xref: /linux/fs/xfs/xfs_inode.c (revision f783529bee39c3fa1451728007eb4890a94f2638)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans_space.h"
20 #include "xfs_trans.h"
21 #include "xfs_buf_item.h"
22 #include "xfs_inode_item.h"
23 #include "xfs_iunlink_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38 #include "xfs_ag.h"
39 #include "xfs_log_priv.h"
40 #include "xfs_health.h"
41 #include "xfs_pnfs.h"
42 
43 struct kmem_cache *xfs_inode_cache;
44 
45 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
46 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
47 	struct xfs_inode *);
48 
49 /*
50  * helper function to extract extent size hint from inode
51  */
52 xfs_extlen_t
53 xfs_get_extsz_hint(
54 	struct xfs_inode	*ip)
55 {
56 	/*
57 	 * No point in aligning allocations if we need to COW to actually
58 	 * write to them.
59 	 */
60 	if (xfs_is_always_cow_inode(ip))
61 		return 0;
62 	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
63 		return ip->i_extsize;
64 	if (XFS_IS_REALTIME_INODE(ip))
65 		return ip->i_mount->m_sb.sb_rextsize;
66 	return 0;
67 }
68 
69 /*
70  * Helper function to extract CoW extent size hint from inode.
71  * Between the extent size hint and the CoW extent size hint, we
72  * return the greater of the two.  If the value is zero (automatic),
73  * use the default size.
74  */
75 xfs_extlen_t
76 xfs_get_cowextsz_hint(
77 	struct xfs_inode	*ip)
78 {
79 	xfs_extlen_t		a, b;
80 
81 	a = 0;
82 	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
83 		a = ip->i_cowextsize;
84 	b = xfs_get_extsz_hint(ip);
85 
86 	a = max(a, b);
87 	if (a == 0)
88 		return XFS_DEFAULT_COWEXTSZ_HINT;
89 	return a;
90 }
91 
92 /*
93  * These two are wrapper routines around the xfs_ilock() routine used to
94  * centralize some grungy code.  They are used in places that wish to lock the
95  * inode solely for reading the extents.  The reason these places can't just
96  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
97  * bringing in of the extents from disk for a file in b-tree format.  If the
98  * inode is in b-tree format, then we need to lock the inode exclusively until
99  * the extents are read in.  Locking it exclusively all the time would limit
100  * our parallelism unnecessarily, though.  What we do instead is check to see
101  * if the extents have been read in yet, and only lock the inode exclusively
102  * if they have not.
103  *
104  * The functions return a value which should be given to the corresponding
105  * xfs_iunlock() call.
106  */
107 uint
108 xfs_ilock_data_map_shared(
109 	struct xfs_inode	*ip)
110 {
111 	uint			lock_mode = XFS_ILOCK_SHARED;
112 
113 	if (xfs_need_iread_extents(&ip->i_df))
114 		lock_mode = XFS_ILOCK_EXCL;
115 	xfs_ilock(ip, lock_mode);
116 	return lock_mode;
117 }
118 
119 uint
120 xfs_ilock_attr_map_shared(
121 	struct xfs_inode	*ip)
122 {
123 	uint			lock_mode = XFS_ILOCK_SHARED;
124 
125 	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
126 		lock_mode = XFS_ILOCK_EXCL;
127 	xfs_ilock(ip, lock_mode);
128 	return lock_mode;
129 }
130 
131 /*
132  * You can't set both SHARED and EXCL for the same lock,
133  * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
134  * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
135  * to set in lock_flags.
136  */
137 static inline void
138 xfs_lock_flags_assert(
139 	uint		lock_flags)
140 {
141 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
142 		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
143 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
144 		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
145 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
146 		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
147 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
148 	ASSERT(lock_flags != 0);
149 }
150 
151 /*
152  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
153  * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
154  * various combinations of the locks to be obtained.
155  *
156  * The 3 locks should always be ordered so that the IO lock is obtained first,
157  * the mmap lock second and the ilock last in order to prevent deadlock.
158  *
159  * Basic locking order:
160  *
161  * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
162  *
163  * mmap_lock locking order:
164  *
165  * i_rwsem -> page lock -> mmap_lock
166  * mmap_lock -> invalidate_lock -> page_lock
167  *
168  * The difference in mmap_lock locking order mean that we cannot hold the
169  * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
170  * can fault in pages during copy in/out (for buffered IO) or require the
171  * mmap_lock in get_user_pages() to map the user pages into the kernel address
172  * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
173  * fault because page faults already hold the mmap_lock.
174  *
175  * Hence to serialise fully against both syscall and mmap based IO, we need to
176  * take both the i_rwsem and the invalidate_lock. These locks should *only* be
177  * both taken in places where we need to invalidate the page cache in a race
178  * free manner (e.g. truncate, hole punch and other extent manipulation
179  * functions).
180  */
181 void
182 xfs_ilock(
183 	xfs_inode_t		*ip,
184 	uint			lock_flags)
185 {
186 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
187 
188 	xfs_lock_flags_assert(lock_flags);
189 
190 	if (lock_flags & XFS_IOLOCK_EXCL) {
191 		down_write_nested(&VFS_I(ip)->i_rwsem,
192 				  XFS_IOLOCK_DEP(lock_flags));
193 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
194 		down_read_nested(&VFS_I(ip)->i_rwsem,
195 				 XFS_IOLOCK_DEP(lock_flags));
196 	}
197 
198 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
199 		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
200 				  XFS_MMAPLOCK_DEP(lock_flags));
201 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
202 		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
203 				 XFS_MMAPLOCK_DEP(lock_flags));
204 	}
205 
206 	if (lock_flags & XFS_ILOCK_EXCL)
207 		down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
208 	else if (lock_flags & XFS_ILOCK_SHARED)
209 		down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
210 }
211 
212 /*
213  * This is just like xfs_ilock(), except that the caller
214  * is guaranteed not to sleep.  It returns 1 if it gets
215  * the requested locks and 0 otherwise.  If the IO lock is
216  * obtained but the inode lock cannot be, then the IO lock
217  * is dropped before returning.
218  *
219  * ip -- the inode being locked
220  * lock_flags -- this parameter indicates the inode's locks to be
221  *       to be locked.  See the comment for xfs_ilock() for a list
222  *	 of valid values.
223  */
224 int
225 xfs_ilock_nowait(
226 	xfs_inode_t		*ip,
227 	uint			lock_flags)
228 {
229 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
230 
231 	xfs_lock_flags_assert(lock_flags);
232 
233 	if (lock_flags & XFS_IOLOCK_EXCL) {
234 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
235 			goto out;
236 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
237 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
238 			goto out;
239 	}
240 
241 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
242 		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
243 			goto out_undo_iolock;
244 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
245 		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
246 			goto out_undo_iolock;
247 	}
248 
249 	if (lock_flags & XFS_ILOCK_EXCL) {
250 		if (!down_write_trylock(&ip->i_lock))
251 			goto out_undo_mmaplock;
252 	} else if (lock_flags & XFS_ILOCK_SHARED) {
253 		if (!down_read_trylock(&ip->i_lock))
254 			goto out_undo_mmaplock;
255 	}
256 	return 1;
257 
258 out_undo_mmaplock:
259 	if (lock_flags & XFS_MMAPLOCK_EXCL)
260 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
261 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
262 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
263 out_undo_iolock:
264 	if (lock_flags & XFS_IOLOCK_EXCL)
265 		up_write(&VFS_I(ip)->i_rwsem);
266 	else if (lock_flags & XFS_IOLOCK_SHARED)
267 		up_read(&VFS_I(ip)->i_rwsem);
268 out:
269 	return 0;
270 }
271 
272 /*
273  * xfs_iunlock() is used to drop the inode locks acquired with
274  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
275  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
276  * that we know which locks to drop.
277  *
278  * ip -- the inode being unlocked
279  * lock_flags -- this parameter indicates the inode's locks to be
280  *       to be unlocked.  See the comment for xfs_ilock() for a list
281  *	 of valid values for this parameter.
282  *
283  */
284 void
285 xfs_iunlock(
286 	xfs_inode_t		*ip,
287 	uint			lock_flags)
288 {
289 	xfs_lock_flags_assert(lock_flags);
290 
291 	if (lock_flags & XFS_IOLOCK_EXCL)
292 		up_write(&VFS_I(ip)->i_rwsem);
293 	else if (lock_flags & XFS_IOLOCK_SHARED)
294 		up_read(&VFS_I(ip)->i_rwsem);
295 
296 	if (lock_flags & XFS_MMAPLOCK_EXCL)
297 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
298 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
299 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
300 
301 	if (lock_flags & XFS_ILOCK_EXCL)
302 		up_write(&ip->i_lock);
303 	else if (lock_flags & XFS_ILOCK_SHARED)
304 		up_read(&ip->i_lock);
305 
306 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
307 }
308 
309 /*
310  * give up write locks.  the i/o lock cannot be held nested
311  * if it is being demoted.
312  */
313 void
314 xfs_ilock_demote(
315 	xfs_inode_t		*ip,
316 	uint			lock_flags)
317 {
318 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
319 	ASSERT((lock_flags &
320 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
321 
322 	if (lock_flags & XFS_ILOCK_EXCL)
323 		downgrade_write(&ip->i_lock);
324 	if (lock_flags & XFS_MMAPLOCK_EXCL)
325 		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
326 	if (lock_flags & XFS_IOLOCK_EXCL)
327 		downgrade_write(&VFS_I(ip)->i_rwsem);
328 
329 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
330 }
331 
332 void
333 xfs_assert_ilocked(
334 	struct xfs_inode	*ip,
335 	uint			lock_flags)
336 {
337 	/*
338 	 * Sometimes we assert the ILOCK is held exclusively, but we're in
339 	 * a workqueue, so lockdep doesn't know we're the owner.
340 	 */
341 	if (lock_flags & XFS_ILOCK_SHARED)
342 		rwsem_assert_held(&ip->i_lock);
343 	else if (lock_flags & XFS_ILOCK_EXCL)
344 		rwsem_assert_held_write_nolockdep(&ip->i_lock);
345 
346 	if (lock_flags & XFS_MMAPLOCK_SHARED)
347 		rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
348 	else if (lock_flags & XFS_MMAPLOCK_EXCL)
349 		rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
350 
351 	if (lock_flags & XFS_IOLOCK_SHARED)
352 		rwsem_assert_held(&VFS_I(ip)->i_rwsem);
353 	else if (lock_flags & XFS_IOLOCK_EXCL)
354 		rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
355 }
356 
357 /*
358  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
359  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
360  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
361  * errors and warnings.
362  */
363 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
364 static bool
365 xfs_lockdep_subclass_ok(
366 	int subclass)
367 {
368 	return subclass < MAX_LOCKDEP_SUBCLASSES;
369 }
370 #else
371 #define xfs_lockdep_subclass_ok(subclass)	(true)
372 #endif
373 
374 /*
375  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
376  * value. This can be called for any type of inode lock combination, including
377  * parent locking. Care must be taken to ensure we don't overrun the subclass
378  * storage fields in the class mask we build.
379  */
380 static inline uint
381 xfs_lock_inumorder(
382 	uint	lock_mode,
383 	uint	subclass)
384 {
385 	uint	class = 0;
386 
387 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
388 			      XFS_ILOCK_RTSUM)));
389 	ASSERT(xfs_lockdep_subclass_ok(subclass));
390 
391 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
392 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
393 		class += subclass << XFS_IOLOCK_SHIFT;
394 	}
395 
396 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
397 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
398 		class += subclass << XFS_MMAPLOCK_SHIFT;
399 	}
400 
401 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
402 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
403 		class += subclass << XFS_ILOCK_SHIFT;
404 	}
405 
406 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
407 }
408 
409 /*
410  * The following routine will lock n inodes in exclusive mode.  We assume the
411  * caller calls us with the inodes in i_ino order.
412  *
413  * We need to detect deadlock where an inode that we lock is in the AIL and we
414  * start waiting for another inode that is locked by a thread in a long running
415  * transaction (such as truncate). This can result in deadlock since the long
416  * running trans might need to wait for the inode we just locked in order to
417  * push the tail and free space in the log.
418  *
419  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
420  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
421  * lock more than one at a time, lockdep will report false positives saying we
422  * have violated locking orders.
423  */
424 static void
425 xfs_lock_inodes(
426 	struct xfs_inode	**ips,
427 	int			inodes,
428 	uint			lock_mode)
429 {
430 	int			attempts = 0;
431 	uint			i;
432 	int			j;
433 	bool			try_lock;
434 	struct xfs_log_item	*lp;
435 
436 	/*
437 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
438 	 * support an arbitrary depth of locking here, but absolute limits on
439 	 * inodes depend on the type of locking and the limits placed by
440 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
441 	 * the asserts.
442 	 */
443 	ASSERT(ips && inodes >= 2 && inodes <= 5);
444 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
445 			    XFS_ILOCK_EXCL));
446 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
447 			      XFS_ILOCK_SHARED)));
448 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
449 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
450 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
451 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
452 
453 	if (lock_mode & XFS_IOLOCK_EXCL) {
454 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
455 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
456 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
457 
458 again:
459 	try_lock = false;
460 	i = 0;
461 	for (; i < inodes; i++) {
462 		ASSERT(ips[i]);
463 
464 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
465 			continue;
466 
467 		/*
468 		 * If try_lock is not set yet, make sure all locked inodes are
469 		 * not in the AIL.  If any are, set try_lock to be used later.
470 		 */
471 		if (!try_lock) {
472 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
473 				lp = &ips[j]->i_itemp->ili_item;
474 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
475 					try_lock = true;
476 			}
477 		}
478 
479 		/*
480 		 * If any of the previous locks we have locked is in the AIL,
481 		 * we must TRY to get the second and subsequent locks. If
482 		 * we can't get any, we must release all we have
483 		 * and try again.
484 		 */
485 		if (!try_lock) {
486 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
487 			continue;
488 		}
489 
490 		/* try_lock means we have an inode locked that is in the AIL. */
491 		ASSERT(i != 0);
492 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
493 			continue;
494 
495 		/*
496 		 * Unlock all previous guys and try again.  xfs_iunlock will try
497 		 * to push the tail if the inode is in the AIL.
498 		 */
499 		attempts++;
500 		for (j = i - 1; j >= 0; j--) {
501 			/*
502 			 * Check to see if we've already unlocked this one.  Not
503 			 * the first one going back, and the inode ptr is the
504 			 * same.
505 			 */
506 			if (j != (i - 1) && ips[j] == ips[j + 1])
507 				continue;
508 
509 			xfs_iunlock(ips[j], lock_mode);
510 		}
511 
512 		if ((attempts % 5) == 0) {
513 			delay(1); /* Don't just spin the CPU */
514 		}
515 		goto again;
516 	}
517 }
518 
519 /*
520  * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
521  * mmaplock must be double-locked separately since we use i_rwsem and
522  * invalidate_lock for that. We now support taking one lock EXCL and the
523  * other SHARED.
524  */
525 void
526 xfs_lock_two_inodes(
527 	struct xfs_inode	*ip0,
528 	uint			ip0_mode,
529 	struct xfs_inode	*ip1,
530 	uint			ip1_mode)
531 {
532 	int			attempts = 0;
533 	struct xfs_log_item	*lp;
534 
535 	ASSERT(hweight32(ip0_mode) == 1);
536 	ASSERT(hweight32(ip1_mode) == 1);
537 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
538 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
539 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
540 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
541 	ASSERT(ip0->i_ino != ip1->i_ino);
542 
543 	if (ip0->i_ino > ip1->i_ino) {
544 		swap(ip0, ip1);
545 		swap(ip0_mode, ip1_mode);
546 	}
547 
548  again:
549 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
550 
551 	/*
552 	 * If the first lock we have locked is in the AIL, we must TRY to get
553 	 * the second lock. If we can't get it, we must release the first one
554 	 * and try again.
555 	 */
556 	lp = &ip0->i_itemp->ili_item;
557 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
558 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
559 			xfs_iunlock(ip0, ip0_mode);
560 			if ((++attempts % 5) == 0)
561 				delay(1); /* Don't just spin the CPU */
562 			goto again;
563 		}
564 	} else {
565 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
566 	}
567 }
568 
569 uint
570 xfs_ip2xflags(
571 	struct xfs_inode	*ip)
572 {
573 	uint			flags = 0;
574 
575 	if (ip->i_diflags & XFS_DIFLAG_ANY) {
576 		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
577 			flags |= FS_XFLAG_REALTIME;
578 		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
579 			flags |= FS_XFLAG_PREALLOC;
580 		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
581 			flags |= FS_XFLAG_IMMUTABLE;
582 		if (ip->i_diflags & XFS_DIFLAG_APPEND)
583 			flags |= FS_XFLAG_APPEND;
584 		if (ip->i_diflags & XFS_DIFLAG_SYNC)
585 			flags |= FS_XFLAG_SYNC;
586 		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
587 			flags |= FS_XFLAG_NOATIME;
588 		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
589 			flags |= FS_XFLAG_NODUMP;
590 		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
591 			flags |= FS_XFLAG_RTINHERIT;
592 		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
593 			flags |= FS_XFLAG_PROJINHERIT;
594 		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
595 			flags |= FS_XFLAG_NOSYMLINKS;
596 		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
597 			flags |= FS_XFLAG_EXTSIZE;
598 		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
599 			flags |= FS_XFLAG_EXTSZINHERIT;
600 		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
601 			flags |= FS_XFLAG_NODEFRAG;
602 		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
603 			flags |= FS_XFLAG_FILESTREAM;
604 	}
605 
606 	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
607 		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
608 			flags |= FS_XFLAG_DAX;
609 		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
610 			flags |= FS_XFLAG_COWEXTSIZE;
611 	}
612 
613 	if (xfs_inode_has_attr_fork(ip))
614 		flags |= FS_XFLAG_HASATTR;
615 	return flags;
616 }
617 
618 /*
619  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
620  * is allowed, otherwise it has to be an exact match. If a CI match is found,
621  * ci_name->name will point to a the actual name (caller must free) or
622  * will be set to NULL if an exact match is found.
623  */
624 int
625 xfs_lookup(
626 	struct xfs_inode	*dp,
627 	const struct xfs_name	*name,
628 	struct xfs_inode	**ipp,
629 	struct xfs_name		*ci_name)
630 {
631 	xfs_ino_t		inum;
632 	int			error;
633 
634 	trace_xfs_lookup(dp, name);
635 
636 	if (xfs_is_shutdown(dp->i_mount))
637 		return -EIO;
638 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
639 		return -EIO;
640 
641 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
642 	if (error)
643 		goto out_unlock;
644 
645 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
646 	if (error)
647 		goto out_free_name;
648 
649 	return 0;
650 
651 out_free_name:
652 	if (ci_name)
653 		kfree(ci_name->name);
654 out_unlock:
655 	*ipp = NULL;
656 	return error;
657 }
658 
659 /* Propagate di_flags from a parent inode to a child inode. */
660 static void
661 xfs_inode_inherit_flags(
662 	struct xfs_inode	*ip,
663 	const struct xfs_inode	*pip)
664 {
665 	unsigned int		di_flags = 0;
666 	xfs_failaddr_t		failaddr;
667 	umode_t			mode = VFS_I(ip)->i_mode;
668 
669 	if (S_ISDIR(mode)) {
670 		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
671 			di_flags |= XFS_DIFLAG_RTINHERIT;
672 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
673 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
674 			ip->i_extsize = pip->i_extsize;
675 		}
676 		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
677 			di_flags |= XFS_DIFLAG_PROJINHERIT;
678 	} else if (S_ISREG(mode)) {
679 		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
680 		    xfs_has_realtime(ip->i_mount))
681 			di_flags |= XFS_DIFLAG_REALTIME;
682 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
683 			di_flags |= XFS_DIFLAG_EXTSIZE;
684 			ip->i_extsize = pip->i_extsize;
685 		}
686 	}
687 	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
688 	    xfs_inherit_noatime)
689 		di_flags |= XFS_DIFLAG_NOATIME;
690 	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
691 	    xfs_inherit_nodump)
692 		di_flags |= XFS_DIFLAG_NODUMP;
693 	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
694 	    xfs_inherit_sync)
695 		di_flags |= XFS_DIFLAG_SYNC;
696 	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
697 	    xfs_inherit_nosymlinks)
698 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
699 	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
700 	    xfs_inherit_nodefrag)
701 		di_flags |= XFS_DIFLAG_NODEFRAG;
702 	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
703 		di_flags |= XFS_DIFLAG_FILESTREAM;
704 
705 	ip->i_diflags |= di_flags;
706 
707 	/*
708 	 * Inode verifiers on older kernels only check that the extent size
709 	 * hint is an integer multiple of the rt extent size on realtime files.
710 	 * They did not check the hint alignment on a directory with both
711 	 * rtinherit and extszinherit flags set.  If the misaligned hint is
712 	 * propagated from a directory into a new realtime file, new file
713 	 * allocations will fail due to math errors in the rt allocator and/or
714 	 * trip the verifiers.  Validate the hint settings in the new file so
715 	 * that we don't let broken hints propagate.
716 	 */
717 	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
718 			VFS_I(ip)->i_mode, ip->i_diflags);
719 	if (failaddr) {
720 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
721 				   XFS_DIFLAG_EXTSZINHERIT);
722 		ip->i_extsize = 0;
723 	}
724 }
725 
726 /* Propagate di_flags2 from a parent inode to a child inode. */
727 static void
728 xfs_inode_inherit_flags2(
729 	struct xfs_inode	*ip,
730 	const struct xfs_inode	*pip)
731 {
732 	xfs_failaddr_t		failaddr;
733 
734 	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
735 		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
736 		ip->i_cowextsize = pip->i_cowextsize;
737 	}
738 	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
739 		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
740 
741 	/* Don't let invalid cowextsize hints propagate. */
742 	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
743 			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
744 	if (failaddr) {
745 		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
746 		ip->i_cowextsize = 0;
747 	}
748 }
749 
750 /*
751  * Initialise a newly allocated inode and return the in-core inode to the
752  * caller locked exclusively.
753  */
754 int
755 xfs_init_new_inode(
756 	struct mnt_idmap	*idmap,
757 	struct xfs_trans	*tp,
758 	struct xfs_inode	*pip,
759 	xfs_ino_t		ino,
760 	umode_t			mode,
761 	xfs_nlink_t		nlink,
762 	dev_t			rdev,
763 	prid_t			prid,
764 	bool			init_xattrs,
765 	struct xfs_inode	**ipp)
766 {
767 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
768 	struct xfs_mount	*mp = tp->t_mountp;
769 	struct xfs_inode	*ip;
770 	unsigned int		flags;
771 	int			error;
772 	struct timespec64	tv;
773 	struct inode		*inode;
774 
775 	/*
776 	 * Protect against obviously corrupt allocation btree records. Later
777 	 * xfs_iget checks will catch re-allocation of other active in-memory
778 	 * and on-disk inodes. If we don't catch reallocating the parent inode
779 	 * here we will deadlock in xfs_iget() so we have to do these checks
780 	 * first.
781 	 */
782 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
783 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
784 		xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino),
785 				XFS_SICK_AG_INOBT);
786 		return -EFSCORRUPTED;
787 	}
788 
789 	/*
790 	 * Get the in-core inode with the lock held exclusively to prevent
791 	 * others from looking at until we're done.
792 	 */
793 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
794 	if (error)
795 		return error;
796 
797 	ASSERT(ip != NULL);
798 	inode = VFS_I(ip);
799 	set_nlink(inode, nlink);
800 	inode->i_rdev = rdev;
801 	ip->i_projid = prid;
802 
803 	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
804 		inode_fsuid_set(inode, idmap);
805 		inode->i_gid = dir->i_gid;
806 		inode->i_mode = mode;
807 	} else {
808 		inode_init_owner(idmap, inode, dir, mode);
809 	}
810 
811 	/*
812 	 * If the group ID of the new file does not match the effective group
813 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
814 	 * (and only if the irix_sgid_inherit compatibility variable is set).
815 	 */
816 	if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
817 	    !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode)))
818 		inode->i_mode &= ~S_ISGID;
819 
820 	ip->i_disk_size = 0;
821 	ip->i_df.if_nextents = 0;
822 	ASSERT(ip->i_nblocks == 0);
823 
824 	tv = inode_set_ctime_current(inode);
825 	inode_set_mtime_to_ts(inode, tv);
826 	inode_set_atime_to_ts(inode, tv);
827 
828 	ip->i_extsize = 0;
829 	ip->i_diflags = 0;
830 
831 	if (xfs_has_v3inodes(mp)) {
832 		inode_set_iversion(inode, 1);
833 		ip->i_cowextsize = 0;
834 		ip->i_crtime = tv;
835 	}
836 
837 	flags = XFS_ILOG_CORE;
838 	switch (mode & S_IFMT) {
839 	case S_IFIFO:
840 	case S_IFCHR:
841 	case S_IFBLK:
842 	case S_IFSOCK:
843 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
844 		flags |= XFS_ILOG_DEV;
845 		break;
846 	case S_IFREG:
847 	case S_IFDIR:
848 		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
849 			xfs_inode_inherit_flags(ip, pip);
850 		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
851 			xfs_inode_inherit_flags2(ip, pip);
852 		fallthrough;
853 	case S_IFLNK:
854 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
855 		ip->i_df.if_bytes = 0;
856 		ip->i_df.if_data = NULL;
857 		break;
858 	default:
859 		ASSERT(0);
860 	}
861 
862 	/*
863 	 * If we need to create attributes immediately after allocating the
864 	 * inode, initialise an empty attribute fork right now. We use the
865 	 * default fork offset for attributes here as we don't know exactly what
866 	 * size or how many attributes we might be adding. We can do this
867 	 * safely here because we know the data fork is completely empty and
868 	 * this saves us from needing to run a separate transaction to set the
869 	 * fork offset in the immediate future.
870 	 */
871 	if (init_xattrs && xfs_has_attr(mp)) {
872 		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
873 		xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
874 	}
875 
876 	/*
877 	 * Log the new values stuffed into the inode.
878 	 */
879 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
880 	xfs_trans_log_inode(tp, ip, flags);
881 
882 	/* now that we have an i_mode we can setup the inode structure */
883 	xfs_setup_inode(ip);
884 
885 	*ipp = ip;
886 	return 0;
887 }
888 
889 /*
890  * Decrement the link count on an inode & log the change.  If this causes the
891  * link count to go to zero, move the inode to AGI unlinked list so that it can
892  * be freed when the last active reference goes away via xfs_inactive().
893  */
894 static int			/* error */
895 xfs_droplink(
896 	xfs_trans_t *tp,
897 	xfs_inode_t *ip)
898 {
899 	if (VFS_I(ip)->i_nlink == 0) {
900 		xfs_alert(ip->i_mount,
901 			  "%s: Attempt to drop inode (%llu) with nlink zero.",
902 			  __func__, ip->i_ino);
903 		return -EFSCORRUPTED;
904 	}
905 
906 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
907 
908 	drop_nlink(VFS_I(ip));
909 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
910 
911 	if (VFS_I(ip)->i_nlink)
912 		return 0;
913 
914 	return xfs_iunlink(tp, ip);
915 }
916 
917 /*
918  * Increment the link count on an inode & log the change.
919  */
920 static void
921 xfs_bumplink(
922 	xfs_trans_t *tp,
923 	xfs_inode_t *ip)
924 {
925 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
926 
927 	inc_nlink(VFS_I(ip));
928 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
929 }
930 
931 #ifdef CONFIG_XFS_LIVE_HOOKS
932 /*
933  * Use a static key here to reduce the overhead of directory live update hooks.
934  * If the compiler supports jump labels, the static branch will be replaced by
935  * a nop sled when there are no hook users.  Online fsck is currently the only
936  * caller, so this is a reasonable tradeoff.
937  *
938  * Note: Patching the kernel code requires taking the cpu hotplug lock.  Other
939  * parts of the kernel allocate memory with that lock held, which means that
940  * XFS callers cannot hold any locks that might be used by memory reclaim or
941  * writeback when calling the static_branch_{inc,dec} functions.
942  */
943 DEFINE_STATIC_XFS_HOOK_SWITCH(xfs_dir_hooks_switch);
944 
945 void
946 xfs_dir_hook_disable(void)
947 {
948 	xfs_hooks_switch_off(&xfs_dir_hooks_switch);
949 }
950 
951 void
952 xfs_dir_hook_enable(void)
953 {
954 	xfs_hooks_switch_on(&xfs_dir_hooks_switch);
955 }
956 
957 /* Call hooks for a directory update relating to a child dirent update. */
958 inline void
959 xfs_dir_update_hook(
960 	struct xfs_inode		*dp,
961 	struct xfs_inode		*ip,
962 	int				delta,
963 	const struct xfs_name		*name)
964 {
965 	if (xfs_hooks_switched_on(&xfs_dir_hooks_switch)) {
966 		struct xfs_dir_update_params	p = {
967 			.dp		= dp,
968 			.ip		= ip,
969 			.delta		= delta,
970 			.name		= name,
971 		};
972 		struct xfs_mount	*mp = ip->i_mount;
973 
974 		xfs_hooks_call(&mp->m_dir_update_hooks, 0, &p);
975 	}
976 }
977 
978 /* Call the specified function during a directory update. */
979 int
980 xfs_dir_hook_add(
981 	struct xfs_mount	*mp,
982 	struct xfs_dir_hook	*hook)
983 {
984 	return xfs_hooks_add(&mp->m_dir_update_hooks, &hook->dirent_hook);
985 }
986 
987 /* Stop calling the specified function during a directory update. */
988 void
989 xfs_dir_hook_del(
990 	struct xfs_mount	*mp,
991 	struct xfs_dir_hook	*hook)
992 {
993 	xfs_hooks_del(&mp->m_dir_update_hooks, &hook->dirent_hook);
994 }
995 
996 /* Configure directory update hook functions. */
997 void
998 xfs_dir_hook_setup(
999 	struct xfs_dir_hook	*hook,
1000 	notifier_fn_t		mod_fn)
1001 {
1002 	xfs_hook_setup(&hook->dirent_hook, mod_fn);
1003 }
1004 #endif /* CONFIG_XFS_LIVE_HOOKS */
1005 
1006 int
1007 xfs_create(
1008 	struct mnt_idmap	*idmap,
1009 	xfs_inode_t		*dp,
1010 	struct xfs_name		*name,
1011 	umode_t			mode,
1012 	dev_t			rdev,
1013 	bool			init_xattrs,
1014 	xfs_inode_t		**ipp)
1015 {
1016 	int			is_dir = S_ISDIR(mode);
1017 	struct xfs_mount	*mp = dp->i_mount;
1018 	struct xfs_inode	*ip = NULL;
1019 	struct xfs_trans	*tp = NULL;
1020 	int			error;
1021 	bool                    unlock_dp_on_error = false;
1022 	prid_t			prid;
1023 	struct xfs_dquot	*udqp = NULL;
1024 	struct xfs_dquot	*gdqp = NULL;
1025 	struct xfs_dquot	*pdqp = NULL;
1026 	struct xfs_trans_res	*tres;
1027 	uint			resblks;
1028 	xfs_ino_t		ino;
1029 
1030 	trace_xfs_create(dp, name);
1031 
1032 	if (xfs_is_shutdown(mp))
1033 		return -EIO;
1034 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1035 		return -EIO;
1036 
1037 	prid = xfs_get_initial_prid(dp);
1038 
1039 	/*
1040 	 * Make sure that we have allocated dquot(s) on disk.
1041 	 */
1042 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1043 			mapped_fsgid(idmap, &init_user_ns), prid,
1044 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1045 			&udqp, &gdqp, &pdqp);
1046 	if (error)
1047 		return error;
1048 
1049 	if (is_dir) {
1050 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1051 		tres = &M_RES(mp)->tr_mkdir;
1052 	} else {
1053 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1054 		tres = &M_RES(mp)->tr_create;
1055 	}
1056 
1057 	/*
1058 	 * Initially assume that the file does not exist and
1059 	 * reserve the resources for that case.  If that is not
1060 	 * the case we'll drop the one we have and get a more
1061 	 * appropriate transaction later.
1062 	 */
1063 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1064 			&tp);
1065 	if (error == -ENOSPC) {
1066 		/* flush outstanding delalloc blocks and retry */
1067 		xfs_flush_inodes(mp);
1068 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1069 				resblks, &tp);
1070 	}
1071 	if (error)
1072 		goto out_release_dquots;
1073 
1074 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1075 	unlock_dp_on_error = true;
1076 
1077 	/*
1078 	 * A newly created regular or special file just has one directory
1079 	 * entry pointing to them, but a directory also the "." entry
1080 	 * pointing to itself.
1081 	 */
1082 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1083 	if (!error)
1084 		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1085 				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1086 	if (error)
1087 		goto out_trans_cancel;
1088 
1089 	/*
1090 	 * Now we join the directory inode to the transaction.  We do not do it
1091 	 * earlier because xfs_dialloc might commit the previous transaction
1092 	 * (and release all the locks).  An error from here on will result in
1093 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1094 	 * error path.
1095 	 */
1096 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1097 	unlock_dp_on_error = false;
1098 
1099 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1100 					resblks - XFS_IALLOC_SPACE_RES(mp));
1101 	if (error) {
1102 		ASSERT(error != -ENOSPC);
1103 		goto out_trans_cancel;
1104 	}
1105 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1106 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1107 
1108 	if (is_dir) {
1109 		error = xfs_dir_init(tp, ip, dp);
1110 		if (error)
1111 			goto out_trans_cancel;
1112 
1113 		xfs_bumplink(tp, dp);
1114 	}
1115 
1116 	/*
1117 	 * Create ip with a reference from dp, and add '.' and '..' references
1118 	 * if it's a directory.
1119 	 */
1120 	xfs_dir_update_hook(dp, ip, 1, name);
1121 
1122 	/*
1123 	 * If this is a synchronous mount, make sure that the
1124 	 * create transaction goes to disk before returning to
1125 	 * the user.
1126 	 */
1127 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1128 		xfs_trans_set_sync(tp);
1129 
1130 	/*
1131 	 * Attach the dquot(s) to the inodes and modify them incore.
1132 	 * These ids of the inode couldn't have changed since the new
1133 	 * inode has been locked ever since it was created.
1134 	 */
1135 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1136 
1137 	error = xfs_trans_commit(tp);
1138 	if (error)
1139 		goto out_release_inode;
1140 
1141 	xfs_qm_dqrele(udqp);
1142 	xfs_qm_dqrele(gdqp);
1143 	xfs_qm_dqrele(pdqp);
1144 
1145 	*ipp = ip;
1146 	return 0;
1147 
1148  out_trans_cancel:
1149 	xfs_trans_cancel(tp);
1150  out_release_inode:
1151 	/*
1152 	 * Wait until after the current transaction is aborted to finish the
1153 	 * setup of the inode and release the inode.  This prevents recursive
1154 	 * transactions and deadlocks from xfs_inactive.
1155 	 */
1156 	if (ip) {
1157 		xfs_finish_inode_setup(ip);
1158 		xfs_irele(ip);
1159 	}
1160  out_release_dquots:
1161 	xfs_qm_dqrele(udqp);
1162 	xfs_qm_dqrele(gdqp);
1163 	xfs_qm_dqrele(pdqp);
1164 
1165 	if (unlock_dp_on_error)
1166 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1167 	return error;
1168 }
1169 
1170 int
1171 xfs_create_tmpfile(
1172 	struct mnt_idmap	*idmap,
1173 	struct xfs_inode	*dp,
1174 	umode_t			mode,
1175 	struct xfs_inode	**ipp)
1176 {
1177 	struct xfs_mount	*mp = dp->i_mount;
1178 	struct xfs_inode	*ip = NULL;
1179 	struct xfs_trans	*tp = NULL;
1180 	int			error;
1181 	prid_t                  prid;
1182 	struct xfs_dquot	*udqp = NULL;
1183 	struct xfs_dquot	*gdqp = NULL;
1184 	struct xfs_dquot	*pdqp = NULL;
1185 	struct xfs_trans_res	*tres;
1186 	uint			resblks;
1187 	xfs_ino_t		ino;
1188 
1189 	if (xfs_is_shutdown(mp))
1190 		return -EIO;
1191 
1192 	prid = xfs_get_initial_prid(dp);
1193 
1194 	/*
1195 	 * Make sure that we have allocated dquot(s) on disk.
1196 	 */
1197 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1198 			mapped_fsgid(idmap, &init_user_ns), prid,
1199 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1200 			&udqp, &gdqp, &pdqp);
1201 	if (error)
1202 		return error;
1203 
1204 	resblks = XFS_IALLOC_SPACE_RES(mp);
1205 	tres = &M_RES(mp)->tr_create_tmpfile;
1206 
1207 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1208 			&tp);
1209 	if (error)
1210 		goto out_release_dquots;
1211 
1212 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1213 	if (!error)
1214 		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1215 				0, 0, prid, false, &ip);
1216 	if (error)
1217 		goto out_trans_cancel;
1218 
1219 	if (xfs_has_wsync(mp))
1220 		xfs_trans_set_sync(tp);
1221 
1222 	/*
1223 	 * Attach the dquot(s) to the inodes and modify them incore.
1224 	 * These ids of the inode couldn't have changed since the new
1225 	 * inode has been locked ever since it was created.
1226 	 */
1227 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1228 
1229 	error = xfs_iunlink(tp, ip);
1230 	if (error)
1231 		goto out_trans_cancel;
1232 
1233 	error = xfs_trans_commit(tp);
1234 	if (error)
1235 		goto out_release_inode;
1236 
1237 	xfs_qm_dqrele(udqp);
1238 	xfs_qm_dqrele(gdqp);
1239 	xfs_qm_dqrele(pdqp);
1240 
1241 	*ipp = ip;
1242 	return 0;
1243 
1244  out_trans_cancel:
1245 	xfs_trans_cancel(tp);
1246  out_release_inode:
1247 	/*
1248 	 * Wait until after the current transaction is aborted to finish the
1249 	 * setup of the inode and release the inode.  This prevents recursive
1250 	 * transactions and deadlocks from xfs_inactive.
1251 	 */
1252 	if (ip) {
1253 		xfs_finish_inode_setup(ip);
1254 		xfs_irele(ip);
1255 	}
1256  out_release_dquots:
1257 	xfs_qm_dqrele(udqp);
1258 	xfs_qm_dqrele(gdqp);
1259 	xfs_qm_dqrele(pdqp);
1260 
1261 	return error;
1262 }
1263 
1264 int
1265 xfs_link(
1266 	xfs_inode_t		*tdp,
1267 	xfs_inode_t		*sip,
1268 	struct xfs_name		*target_name)
1269 {
1270 	xfs_mount_t		*mp = tdp->i_mount;
1271 	xfs_trans_t		*tp;
1272 	int			error, nospace_error = 0;
1273 	int			resblks;
1274 
1275 	trace_xfs_link(tdp, target_name);
1276 
1277 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1278 
1279 	if (xfs_is_shutdown(mp))
1280 		return -EIO;
1281 	if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
1282 		return -EIO;
1283 
1284 	error = xfs_qm_dqattach(sip);
1285 	if (error)
1286 		goto std_return;
1287 
1288 	error = xfs_qm_dqattach(tdp);
1289 	if (error)
1290 		goto std_return;
1291 
1292 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1293 	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1294 			&tp, &nospace_error);
1295 	if (error)
1296 		goto std_return;
1297 
1298 	/*
1299 	 * If we are using project inheritance, we only allow hard link
1300 	 * creation in our tree when the project IDs are the same; else
1301 	 * the tree quota mechanism could be circumvented.
1302 	 */
1303 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1304 		     tdp->i_projid != sip->i_projid)) {
1305 		/*
1306 		 * Project quota setup skips special files which can
1307 		 * leave inodes in a PROJINHERIT directory without a
1308 		 * project ID set. We need to allow links to be made
1309 		 * to these "project-less" inodes because userspace
1310 		 * expects them to succeed after project ID setup,
1311 		 * but everything else should be rejected.
1312 		 */
1313 		if (!special_file(VFS_I(sip)->i_mode) ||
1314 		    sip->i_projid != 0) {
1315 			error = -EXDEV;
1316 			goto error_return;
1317 		}
1318 	}
1319 
1320 	if (!resblks) {
1321 		error = xfs_dir_canenter(tp, tdp, target_name);
1322 		if (error)
1323 			goto error_return;
1324 	}
1325 
1326 	/*
1327 	 * Handle initial link state of O_TMPFILE inode
1328 	 */
1329 	if (VFS_I(sip)->i_nlink == 0) {
1330 		struct xfs_perag	*pag;
1331 
1332 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1333 		error = xfs_iunlink_remove(tp, pag, sip);
1334 		xfs_perag_put(pag);
1335 		if (error)
1336 			goto error_return;
1337 	}
1338 
1339 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1340 				   resblks);
1341 	if (error)
1342 		goto error_return;
1343 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1344 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1345 
1346 	xfs_bumplink(tp, sip);
1347 	xfs_dir_update_hook(tdp, sip, 1, target_name);
1348 
1349 	/*
1350 	 * If this is a synchronous mount, make sure that the
1351 	 * link transaction goes to disk before returning to
1352 	 * the user.
1353 	 */
1354 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1355 		xfs_trans_set_sync(tp);
1356 
1357 	return xfs_trans_commit(tp);
1358 
1359  error_return:
1360 	xfs_trans_cancel(tp);
1361  std_return:
1362 	if (error == -ENOSPC && nospace_error)
1363 		error = nospace_error;
1364 	return error;
1365 }
1366 
1367 /* Clear the reflink flag and the cowblocks tag if possible. */
1368 static void
1369 xfs_itruncate_clear_reflink_flags(
1370 	struct xfs_inode	*ip)
1371 {
1372 	struct xfs_ifork	*dfork;
1373 	struct xfs_ifork	*cfork;
1374 
1375 	if (!xfs_is_reflink_inode(ip))
1376 		return;
1377 	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1378 	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1379 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1380 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1381 	if (cfork->if_bytes == 0)
1382 		xfs_inode_clear_cowblocks_tag(ip);
1383 }
1384 
1385 /*
1386  * Free up the underlying blocks past new_size.  The new size must be smaller
1387  * than the current size.  This routine can be used both for the attribute and
1388  * data fork, and does not modify the inode size, which is left to the caller.
1389  *
1390  * The transaction passed to this routine must have made a permanent log
1391  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1392  * given transaction and start new ones, so make sure everything involved in
1393  * the transaction is tidy before calling here.  Some transaction will be
1394  * returned to the caller to be committed.  The incoming transaction must
1395  * already include the inode, and both inode locks must be held exclusively.
1396  * The inode must also be "held" within the transaction.  On return the inode
1397  * will be "held" within the returned transaction.  This routine does NOT
1398  * require any disk space to be reserved for it within the transaction.
1399  *
1400  * If we get an error, we must return with the inode locked and linked into the
1401  * current transaction. This keeps things simple for the higher level code,
1402  * because it always knows that the inode is locked and held in the transaction
1403  * that returns to it whether errors occur or not.  We don't mark the inode
1404  * dirty on error so that transactions can be easily aborted if possible.
1405  */
1406 int
1407 xfs_itruncate_extents_flags(
1408 	struct xfs_trans	**tpp,
1409 	struct xfs_inode	*ip,
1410 	int			whichfork,
1411 	xfs_fsize_t		new_size,
1412 	int			flags)
1413 {
1414 	struct xfs_mount	*mp = ip->i_mount;
1415 	struct xfs_trans	*tp = *tpp;
1416 	xfs_fileoff_t		first_unmap_block;
1417 	int			error = 0;
1418 
1419 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1420 	if (atomic_read(&VFS_I(ip)->i_count))
1421 		xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1422 	ASSERT(new_size <= XFS_ISIZE(ip));
1423 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1424 	ASSERT(ip->i_itemp != NULL);
1425 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1426 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1427 
1428 	trace_xfs_itruncate_extents_start(ip, new_size);
1429 
1430 	flags |= xfs_bmapi_aflag(whichfork);
1431 
1432 	/*
1433 	 * Since it is possible for space to become allocated beyond
1434 	 * the end of the file (in a crash where the space is allocated
1435 	 * but the inode size is not yet updated), simply remove any
1436 	 * blocks which show up between the new EOF and the maximum
1437 	 * possible file size.
1438 	 *
1439 	 * We have to free all the blocks to the bmbt maximum offset, even if
1440 	 * the page cache can't scale that far.
1441 	 */
1442 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1443 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1444 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1445 		return 0;
1446 	}
1447 
1448 	error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1449 			XFS_MAX_FILEOFF);
1450 	if (error)
1451 		goto out;
1452 
1453 	if (whichfork == XFS_DATA_FORK) {
1454 		/* Remove all pending CoW reservations. */
1455 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1456 				first_unmap_block, XFS_MAX_FILEOFF, true);
1457 		if (error)
1458 			goto out;
1459 
1460 		xfs_itruncate_clear_reflink_flags(ip);
1461 	}
1462 
1463 	/*
1464 	 * Always re-log the inode so that our permanent transaction can keep
1465 	 * on rolling it forward in the log.
1466 	 */
1467 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1468 
1469 	trace_xfs_itruncate_extents_end(ip, new_size);
1470 
1471 out:
1472 	*tpp = tp;
1473 	return error;
1474 }
1475 
1476 int
1477 xfs_release(
1478 	xfs_inode_t	*ip)
1479 {
1480 	xfs_mount_t	*mp = ip->i_mount;
1481 	int		error = 0;
1482 
1483 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1484 		return 0;
1485 
1486 	/* If this is a read-only mount, don't do this (would generate I/O) */
1487 	if (xfs_is_readonly(mp))
1488 		return 0;
1489 
1490 	if (!xfs_is_shutdown(mp)) {
1491 		int truncated;
1492 
1493 		/*
1494 		 * If we previously truncated this file and removed old data
1495 		 * in the process, we want to initiate "early" writeout on
1496 		 * the last close.  This is an attempt to combat the notorious
1497 		 * NULL files problem which is particularly noticeable from a
1498 		 * truncate down, buffered (re-)write (delalloc), followed by
1499 		 * a crash.  What we are effectively doing here is
1500 		 * significantly reducing the time window where we'd otherwise
1501 		 * be exposed to that problem.
1502 		 */
1503 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1504 		if (truncated) {
1505 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1506 			if (ip->i_delayed_blks > 0) {
1507 				error = filemap_flush(VFS_I(ip)->i_mapping);
1508 				if (error)
1509 					return error;
1510 			}
1511 		}
1512 	}
1513 
1514 	if (VFS_I(ip)->i_nlink == 0)
1515 		return 0;
1516 
1517 	/*
1518 	 * If we can't get the iolock just skip truncating the blocks past EOF
1519 	 * because we could deadlock with the mmap_lock otherwise. We'll get
1520 	 * another chance to drop them once the last reference to the inode is
1521 	 * dropped, so we'll never leak blocks permanently.
1522 	 */
1523 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1524 		return 0;
1525 
1526 	if (xfs_can_free_eofblocks(ip, false)) {
1527 		/*
1528 		 * Check if the inode is being opened, written and closed
1529 		 * frequently and we have delayed allocation blocks outstanding
1530 		 * (e.g. streaming writes from the NFS server), truncating the
1531 		 * blocks past EOF will cause fragmentation to occur.
1532 		 *
1533 		 * In this case don't do the truncation, but we have to be
1534 		 * careful how we detect this case. Blocks beyond EOF show up as
1535 		 * i_delayed_blks even when the inode is clean, so we need to
1536 		 * truncate them away first before checking for a dirty release.
1537 		 * Hence on the first dirty close we will still remove the
1538 		 * speculative allocation, but after that we will leave it in
1539 		 * place.
1540 		 */
1541 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1542 			goto out_unlock;
1543 
1544 		error = xfs_free_eofblocks(ip);
1545 		if (error)
1546 			goto out_unlock;
1547 
1548 		/* delalloc blocks after truncation means it really is dirty */
1549 		if (ip->i_delayed_blks)
1550 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1551 	}
1552 
1553 out_unlock:
1554 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1555 	return error;
1556 }
1557 
1558 /*
1559  * xfs_inactive_truncate
1560  *
1561  * Called to perform a truncate when an inode becomes unlinked.
1562  */
1563 STATIC int
1564 xfs_inactive_truncate(
1565 	struct xfs_inode *ip)
1566 {
1567 	struct xfs_mount	*mp = ip->i_mount;
1568 	struct xfs_trans	*tp;
1569 	int			error;
1570 
1571 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1572 	if (error) {
1573 		ASSERT(xfs_is_shutdown(mp));
1574 		return error;
1575 	}
1576 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1577 	xfs_trans_ijoin(tp, ip, 0);
1578 
1579 	/*
1580 	 * Log the inode size first to prevent stale data exposure in the event
1581 	 * of a system crash before the truncate completes. See the related
1582 	 * comment in xfs_vn_setattr_size() for details.
1583 	 */
1584 	ip->i_disk_size = 0;
1585 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1586 
1587 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1588 	if (error)
1589 		goto error_trans_cancel;
1590 
1591 	ASSERT(ip->i_df.if_nextents == 0);
1592 
1593 	error = xfs_trans_commit(tp);
1594 	if (error)
1595 		goto error_unlock;
1596 
1597 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1598 	return 0;
1599 
1600 error_trans_cancel:
1601 	xfs_trans_cancel(tp);
1602 error_unlock:
1603 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1604 	return error;
1605 }
1606 
1607 /*
1608  * xfs_inactive_ifree()
1609  *
1610  * Perform the inode free when an inode is unlinked.
1611  */
1612 STATIC int
1613 xfs_inactive_ifree(
1614 	struct xfs_inode *ip)
1615 {
1616 	struct xfs_mount	*mp = ip->i_mount;
1617 	struct xfs_trans	*tp;
1618 	int			error;
1619 
1620 	/*
1621 	 * We try to use a per-AG reservation for any block needed by the finobt
1622 	 * tree, but as the finobt feature predates the per-AG reservation
1623 	 * support a degraded file system might not have enough space for the
1624 	 * reservation at mount time.  In that case try to dip into the reserved
1625 	 * pool and pray.
1626 	 *
1627 	 * Send a warning if the reservation does happen to fail, as the inode
1628 	 * now remains allocated and sits on the unlinked list until the fs is
1629 	 * repaired.
1630 	 */
1631 	if (unlikely(mp->m_finobt_nores)) {
1632 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1633 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1634 				&tp);
1635 	} else {
1636 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1637 	}
1638 	if (error) {
1639 		if (error == -ENOSPC) {
1640 			xfs_warn_ratelimited(mp,
1641 			"Failed to remove inode(s) from unlinked list. "
1642 			"Please free space, unmount and run xfs_repair.");
1643 		} else {
1644 			ASSERT(xfs_is_shutdown(mp));
1645 		}
1646 		return error;
1647 	}
1648 
1649 	/*
1650 	 * We do not hold the inode locked across the entire rolling transaction
1651 	 * here. We only need to hold it for the first transaction that
1652 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1653 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1654 	 * here breaks the relationship between cluster buffer invalidation and
1655 	 * stale inode invalidation on cluster buffer item journal commit
1656 	 * completion, and can result in leaving dirty stale inodes hanging
1657 	 * around in memory.
1658 	 *
1659 	 * We have no need for serialising this inode operation against other
1660 	 * operations - we freed the inode and hence reallocation is required
1661 	 * and that will serialise on reallocating the space the deferops need
1662 	 * to free. Hence we can unlock the inode on the first commit of
1663 	 * the transaction rather than roll it right through the deferops. This
1664 	 * avoids relogging the XFS_ISTALE inode.
1665 	 *
1666 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1667 	 * by asserting that the inode is still locked when it returns.
1668 	 */
1669 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1670 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1671 
1672 	error = xfs_ifree(tp, ip);
1673 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1674 	if (error) {
1675 		/*
1676 		 * If we fail to free the inode, shut down.  The cancel
1677 		 * might do that, we need to make sure.  Otherwise the
1678 		 * inode might be lost for a long time or forever.
1679 		 */
1680 		if (!xfs_is_shutdown(mp)) {
1681 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1682 				__func__, error);
1683 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1684 		}
1685 		xfs_trans_cancel(tp);
1686 		return error;
1687 	}
1688 
1689 	/*
1690 	 * Credit the quota account(s). The inode is gone.
1691 	 */
1692 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1693 
1694 	return xfs_trans_commit(tp);
1695 }
1696 
1697 /*
1698  * Returns true if we need to update the on-disk metadata before we can free
1699  * the memory used by this inode.  Updates include freeing post-eof
1700  * preallocations; freeing COW staging extents; and marking the inode free in
1701  * the inobt if it is on the unlinked list.
1702  */
1703 bool
1704 xfs_inode_needs_inactive(
1705 	struct xfs_inode	*ip)
1706 {
1707 	struct xfs_mount	*mp = ip->i_mount;
1708 	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1709 
1710 	/*
1711 	 * If the inode is already free, then there can be nothing
1712 	 * to clean up here.
1713 	 */
1714 	if (VFS_I(ip)->i_mode == 0)
1715 		return false;
1716 
1717 	/*
1718 	 * If this is a read-only mount, don't do this (would generate I/O)
1719 	 * unless we're in log recovery and cleaning the iunlinked list.
1720 	 */
1721 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1722 		return false;
1723 
1724 	/* If the log isn't running, push inodes straight to reclaim. */
1725 	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1726 		return false;
1727 
1728 	/* Metadata inodes require explicit resource cleanup. */
1729 	if (xfs_is_metadata_inode(ip))
1730 		return false;
1731 
1732 	/* Want to clean out the cow blocks if there are any. */
1733 	if (cow_ifp && cow_ifp->if_bytes > 0)
1734 		return true;
1735 
1736 	/* Unlinked files must be freed. */
1737 	if (VFS_I(ip)->i_nlink == 0)
1738 		return true;
1739 
1740 	/*
1741 	 * This file isn't being freed, so check if there are post-eof blocks
1742 	 * to free.  @force is true because we are evicting an inode from the
1743 	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1744 	 * free space accounting.
1745 	 *
1746 	 * Note: don't bother with iolock here since lockdep complains about
1747 	 * acquiring it in reclaim context. We have the only reference to the
1748 	 * inode at this point anyways.
1749 	 */
1750 	return xfs_can_free_eofblocks(ip, true);
1751 }
1752 
1753 /*
1754  * Save health status somewhere, if we're dumping an inode with uncorrected
1755  * errors and online repair isn't running.
1756  */
1757 static inline void
1758 xfs_inactive_health(
1759 	struct xfs_inode	*ip)
1760 {
1761 	struct xfs_mount	*mp = ip->i_mount;
1762 	struct xfs_perag	*pag;
1763 	unsigned int		sick;
1764 	unsigned int		checked;
1765 
1766 	xfs_inode_measure_sickness(ip, &sick, &checked);
1767 	if (!sick)
1768 		return;
1769 
1770 	trace_xfs_inode_unfixed_corruption(ip, sick);
1771 
1772 	if (sick & XFS_SICK_INO_FORGET)
1773 		return;
1774 
1775 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1776 	if (!pag) {
1777 		/* There had better still be a perag structure! */
1778 		ASSERT(0);
1779 		return;
1780 	}
1781 
1782 	xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
1783 	xfs_perag_put(pag);
1784 }
1785 
1786 /*
1787  * xfs_inactive
1788  *
1789  * This is called when the vnode reference count for the vnode
1790  * goes to zero.  If the file has been unlinked, then it must
1791  * now be truncated.  Also, we clear all of the read-ahead state
1792  * kept for the inode here since the file is now closed.
1793  */
1794 int
1795 xfs_inactive(
1796 	xfs_inode_t	*ip)
1797 {
1798 	struct xfs_mount	*mp;
1799 	int			error = 0;
1800 	int			truncate = 0;
1801 
1802 	/*
1803 	 * If the inode is already free, then there can be nothing
1804 	 * to clean up here.
1805 	 */
1806 	if (VFS_I(ip)->i_mode == 0) {
1807 		ASSERT(ip->i_df.if_broot_bytes == 0);
1808 		goto out;
1809 	}
1810 
1811 	mp = ip->i_mount;
1812 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1813 
1814 	xfs_inactive_health(ip);
1815 
1816 	/*
1817 	 * If this is a read-only mount, don't do this (would generate I/O)
1818 	 * unless we're in log recovery and cleaning the iunlinked list.
1819 	 */
1820 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1821 		goto out;
1822 
1823 	/* Metadata inodes require explicit resource cleanup. */
1824 	if (xfs_is_metadata_inode(ip))
1825 		goto out;
1826 
1827 	/* Try to clean out the cow blocks if there are any. */
1828 	if (xfs_inode_has_cow_data(ip))
1829 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1830 
1831 	if (VFS_I(ip)->i_nlink != 0) {
1832 		/*
1833 		 * force is true because we are evicting an inode from the
1834 		 * cache. Post-eof blocks must be freed, lest we end up with
1835 		 * broken free space accounting.
1836 		 *
1837 		 * Note: don't bother with iolock here since lockdep complains
1838 		 * about acquiring it in reclaim context. We have the only
1839 		 * reference to the inode at this point anyways.
1840 		 */
1841 		if (xfs_can_free_eofblocks(ip, true))
1842 			error = xfs_free_eofblocks(ip);
1843 
1844 		goto out;
1845 	}
1846 
1847 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1848 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1849 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1850 		truncate = 1;
1851 
1852 	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1853 		/*
1854 		 * If this inode is being inactivated during a quotacheck and
1855 		 * has not yet been scanned by quotacheck, we /must/ remove
1856 		 * the dquots from the inode before inactivation changes the
1857 		 * block and inode counts.  Most probably this is a result of
1858 		 * reloading the incore iunlinked list to purge unrecovered
1859 		 * unlinked inodes.
1860 		 */
1861 		xfs_qm_dqdetach(ip);
1862 	} else {
1863 		error = xfs_qm_dqattach(ip);
1864 		if (error)
1865 			goto out;
1866 	}
1867 
1868 	if (S_ISLNK(VFS_I(ip)->i_mode))
1869 		error = xfs_inactive_symlink(ip);
1870 	else if (truncate)
1871 		error = xfs_inactive_truncate(ip);
1872 	if (error)
1873 		goto out;
1874 
1875 	/*
1876 	 * If there are attributes associated with the file then blow them away
1877 	 * now.  The code calls a routine that recursively deconstructs the
1878 	 * attribute fork. If also blows away the in-core attribute fork.
1879 	 */
1880 	if (xfs_inode_has_attr_fork(ip)) {
1881 		error = xfs_attr_inactive(ip);
1882 		if (error)
1883 			goto out;
1884 	}
1885 
1886 	ASSERT(ip->i_forkoff == 0);
1887 
1888 	/*
1889 	 * Free the inode.
1890 	 */
1891 	error = xfs_inactive_ifree(ip);
1892 
1893 out:
1894 	/*
1895 	 * We're done making metadata updates for this inode, so we can release
1896 	 * the attached dquots.
1897 	 */
1898 	xfs_qm_dqdetach(ip);
1899 	return error;
1900 }
1901 
1902 /*
1903  * In-Core Unlinked List Lookups
1904  * =============================
1905  *
1906  * Every inode is supposed to be reachable from some other piece of metadata
1907  * with the exception of the root directory.  Inodes with a connection to a
1908  * file descriptor but not linked from anywhere in the on-disk directory tree
1909  * are collectively known as unlinked inodes, though the filesystem itself
1910  * maintains links to these inodes so that on-disk metadata are consistent.
1911  *
1912  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1913  * header contains a number of buckets that point to an inode, and each inode
1914  * record has a pointer to the next inode in the hash chain.  This
1915  * singly-linked list causes scaling problems in the iunlink remove function
1916  * because we must walk that list to find the inode that points to the inode
1917  * being removed from the unlinked hash bucket list.
1918  *
1919  * Hence we keep an in-memory double linked list to link each inode on an
1920  * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1921  * based lists would require having 64 list heads in the perag, one for each
1922  * list. This is expensive in terms of memory (think millions of AGs) and cache
1923  * misses on lookups. Instead, use the fact that inodes on the unlinked list
1924  * must be referenced at the VFS level to keep them on the list and hence we
1925  * have an existence guarantee for inodes on the unlinked list.
1926  *
1927  * Given we have an existence guarantee, we can use lockless inode cache lookups
1928  * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1929  * for the double linked unlinked list, and we don't need any extra locking to
1930  * keep the list safe as all manipulations are done under the AGI buffer lock.
1931  * Keeping the list up to date does not require memory allocation, just finding
1932  * the XFS inode and updating the next/prev unlinked list aginos.
1933  */
1934 
1935 /*
1936  * Find an inode on the unlinked list. This does not take references to the
1937  * inode as we have existence guarantees by holding the AGI buffer lock and that
1938  * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1939  * don't find the inode in cache, then let the caller handle the situation.
1940  */
1941 static struct xfs_inode *
1942 xfs_iunlink_lookup(
1943 	struct xfs_perag	*pag,
1944 	xfs_agino_t		agino)
1945 {
1946 	struct xfs_inode	*ip;
1947 
1948 	rcu_read_lock();
1949 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1950 	if (!ip) {
1951 		/* Caller can handle inode not being in memory. */
1952 		rcu_read_unlock();
1953 		return NULL;
1954 	}
1955 
1956 	/*
1957 	 * Inode in RCU freeing limbo should not happen.  Warn about this and
1958 	 * let the caller handle the failure.
1959 	 */
1960 	if (WARN_ON_ONCE(!ip->i_ino)) {
1961 		rcu_read_unlock();
1962 		return NULL;
1963 	}
1964 	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1965 	rcu_read_unlock();
1966 	return ip;
1967 }
1968 
1969 /*
1970  * Update the prev pointer of the next agino.  Returns -ENOLINK if the inode
1971  * is not in cache.
1972  */
1973 static int
1974 xfs_iunlink_update_backref(
1975 	struct xfs_perag	*pag,
1976 	xfs_agino_t		prev_agino,
1977 	xfs_agino_t		next_agino)
1978 {
1979 	struct xfs_inode	*ip;
1980 
1981 	/* No update necessary if we are at the end of the list. */
1982 	if (next_agino == NULLAGINO)
1983 		return 0;
1984 
1985 	ip = xfs_iunlink_lookup(pag, next_agino);
1986 	if (!ip)
1987 		return -ENOLINK;
1988 
1989 	ip->i_prev_unlinked = prev_agino;
1990 	return 0;
1991 }
1992 
1993 /*
1994  * Point the AGI unlinked bucket at an inode and log the results.  The caller
1995  * is responsible for validating the old value.
1996  */
1997 STATIC int
1998 xfs_iunlink_update_bucket(
1999 	struct xfs_trans	*tp,
2000 	struct xfs_perag	*pag,
2001 	struct xfs_buf		*agibp,
2002 	unsigned int		bucket_index,
2003 	xfs_agino_t		new_agino)
2004 {
2005 	struct xfs_agi		*agi = agibp->b_addr;
2006 	xfs_agino_t		old_value;
2007 	int			offset;
2008 
2009 	ASSERT(xfs_verify_agino_or_null(pag, new_agino));
2010 
2011 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2012 	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
2013 			old_value, new_agino);
2014 
2015 	/*
2016 	 * We should never find the head of the list already set to the value
2017 	 * passed in because either we're adding or removing ourselves from the
2018 	 * head of the list.
2019 	 */
2020 	if (old_value == new_agino) {
2021 		xfs_buf_mark_corrupt(agibp);
2022 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2023 		return -EFSCORRUPTED;
2024 	}
2025 
2026 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2027 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2028 			(sizeof(xfs_agino_t) * bucket_index);
2029 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2030 	return 0;
2031 }
2032 
2033 /*
2034  * Load the inode @next_agino into the cache and set its prev_unlinked pointer
2035  * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
2036  * to the unlinked list.
2037  */
2038 STATIC int
2039 xfs_iunlink_reload_next(
2040 	struct xfs_trans	*tp,
2041 	struct xfs_buf		*agibp,
2042 	xfs_agino_t		prev_agino,
2043 	xfs_agino_t		next_agino)
2044 {
2045 	struct xfs_perag	*pag = agibp->b_pag;
2046 	struct xfs_mount	*mp = pag->pag_mount;
2047 	struct xfs_inode	*next_ip = NULL;
2048 	xfs_ino_t		ino;
2049 	int			error;
2050 
2051 	ASSERT(next_agino != NULLAGINO);
2052 
2053 #ifdef DEBUG
2054 	rcu_read_lock();
2055 	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
2056 	ASSERT(next_ip == NULL);
2057 	rcu_read_unlock();
2058 #endif
2059 
2060 	xfs_info_ratelimited(mp,
2061  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
2062 			next_agino, pag->pag_agno);
2063 
2064 	/*
2065 	 * Use an untrusted lookup just to be cautious in case the AGI has been
2066 	 * corrupted and now points at a free inode.  That shouldn't happen,
2067 	 * but we'd rather shut down now since we're already running in a weird
2068 	 * situation.
2069 	 */
2070 	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino);
2071 	error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip);
2072 	if (error) {
2073 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2074 		return error;
2075 	}
2076 
2077 	/* If this is not an unlinked inode, something is very wrong. */
2078 	if (VFS_I(next_ip)->i_nlink != 0) {
2079 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2080 		error = -EFSCORRUPTED;
2081 		goto rele;
2082 	}
2083 
2084 	next_ip->i_prev_unlinked = prev_agino;
2085 	trace_xfs_iunlink_reload_next(next_ip);
2086 rele:
2087 	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
2088 	if (xfs_is_quotacheck_running(mp) && next_ip)
2089 		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
2090 	xfs_irele(next_ip);
2091 	return error;
2092 }
2093 
2094 static int
2095 xfs_iunlink_insert_inode(
2096 	struct xfs_trans	*tp,
2097 	struct xfs_perag	*pag,
2098 	struct xfs_buf		*agibp,
2099 	struct xfs_inode	*ip)
2100 {
2101 	struct xfs_mount	*mp = tp->t_mountp;
2102 	struct xfs_agi		*agi = agibp->b_addr;
2103 	xfs_agino_t		next_agino;
2104 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2105 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2106 	int			error;
2107 
2108 	/*
2109 	 * Get the index into the agi hash table for the list this inode will
2110 	 * go on.  Make sure the pointer isn't garbage and that this inode
2111 	 * isn't already on the list.
2112 	 */
2113 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2114 	if (next_agino == agino ||
2115 	    !xfs_verify_agino_or_null(pag, next_agino)) {
2116 		xfs_buf_mark_corrupt(agibp);
2117 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2118 		return -EFSCORRUPTED;
2119 	}
2120 
2121 	/*
2122 	 * Update the prev pointer in the next inode to point back to this
2123 	 * inode.
2124 	 */
2125 	error = xfs_iunlink_update_backref(pag, agino, next_agino);
2126 	if (error == -ENOLINK)
2127 		error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino);
2128 	if (error)
2129 		return error;
2130 
2131 	if (next_agino != NULLAGINO) {
2132 		/*
2133 		 * There is already another inode in the bucket, so point this
2134 		 * inode to the current head of the list.
2135 		 */
2136 		error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
2137 		if (error)
2138 			return error;
2139 		ip->i_next_unlinked = next_agino;
2140 	}
2141 
2142 	/* Point the head of the list to point to this inode. */
2143 	ip->i_prev_unlinked = NULLAGINO;
2144 	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2145 }
2146 
2147 /*
2148  * This is called when the inode's link count has gone to 0 or we are creating
2149  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2150  *
2151  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2152  * list when the inode is freed.
2153  */
2154 STATIC int
2155 xfs_iunlink(
2156 	struct xfs_trans	*tp,
2157 	struct xfs_inode	*ip)
2158 {
2159 	struct xfs_mount	*mp = tp->t_mountp;
2160 	struct xfs_perag	*pag;
2161 	struct xfs_buf		*agibp;
2162 	int			error;
2163 
2164 	ASSERT(VFS_I(ip)->i_nlink == 0);
2165 	ASSERT(VFS_I(ip)->i_mode != 0);
2166 	trace_xfs_iunlink(ip);
2167 
2168 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2169 
2170 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2171 	error = xfs_read_agi(pag, tp, 0, &agibp);
2172 	if (error)
2173 		goto out;
2174 
2175 	error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
2176 out:
2177 	xfs_perag_put(pag);
2178 	return error;
2179 }
2180 
2181 static int
2182 xfs_iunlink_remove_inode(
2183 	struct xfs_trans	*tp,
2184 	struct xfs_perag	*pag,
2185 	struct xfs_buf		*agibp,
2186 	struct xfs_inode	*ip)
2187 {
2188 	struct xfs_mount	*mp = tp->t_mountp;
2189 	struct xfs_agi		*agi = agibp->b_addr;
2190 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2191 	xfs_agino_t		head_agino;
2192 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2193 	int			error;
2194 
2195 	trace_xfs_iunlink_remove(ip);
2196 
2197 	/*
2198 	 * Get the index into the agi hash table for the list this inode will
2199 	 * go on.  Make sure the head pointer isn't garbage.
2200 	 */
2201 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2202 	if (!xfs_verify_agino(pag, head_agino)) {
2203 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2204 				agi, sizeof(*agi));
2205 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2206 		return -EFSCORRUPTED;
2207 	}
2208 
2209 	/*
2210 	 * Set our inode's next_unlinked pointer to NULL and then return
2211 	 * the old pointer value so that we can update whatever was previous
2212 	 * to us in the list to point to whatever was next in the list.
2213 	 */
2214 	error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2215 	if (error)
2216 		return error;
2217 
2218 	/*
2219 	 * Update the prev pointer in the next inode to point back to previous
2220 	 * inode in the chain.
2221 	 */
2222 	error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2223 			ip->i_next_unlinked);
2224 	if (error == -ENOLINK)
2225 		error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked,
2226 				ip->i_next_unlinked);
2227 	if (error)
2228 		return error;
2229 
2230 	if (head_agino != agino) {
2231 		struct xfs_inode	*prev_ip;
2232 
2233 		prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2234 		if (!prev_ip) {
2235 			xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
2236 			return -EFSCORRUPTED;
2237 		}
2238 
2239 		error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2240 				ip->i_next_unlinked);
2241 		prev_ip->i_next_unlinked = ip->i_next_unlinked;
2242 	} else {
2243 		/* Point the head of the list to the next unlinked inode. */
2244 		error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2245 				ip->i_next_unlinked);
2246 	}
2247 
2248 	ip->i_next_unlinked = NULLAGINO;
2249 	ip->i_prev_unlinked = 0;
2250 	return error;
2251 }
2252 
2253 /*
2254  * Pull the on-disk inode from the AGI unlinked list.
2255  */
2256 STATIC int
2257 xfs_iunlink_remove(
2258 	struct xfs_trans	*tp,
2259 	struct xfs_perag	*pag,
2260 	struct xfs_inode	*ip)
2261 {
2262 	struct xfs_buf		*agibp;
2263 	int			error;
2264 
2265 	trace_xfs_iunlink_remove(ip);
2266 
2267 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2268 	error = xfs_read_agi(pag, tp, 0, &agibp);
2269 	if (error)
2270 		return error;
2271 
2272 	return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2273 }
2274 
2275 /*
2276  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2277  * mark it stale. We should only find clean inodes in this lookup that aren't
2278  * already stale.
2279  */
2280 static void
2281 xfs_ifree_mark_inode_stale(
2282 	struct xfs_perag	*pag,
2283 	struct xfs_inode	*free_ip,
2284 	xfs_ino_t		inum)
2285 {
2286 	struct xfs_mount	*mp = pag->pag_mount;
2287 	struct xfs_inode_log_item *iip;
2288 	struct xfs_inode	*ip;
2289 
2290 retry:
2291 	rcu_read_lock();
2292 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2293 
2294 	/* Inode not in memory, nothing to do */
2295 	if (!ip) {
2296 		rcu_read_unlock();
2297 		return;
2298 	}
2299 
2300 	/*
2301 	 * because this is an RCU protected lookup, we could find a recently
2302 	 * freed or even reallocated inode during the lookup. We need to check
2303 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2304 	 * valid, the wrong inode or stale.
2305 	 */
2306 	spin_lock(&ip->i_flags_lock);
2307 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2308 		goto out_iflags_unlock;
2309 
2310 	/*
2311 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2312 	 * other inodes that we did not find in the list attached to the buffer
2313 	 * and are not already marked stale. If we can't lock it, back off and
2314 	 * retry.
2315 	 */
2316 	if (ip != free_ip) {
2317 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2318 			spin_unlock(&ip->i_flags_lock);
2319 			rcu_read_unlock();
2320 			delay(1);
2321 			goto retry;
2322 		}
2323 	}
2324 	ip->i_flags |= XFS_ISTALE;
2325 
2326 	/*
2327 	 * If the inode is flushing, it is already attached to the buffer.  All
2328 	 * we needed to do here is mark the inode stale so buffer IO completion
2329 	 * will remove it from the AIL.
2330 	 */
2331 	iip = ip->i_itemp;
2332 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2333 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2334 		ASSERT(iip->ili_last_fields);
2335 		goto out_iunlock;
2336 	}
2337 
2338 	/*
2339 	 * Inodes not attached to the buffer can be released immediately.
2340 	 * Everything else has to go through xfs_iflush_abort() on journal
2341 	 * commit as the flock synchronises removal of the inode from the
2342 	 * cluster buffer against inode reclaim.
2343 	 */
2344 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2345 		goto out_iunlock;
2346 
2347 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2348 	spin_unlock(&ip->i_flags_lock);
2349 	rcu_read_unlock();
2350 
2351 	/* we have a dirty inode in memory that has not yet been flushed. */
2352 	spin_lock(&iip->ili_lock);
2353 	iip->ili_last_fields = iip->ili_fields;
2354 	iip->ili_fields = 0;
2355 	iip->ili_fsync_fields = 0;
2356 	spin_unlock(&iip->ili_lock);
2357 	ASSERT(iip->ili_last_fields);
2358 
2359 	if (ip != free_ip)
2360 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2361 	return;
2362 
2363 out_iunlock:
2364 	if (ip != free_ip)
2365 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2366 out_iflags_unlock:
2367 	spin_unlock(&ip->i_flags_lock);
2368 	rcu_read_unlock();
2369 }
2370 
2371 /*
2372  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2373  * inodes that are in memory - they all must be marked stale and attached to
2374  * the cluster buffer.
2375  */
2376 static int
2377 xfs_ifree_cluster(
2378 	struct xfs_trans	*tp,
2379 	struct xfs_perag	*pag,
2380 	struct xfs_inode	*free_ip,
2381 	struct xfs_icluster	*xic)
2382 {
2383 	struct xfs_mount	*mp = free_ip->i_mount;
2384 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2385 	struct xfs_buf		*bp;
2386 	xfs_daddr_t		blkno;
2387 	xfs_ino_t		inum = xic->first_ino;
2388 	int			nbufs;
2389 	int			i, j;
2390 	int			ioffset;
2391 	int			error;
2392 
2393 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2394 
2395 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2396 		/*
2397 		 * The allocation bitmap tells us which inodes of the chunk were
2398 		 * physically allocated. Skip the cluster if an inode falls into
2399 		 * a sparse region.
2400 		 */
2401 		ioffset = inum - xic->first_ino;
2402 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2403 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2404 			continue;
2405 		}
2406 
2407 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2408 					 XFS_INO_TO_AGBNO(mp, inum));
2409 
2410 		/*
2411 		 * We obtain and lock the backing buffer first in the process
2412 		 * here to ensure dirty inodes attached to the buffer remain in
2413 		 * the flushing state while we mark them stale.
2414 		 *
2415 		 * If we scan the in-memory inodes first, then buffer IO can
2416 		 * complete before we get a lock on it, and hence we may fail
2417 		 * to mark all the active inodes on the buffer stale.
2418 		 */
2419 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2420 				mp->m_bsize * igeo->blocks_per_cluster,
2421 				XBF_UNMAPPED, &bp);
2422 		if (error)
2423 			return error;
2424 
2425 		/*
2426 		 * This buffer may not have been correctly initialised as we
2427 		 * didn't read it from disk. That's not important because we are
2428 		 * only using to mark the buffer as stale in the log, and to
2429 		 * attach stale cached inodes on it. That means it will never be
2430 		 * dispatched for IO. If it is, we want to know about it, and we
2431 		 * want it to fail. We can acheive this by adding a write
2432 		 * verifier to the buffer.
2433 		 */
2434 		bp->b_ops = &xfs_inode_buf_ops;
2435 
2436 		/*
2437 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2438 		 * too. This requires lookups, and will skip inodes that we've
2439 		 * already marked XFS_ISTALE.
2440 		 */
2441 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2442 			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2443 
2444 		xfs_trans_stale_inode_buf(tp, bp);
2445 		xfs_trans_binval(tp, bp);
2446 	}
2447 	return 0;
2448 }
2449 
2450 /*
2451  * This is called to return an inode to the inode free list.  The inode should
2452  * already be truncated to 0 length and have no pages associated with it.  This
2453  * routine also assumes that the inode is already a part of the transaction.
2454  *
2455  * The on-disk copy of the inode will have been added to the list of unlinked
2456  * inodes in the AGI. We need to remove the inode from that list atomically with
2457  * respect to freeing it here.
2458  */
2459 int
2460 xfs_ifree(
2461 	struct xfs_trans	*tp,
2462 	struct xfs_inode	*ip)
2463 {
2464 	struct xfs_mount	*mp = ip->i_mount;
2465 	struct xfs_perag	*pag;
2466 	struct xfs_icluster	xic = { 0 };
2467 	struct xfs_inode_log_item *iip = ip->i_itemp;
2468 	int			error;
2469 
2470 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
2471 	ASSERT(VFS_I(ip)->i_nlink == 0);
2472 	ASSERT(ip->i_df.if_nextents == 0);
2473 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2474 	ASSERT(ip->i_nblocks == 0);
2475 
2476 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2477 
2478 	/*
2479 	 * Free the inode first so that we guarantee that the AGI lock is going
2480 	 * to be taken before we remove the inode from the unlinked list. This
2481 	 * makes the AGI lock -> unlinked list modification order the same as
2482 	 * used in O_TMPFILE creation.
2483 	 */
2484 	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2485 	if (error)
2486 		goto out;
2487 
2488 	error = xfs_iunlink_remove(tp, pag, ip);
2489 	if (error)
2490 		goto out;
2491 
2492 	/*
2493 	 * Free any local-format data sitting around before we reset the
2494 	 * data fork to extents format.  Note that the attr fork data has
2495 	 * already been freed by xfs_attr_inactive.
2496 	 */
2497 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2498 		kfree(ip->i_df.if_data);
2499 		ip->i_df.if_data = NULL;
2500 		ip->i_df.if_bytes = 0;
2501 	}
2502 
2503 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2504 	ip->i_diflags = 0;
2505 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2506 	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2507 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2508 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2509 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2510 
2511 	/* Don't attempt to replay owner changes for a deleted inode */
2512 	spin_lock(&iip->ili_lock);
2513 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2514 	spin_unlock(&iip->ili_lock);
2515 
2516 	/*
2517 	 * Bump the generation count so no one will be confused
2518 	 * by reincarnations of this inode.
2519 	 */
2520 	VFS_I(ip)->i_generation++;
2521 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2522 
2523 	if (xic.deleted)
2524 		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2525 out:
2526 	xfs_perag_put(pag);
2527 	return error;
2528 }
2529 
2530 /*
2531  * This is called to unpin an inode.  The caller must have the inode locked
2532  * in at least shared mode so that the buffer cannot be subsequently pinned
2533  * once someone is waiting for it to be unpinned.
2534  */
2535 static void
2536 xfs_iunpin(
2537 	struct xfs_inode	*ip)
2538 {
2539 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2540 
2541 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2542 
2543 	/* Give the log a push to start the unpinning I/O */
2544 	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2545 
2546 }
2547 
2548 static void
2549 __xfs_iunpin_wait(
2550 	struct xfs_inode	*ip)
2551 {
2552 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2553 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2554 
2555 	xfs_iunpin(ip);
2556 
2557 	do {
2558 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2559 		if (xfs_ipincount(ip))
2560 			io_schedule();
2561 	} while (xfs_ipincount(ip));
2562 	finish_wait(wq, &wait.wq_entry);
2563 }
2564 
2565 void
2566 xfs_iunpin_wait(
2567 	struct xfs_inode	*ip)
2568 {
2569 	if (xfs_ipincount(ip))
2570 		__xfs_iunpin_wait(ip);
2571 }
2572 
2573 /*
2574  * Removing an inode from the namespace involves removing the directory entry
2575  * and dropping the link count on the inode. Removing the directory entry can
2576  * result in locking an AGF (directory blocks were freed) and removing a link
2577  * count can result in placing the inode on an unlinked list which results in
2578  * locking an AGI.
2579  *
2580  * The big problem here is that we have an ordering constraint on AGF and AGI
2581  * locking - inode allocation locks the AGI, then can allocate a new extent for
2582  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2583  * removes the inode from the unlinked list, requiring that we lock the AGI
2584  * first, and then freeing the inode can result in an inode chunk being freed
2585  * and hence freeing disk space requiring that we lock an AGF.
2586  *
2587  * Hence the ordering that is imposed by other parts of the code is AGI before
2588  * AGF. This means we cannot remove the directory entry before we drop the inode
2589  * reference count and put it on the unlinked list as this results in a lock
2590  * order of AGF then AGI, and this can deadlock against inode allocation and
2591  * freeing. Therefore we must drop the link counts before we remove the
2592  * directory entry.
2593  *
2594  * This is still safe from a transactional point of view - it is not until we
2595  * get to xfs_defer_finish() that we have the possibility of multiple
2596  * transactions in this operation. Hence as long as we remove the directory
2597  * entry and drop the link count in the first transaction of the remove
2598  * operation, there are no transactional constraints on the ordering here.
2599  */
2600 int
2601 xfs_remove(
2602 	xfs_inode_t             *dp,
2603 	struct xfs_name		*name,
2604 	xfs_inode_t		*ip)
2605 {
2606 	xfs_mount_t		*mp = dp->i_mount;
2607 	xfs_trans_t             *tp = NULL;
2608 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2609 	int			dontcare;
2610 	int                     error = 0;
2611 	uint			resblks;
2612 
2613 	trace_xfs_remove(dp, name);
2614 
2615 	if (xfs_is_shutdown(mp))
2616 		return -EIO;
2617 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
2618 		return -EIO;
2619 
2620 	error = xfs_qm_dqattach(dp);
2621 	if (error)
2622 		goto std_return;
2623 
2624 	error = xfs_qm_dqattach(ip);
2625 	if (error)
2626 		goto std_return;
2627 
2628 	/*
2629 	 * We try to get the real space reservation first, allowing for
2630 	 * directory btree deletion(s) implying possible bmap insert(s).  If we
2631 	 * can't get the space reservation then we use 0 instead, and avoid the
2632 	 * bmap btree insert(s) in the directory code by, if the bmap insert
2633 	 * tries to happen, instead trimming the LAST block from the directory.
2634 	 *
2635 	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2636 	 * the directory code can handle a reservationless update and we don't
2637 	 * want to prevent a user from trying to free space by deleting things.
2638 	 */
2639 	resblks = XFS_REMOVE_SPACE_RES(mp);
2640 	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2641 			&tp, &dontcare);
2642 	if (error) {
2643 		ASSERT(error != -ENOSPC);
2644 		goto std_return;
2645 	}
2646 
2647 	/*
2648 	 * If we're removing a directory perform some additional validation.
2649 	 */
2650 	if (is_dir) {
2651 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2652 		if (VFS_I(ip)->i_nlink != 2) {
2653 			error = -ENOTEMPTY;
2654 			goto out_trans_cancel;
2655 		}
2656 		if (!xfs_dir_isempty(ip)) {
2657 			error = -ENOTEMPTY;
2658 			goto out_trans_cancel;
2659 		}
2660 
2661 		/* Drop the link from ip's "..".  */
2662 		error = xfs_droplink(tp, dp);
2663 		if (error)
2664 			goto out_trans_cancel;
2665 
2666 		/* Drop the "." link from ip to self.  */
2667 		error = xfs_droplink(tp, ip);
2668 		if (error)
2669 			goto out_trans_cancel;
2670 
2671 		/*
2672 		 * Point the unlinked child directory's ".." entry to the root
2673 		 * directory to eliminate back-references to inodes that may
2674 		 * get freed before the child directory is closed.  If the fs
2675 		 * gets shrunk, this can lead to dirent inode validation errors.
2676 		 */
2677 		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2678 			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2679 					tp->t_mountp->m_sb.sb_rootino, 0);
2680 			if (error)
2681 				goto out_trans_cancel;
2682 		}
2683 	} else {
2684 		/*
2685 		 * When removing a non-directory we need to log the parent
2686 		 * inode here.  For a directory this is done implicitly
2687 		 * by the xfs_droplink call for the ".." entry.
2688 		 */
2689 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2690 	}
2691 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2692 
2693 	/* Drop the link from dp to ip. */
2694 	error = xfs_droplink(tp, ip);
2695 	if (error)
2696 		goto out_trans_cancel;
2697 
2698 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2699 	if (error) {
2700 		ASSERT(error != -ENOENT);
2701 		goto out_trans_cancel;
2702 	}
2703 
2704 	/*
2705 	 * Drop the link from dp to ip, and if ip was a directory, remove the
2706 	 * '.' and '..' references since we freed the directory.
2707 	 */
2708 	xfs_dir_update_hook(dp, ip, -1, name);
2709 
2710 	/*
2711 	 * If this is a synchronous mount, make sure that the
2712 	 * remove transaction goes to disk before returning to
2713 	 * the user.
2714 	 */
2715 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2716 		xfs_trans_set_sync(tp);
2717 
2718 	error = xfs_trans_commit(tp);
2719 	if (error)
2720 		goto std_return;
2721 
2722 	if (is_dir && xfs_inode_is_filestream(ip))
2723 		xfs_filestream_deassociate(ip);
2724 
2725 	return 0;
2726 
2727  out_trans_cancel:
2728 	xfs_trans_cancel(tp);
2729  std_return:
2730 	return error;
2731 }
2732 
2733 /*
2734  * Enter all inodes for a rename transaction into a sorted array.
2735  */
2736 #define __XFS_SORT_INODES	5
2737 STATIC void
2738 xfs_sort_for_rename(
2739 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2740 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2741 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2742 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2743 	struct xfs_inode	*wip,	/* in: whiteout inode */
2744 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2745 	int			*num_inodes)  /* in/out: inodes in array */
2746 {
2747 	int			i, j;
2748 
2749 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2750 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2751 
2752 	/*
2753 	 * i_tab contains a list of pointers to inodes.  We initialize
2754 	 * the table here & we'll sort it.  We will then use it to
2755 	 * order the acquisition of the inode locks.
2756 	 *
2757 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2758 	 */
2759 	i = 0;
2760 	i_tab[i++] = dp1;
2761 	i_tab[i++] = dp2;
2762 	i_tab[i++] = ip1;
2763 	if (ip2)
2764 		i_tab[i++] = ip2;
2765 	if (wip)
2766 		i_tab[i++] = wip;
2767 	*num_inodes = i;
2768 
2769 	/*
2770 	 * Sort the elements via bubble sort.  (Remember, there are at
2771 	 * most 5 elements to sort, so this is adequate.)
2772 	 */
2773 	for (i = 0; i < *num_inodes; i++) {
2774 		for (j = 1; j < *num_inodes; j++) {
2775 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2776 				struct xfs_inode *temp = i_tab[j];
2777 				i_tab[j] = i_tab[j-1];
2778 				i_tab[j-1] = temp;
2779 			}
2780 		}
2781 	}
2782 }
2783 
2784 static int
2785 xfs_finish_rename(
2786 	struct xfs_trans	*tp)
2787 {
2788 	/*
2789 	 * If this is a synchronous mount, make sure that the rename transaction
2790 	 * goes to disk before returning to the user.
2791 	 */
2792 	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2793 		xfs_trans_set_sync(tp);
2794 
2795 	return xfs_trans_commit(tp);
2796 }
2797 
2798 /*
2799  * xfs_cross_rename()
2800  *
2801  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2802  */
2803 STATIC int
2804 xfs_cross_rename(
2805 	struct xfs_trans	*tp,
2806 	struct xfs_inode	*dp1,
2807 	struct xfs_name		*name1,
2808 	struct xfs_inode	*ip1,
2809 	struct xfs_inode	*dp2,
2810 	struct xfs_name		*name2,
2811 	struct xfs_inode	*ip2,
2812 	int			spaceres)
2813 {
2814 	int		error = 0;
2815 	int		ip1_flags = 0;
2816 	int		ip2_flags = 0;
2817 	int		dp2_flags = 0;
2818 
2819 	/* Swap inode number for dirent in first parent */
2820 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2821 	if (error)
2822 		goto out_trans_abort;
2823 
2824 	/* Swap inode number for dirent in second parent */
2825 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2826 	if (error)
2827 		goto out_trans_abort;
2828 
2829 	/*
2830 	 * If we're renaming one or more directories across different parents,
2831 	 * update the respective ".." entries (and link counts) to match the new
2832 	 * parents.
2833 	 */
2834 	if (dp1 != dp2) {
2835 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2836 
2837 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2838 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2839 						dp1->i_ino, spaceres);
2840 			if (error)
2841 				goto out_trans_abort;
2842 
2843 			/* transfer ip2 ".." reference to dp1 */
2844 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2845 				error = xfs_droplink(tp, dp2);
2846 				if (error)
2847 					goto out_trans_abort;
2848 				xfs_bumplink(tp, dp1);
2849 			}
2850 
2851 			/*
2852 			 * Although ip1 isn't changed here, userspace needs
2853 			 * to be warned about the change, so that applications
2854 			 * relying on it (like backup ones), will properly
2855 			 * notify the change
2856 			 */
2857 			ip1_flags |= XFS_ICHGTIME_CHG;
2858 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2859 		}
2860 
2861 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2862 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2863 						dp2->i_ino, spaceres);
2864 			if (error)
2865 				goto out_trans_abort;
2866 
2867 			/* transfer ip1 ".." reference to dp2 */
2868 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2869 				error = xfs_droplink(tp, dp1);
2870 				if (error)
2871 					goto out_trans_abort;
2872 				xfs_bumplink(tp, dp2);
2873 			}
2874 
2875 			/*
2876 			 * Although ip2 isn't changed here, userspace needs
2877 			 * to be warned about the change, so that applications
2878 			 * relying on it (like backup ones), will properly
2879 			 * notify the change
2880 			 */
2881 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2882 			ip2_flags |= XFS_ICHGTIME_CHG;
2883 		}
2884 	}
2885 
2886 	if (ip1_flags) {
2887 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2888 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2889 	}
2890 	if (ip2_flags) {
2891 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2892 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2893 	}
2894 	if (dp2_flags) {
2895 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2896 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2897 	}
2898 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2899 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2900 
2901 	/*
2902 	 * Inform our hook clients that we've finished an exchange operation as
2903 	 * follows: removed the source and target files from their directories;
2904 	 * added the target to the source directory; and added the source to
2905 	 * the target directory.  All inodes are locked, so it's ok to model a
2906 	 * rename this way so long as we say we deleted entries before we add
2907 	 * new ones.
2908 	 */
2909 	xfs_dir_update_hook(dp1, ip1, -1, name1);
2910 	xfs_dir_update_hook(dp2, ip2, -1, name2);
2911 	xfs_dir_update_hook(dp1, ip2, 1, name1);
2912 	xfs_dir_update_hook(dp2, ip1, 1, name2);
2913 
2914 	return xfs_finish_rename(tp);
2915 
2916 out_trans_abort:
2917 	xfs_trans_cancel(tp);
2918 	return error;
2919 }
2920 
2921 /*
2922  * xfs_rename_alloc_whiteout()
2923  *
2924  * Return a referenced, unlinked, unlocked inode that can be used as a
2925  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2926  * crash between allocating the inode and linking it into the rename transaction
2927  * recovery will free the inode and we won't leak it.
2928  */
2929 static int
2930 xfs_rename_alloc_whiteout(
2931 	struct mnt_idmap	*idmap,
2932 	struct xfs_name		*src_name,
2933 	struct xfs_inode	*dp,
2934 	struct xfs_inode	**wip)
2935 {
2936 	struct xfs_inode	*tmpfile;
2937 	struct qstr		name;
2938 	int			error;
2939 
2940 	error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE,
2941 				   &tmpfile);
2942 	if (error)
2943 		return error;
2944 
2945 	name.name = src_name->name;
2946 	name.len = src_name->len;
2947 	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2948 	if (error) {
2949 		xfs_finish_inode_setup(tmpfile);
2950 		xfs_irele(tmpfile);
2951 		return error;
2952 	}
2953 
2954 	/*
2955 	 * Prepare the tmpfile inode as if it were created through the VFS.
2956 	 * Complete the inode setup and flag it as linkable.  nlink is already
2957 	 * zero, so we can skip the drop_nlink.
2958 	 */
2959 	xfs_setup_iops(tmpfile);
2960 	xfs_finish_inode_setup(tmpfile);
2961 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2962 
2963 	*wip = tmpfile;
2964 	return 0;
2965 }
2966 
2967 /*
2968  * xfs_rename
2969  */
2970 int
2971 xfs_rename(
2972 	struct mnt_idmap	*idmap,
2973 	struct xfs_inode	*src_dp,
2974 	struct xfs_name		*src_name,
2975 	struct xfs_inode	*src_ip,
2976 	struct xfs_inode	*target_dp,
2977 	struct xfs_name		*target_name,
2978 	struct xfs_inode	*target_ip,
2979 	unsigned int		flags)
2980 {
2981 	struct xfs_mount	*mp = src_dp->i_mount;
2982 	struct xfs_trans	*tp;
2983 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2984 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2985 	int			i;
2986 	int			num_inodes = __XFS_SORT_INODES;
2987 	bool			new_parent = (src_dp != target_dp);
2988 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2989 	int			spaceres;
2990 	bool			retried = false;
2991 	int			error, nospace_error = 0;
2992 
2993 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2994 
2995 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2996 		return -EINVAL;
2997 
2998 	/*
2999 	 * If we are doing a whiteout operation, allocate the whiteout inode
3000 	 * we will be placing at the target and ensure the type is set
3001 	 * appropriately.
3002 	 */
3003 	if (flags & RENAME_WHITEOUT) {
3004 		error = xfs_rename_alloc_whiteout(idmap, src_name,
3005 						  target_dp, &wip);
3006 		if (error)
3007 			return error;
3008 
3009 		/* setup target dirent info as whiteout */
3010 		src_name->type = XFS_DIR3_FT_CHRDEV;
3011 	}
3012 
3013 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3014 				inodes, &num_inodes);
3015 
3016 retry:
3017 	nospace_error = 0;
3018 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3019 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3020 	if (error == -ENOSPC) {
3021 		nospace_error = error;
3022 		spaceres = 0;
3023 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3024 				&tp);
3025 	}
3026 	if (error)
3027 		goto out_release_wip;
3028 
3029 	/*
3030 	 * Attach the dquots to the inodes
3031 	 */
3032 	error = xfs_qm_vop_rename_dqattach(inodes);
3033 	if (error)
3034 		goto out_trans_cancel;
3035 
3036 	/*
3037 	 * Lock all the participating inodes. Depending upon whether
3038 	 * the target_name exists in the target directory, and
3039 	 * whether the target directory is the same as the source
3040 	 * directory, we can lock from 2 to 5 inodes.
3041 	 */
3042 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3043 
3044 	/*
3045 	 * Join all the inodes to the transaction. From this point on,
3046 	 * we can rely on either trans_commit or trans_cancel to unlock
3047 	 * them.
3048 	 */
3049 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3050 	if (new_parent)
3051 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3052 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3053 	if (target_ip)
3054 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3055 	if (wip)
3056 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3057 
3058 	/*
3059 	 * If we are using project inheritance, we only allow renames
3060 	 * into our tree when the project IDs are the same; else the
3061 	 * tree quota mechanism would be circumvented.
3062 	 */
3063 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3064 		     target_dp->i_projid != src_ip->i_projid)) {
3065 		error = -EXDEV;
3066 		goto out_trans_cancel;
3067 	}
3068 
3069 	/* RENAME_EXCHANGE is unique from here on. */
3070 	if (flags & RENAME_EXCHANGE)
3071 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3072 					target_dp, target_name, target_ip,
3073 					spaceres);
3074 
3075 	/*
3076 	 * Try to reserve quota to handle an expansion of the target directory.
3077 	 * We'll allow the rename to continue in reservationless mode if we hit
3078 	 * a space usage constraint.  If we trigger reservationless mode, save
3079 	 * the errno if there isn't any free space in the target directory.
3080 	 */
3081 	if (spaceres != 0) {
3082 		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
3083 				0, false);
3084 		if (error == -EDQUOT || error == -ENOSPC) {
3085 			if (!retried) {
3086 				xfs_trans_cancel(tp);
3087 				xfs_blockgc_free_quota(target_dp, 0);
3088 				retried = true;
3089 				goto retry;
3090 			}
3091 
3092 			nospace_error = error;
3093 			spaceres = 0;
3094 			error = 0;
3095 		}
3096 		if (error)
3097 			goto out_trans_cancel;
3098 	}
3099 
3100 	/*
3101 	 * Check for expected errors before we dirty the transaction
3102 	 * so we can return an error without a transaction abort.
3103 	 */
3104 	if (target_ip == NULL) {
3105 		/*
3106 		 * If there's no space reservation, check the entry will
3107 		 * fit before actually inserting it.
3108 		 */
3109 		if (!spaceres) {
3110 			error = xfs_dir_canenter(tp, target_dp, target_name);
3111 			if (error)
3112 				goto out_trans_cancel;
3113 		}
3114 	} else {
3115 		/*
3116 		 * If target exists and it's a directory, check that whether
3117 		 * it can be destroyed.
3118 		 */
3119 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3120 		    (!xfs_dir_isempty(target_ip) ||
3121 		     (VFS_I(target_ip)->i_nlink > 2))) {
3122 			error = -EEXIST;
3123 			goto out_trans_cancel;
3124 		}
3125 	}
3126 
3127 	/*
3128 	 * Lock the AGI buffers we need to handle bumping the nlink of the
3129 	 * whiteout inode off the unlinked list and to handle dropping the
3130 	 * nlink of the target inode.  Per locking order rules, do this in
3131 	 * increasing AG order and before directory block allocation tries to
3132 	 * grab AGFs because we grab AGIs before AGFs.
3133 	 *
3134 	 * The (vfs) caller must ensure that if src is a directory then
3135 	 * target_ip is either null or an empty directory.
3136 	 */
3137 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3138 		if (inodes[i] == wip ||
3139 		    (inodes[i] == target_ip &&
3140 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3141 			struct xfs_perag	*pag;
3142 			struct xfs_buf		*bp;
3143 
3144 			pag = xfs_perag_get(mp,
3145 					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
3146 			error = xfs_read_agi(pag, tp, 0, &bp);
3147 			xfs_perag_put(pag);
3148 			if (error)
3149 				goto out_trans_cancel;
3150 		}
3151 	}
3152 
3153 	/*
3154 	 * Directory entry creation below may acquire the AGF. Remove
3155 	 * the whiteout from the unlinked list first to preserve correct
3156 	 * AGI/AGF locking order. This dirties the transaction so failures
3157 	 * after this point will abort and log recovery will clean up the
3158 	 * mess.
3159 	 *
3160 	 * For whiteouts, we need to bump the link count on the whiteout
3161 	 * inode. After this point, we have a real link, clear the tmpfile
3162 	 * state flag from the inode so it doesn't accidentally get misused
3163 	 * in future.
3164 	 */
3165 	if (wip) {
3166 		struct xfs_perag	*pag;
3167 
3168 		ASSERT(VFS_I(wip)->i_nlink == 0);
3169 
3170 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3171 		error = xfs_iunlink_remove(tp, pag, wip);
3172 		xfs_perag_put(pag);
3173 		if (error)
3174 			goto out_trans_cancel;
3175 
3176 		xfs_bumplink(tp, wip);
3177 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3178 	}
3179 
3180 	/*
3181 	 * Set up the target.
3182 	 */
3183 	if (target_ip == NULL) {
3184 		/*
3185 		 * If target does not exist and the rename crosses
3186 		 * directories, adjust the target directory link count
3187 		 * to account for the ".." reference from the new entry.
3188 		 */
3189 		error = xfs_dir_createname(tp, target_dp, target_name,
3190 					   src_ip->i_ino, spaceres);
3191 		if (error)
3192 			goto out_trans_cancel;
3193 
3194 		xfs_trans_ichgtime(tp, target_dp,
3195 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3196 
3197 		if (new_parent && src_is_directory) {
3198 			xfs_bumplink(tp, target_dp);
3199 		}
3200 	} else { /* target_ip != NULL */
3201 		/*
3202 		 * Link the source inode under the target name.
3203 		 * If the source inode is a directory and we are moving
3204 		 * it across directories, its ".." entry will be
3205 		 * inconsistent until we replace that down below.
3206 		 *
3207 		 * In case there is already an entry with the same
3208 		 * name at the destination directory, remove it first.
3209 		 */
3210 		error = xfs_dir_replace(tp, target_dp, target_name,
3211 					src_ip->i_ino, spaceres);
3212 		if (error)
3213 			goto out_trans_cancel;
3214 
3215 		xfs_trans_ichgtime(tp, target_dp,
3216 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3217 
3218 		/*
3219 		 * Decrement the link count on the target since the target
3220 		 * dir no longer points to it.
3221 		 */
3222 		error = xfs_droplink(tp, target_ip);
3223 		if (error)
3224 			goto out_trans_cancel;
3225 
3226 		if (src_is_directory) {
3227 			/*
3228 			 * Drop the link from the old "." entry.
3229 			 */
3230 			error = xfs_droplink(tp, target_ip);
3231 			if (error)
3232 				goto out_trans_cancel;
3233 		}
3234 	} /* target_ip != NULL */
3235 
3236 	/*
3237 	 * Remove the source.
3238 	 */
3239 	if (new_parent && src_is_directory) {
3240 		/*
3241 		 * Rewrite the ".." entry to point to the new
3242 		 * directory.
3243 		 */
3244 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3245 					target_dp->i_ino, spaceres);
3246 		ASSERT(error != -EEXIST);
3247 		if (error)
3248 			goto out_trans_cancel;
3249 	}
3250 
3251 	/*
3252 	 * We always want to hit the ctime on the source inode.
3253 	 *
3254 	 * This isn't strictly required by the standards since the source
3255 	 * inode isn't really being changed, but old unix file systems did
3256 	 * it and some incremental backup programs won't work without it.
3257 	 */
3258 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3259 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3260 
3261 	/*
3262 	 * Adjust the link count on src_dp.  This is necessary when
3263 	 * renaming a directory, either within one parent when
3264 	 * the target existed, or across two parent directories.
3265 	 */
3266 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3267 
3268 		/*
3269 		 * Decrement link count on src_directory since the
3270 		 * entry that's moved no longer points to it.
3271 		 */
3272 		error = xfs_droplink(tp, src_dp);
3273 		if (error)
3274 			goto out_trans_cancel;
3275 	}
3276 
3277 	/*
3278 	 * For whiteouts, we only need to update the source dirent with the
3279 	 * inode number of the whiteout inode rather than removing it
3280 	 * altogether.
3281 	 */
3282 	if (wip)
3283 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3284 					spaceres);
3285 	else
3286 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3287 					   spaceres);
3288 
3289 	if (error)
3290 		goto out_trans_cancel;
3291 
3292 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3293 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3294 	if (new_parent)
3295 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3296 
3297 	/*
3298 	 * Inform our hook clients that we've finished a rename operation as
3299 	 * follows: removed the source and target files from their directories;
3300 	 * that we've added the source to the target directory; and finally
3301 	 * that we've added the whiteout, if there was one.  All inodes are
3302 	 * locked, so it's ok to model a rename this way so long as we say we
3303 	 * deleted entries before we add new ones.
3304 	 */
3305 	if (target_ip)
3306 		xfs_dir_update_hook(target_dp, target_ip, -1, target_name);
3307 	xfs_dir_update_hook(src_dp, src_ip, -1, src_name);
3308 	xfs_dir_update_hook(target_dp, src_ip, 1, target_name);
3309 	if (wip)
3310 		xfs_dir_update_hook(src_dp, wip, 1, src_name);
3311 
3312 	error = xfs_finish_rename(tp);
3313 	if (wip)
3314 		xfs_irele(wip);
3315 	return error;
3316 
3317 out_trans_cancel:
3318 	xfs_trans_cancel(tp);
3319 out_release_wip:
3320 	if (wip)
3321 		xfs_irele(wip);
3322 	if (error == -ENOSPC && nospace_error)
3323 		error = nospace_error;
3324 	return error;
3325 }
3326 
3327 static int
3328 xfs_iflush(
3329 	struct xfs_inode	*ip,
3330 	struct xfs_buf		*bp)
3331 {
3332 	struct xfs_inode_log_item *iip = ip->i_itemp;
3333 	struct xfs_dinode	*dip;
3334 	struct xfs_mount	*mp = ip->i_mount;
3335 	int			error;
3336 
3337 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
3338 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3339 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3340 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3341 	ASSERT(iip->ili_item.li_buf == bp);
3342 
3343 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3344 
3345 	/*
3346 	 * We don't flush the inode if any of the following checks fail, but we
3347 	 * do still update the log item and attach to the backing buffer as if
3348 	 * the flush happened. This is a formality to facilitate predictable
3349 	 * error handling as the caller will shutdown and fail the buffer.
3350 	 */
3351 	error = -EFSCORRUPTED;
3352 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3353 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3354 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3355 			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
3356 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3357 		goto flush_out;
3358 	}
3359 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3360 		if (XFS_TEST_ERROR(
3361 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3362 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3363 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3364 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3365 				"%s: Bad regular inode %llu, ptr "PTR_FMT,
3366 				__func__, ip->i_ino, ip);
3367 			goto flush_out;
3368 		}
3369 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3370 		if (XFS_TEST_ERROR(
3371 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3372 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3373 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3374 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3375 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3376 				"%s: Bad directory inode %llu, ptr "PTR_FMT,
3377 				__func__, ip->i_ino, ip);
3378 			goto flush_out;
3379 		}
3380 	}
3381 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3382 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3383 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3384 			"%s: detected corrupt incore inode %llu, "
3385 			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3386 			__func__, ip->i_ino,
3387 			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3388 			ip->i_nblocks, ip);
3389 		goto flush_out;
3390 	}
3391 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3392 				mp, XFS_ERRTAG_IFLUSH_6)) {
3393 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3394 			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
3395 			__func__, ip->i_ino, ip->i_forkoff, ip);
3396 		goto flush_out;
3397 	}
3398 
3399 	/*
3400 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3401 	 * count for correct sequencing.  We bump the flush iteration count so
3402 	 * we can detect flushes which postdate a log record during recovery.
3403 	 * This is redundant as we now log every change and hence this can't
3404 	 * happen but we need to still do it to ensure backwards compatibility
3405 	 * with old kernels that predate logging all inode changes.
3406 	 */
3407 	if (!xfs_has_v3inodes(mp))
3408 		ip->i_flushiter++;
3409 
3410 	/*
3411 	 * If there are inline format data / attr forks attached to this inode,
3412 	 * make sure they are not corrupt.
3413 	 */
3414 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3415 	    xfs_ifork_verify_local_data(ip))
3416 		goto flush_out;
3417 	if (xfs_inode_has_attr_fork(ip) &&
3418 	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3419 	    xfs_ifork_verify_local_attr(ip))
3420 		goto flush_out;
3421 
3422 	/*
3423 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3424 	 * copy out the core of the inode, because if the inode is dirty at all
3425 	 * the core must be.
3426 	 */
3427 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3428 
3429 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3430 	if (!xfs_has_v3inodes(mp)) {
3431 		if (ip->i_flushiter == DI_MAX_FLUSH)
3432 			ip->i_flushiter = 0;
3433 	}
3434 
3435 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3436 	if (xfs_inode_has_attr_fork(ip))
3437 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3438 
3439 	/*
3440 	 * We've recorded everything logged in the inode, so we'd like to clear
3441 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3442 	 * However, we can't stop logging all this information until the data
3443 	 * we've copied into the disk buffer is written to disk.  If we did we
3444 	 * might overwrite the copy of the inode in the log with all the data
3445 	 * after re-logging only part of it, and in the face of a crash we
3446 	 * wouldn't have all the data we need to recover.
3447 	 *
3448 	 * What we do is move the bits to the ili_last_fields field.  When
3449 	 * logging the inode, these bits are moved back to the ili_fields field.
3450 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3451 	 * we know that the information those bits represent is permanently on
3452 	 * disk.  As long as the flush completes before the inode is logged
3453 	 * again, then both ili_fields and ili_last_fields will be cleared.
3454 	 */
3455 	error = 0;
3456 flush_out:
3457 	spin_lock(&iip->ili_lock);
3458 	iip->ili_last_fields = iip->ili_fields;
3459 	iip->ili_fields = 0;
3460 	iip->ili_fsync_fields = 0;
3461 	spin_unlock(&iip->ili_lock);
3462 
3463 	/*
3464 	 * Store the current LSN of the inode so that we can tell whether the
3465 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3466 	 */
3467 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3468 				&iip->ili_item.li_lsn);
3469 
3470 	/* generate the checksum. */
3471 	xfs_dinode_calc_crc(mp, dip);
3472 	if (error)
3473 		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
3474 	return error;
3475 }
3476 
3477 /*
3478  * Non-blocking flush of dirty inode metadata into the backing buffer.
3479  *
3480  * The caller must have a reference to the inode and hold the cluster buffer
3481  * locked. The function will walk across all the inodes on the cluster buffer it
3482  * can find and lock without blocking, and flush them to the cluster buffer.
3483  *
3484  * On successful flushing of at least one inode, the caller must write out the
3485  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3486  * the caller needs to release the buffer. On failure, the filesystem will be
3487  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3488  * will be returned.
3489  */
3490 int
3491 xfs_iflush_cluster(
3492 	struct xfs_buf		*bp)
3493 {
3494 	struct xfs_mount	*mp = bp->b_mount;
3495 	struct xfs_log_item	*lip, *n;
3496 	struct xfs_inode	*ip;
3497 	struct xfs_inode_log_item *iip;
3498 	int			clcount = 0;
3499 	int			error = 0;
3500 
3501 	/*
3502 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3503 	 * will remove itself from the list.
3504 	 */
3505 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3506 		iip = (struct xfs_inode_log_item *)lip;
3507 		ip = iip->ili_inode;
3508 
3509 		/*
3510 		 * Quick and dirty check to avoid locks if possible.
3511 		 */
3512 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3513 			continue;
3514 		if (xfs_ipincount(ip))
3515 			continue;
3516 
3517 		/*
3518 		 * The inode is still attached to the buffer, which means it is
3519 		 * dirty but reclaim might try to grab it. Check carefully for
3520 		 * that, and grab the ilock while still holding the i_flags_lock
3521 		 * to guarantee reclaim will not be able to reclaim this inode
3522 		 * once we drop the i_flags_lock.
3523 		 */
3524 		spin_lock(&ip->i_flags_lock);
3525 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3526 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3527 			spin_unlock(&ip->i_flags_lock);
3528 			continue;
3529 		}
3530 
3531 		/*
3532 		 * ILOCK will pin the inode against reclaim and prevent
3533 		 * concurrent transactions modifying the inode while we are
3534 		 * flushing the inode. If we get the lock, set the flushing
3535 		 * state before we drop the i_flags_lock.
3536 		 */
3537 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3538 			spin_unlock(&ip->i_flags_lock);
3539 			continue;
3540 		}
3541 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3542 		spin_unlock(&ip->i_flags_lock);
3543 
3544 		/*
3545 		 * Abort flushing this inode if we are shut down because the
3546 		 * inode may not currently be in the AIL. This can occur when
3547 		 * log I/O failure unpins the inode without inserting into the
3548 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3549 		 * that otherwise looks like it should be flushed.
3550 		 */
3551 		if (xlog_is_shutdown(mp->m_log)) {
3552 			xfs_iunpin_wait(ip);
3553 			xfs_iflush_abort(ip);
3554 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3555 			error = -EIO;
3556 			continue;
3557 		}
3558 
3559 		/* don't block waiting on a log force to unpin dirty inodes */
3560 		if (xfs_ipincount(ip)) {
3561 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3562 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3563 			continue;
3564 		}
3565 
3566 		if (!xfs_inode_clean(ip))
3567 			error = xfs_iflush(ip, bp);
3568 		else
3569 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3570 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3571 		if (error)
3572 			break;
3573 		clcount++;
3574 	}
3575 
3576 	if (error) {
3577 		/*
3578 		 * Shutdown first so we kill the log before we release this
3579 		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3580 		 * of the log, failing it before the _log_ is shut down can
3581 		 * result in the log tail being moved forward in the journal
3582 		 * on disk because log writes can still be taking place. Hence
3583 		 * unpinning the tail will allow the ICREATE intent to be
3584 		 * removed from the log an recovery will fail with uninitialised
3585 		 * inode cluster buffers.
3586 		 */
3587 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3588 		bp->b_flags |= XBF_ASYNC;
3589 		xfs_buf_ioend_fail(bp);
3590 		return error;
3591 	}
3592 
3593 	if (!clcount)
3594 		return -EAGAIN;
3595 
3596 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3597 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3598 	return 0;
3599 
3600 }
3601 
3602 /* Release an inode. */
3603 void
3604 xfs_irele(
3605 	struct xfs_inode	*ip)
3606 {
3607 	trace_xfs_irele(ip, _RET_IP_);
3608 	iput(VFS_I(ip));
3609 }
3610 
3611 /*
3612  * Ensure all commited transactions touching the inode are written to the log.
3613  */
3614 int
3615 xfs_log_force_inode(
3616 	struct xfs_inode	*ip)
3617 {
3618 	xfs_csn_t		seq = 0;
3619 
3620 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3621 	if (xfs_ipincount(ip))
3622 		seq = ip->i_itemp->ili_commit_seq;
3623 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3624 
3625 	if (!seq)
3626 		return 0;
3627 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3628 }
3629 
3630 /*
3631  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3632  * abide vfs locking order (lowest pointer value goes first) and breaking the
3633  * layout leases before proceeding.  The loop is needed because we cannot call
3634  * the blocking break_layout() with the iolocks held, and therefore have to
3635  * back out both locks.
3636  */
3637 static int
3638 xfs_iolock_two_inodes_and_break_layout(
3639 	struct inode		*src,
3640 	struct inode		*dest)
3641 {
3642 	int			error;
3643 
3644 	if (src > dest)
3645 		swap(src, dest);
3646 
3647 retry:
3648 	/* Wait to break both inodes' layouts before we start locking. */
3649 	error = break_layout(src, true);
3650 	if (error)
3651 		return error;
3652 	if (src != dest) {
3653 		error = break_layout(dest, true);
3654 		if (error)
3655 			return error;
3656 	}
3657 
3658 	/* Lock one inode and make sure nobody got in and leased it. */
3659 	inode_lock(src);
3660 	error = break_layout(src, false);
3661 	if (error) {
3662 		inode_unlock(src);
3663 		if (error == -EWOULDBLOCK)
3664 			goto retry;
3665 		return error;
3666 	}
3667 
3668 	if (src == dest)
3669 		return 0;
3670 
3671 	/* Lock the other inode and make sure nobody got in and leased it. */
3672 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3673 	error = break_layout(dest, false);
3674 	if (error) {
3675 		inode_unlock(src);
3676 		inode_unlock(dest);
3677 		if (error == -EWOULDBLOCK)
3678 			goto retry;
3679 		return error;
3680 	}
3681 
3682 	return 0;
3683 }
3684 
3685 static int
3686 xfs_mmaplock_two_inodes_and_break_dax_layout(
3687 	struct xfs_inode	*ip1,
3688 	struct xfs_inode	*ip2)
3689 {
3690 	int			error;
3691 	bool			retry;
3692 	struct page		*page;
3693 
3694 	if (ip1->i_ino > ip2->i_ino)
3695 		swap(ip1, ip2);
3696 
3697 again:
3698 	retry = false;
3699 	/* Lock the first inode */
3700 	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3701 	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3702 	if (error || retry) {
3703 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3704 		if (error == 0 && retry)
3705 			goto again;
3706 		return error;
3707 	}
3708 
3709 	if (ip1 == ip2)
3710 		return 0;
3711 
3712 	/* Nested lock the second inode */
3713 	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3714 	/*
3715 	 * We cannot use xfs_break_dax_layouts() directly here because it may
3716 	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3717 	 * for this nested lock case.
3718 	 */
3719 	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3720 	if (page && page_ref_count(page) != 1) {
3721 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3722 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3723 		goto again;
3724 	}
3725 
3726 	return 0;
3727 }
3728 
3729 /*
3730  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3731  * mmap activity.
3732  */
3733 int
3734 xfs_ilock2_io_mmap(
3735 	struct xfs_inode	*ip1,
3736 	struct xfs_inode	*ip2)
3737 {
3738 	int			ret;
3739 
3740 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3741 	if (ret)
3742 		return ret;
3743 
3744 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3745 		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3746 		if (ret) {
3747 			inode_unlock(VFS_I(ip2));
3748 			if (ip1 != ip2)
3749 				inode_unlock(VFS_I(ip1));
3750 			return ret;
3751 		}
3752 	} else
3753 		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3754 					    VFS_I(ip2)->i_mapping);
3755 
3756 	return 0;
3757 }
3758 
3759 /* Unlock both inodes to allow IO and mmap activity. */
3760 void
3761 xfs_iunlock2_io_mmap(
3762 	struct xfs_inode	*ip1,
3763 	struct xfs_inode	*ip2)
3764 {
3765 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3766 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3767 		if (ip1 != ip2)
3768 			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3769 	} else
3770 		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3771 					      VFS_I(ip2)->i_mapping);
3772 
3773 	inode_unlock(VFS_I(ip2));
3774 	if (ip1 != ip2)
3775 		inode_unlock(VFS_I(ip1));
3776 }
3777 
3778 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
3779 void
3780 xfs_iunlock2_remapping(
3781 	struct xfs_inode	*ip1,
3782 	struct xfs_inode	*ip2)
3783 {
3784 	xfs_iflags_clear(ip1, XFS_IREMAPPING);
3785 
3786 	if (ip1 != ip2)
3787 		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
3788 	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3789 
3790 	if (ip1 != ip2)
3791 		inode_unlock_shared(VFS_I(ip1));
3792 	inode_unlock(VFS_I(ip2));
3793 }
3794 
3795 /*
3796  * Reload the incore inode list for this inode.  Caller should ensure that
3797  * the link count cannot change, either by taking ILOCK_SHARED or otherwise
3798  * preventing other threads from executing.
3799  */
3800 int
3801 xfs_inode_reload_unlinked_bucket(
3802 	struct xfs_trans	*tp,
3803 	struct xfs_inode	*ip)
3804 {
3805 	struct xfs_mount	*mp = tp->t_mountp;
3806 	struct xfs_buf		*agibp;
3807 	struct xfs_agi		*agi;
3808 	struct xfs_perag	*pag;
3809 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
3810 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
3811 	xfs_agino_t		prev_agino, next_agino;
3812 	unsigned int		bucket;
3813 	bool			foundit = false;
3814 	int			error;
3815 
3816 	/* Grab the first inode in the list */
3817 	pag = xfs_perag_get(mp, agno);
3818 	error = xfs_ialloc_read_agi(pag, tp, 0, &agibp);
3819 	xfs_perag_put(pag);
3820 	if (error)
3821 		return error;
3822 
3823 	/*
3824 	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
3825 	 * incore unlinked list pointers for this inode.  Check once more to
3826 	 * see if we raced with anyone else to reload the unlinked list.
3827 	 */
3828 	if (!xfs_inode_unlinked_incomplete(ip)) {
3829 		foundit = true;
3830 		goto out_agibp;
3831 	}
3832 
3833 	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
3834 	agi = agibp->b_addr;
3835 
3836 	trace_xfs_inode_reload_unlinked_bucket(ip);
3837 
3838 	xfs_info_ratelimited(mp,
3839  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
3840 			agino, agno);
3841 
3842 	prev_agino = NULLAGINO;
3843 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3844 	while (next_agino != NULLAGINO) {
3845 		struct xfs_inode	*next_ip = NULL;
3846 
3847 		/* Found this caller's inode, set its backlink. */
3848 		if (next_agino == agino) {
3849 			next_ip = ip;
3850 			next_ip->i_prev_unlinked = prev_agino;
3851 			foundit = true;
3852 			goto next_inode;
3853 		}
3854 
3855 		/* Try in-memory lookup first. */
3856 		next_ip = xfs_iunlink_lookup(pag, next_agino);
3857 		if (next_ip)
3858 			goto next_inode;
3859 
3860 		/* Inode not in memory, try reloading it. */
3861 		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
3862 				next_agino);
3863 		if (error)
3864 			break;
3865 
3866 		/* Grab the reloaded inode. */
3867 		next_ip = xfs_iunlink_lookup(pag, next_agino);
3868 		if (!next_ip) {
3869 			/* No incore inode at all?  We reloaded it... */
3870 			ASSERT(next_ip != NULL);
3871 			error = -EFSCORRUPTED;
3872 			break;
3873 		}
3874 
3875 next_inode:
3876 		prev_agino = next_agino;
3877 		next_agino = next_ip->i_next_unlinked;
3878 	}
3879 
3880 out_agibp:
3881 	xfs_trans_brelse(tp, agibp);
3882 	/* Should have found this inode somewhere in the iunlinked bucket. */
3883 	if (!error && !foundit)
3884 		error = -EFSCORRUPTED;
3885 	return error;
3886 }
3887 
3888 /* Decide if this inode is missing its unlinked list and reload it. */
3889 int
3890 xfs_inode_reload_unlinked(
3891 	struct xfs_inode	*ip)
3892 {
3893 	struct xfs_trans	*tp;
3894 	int			error;
3895 
3896 	error = xfs_trans_alloc_empty(ip->i_mount, &tp);
3897 	if (error)
3898 		return error;
3899 
3900 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3901 	if (xfs_inode_unlinked_incomplete(ip))
3902 		error = xfs_inode_reload_unlinked_bucket(tp, ip);
3903 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3904 	xfs_trans_cancel(tp);
3905 
3906 	return error;
3907 }
3908 
3909 /* Has this inode fork been zapped by repair? */
3910 bool
3911 xfs_ifork_zapped(
3912 	const struct xfs_inode	*ip,
3913 	int			whichfork)
3914 {
3915 	unsigned int		datamask = 0;
3916 
3917 	switch (whichfork) {
3918 	case XFS_DATA_FORK:
3919 		switch (ip->i_vnode.i_mode & S_IFMT) {
3920 		case S_IFDIR:
3921 			datamask = XFS_SICK_INO_DIR_ZAPPED;
3922 			break;
3923 		case S_IFLNK:
3924 			datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
3925 			break;
3926 		}
3927 		return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
3928 	case XFS_ATTR_FORK:
3929 		return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
3930 	default:
3931 		return false;
3932 	}
3933 }
3934 
3935 /* Compute the number of data and realtime blocks used by a file. */
3936 void
3937 xfs_inode_count_blocks(
3938 	struct xfs_trans	*tp,
3939 	struct xfs_inode	*ip,
3940 	xfs_filblks_t		*dblocks,
3941 	xfs_filblks_t		*rblocks)
3942 {
3943 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
3944 
3945 	*rblocks = 0;
3946 	if (XFS_IS_REALTIME_INODE(ip))
3947 		xfs_bmap_count_leaves(ifp, rblocks);
3948 	*dblocks = ip->i_nblocks - *rblocks;
3949 }
3950 
3951 static void
3952 xfs_wait_dax_page(
3953 	struct inode		*inode)
3954 {
3955 	struct xfs_inode        *ip = XFS_I(inode);
3956 
3957 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
3958 	schedule();
3959 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
3960 }
3961 
3962 int
3963 xfs_break_dax_layouts(
3964 	struct inode		*inode,
3965 	bool			*retry)
3966 {
3967 	struct page		*page;
3968 
3969 	xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);
3970 
3971 	page = dax_layout_busy_page(inode->i_mapping);
3972 	if (!page)
3973 		return 0;
3974 
3975 	*retry = true;
3976 	return ___wait_var_event(&page->_refcount,
3977 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
3978 			0, 0, xfs_wait_dax_page(inode));
3979 }
3980 
3981 int
3982 xfs_break_layouts(
3983 	struct inode		*inode,
3984 	uint			*iolock,
3985 	enum layout_break_reason reason)
3986 {
3987 	bool			retry;
3988 	int			error;
3989 
3990 	xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);
3991 
3992 	do {
3993 		retry = false;
3994 		switch (reason) {
3995 		case BREAK_UNMAP:
3996 			error = xfs_break_dax_layouts(inode, &retry);
3997 			if (error || retry)
3998 				break;
3999 			fallthrough;
4000 		case BREAK_WRITE:
4001 			error = xfs_break_leased_layouts(inode, iolock, &retry);
4002 			break;
4003 		default:
4004 			WARN_ON_ONCE(1);
4005 			error = -EINVAL;
4006 		}
4007 	} while (error == 0 && retry);
4008 
4009 	return error;
4010 }
4011 
4012 /* Returns the size of fundamental allocation unit for a file, in bytes. */
4013 unsigned int
4014 xfs_inode_alloc_unitsize(
4015 	struct xfs_inode	*ip)
4016 {
4017 	unsigned int		blocks = 1;
4018 
4019 	if (XFS_IS_REALTIME_INODE(ip))
4020 		blocks = ip->i_mount->m_sb.sb_rextsize;
4021 
4022 	return XFS_FSB_TO_B(ip->i_mount, blocks);
4023 }
4024