - 1; i > erp_idx; i--) { 3877 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); 3878 } 3879 ASSERT(i == erp_idx); 3880 3881 /* Initialize new extent record */ 3882 erp = ifp->if_u1.if_ext_irec; 3883 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 3884 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 3885 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); 3886 erp[erp_idx].er_extcount = 0; 3887 erp[erp_idx].er_extoff = erp_idx > 0 ? 3888 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; 3889 return (&erp[erp_idx]); 3890 } 3891 3892 /* 3893 * Remove a record from the indirection array. 3894 */ 3895 void 3896 xfs_iext_irec_remove( 3897 xfs_ifork_t *ifp, /* inode fork pointer */ 3898 int erp_idx) /* irec index to remove */ 3899 { 3900 xfs_ext_irec_t *erp; /* indirection array pointer */ 3901 int i; /* loop counter */ 3902 int nlists; /* number of irec's (ex lists) */ 3903 3904 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3905 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3906 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3907 if (erp->er_extbuf) { 3908 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, 3909 -erp->er_extcount); 3910 kmem_free(erp->er_extbuf); 3911 } 3912 /* Compact extent records */ 3913 erp = ifp->if_u1.if_ext_irec; 3914 for (i = erp_idx; i < nlists - 1; i++) { 3915 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); 3916 } 3917 /* 3918 * Manually free the last extent record from the indirection 3919 * array. A call to xfs_iext_realloc_indirect() with a size 3920 * of zero would result in a call to xfs_iext_destroy() which 3921 * would in turn call this function again, creating a nasty 3922 * infinite loop. 3923 */ 3924 if (--nlists) { 3925 xfs_iext_realloc_indirect(ifp, 3926 nlists * sizeof(xfs_ext_irec_t)); 3927 } else { 3928 kmem_free(ifp->if_u1.if_ext_irec); 3929 } 3930 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 3931 } 3932 3933 /* 3934 * This is called to clean up large amounts of unused memory allocated 3935 * by the indirection array. Before compacting anything though, verify 3936 * that the indirection array is still needed and switch back to the 3937 * linear extent list (or even the inline buffer) if possible. The 3938 * compaction policy is as follows: 3939 * 3940 * Full Compaction: Extents fit into a single page (or inline buffer) 3941 * Partial Compaction: Extents occupy less than 50% of allocated space 3942 * No Compaction: Extents occupy at least 50% of allocated space 3943 */ 3944 void 3945 xfs_iext_irec_compact( 3946 xfs_ifork_t *ifp) /* inode fork pointer */ 3947 { 3948 xfs_extnum_t nextents; /* number of extents in file */ 3949 int nlists; /* number of irec's (ex lists) */ 3950 3951 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3952 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3953 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3954 3955 if (nextents == 0) { 3956 xfs_iext_destroy(ifp); 3957 } else if (nextents <= XFS_INLINE_EXTS) { 3958 xfs_iext_indirect_to_direct(ifp); 3959 xfs_iext_direct_to_inline(ifp, nextents); 3960 } else if (nextents <= XFS_LINEAR_EXTS) { 3961 xfs_iext_indirect_to_direct(ifp); 3962 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { 3963 xfs_iext_irec_compact_pages(ifp); 3964 } 3965 } 3966 3967 /* 3968 * Combine extents from neighboring extent pages. 3969 */ 3970 void 3971 xfs_iext_irec_compact_pages( 3972 xfs_ifork_t *ifp) /* inode fork pointer */ 3973 { 3974 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ 3975 int erp_idx = 0; /* indirection array index */ 3976 int nlists; /* number of irec's (ex lists) */ 3977 3978 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3979 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3980 while (erp_idx < nlists - 1) { 3981 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3982 erp_next = erp + 1; 3983 if (erp_next->er_extcount <= 3984 (XFS_LINEAR_EXTS - erp->er_extcount)) { 3985 memcpy(&erp->er_extbuf[erp->er_extcount], 3986 erp_next->er_extbuf, erp_next->er_extcount * 3987 sizeof(xfs_bmbt_rec_t)); 3988 erp->er_extcount += erp_next->er_extcount; 3989 /* 3990 * Free page before removing extent record 3991 * so er_extoffs don't get modified in 3992 * xfs_iext_irec_remove. 3993 */ 3994 kmem_free(erp_next->er_extbuf); 3995 erp_next->er_extbuf = NULL; 3996 xfs_iext_irec_remove(ifp, erp_idx + 1); 3997 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3998 } else { 3999 erp_idx++; 4000 } 4001 } 4002 } 4003 4004 /* 4005 * This is called to update the er_extoff field in the indirection 4006 * array when extents have been added or removed from one of the 4007 * extent lists. erp_idx contains the irec index to begin updating 4008 * at and ext_diff contains the number of extents that were added 4009 * or removed. 4010 */ 4011 void 4012 xfs_iext_irec_update_extoffs( 4013 xfs_ifork_t *ifp, /* inode fork pointer */ 4014 int erp_idx, /* irec index to update */ 4015 int ext_diff) /* number of new extents */ 4016 { 4017 int i; /* loop counter */ 4018 int nlists; /* number of irec's (ex lists */ 4019 4020 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4021 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4022 for (i = erp_idx; i < nlists; i++) { 4023 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; 4024 } 4025 } 4026 4027 /* 4028 * Test whether it is appropriate to check an inode for and free post EOF 4029 * blocks. The 'force' parameter determines whether we should also consider 4030 * regular files that are marked preallocated or append-only. 4031 */ 4032 bool 4033 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force) 4034 { 4035 /* prealloc/delalloc exists only on regular files */ 4036 if (!S_ISREG(ip->i_d.di_mode)) 4037 return false; 4038 4039 /* 4040 * Zero sized files with no cached pages and delalloc blocks will not 4041 * have speculative prealloc/delalloc blocks to remove. 4042 */ 4043 if (VFS_I(ip)->i_size == 0 && 4044 VN_CACHED(VFS_I(ip)) == 0 && 4045 ip->i_delayed_blks == 0) 4046 return false; 4047 4048 /* If we haven't read in the extent list, then don't do it now. */ 4049 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) 4050 return false; 4051 4052 /* 4053 * Do not free real preallocated or append-only files unless the file 4054 * has delalloc blocks and we are forced to remove them. 4055 */ 4056 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) 4057 if (!force || ip->i_delayed_blks == 0) 4058 return false; 4059 4060 return true; 4061 } 4062 4063