1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_shared.h" 23 #include "xfs_format.h" 24 #include "xfs_log_format.h" 25 #include "xfs_trans_resv.h" 26 #include "xfs_sb.h" 27 #include "xfs_mount.h" 28 #include "xfs_inode.h" 29 #include "xfs_da_format.h" 30 #include "xfs_da_btree.h" 31 #include "xfs_dir2.h" 32 #include "xfs_attr_sf.h" 33 #include "xfs_attr.h" 34 #include "xfs_trans_space.h" 35 #include "xfs_trans.h" 36 #include "xfs_buf_item.h" 37 #include "xfs_inode_item.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_bmap.h" 40 #include "xfs_bmap_util.h" 41 #include "xfs_error.h" 42 #include "xfs_quota.h" 43 #include "xfs_filestream.h" 44 #include "xfs_cksum.h" 45 #include "xfs_trace.h" 46 #include "xfs_icache.h" 47 #include "xfs_symlink.h" 48 #include "xfs_trans_priv.h" 49 #include "xfs_log.h" 50 #include "xfs_bmap_btree.h" 51 52 kmem_zone_t *xfs_inode_zone; 53 54 /* 55 * Used in xfs_itruncate_extents(). This is the maximum number of extents 56 * freed from a file in a single transaction. 57 */ 58 #define XFS_ITRUNC_MAX_EXTENTS 2 59 60 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); 61 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 62 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 63 64 /* 65 * helper function to extract extent size hint from inode 66 */ 67 xfs_extlen_t 68 xfs_get_extsz_hint( 69 struct xfs_inode *ip) 70 { 71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 72 return ip->i_d.di_extsize; 73 if (XFS_IS_REALTIME_INODE(ip)) 74 return ip->i_mount->m_sb.sb_rextsize; 75 return 0; 76 } 77 78 /* 79 * These two are wrapper routines around the xfs_ilock() routine used to 80 * centralize some grungy code. They are used in places that wish to lock the 81 * inode solely for reading the extents. The reason these places can't just 82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 83 * bringing in of the extents from disk for a file in b-tree format. If the 84 * inode is in b-tree format, then we need to lock the inode exclusively until 85 * the extents are read in. Locking it exclusively all the time would limit 86 * our parallelism unnecessarily, though. What we do instead is check to see 87 * if the extents have been read in yet, and only lock the inode exclusively 88 * if they have not. 89 * 90 * The functions return a value which should be given to the corresponding 91 * xfs_iunlock() call. 92 */ 93 uint 94 xfs_ilock_data_map_shared( 95 struct xfs_inode *ip) 96 { 97 uint lock_mode = XFS_ILOCK_SHARED; 98 99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 101 lock_mode = XFS_ILOCK_EXCL; 102 xfs_ilock(ip, lock_mode); 103 return lock_mode; 104 } 105 106 uint 107 xfs_ilock_attr_map_shared( 108 struct xfs_inode *ip) 109 { 110 uint lock_mode = XFS_ILOCK_SHARED; 111 112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 114 lock_mode = XFS_ILOCK_EXCL; 115 xfs_ilock(ip, lock_mode); 116 return lock_mode; 117 } 118 119 /* 120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and 121 * the i_lock. This routine allows various combinations of the locks to be 122 * obtained. 123 * 124 * The 3 locks should always be ordered so that the IO lock is obtained first, 125 * the mmap lock second and the ilock last in order to prevent deadlock. 126 * 127 * Basic locking order: 128 * 129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock 130 * 131 * mmap_sem locking order: 132 * 133 * i_iolock -> page lock -> mmap_sem 134 * mmap_sem -> i_mmap_lock -> page_lock 135 * 136 * The difference in mmap_sem locking order mean that we cannot hold the 137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem 139 * in get_user_pages() to map the user pages into the kernel address space for 140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because 141 * page faults already hold the mmap_sem. 142 * 143 * Hence to serialise fully against both syscall and mmap based IO, we need to 144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both 145 * taken in places where we need to invalidate the page cache in a race 146 * free manner (e.g. truncate, hole punch and other extent manipulation 147 * functions). 148 */ 149 void 150 xfs_ilock( 151 xfs_inode_t *ip, 152 uint lock_flags) 153 { 154 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 155 156 /* 157 * You can't set both SHARED and EXCL for the same lock, 158 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 159 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 160 */ 161 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 162 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 163 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 164 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 165 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 166 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 167 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 168 169 if (lock_flags & XFS_IOLOCK_EXCL) 170 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 171 else if (lock_flags & XFS_IOLOCK_SHARED) 172 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 173 174 if (lock_flags & XFS_MMAPLOCK_EXCL) 175 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 176 else if (lock_flags & XFS_MMAPLOCK_SHARED) 177 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 178 179 if (lock_flags & XFS_ILOCK_EXCL) 180 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 181 else if (lock_flags & XFS_ILOCK_SHARED) 182 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 183 } 184 185 /* 186 * This is just like xfs_ilock(), except that the caller 187 * is guaranteed not to sleep. It returns 1 if it gets 188 * the requested locks and 0 otherwise. If the IO lock is 189 * obtained but the inode lock cannot be, then the IO lock 190 * is dropped before returning. 191 * 192 * ip -- the inode being locked 193 * lock_flags -- this parameter indicates the inode's locks to be 194 * to be locked. See the comment for xfs_ilock() for a list 195 * of valid values. 196 */ 197 int 198 xfs_ilock_nowait( 199 xfs_inode_t *ip, 200 uint lock_flags) 201 { 202 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 203 204 /* 205 * You can't set both SHARED and EXCL for the same lock, 206 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 207 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 208 */ 209 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 210 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 211 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 212 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 213 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 214 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 215 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 216 217 if (lock_flags & XFS_IOLOCK_EXCL) { 218 if (!mrtryupdate(&ip->i_iolock)) 219 goto out; 220 } else if (lock_flags & XFS_IOLOCK_SHARED) { 221 if (!mrtryaccess(&ip->i_iolock)) 222 goto out; 223 } 224 225 if (lock_flags & XFS_MMAPLOCK_EXCL) { 226 if (!mrtryupdate(&ip->i_mmaplock)) 227 goto out_undo_iolock; 228 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 229 if (!mrtryaccess(&ip->i_mmaplock)) 230 goto out_undo_iolock; 231 } 232 233 if (lock_flags & XFS_ILOCK_EXCL) { 234 if (!mrtryupdate(&ip->i_lock)) 235 goto out_undo_mmaplock; 236 } else if (lock_flags & XFS_ILOCK_SHARED) { 237 if (!mrtryaccess(&ip->i_lock)) 238 goto out_undo_mmaplock; 239 } 240 return 1; 241 242 out_undo_mmaplock: 243 if (lock_flags & XFS_MMAPLOCK_EXCL) 244 mrunlock_excl(&ip->i_mmaplock); 245 else if (lock_flags & XFS_MMAPLOCK_SHARED) 246 mrunlock_shared(&ip->i_mmaplock); 247 out_undo_iolock: 248 if (lock_flags & XFS_IOLOCK_EXCL) 249 mrunlock_excl(&ip->i_iolock); 250 else if (lock_flags & XFS_IOLOCK_SHARED) 251 mrunlock_shared(&ip->i_iolock); 252 out: 253 return 0; 254 } 255 256 /* 257 * xfs_iunlock() is used to drop the inode locks acquired with 258 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 260 * that we know which locks to drop. 261 * 262 * ip -- the inode being unlocked 263 * lock_flags -- this parameter indicates the inode's locks to be 264 * to be unlocked. See the comment for xfs_ilock() for a list 265 * of valid values for this parameter. 266 * 267 */ 268 void 269 xfs_iunlock( 270 xfs_inode_t *ip, 271 uint lock_flags) 272 { 273 /* 274 * You can't set both SHARED and EXCL for the same lock, 275 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 276 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 277 */ 278 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 279 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 280 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 281 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 282 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 283 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 284 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 285 ASSERT(lock_flags != 0); 286 287 if (lock_flags & XFS_IOLOCK_EXCL) 288 mrunlock_excl(&ip->i_iolock); 289 else if (lock_flags & XFS_IOLOCK_SHARED) 290 mrunlock_shared(&ip->i_iolock); 291 292 if (lock_flags & XFS_MMAPLOCK_EXCL) 293 mrunlock_excl(&ip->i_mmaplock); 294 else if (lock_flags & XFS_MMAPLOCK_SHARED) 295 mrunlock_shared(&ip->i_mmaplock); 296 297 if (lock_flags & XFS_ILOCK_EXCL) 298 mrunlock_excl(&ip->i_lock); 299 else if (lock_flags & XFS_ILOCK_SHARED) 300 mrunlock_shared(&ip->i_lock); 301 302 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 303 } 304 305 /* 306 * give up write locks. the i/o lock cannot be held nested 307 * if it is being demoted. 308 */ 309 void 310 xfs_ilock_demote( 311 xfs_inode_t *ip, 312 uint lock_flags) 313 { 314 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 315 ASSERT((lock_flags & 316 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 317 318 if (lock_flags & XFS_ILOCK_EXCL) 319 mrdemote(&ip->i_lock); 320 if (lock_flags & XFS_MMAPLOCK_EXCL) 321 mrdemote(&ip->i_mmaplock); 322 if (lock_flags & XFS_IOLOCK_EXCL) 323 mrdemote(&ip->i_iolock); 324 325 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 326 } 327 328 #if defined(DEBUG) || defined(XFS_WARN) 329 int 330 xfs_isilocked( 331 xfs_inode_t *ip, 332 uint lock_flags) 333 { 334 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 335 if (!(lock_flags & XFS_ILOCK_SHARED)) 336 return !!ip->i_lock.mr_writer; 337 return rwsem_is_locked(&ip->i_lock.mr_lock); 338 } 339 340 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 341 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 342 return !!ip->i_mmaplock.mr_writer; 343 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 344 } 345 346 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 347 if (!(lock_flags & XFS_IOLOCK_SHARED)) 348 return !!ip->i_iolock.mr_writer; 349 return rwsem_is_locked(&ip->i_iolock.mr_lock); 350 } 351 352 ASSERT(0); 353 return 0; 354 } 355 #endif 356 357 #ifdef DEBUG 358 int xfs_locked_n; 359 int xfs_small_retries; 360 int xfs_middle_retries; 361 int xfs_lots_retries; 362 int xfs_lock_delays; 363 #endif 364 365 /* 366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 369 * errors and warnings. 370 */ 371 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 372 static bool 373 xfs_lockdep_subclass_ok( 374 int subclass) 375 { 376 return subclass < MAX_LOCKDEP_SUBCLASSES; 377 } 378 #else 379 #define xfs_lockdep_subclass_ok(subclass) (true) 380 #endif 381 382 /* 383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 384 * value. This can be called for any type of inode lock combination, including 385 * parent locking. Care must be taken to ensure we don't overrun the subclass 386 * storage fields in the class mask we build. 387 */ 388 static inline int 389 xfs_lock_inumorder(int lock_mode, int subclass) 390 { 391 int class = 0; 392 393 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 394 XFS_ILOCK_RTSUM))); 395 ASSERT(xfs_lockdep_subclass_ok(subclass)); 396 397 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 398 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 399 ASSERT(xfs_lockdep_subclass_ok(subclass + 400 XFS_IOLOCK_PARENT_VAL)); 401 class += subclass << XFS_IOLOCK_SHIFT; 402 if (lock_mode & XFS_IOLOCK_PARENT) 403 class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT; 404 } 405 406 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 407 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 408 class += subclass << XFS_MMAPLOCK_SHIFT; 409 } 410 411 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 412 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 413 class += subclass << XFS_ILOCK_SHIFT; 414 } 415 416 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 417 } 418 419 /* 420 * The following routine will lock n inodes in exclusive mode. We assume the 421 * caller calls us with the inodes in i_ino order. 422 * 423 * We need to detect deadlock where an inode that we lock is in the AIL and we 424 * start waiting for another inode that is locked by a thread in a long running 425 * transaction (such as truncate). This can result in deadlock since the long 426 * running trans might need to wait for the inode we just locked in order to 427 * push the tail and free space in the log. 428 * 429 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 431 * lock more than one at a time, lockdep will report false positives saying we 432 * have violated locking orders. 433 */ 434 static void 435 xfs_lock_inodes( 436 xfs_inode_t **ips, 437 int inodes, 438 uint lock_mode) 439 { 440 int attempts = 0, i, j, try_lock; 441 xfs_log_item_t *lp; 442 443 /* 444 * Currently supports between 2 and 5 inodes with exclusive locking. We 445 * support an arbitrary depth of locking here, but absolute limits on 446 * inodes depend on the the type of locking and the limits placed by 447 * lockdep annotations in xfs_lock_inumorder. These are all checked by 448 * the asserts. 449 */ 450 ASSERT(ips && inodes >= 2 && inodes <= 5); 451 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 452 XFS_ILOCK_EXCL)); 453 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 454 XFS_ILOCK_SHARED))); 455 ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) || 456 inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1); 457 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 458 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 459 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 460 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 461 462 if (lock_mode & XFS_IOLOCK_EXCL) { 463 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 464 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 466 467 try_lock = 0; 468 i = 0; 469 again: 470 for (; i < inodes; i++) { 471 ASSERT(ips[i]); 472 473 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 474 continue; 475 476 /* 477 * If try_lock is not set yet, make sure all locked inodes are 478 * not in the AIL. If any are, set try_lock to be used later. 479 */ 480 if (!try_lock) { 481 for (j = (i - 1); j >= 0 && !try_lock; j--) { 482 lp = (xfs_log_item_t *)ips[j]->i_itemp; 483 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) 484 try_lock++; 485 } 486 } 487 488 /* 489 * If any of the previous locks we have locked is in the AIL, 490 * we must TRY to get the second and subsequent locks. If 491 * we can't get any, we must release all we have 492 * and try again. 493 */ 494 if (!try_lock) { 495 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 496 continue; 497 } 498 499 /* try_lock means we have an inode locked that is in the AIL. */ 500 ASSERT(i != 0); 501 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 502 continue; 503 504 /* 505 * Unlock all previous guys and try again. xfs_iunlock will try 506 * to push the tail if the inode is in the AIL. 507 */ 508 attempts++; 509 for (j = i - 1; j >= 0; j--) { 510 /* 511 * Check to see if we've already unlocked this one. Not 512 * the first one going back, and the inode ptr is the 513 * same. 514 */ 515 if (j != (i - 1) && ips[j] == ips[j + 1]) 516 continue; 517 518 xfs_iunlock(ips[j], lock_mode); 519 } 520 521 if ((attempts % 5) == 0) { 522 delay(1); /* Don't just spin the CPU */ 523 #ifdef DEBUG 524 xfs_lock_delays++; 525 #endif 526 } 527 i = 0; 528 try_lock = 0; 529 goto again; 530 } 531 532 #ifdef DEBUG 533 if (attempts) { 534 if (attempts < 5) xfs_small_retries++; 535 else if (attempts < 100) xfs_middle_retries++; 536 else xfs_lots_retries++; 537 } else { 538 xfs_locked_n++; 539 } 540 #endif 541 } 542 543 /* 544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 546 * lock more than one at a time, lockdep will report false positives saying we 547 * have violated locking orders. 548 */ 549 void 550 xfs_lock_two_inodes( 551 xfs_inode_t *ip0, 552 xfs_inode_t *ip1, 553 uint lock_mode) 554 { 555 xfs_inode_t *temp; 556 int attempts = 0; 557 xfs_log_item_t *lp; 558 559 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 560 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 561 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 562 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) 563 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 564 565 ASSERT(ip0->i_ino != ip1->i_ino); 566 567 if (ip0->i_ino > ip1->i_ino) { 568 temp = ip0; 569 ip0 = ip1; 570 ip1 = temp; 571 } 572 573 again: 574 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0)); 575 576 /* 577 * If the first lock we have locked is in the AIL, we must TRY to get 578 * the second lock. If we can't get it, we must release the first one 579 * and try again. 580 */ 581 lp = (xfs_log_item_t *)ip0->i_itemp; 582 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 583 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) { 584 xfs_iunlock(ip0, lock_mode); 585 if ((++attempts % 5) == 0) 586 delay(1); /* Don't just spin the CPU */ 587 goto again; 588 } 589 } else { 590 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1)); 591 } 592 } 593 594 595 void 596 __xfs_iflock( 597 struct xfs_inode *ip) 598 { 599 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 600 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 601 602 do { 603 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 604 if (xfs_isiflocked(ip)) 605 io_schedule(); 606 } while (!xfs_iflock_nowait(ip)); 607 608 finish_wait(wq, &wait.wait); 609 } 610 611 STATIC uint 612 _xfs_dic2xflags( 613 __uint16_t di_flags, 614 uint64_t di_flags2, 615 bool has_attr) 616 { 617 uint flags = 0; 618 619 if (di_flags & XFS_DIFLAG_ANY) { 620 if (di_flags & XFS_DIFLAG_REALTIME) 621 flags |= FS_XFLAG_REALTIME; 622 if (di_flags & XFS_DIFLAG_PREALLOC) 623 flags |= FS_XFLAG_PREALLOC; 624 if (di_flags & XFS_DIFLAG_IMMUTABLE) 625 flags |= FS_XFLAG_IMMUTABLE; 626 if (di_flags & XFS_DIFLAG_APPEND) 627 flags |= FS_XFLAG_APPEND; 628 if (di_flags & XFS_DIFLAG_SYNC) 629 flags |= FS_XFLAG_SYNC; 630 if (di_flags & XFS_DIFLAG_NOATIME) 631 flags |= FS_XFLAG_NOATIME; 632 if (di_flags & XFS_DIFLAG_NODUMP) 633 flags |= FS_XFLAG_NODUMP; 634 if (di_flags & XFS_DIFLAG_RTINHERIT) 635 flags |= FS_XFLAG_RTINHERIT; 636 if (di_flags & XFS_DIFLAG_PROJINHERIT) 637 flags |= FS_XFLAG_PROJINHERIT; 638 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 639 flags |= FS_XFLAG_NOSYMLINKS; 640 if (di_flags & XFS_DIFLAG_EXTSIZE) 641 flags |= FS_XFLAG_EXTSIZE; 642 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 643 flags |= FS_XFLAG_EXTSZINHERIT; 644 if (di_flags & XFS_DIFLAG_NODEFRAG) 645 flags |= FS_XFLAG_NODEFRAG; 646 if (di_flags & XFS_DIFLAG_FILESTREAM) 647 flags |= FS_XFLAG_FILESTREAM; 648 } 649 650 if (di_flags2 & XFS_DIFLAG2_ANY) { 651 if (di_flags2 & XFS_DIFLAG2_DAX) 652 flags |= FS_XFLAG_DAX; 653 } 654 655 if (has_attr) 656 flags |= FS_XFLAG_HASATTR; 657 658 return flags; 659 } 660 661 uint 662 xfs_ip2xflags( 663 struct xfs_inode *ip) 664 { 665 struct xfs_icdinode *dic = &ip->i_d; 666 667 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 668 } 669 670 /* 671 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 672 * is allowed, otherwise it has to be an exact match. If a CI match is found, 673 * ci_name->name will point to a the actual name (caller must free) or 674 * will be set to NULL if an exact match is found. 675 */ 676 int 677 xfs_lookup( 678 xfs_inode_t *dp, 679 struct xfs_name *name, 680 xfs_inode_t **ipp, 681 struct xfs_name *ci_name) 682 { 683 xfs_ino_t inum; 684 int error; 685 686 trace_xfs_lookup(dp, name); 687 688 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 689 return -EIO; 690 691 xfs_ilock(dp, XFS_IOLOCK_SHARED); 692 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 693 if (error) 694 goto out_unlock; 695 696 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 697 if (error) 698 goto out_free_name; 699 700 xfs_iunlock(dp, XFS_IOLOCK_SHARED); 701 return 0; 702 703 out_free_name: 704 if (ci_name) 705 kmem_free(ci_name->name); 706 out_unlock: 707 xfs_iunlock(dp, XFS_IOLOCK_SHARED); 708 *ipp = NULL; 709 return error; 710 } 711 712 /* 713 * Allocate an inode on disk and return a copy of its in-core version. 714 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 715 * appropriately within the inode. The uid and gid for the inode are 716 * set according to the contents of the given cred structure. 717 * 718 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 719 * has a free inode available, call xfs_iget() to obtain the in-core 720 * version of the allocated inode. Finally, fill in the inode and 721 * log its initial contents. In this case, ialloc_context would be 722 * set to NULL. 723 * 724 * If xfs_dialloc() does not have an available inode, it will replenish 725 * its supply by doing an allocation. Since we can only do one 726 * allocation within a transaction without deadlocks, we must commit 727 * the current transaction before returning the inode itself. 728 * In this case, therefore, we will set ialloc_context and return. 729 * The caller should then commit the current transaction, start a new 730 * transaction, and call xfs_ialloc() again to actually get the inode. 731 * 732 * To ensure that some other process does not grab the inode that 733 * was allocated during the first call to xfs_ialloc(), this routine 734 * also returns the [locked] bp pointing to the head of the freelist 735 * as ialloc_context. The caller should hold this buffer across 736 * the commit and pass it back into this routine on the second call. 737 * 738 * If we are allocating quota inodes, we do not have a parent inode 739 * to attach to or associate with (i.e. pip == NULL) because they 740 * are not linked into the directory structure - they are attached 741 * directly to the superblock - and so have no parent. 742 */ 743 static int 744 xfs_ialloc( 745 xfs_trans_t *tp, 746 xfs_inode_t *pip, 747 umode_t mode, 748 xfs_nlink_t nlink, 749 xfs_dev_t rdev, 750 prid_t prid, 751 int okalloc, 752 xfs_buf_t **ialloc_context, 753 xfs_inode_t **ipp) 754 { 755 struct xfs_mount *mp = tp->t_mountp; 756 xfs_ino_t ino; 757 xfs_inode_t *ip; 758 uint flags; 759 int error; 760 struct timespec tv; 761 struct inode *inode; 762 763 /* 764 * Call the space management code to pick 765 * the on-disk inode to be allocated. 766 */ 767 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 768 ialloc_context, &ino); 769 if (error) 770 return error; 771 if (*ialloc_context || ino == NULLFSINO) { 772 *ipp = NULL; 773 return 0; 774 } 775 ASSERT(*ialloc_context == NULL); 776 777 /* 778 * Get the in-core inode with the lock held exclusively. 779 * This is because we're setting fields here we need 780 * to prevent others from looking at until we're done. 781 */ 782 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 783 XFS_ILOCK_EXCL, &ip); 784 if (error) 785 return error; 786 ASSERT(ip != NULL); 787 inode = VFS_I(ip); 788 789 /* 790 * We always convert v1 inodes to v2 now - we only support filesystems 791 * with >= v2 inode capability, so there is no reason for ever leaving 792 * an inode in v1 format. 793 */ 794 if (ip->i_d.di_version == 1) 795 ip->i_d.di_version = 2; 796 797 inode->i_mode = mode; 798 set_nlink(inode, nlink); 799 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 800 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 801 xfs_set_projid(ip, prid); 802 803 if (pip && XFS_INHERIT_GID(pip)) { 804 ip->i_d.di_gid = pip->i_d.di_gid; 805 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 806 inode->i_mode |= S_ISGID; 807 } 808 809 /* 810 * If the group ID of the new file does not match the effective group 811 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 812 * (and only if the irix_sgid_inherit compatibility variable is set). 813 */ 814 if ((irix_sgid_inherit) && 815 (inode->i_mode & S_ISGID) && 816 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) 817 inode->i_mode &= ~S_ISGID; 818 819 ip->i_d.di_size = 0; 820 ip->i_d.di_nextents = 0; 821 ASSERT(ip->i_d.di_nblocks == 0); 822 823 tv = current_fs_time(mp->m_super); 824 inode->i_mtime = tv; 825 inode->i_atime = tv; 826 inode->i_ctime = tv; 827 828 ip->i_d.di_extsize = 0; 829 ip->i_d.di_dmevmask = 0; 830 ip->i_d.di_dmstate = 0; 831 ip->i_d.di_flags = 0; 832 833 if (ip->i_d.di_version == 3) { 834 inode->i_version = 1; 835 ip->i_d.di_flags2 = 0; 836 ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec; 837 ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec; 838 } 839 840 841 flags = XFS_ILOG_CORE; 842 switch (mode & S_IFMT) { 843 case S_IFIFO: 844 case S_IFCHR: 845 case S_IFBLK: 846 case S_IFSOCK: 847 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 848 ip->i_df.if_u2.if_rdev = rdev; 849 ip->i_df.if_flags = 0; 850 flags |= XFS_ILOG_DEV; 851 break; 852 case S_IFREG: 853 case S_IFDIR: 854 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 855 uint64_t di_flags2 = 0; 856 uint di_flags = 0; 857 858 if (S_ISDIR(mode)) { 859 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 860 di_flags |= XFS_DIFLAG_RTINHERIT; 861 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 862 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 863 ip->i_d.di_extsize = pip->i_d.di_extsize; 864 } 865 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 866 di_flags |= XFS_DIFLAG_PROJINHERIT; 867 } else if (S_ISREG(mode)) { 868 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 869 di_flags |= XFS_DIFLAG_REALTIME; 870 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 871 di_flags |= XFS_DIFLAG_EXTSIZE; 872 ip->i_d.di_extsize = pip->i_d.di_extsize; 873 } 874 } 875 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 876 xfs_inherit_noatime) 877 di_flags |= XFS_DIFLAG_NOATIME; 878 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 879 xfs_inherit_nodump) 880 di_flags |= XFS_DIFLAG_NODUMP; 881 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 882 xfs_inherit_sync) 883 di_flags |= XFS_DIFLAG_SYNC; 884 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 885 xfs_inherit_nosymlinks) 886 di_flags |= XFS_DIFLAG_NOSYMLINKS; 887 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 888 xfs_inherit_nodefrag) 889 di_flags |= XFS_DIFLAG_NODEFRAG; 890 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 891 di_flags |= XFS_DIFLAG_FILESTREAM; 892 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 893 di_flags2 |= XFS_DIFLAG2_DAX; 894 895 ip->i_d.di_flags |= di_flags; 896 ip->i_d.di_flags2 |= di_flags2; 897 } 898 /* FALLTHROUGH */ 899 case S_IFLNK: 900 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 901 ip->i_df.if_flags = XFS_IFEXTENTS; 902 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 903 ip->i_df.if_u1.if_extents = NULL; 904 break; 905 default: 906 ASSERT(0); 907 } 908 /* 909 * Attribute fork settings for new inode. 910 */ 911 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 912 ip->i_d.di_anextents = 0; 913 914 /* 915 * Log the new values stuffed into the inode. 916 */ 917 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 918 xfs_trans_log_inode(tp, ip, flags); 919 920 /* now that we have an i_mode we can setup the inode structure */ 921 xfs_setup_inode(ip); 922 923 *ipp = ip; 924 return 0; 925 } 926 927 /* 928 * Allocates a new inode from disk and return a pointer to the 929 * incore copy. This routine will internally commit the current 930 * transaction and allocate a new one if the Space Manager needed 931 * to do an allocation to replenish the inode free-list. 932 * 933 * This routine is designed to be called from xfs_create and 934 * xfs_create_dir. 935 * 936 */ 937 int 938 xfs_dir_ialloc( 939 xfs_trans_t **tpp, /* input: current transaction; 940 output: may be a new transaction. */ 941 xfs_inode_t *dp, /* directory within whose allocate 942 the inode. */ 943 umode_t mode, 944 xfs_nlink_t nlink, 945 xfs_dev_t rdev, 946 prid_t prid, /* project id */ 947 int okalloc, /* ok to allocate new space */ 948 xfs_inode_t **ipp, /* pointer to inode; it will be 949 locked. */ 950 int *committed) 951 952 { 953 xfs_trans_t *tp; 954 xfs_inode_t *ip; 955 xfs_buf_t *ialloc_context = NULL; 956 int code; 957 void *dqinfo; 958 uint tflags; 959 960 tp = *tpp; 961 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 962 963 /* 964 * xfs_ialloc will return a pointer to an incore inode if 965 * the Space Manager has an available inode on the free 966 * list. Otherwise, it will do an allocation and replenish 967 * the freelist. Since we can only do one allocation per 968 * transaction without deadlocks, we will need to commit the 969 * current transaction and start a new one. We will then 970 * need to call xfs_ialloc again to get the inode. 971 * 972 * If xfs_ialloc did an allocation to replenish the freelist, 973 * it returns the bp containing the head of the freelist as 974 * ialloc_context. We will hold a lock on it across the 975 * transaction commit so that no other process can steal 976 * the inode(s) that we've just allocated. 977 */ 978 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc, 979 &ialloc_context, &ip); 980 981 /* 982 * Return an error if we were unable to allocate a new inode. 983 * This should only happen if we run out of space on disk or 984 * encounter a disk error. 985 */ 986 if (code) { 987 *ipp = NULL; 988 return code; 989 } 990 if (!ialloc_context && !ip) { 991 *ipp = NULL; 992 return -ENOSPC; 993 } 994 995 /* 996 * If the AGI buffer is non-NULL, then we were unable to get an 997 * inode in one operation. We need to commit the current 998 * transaction and call xfs_ialloc() again. It is guaranteed 999 * to succeed the second time. 1000 */ 1001 if (ialloc_context) { 1002 /* 1003 * Normally, xfs_trans_commit releases all the locks. 1004 * We call bhold to hang on to the ialloc_context across 1005 * the commit. Holding this buffer prevents any other 1006 * processes from doing any allocations in this 1007 * allocation group. 1008 */ 1009 xfs_trans_bhold(tp, ialloc_context); 1010 1011 /* 1012 * We want the quota changes to be associated with the next 1013 * transaction, NOT this one. So, detach the dqinfo from this 1014 * and attach it to the next transaction. 1015 */ 1016 dqinfo = NULL; 1017 tflags = 0; 1018 if (tp->t_dqinfo) { 1019 dqinfo = (void *)tp->t_dqinfo; 1020 tp->t_dqinfo = NULL; 1021 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1022 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1023 } 1024 1025 code = xfs_trans_roll(&tp, NULL); 1026 if (committed != NULL) 1027 *committed = 1; 1028 1029 /* 1030 * Re-attach the quota info that we detached from prev trx. 1031 */ 1032 if (dqinfo) { 1033 tp->t_dqinfo = dqinfo; 1034 tp->t_flags |= tflags; 1035 } 1036 1037 if (code) { 1038 xfs_buf_relse(ialloc_context); 1039 *tpp = tp; 1040 *ipp = NULL; 1041 return code; 1042 } 1043 xfs_trans_bjoin(tp, ialloc_context); 1044 1045 /* 1046 * Call ialloc again. Since we've locked out all 1047 * other allocations in this allocation group, 1048 * this call should always succeed. 1049 */ 1050 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1051 okalloc, &ialloc_context, &ip); 1052 1053 /* 1054 * If we get an error at this point, return to the caller 1055 * so that the current transaction can be aborted. 1056 */ 1057 if (code) { 1058 *tpp = tp; 1059 *ipp = NULL; 1060 return code; 1061 } 1062 ASSERT(!ialloc_context && ip); 1063 1064 } else { 1065 if (committed != NULL) 1066 *committed = 0; 1067 } 1068 1069 *ipp = ip; 1070 *tpp = tp; 1071 1072 return 0; 1073 } 1074 1075 /* 1076 * Decrement the link count on an inode & log the change. If this causes the 1077 * link count to go to zero, move the inode to AGI unlinked list so that it can 1078 * be freed when the last active reference goes away via xfs_inactive(). 1079 */ 1080 static int /* error */ 1081 xfs_droplink( 1082 xfs_trans_t *tp, 1083 xfs_inode_t *ip) 1084 { 1085 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1086 1087 drop_nlink(VFS_I(ip)); 1088 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1089 1090 if (VFS_I(ip)->i_nlink) 1091 return 0; 1092 1093 return xfs_iunlink(tp, ip); 1094 } 1095 1096 /* 1097 * Increment the link count on an inode & log the change. 1098 */ 1099 static int 1100 xfs_bumplink( 1101 xfs_trans_t *tp, 1102 xfs_inode_t *ip) 1103 { 1104 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1105 1106 ASSERT(ip->i_d.di_version > 1); 1107 inc_nlink(VFS_I(ip)); 1108 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1109 return 0; 1110 } 1111 1112 int 1113 xfs_create( 1114 xfs_inode_t *dp, 1115 struct xfs_name *name, 1116 umode_t mode, 1117 xfs_dev_t rdev, 1118 xfs_inode_t **ipp) 1119 { 1120 int is_dir = S_ISDIR(mode); 1121 struct xfs_mount *mp = dp->i_mount; 1122 struct xfs_inode *ip = NULL; 1123 struct xfs_trans *tp = NULL; 1124 int error; 1125 xfs_bmap_free_t free_list; 1126 xfs_fsblock_t first_block; 1127 bool unlock_dp_on_error = false; 1128 prid_t prid; 1129 struct xfs_dquot *udqp = NULL; 1130 struct xfs_dquot *gdqp = NULL; 1131 struct xfs_dquot *pdqp = NULL; 1132 struct xfs_trans_res *tres; 1133 uint resblks; 1134 1135 trace_xfs_create(dp, name); 1136 1137 if (XFS_FORCED_SHUTDOWN(mp)) 1138 return -EIO; 1139 1140 prid = xfs_get_initial_prid(dp); 1141 1142 /* 1143 * Make sure that we have allocated dquot(s) on disk. 1144 */ 1145 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1146 xfs_kgid_to_gid(current_fsgid()), prid, 1147 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1148 &udqp, &gdqp, &pdqp); 1149 if (error) 1150 return error; 1151 1152 if (is_dir) { 1153 rdev = 0; 1154 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1155 tres = &M_RES(mp)->tr_mkdir; 1156 } else { 1157 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1158 tres = &M_RES(mp)->tr_create; 1159 } 1160 1161 /* 1162 * Initially assume that the file does not exist and 1163 * reserve the resources for that case. If that is not 1164 * the case we'll drop the one we have and get a more 1165 * appropriate transaction later. 1166 */ 1167 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1168 if (error == -ENOSPC) { 1169 /* flush outstanding delalloc blocks and retry */ 1170 xfs_flush_inodes(mp); 1171 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1172 } 1173 if (error == -ENOSPC) { 1174 /* No space at all so try a "no-allocation" reservation */ 1175 resblks = 0; 1176 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp); 1177 } 1178 if (error) 1179 goto out_release_inode; 1180 1181 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL | 1182 XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT); 1183 unlock_dp_on_error = true; 1184 1185 xfs_bmap_init(&free_list, &first_block); 1186 1187 /* 1188 * Reserve disk quota and the inode. 1189 */ 1190 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1191 pdqp, resblks, 1, 0); 1192 if (error) 1193 goto out_trans_cancel; 1194 1195 if (!resblks) { 1196 error = xfs_dir_canenter(tp, dp, name); 1197 if (error) 1198 goto out_trans_cancel; 1199 } 1200 1201 /* 1202 * A newly created regular or special file just has one directory 1203 * entry pointing to them, but a directory also the "." entry 1204 * pointing to itself. 1205 */ 1206 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, 1207 prid, resblks > 0, &ip, NULL); 1208 if (error) 1209 goto out_trans_cancel; 1210 1211 /* 1212 * Now we join the directory inode to the transaction. We do not do it 1213 * earlier because xfs_dir_ialloc might commit the previous transaction 1214 * (and release all the locks). An error from here on will result in 1215 * the transaction cancel unlocking dp so don't do it explicitly in the 1216 * error path. 1217 */ 1218 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 1219 unlock_dp_on_error = false; 1220 1221 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1222 &first_block, &free_list, resblks ? 1223 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1224 if (error) { 1225 ASSERT(error != -ENOSPC); 1226 goto out_trans_cancel; 1227 } 1228 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1229 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1230 1231 if (is_dir) { 1232 error = xfs_dir_init(tp, ip, dp); 1233 if (error) 1234 goto out_bmap_cancel; 1235 1236 error = xfs_bumplink(tp, dp); 1237 if (error) 1238 goto out_bmap_cancel; 1239 } 1240 1241 /* 1242 * If this is a synchronous mount, make sure that the 1243 * create transaction goes to disk before returning to 1244 * the user. 1245 */ 1246 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1247 xfs_trans_set_sync(tp); 1248 1249 /* 1250 * Attach the dquot(s) to the inodes and modify them incore. 1251 * These ids of the inode couldn't have changed since the new 1252 * inode has been locked ever since it was created. 1253 */ 1254 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1255 1256 error = xfs_bmap_finish(&tp, &free_list, NULL); 1257 if (error) 1258 goto out_bmap_cancel; 1259 1260 error = xfs_trans_commit(tp); 1261 if (error) 1262 goto out_release_inode; 1263 1264 xfs_qm_dqrele(udqp); 1265 xfs_qm_dqrele(gdqp); 1266 xfs_qm_dqrele(pdqp); 1267 1268 *ipp = ip; 1269 return 0; 1270 1271 out_bmap_cancel: 1272 xfs_bmap_cancel(&free_list); 1273 out_trans_cancel: 1274 xfs_trans_cancel(tp); 1275 out_release_inode: 1276 /* 1277 * Wait until after the current transaction is aborted to finish the 1278 * setup of the inode and release the inode. This prevents recursive 1279 * transactions and deadlocks from xfs_inactive. 1280 */ 1281 if (ip) { 1282 xfs_finish_inode_setup(ip); 1283 IRELE(ip); 1284 } 1285 1286 xfs_qm_dqrele(udqp); 1287 xfs_qm_dqrele(gdqp); 1288 xfs_qm_dqrele(pdqp); 1289 1290 if (unlock_dp_on_error) 1291 xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 1292 return error; 1293 } 1294 1295 int 1296 xfs_create_tmpfile( 1297 struct xfs_inode *dp, 1298 struct dentry *dentry, 1299 umode_t mode, 1300 struct xfs_inode **ipp) 1301 { 1302 struct xfs_mount *mp = dp->i_mount; 1303 struct xfs_inode *ip = NULL; 1304 struct xfs_trans *tp = NULL; 1305 int error; 1306 prid_t prid; 1307 struct xfs_dquot *udqp = NULL; 1308 struct xfs_dquot *gdqp = NULL; 1309 struct xfs_dquot *pdqp = NULL; 1310 struct xfs_trans_res *tres; 1311 uint resblks; 1312 1313 if (XFS_FORCED_SHUTDOWN(mp)) 1314 return -EIO; 1315 1316 prid = xfs_get_initial_prid(dp); 1317 1318 /* 1319 * Make sure that we have allocated dquot(s) on disk. 1320 */ 1321 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1322 xfs_kgid_to_gid(current_fsgid()), prid, 1323 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1324 &udqp, &gdqp, &pdqp); 1325 if (error) 1326 return error; 1327 1328 resblks = XFS_IALLOC_SPACE_RES(mp); 1329 tres = &M_RES(mp)->tr_create_tmpfile; 1330 1331 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1332 if (error == -ENOSPC) { 1333 /* No space at all so try a "no-allocation" reservation */ 1334 resblks = 0; 1335 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp); 1336 } 1337 if (error) 1338 goto out_release_inode; 1339 1340 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1341 pdqp, resblks, 1, 0); 1342 if (error) 1343 goto out_trans_cancel; 1344 1345 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, 1346 prid, resblks > 0, &ip, NULL); 1347 if (error) 1348 goto out_trans_cancel; 1349 1350 if (mp->m_flags & XFS_MOUNT_WSYNC) 1351 xfs_trans_set_sync(tp); 1352 1353 /* 1354 * Attach the dquot(s) to the inodes and modify them incore. 1355 * These ids of the inode couldn't have changed since the new 1356 * inode has been locked ever since it was created. 1357 */ 1358 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1359 1360 error = xfs_iunlink(tp, ip); 1361 if (error) 1362 goto out_trans_cancel; 1363 1364 error = xfs_trans_commit(tp); 1365 if (error) 1366 goto out_release_inode; 1367 1368 xfs_qm_dqrele(udqp); 1369 xfs_qm_dqrele(gdqp); 1370 xfs_qm_dqrele(pdqp); 1371 1372 *ipp = ip; 1373 return 0; 1374 1375 out_trans_cancel: 1376 xfs_trans_cancel(tp); 1377 out_release_inode: 1378 /* 1379 * Wait until after the current transaction is aborted to finish the 1380 * setup of the inode and release the inode. This prevents recursive 1381 * transactions and deadlocks from xfs_inactive. 1382 */ 1383 if (ip) { 1384 xfs_finish_inode_setup(ip); 1385 IRELE(ip); 1386 } 1387 1388 xfs_qm_dqrele(udqp); 1389 xfs_qm_dqrele(gdqp); 1390 xfs_qm_dqrele(pdqp); 1391 1392 return error; 1393 } 1394 1395 int 1396 xfs_link( 1397 xfs_inode_t *tdp, 1398 xfs_inode_t *sip, 1399 struct xfs_name *target_name) 1400 { 1401 xfs_mount_t *mp = tdp->i_mount; 1402 xfs_trans_t *tp; 1403 int error; 1404 xfs_bmap_free_t free_list; 1405 xfs_fsblock_t first_block; 1406 int resblks; 1407 1408 trace_xfs_link(tdp, target_name); 1409 1410 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1411 1412 if (XFS_FORCED_SHUTDOWN(mp)) 1413 return -EIO; 1414 1415 error = xfs_qm_dqattach(sip, 0); 1416 if (error) 1417 goto std_return; 1418 1419 error = xfs_qm_dqattach(tdp, 0); 1420 if (error) 1421 goto std_return; 1422 1423 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1424 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1425 if (error == -ENOSPC) { 1426 resblks = 0; 1427 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1428 } 1429 if (error) 1430 goto std_return; 1431 1432 xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 1433 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL); 1434 1435 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1436 xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 1437 1438 /* 1439 * If we are using project inheritance, we only allow hard link 1440 * creation in our tree when the project IDs are the same; else 1441 * the tree quota mechanism could be circumvented. 1442 */ 1443 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1444 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1445 error = -EXDEV; 1446 goto error_return; 1447 } 1448 1449 if (!resblks) { 1450 error = xfs_dir_canenter(tp, tdp, target_name); 1451 if (error) 1452 goto error_return; 1453 } 1454 1455 xfs_bmap_init(&free_list, &first_block); 1456 1457 /* 1458 * Handle initial link state of O_TMPFILE inode 1459 */ 1460 if (VFS_I(sip)->i_nlink == 0) { 1461 error = xfs_iunlink_remove(tp, sip); 1462 if (error) 1463 goto error_return; 1464 } 1465 1466 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1467 &first_block, &free_list, resblks); 1468 if (error) 1469 goto error_return; 1470 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1471 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1472 1473 error = xfs_bumplink(tp, sip); 1474 if (error) 1475 goto error_return; 1476 1477 /* 1478 * If this is a synchronous mount, make sure that the 1479 * link transaction goes to disk before returning to 1480 * the user. 1481 */ 1482 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1483 xfs_trans_set_sync(tp); 1484 1485 error = xfs_bmap_finish(&tp, &free_list, NULL); 1486 if (error) { 1487 xfs_bmap_cancel(&free_list); 1488 goto error_return; 1489 } 1490 1491 return xfs_trans_commit(tp); 1492 1493 error_return: 1494 xfs_trans_cancel(tp); 1495 std_return: 1496 return error; 1497 } 1498 1499 /* 1500 * Free up the underlying blocks past new_size. The new size must be smaller 1501 * than the current size. This routine can be used both for the attribute and 1502 * data fork, and does not modify the inode size, which is left to the caller. 1503 * 1504 * The transaction passed to this routine must have made a permanent log 1505 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1506 * given transaction and start new ones, so make sure everything involved in 1507 * the transaction is tidy before calling here. Some transaction will be 1508 * returned to the caller to be committed. The incoming transaction must 1509 * already include the inode, and both inode locks must be held exclusively. 1510 * The inode must also be "held" within the transaction. On return the inode 1511 * will be "held" within the returned transaction. This routine does NOT 1512 * require any disk space to be reserved for it within the transaction. 1513 * 1514 * If we get an error, we must return with the inode locked and linked into the 1515 * current transaction. This keeps things simple for the higher level code, 1516 * because it always knows that the inode is locked and held in the transaction 1517 * that returns to it whether errors occur or not. We don't mark the inode 1518 * dirty on error so that transactions can be easily aborted if possible. 1519 */ 1520 int 1521 xfs_itruncate_extents( 1522 struct xfs_trans **tpp, 1523 struct xfs_inode *ip, 1524 int whichfork, 1525 xfs_fsize_t new_size) 1526 { 1527 struct xfs_mount *mp = ip->i_mount; 1528 struct xfs_trans *tp = *tpp; 1529 xfs_bmap_free_t free_list; 1530 xfs_fsblock_t first_block; 1531 xfs_fileoff_t first_unmap_block; 1532 xfs_fileoff_t last_block; 1533 xfs_filblks_t unmap_len; 1534 int error = 0; 1535 int done = 0; 1536 1537 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1538 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1539 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1540 ASSERT(new_size <= XFS_ISIZE(ip)); 1541 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1542 ASSERT(ip->i_itemp != NULL); 1543 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1544 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1545 1546 trace_xfs_itruncate_extents_start(ip, new_size); 1547 1548 /* 1549 * Since it is possible for space to become allocated beyond 1550 * the end of the file (in a crash where the space is allocated 1551 * but the inode size is not yet updated), simply remove any 1552 * blocks which show up between the new EOF and the maximum 1553 * possible file size. If the first block to be removed is 1554 * beyond the maximum file size (ie it is the same as last_block), 1555 * then there is nothing to do. 1556 */ 1557 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1558 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1559 if (first_unmap_block == last_block) 1560 return 0; 1561 1562 ASSERT(first_unmap_block < last_block); 1563 unmap_len = last_block - first_unmap_block + 1; 1564 while (!done) { 1565 xfs_bmap_init(&free_list, &first_block); 1566 error = xfs_bunmapi(tp, ip, 1567 first_unmap_block, unmap_len, 1568 xfs_bmapi_aflag(whichfork), 1569 XFS_ITRUNC_MAX_EXTENTS, 1570 &first_block, &free_list, 1571 &done); 1572 if (error) 1573 goto out_bmap_cancel; 1574 1575 /* 1576 * Duplicate the transaction that has the permanent 1577 * reservation and commit the old transaction. 1578 */ 1579 error = xfs_bmap_finish(&tp, &free_list, ip); 1580 if (error) 1581 goto out_bmap_cancel; 1582 1583 error = xfs_trans_roll(&tp, ip); 1584 if (error) 1585 goto out; 1586 } 1587 1588 /* 1589 * Always re-log the inode so that our permanent transaction can keep 1590 * on rolling it forward in the log. 1591 */ 1592 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1593 1594 trace_xfs_itruncate_extents_end(ip, new_size); 1595 1596 out: 1597 *tpp = tp; 1598 return error; 1599 out_bmap_cancel: 1600 /* 1601 * If the bunmapi call encounters an error, return to the caller where 1602 * the transaction can be properly aborted. We just need to make sure 1603 * we're not holding any resources that we were not when we came in. 1604 */ 1605 xfs_bmap_cancel(&free_list); 1606 goto out; 1607 } 1608 1609 int 1610 xfs_release( 1611 xfs_inode_t *ip) 1612 { 1613 xfs_mount_t *mp = ip->i_mount; 1614 int error; 1615 1616 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1617 return 0; 1618 1619 /* If this is a read-only mount, don't do this (would generate I/O) */ 1620 if (mp->m_flags & XFS_MOUNT_RDONLY) 1621 return 0; 1622 1623 if (!XFS_FORCED_SHUTDOWN(mp)) { 1624 int truncated; 1625 1626 /* 1627 * If we previously truncated this file and removed old data 1628 * in the process, we want to initiate "early" writeout on 1629 * the last close. This is an attempt to combat the notorious 1630 * NULL files problem which is particularly noticeable from a 1631 * truncate down, buffered (re-)write (delalloc), followed by 1632 * a crash. What we are effectively doing here is 1633 * significantly reducing the time window where we'd otherwise 1634 * be exposed to that problem. 1635 */ 1636 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1637 if (truncated) { 1638 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1639 if (ip->i_delayed_blks > 0) { 1640 error = filemap_flush(VFS_I(ip)->i_mapping); 1641 if (error) 1642 return error; 1643 } 1644 } 1645 } 1646 1647 if (VFS_I(ip)->i_nlink == 0) 1648 return 0; 1649 1650 if (xfs_can_free_eofblocks(ip, false)) { 1651 1652 /* 1653 * If we can't get the iolock just skip truncating the blocks 1654 * past EOF because we could deadlock with the mmap_sem 1655 * otherwise. We'll get another chance to drop them once the 1656 * last reference to the inode is dropped, so we'll never leak 1657 * blocks permanently. 1658 * 1659 * Further, check if the inode is being opened, written and 1660 * closed frequently and we have delayed allocation blocks 1661 * outstanding (e.g. streaming writes from the NFS server), 1662 * truncating the blocks past EOF will cause fragmentation to 1663 * occur. 1664 * 1665 * In this case don't do the truncation, either, but we have to 1666 * be careful how we detect this case. Blocks beyond EOF show 1667 * up as i_delayed_blks even when the inode is clean, so we 1668 * need to truncate them away first before checking for a dirty 1669 * release. Hence on the first dirty close we will still remove 1670 * the speculative allocation, but after that we will leave it 1671 * in place. 1672 */ 1673 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1674 return 0; 1675 1676 error = xfs_free_eofblocks(mp, ip, true); 1677 if (error && error != -EAGAIN) 1678 return error; 1679 1680 /* delalloc blocks after truncation means it really is dirty */ 1681 if (ip->i_delayed_blks) 1682 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1683 } 1684 return 0; 1685 } 1686 1687 /* 1688 * xfs_inactive_truncate 1689 * 1690 * Called to perform a truncate when an inode becomes unlinked. 1691 */ 1692 STATIC int 1693 xfs_inactive_truncate( 1694 struct xfs_inode *ip) 1695 { 1696 struct xfs_mount *mp = ip->i_mount; 1697 struct xfs_trans *tp; 1698 int error; 1699 1700 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1701 if (error) { 1702 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1703 return error; 1704 } 1705 1706 xfs_ilock(ip, XFS_ILOCK_EXCL); 1707 xfs_trans_ijoin(tp, ip, 0); 1708 1709 /* 1710 * Log the inode size first to prevent stale data exposure in the event 1711 * of a system crash before the truncate completes. See the related 1712 * comment in xfs_setattr_size() for details. 1713 */ 1714 ip->i_d.di_size = 0; 1715 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1716 1717 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1718 if (error) 1719 goto error_trans_cancel; 1720 1721 ASSERT(ip->i_d.di_nextents == 0); 1722 1723 error = xfs_trans_commit(tp); 1724 if (error) 1725 goto error_unlock; 1726 1727 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1728 return 0; 1729 1730 error_trans_cancel: 1731 xfs_trans_cancel(tp); 1732 error_unlock: 1733 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1734 return error; 1735 } 1736 1737 /* 1738 * xfs_inactive_ifree() 1739 * 1740 * Perform the inode free when an inode is unlinked. 1741 */ 1742 STATIC int 1743 xfs_inactive_ifree( 1744 struct xfs_inode *ip) 1745 { 1746 xfs_bmap_free_t free_list; 1747 xfs_fsblock_t first_block; 1748 struct xfs_mount *mp = ip->i_mount; 1749 struct xfs_trans *tp; 1750 int error; 1751 1752 /* 1753 * The ifree transaction might need to allocate blocks for record 1754 * insertion to the finobt. We don't want to fail here at ENOSPC, so 1755 * allow ifree to dip into the reserved block pool if necessary. 1756 * 1757 * Freeing large sets of inodes generally means freeing inode chunks, 1758 * directory and file data blocks, so this should be relatively safe. 1759 * Only under severe circumstances should it be possible to free enough 1760 * inodes to exhaust the reserve block pool via finobt expansion while 1761 * at the same time not creating free space in the filesystem. 1762 * 1763 * Send a warning if the reservation does happen to fail, as the inode 1764 * now remains allocated and sits on the unlinked list until the fs is 1765 * repaired. 1766 */ 1767 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1768 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp); 1769 if (error) { 1770 if (error == -ENOSPC) { 1771 xfs_warn_ratelimited(mp, 1772 "Failed to remove inode(s) from unlinked list. " 1773 "Please free space, unmount and run xfs_repair."); 1774 } else { 1775 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1776 } 1777 return error; 1778 } 1779 1780 xfs_ilock(ip, XFS_ILOCK_EXCL); 1781 xfs_trans_ijoin(tp, ip, 0); 1782 1783 xfs_bmap_init(&free_list, &first_block); 1784 error = xfs_ifree(tp, ip, &free_list); 1785 if (error) { 1786 /* 1787 * If we fail to free the inode, shut down. The cancel 1788 * might do that, we need to make sure. Otherwise the 1789 * inode might be lost for a long time or forever. 1790 */ 1791 if (!XFS_FORCED_SHUTDOWN(mp)) { 1792 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1793 __func__, error); 1794 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1795 } 1796 xfs_trans_cancel(tp); 1797 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1798 return error; 1799 } 1800 1801 /* 1802 * Credit the quota account(s). The inode is gone. 1803 */ 1804 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1805 1806 /* 1807 * Just ignore errors at this point. There is nothing we can do except 1808 * to try to keep going. Make sure it's not a silent error. 1809 */ 1810 error = xfs_bmap_finish(&tp, &free_list, NULL); 1811 if (error) { 1812 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d", 1813 __func__, error); 1814 xfs_bmap_cancel(&free_list); 1815 } 1816 error = xfs_trans_commit(tp); 1817 if (error) 1818 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1819 __func__, error); 1820 1821 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1822 return 0; 1823 } 1824 1825 /* 1826 * xfs_inactive 1827 * 1828 * This is called when the vnode reference count for the vnode 1829 * goes to zero. If the file has been unlinked, then it must 1830 * now be truncated. Also, we clear all of the read-ahead state 1831 * kept for the inode here since the file is now closed. 1832 */ 1833 void 1834 xfs_inactive( 1835 xfs_inode_t *ip) 1836 { 1837 struct xfs_mount *mp; 1838 int error; 1839 int truncate = 0; 1840 1841 /* 1842 * If the inode is already free, then there can be nothing 1843 * to clean up here. 1844 */ 1845 if (VFS_I(ip)->i_mode == 0) { 1846 ASSERT(ip->i_df.if_real_bytes == 0); 1847 ASSERT(ip->i_df.if_broot_bytes == 0); 1848 return; 1849 } 1850 1851 mp = ip->i_mount; 1852 1853 /* If this is a read-only mount, don't do this (would generate I/O) */ 1854 if (mp->m_flags & XFS_MOUNT_RDONLY) 1855 return; 1856 1857 if (VFS_I(ip)->i_nlink != 0) { 1858 /* 1859 * force is true because we are evicting an inode from the 1860 * cache. Post-eof blocks must be freed, lest we end up with 1861 * broken free space accounting. 1862 */ 1863 if (xfs_can_free_eofblocks(ip, true)) 1864 xfs_free_eofblocks(mp, ip, false); 1865 1866 return; 1867 } 1868 1869 if (S_ISREG(VFS_I(ip)->i_mode) && 1870 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1871 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1872 truncate = 1; 1873 1874 error = xfs_qm_dqattach(ip, 0); 1875 if (error) 1876 return; 1877 1878 if (S_ISLNK(VFS_I(ip)->i_mode)) 1879 error = xfs_inactive_symlink(ip); 1880 else if (truncate) 1881 error = xfs_inactive_truncate(ip); 1882 if (error) 1883 return; 1884 1885 /* 1886 * If there are attributes associated with the file then blow them away 1887 * now. The code calls a routine that recursively deconstructs the 1888 * attribute fork. If also blows away the in-core attribute fork. 1889 */ 1890 if (XFS_IFORK_Q(ip)) { 1891 error = xfs_attr_inactive(ip); 1892 if (error) 1893 return; 1894 } 1895 1896 ASSERT(!ip->i_afp); 1897 ASSERT(ip->i_d.di_anextents == 0); 1898 ASSERT(ip->i_d.di_forkoff == 0); 1899 1900 /* 1901 * Free the inode. 1902 */ 1903 error = xfs_inactive_ifree(ip); 1904 if (error) 1905 return; 1906 1907 /* 1908 * Release the dquots held by inode, if any. 1909 */ 1910 xfs_qm_dqdetach(ip); 1911 } 1912 1913 /* 1914 * This is called when the inode's link count goes to 0 or we are creating a 1915 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be 1916 * set to true as the link count is dropped to zero by the VFS after we've 1917 * created the file successfully, so we have to add it to the unlinked list 1918 * while the link count is non-zero. 1919 * 1920 * We place the on-disk inode on a list in the AGI. It will be pulled from this 1921 * list when the inode is freed. 1922 */ 1923 STATIC int 1924 xfs_iunlink( 1925 struct xfs_trans *tp, 1926 struct xfs_inode *ip) 1927 { 1928 xfs_mount_t *mp = tp->t_mountp; 1929 xfs_agi_t *agi; 1930 xfs_dinode_t *dip; 1931 xfs_buf_t *agibp; 1932 xfs_buf_t *ibp; 1933 xfs_agino_t agino; 1934 short bucket_index; 1935 int offset; 1936 int error; 1937 1938 ASSERT(VFS_I(ip)->i_mode != 0); 1939 1940 /* 1941 * Get the agi buffer first. It ensures lock ordering 1942 * on the list. 1943 */ 1944 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1945 if (error) 1946 return error; 1947 agi = XFS_BUF_TO_AGI(agibp); 1948 1949 /* 1950 * Get the index into the agi hash table for the 1951 * list this inode will go on. 1952 */ 1953 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1954 ASSERT(agino != 0); 1955 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1956 ASSERT(agi->agi_unlinked[bucket_index]); 1957 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1958 1959 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 1960 /* 1961 * There is already another inode in the bucket we need 1962 * to add ourselves to. Add us at the front of the list. 1963 * Here we put the head pointer into our next pointer, 1964 * and then we fall through to point the head at us. 1965 */ 1966 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 1967 0, 0); 1968 if (error) 1969 return error; 1970 1971 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 1972 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1973 offset = ip->i_imap.im_boffset + 1974 offsetof(xfs_dinode_t, di_next_unlinked); 1975 1976 /* need to recalc the inode CRC if appropriate */ 1977 xfs_dinode_calc_crc(mp, dip); 1978 1979 xfs_trans_inode_buf(tp, ibp); 1980 xfs_trans_log_buf(tp, ibp, offset, 1981 (offset + sizeof(xfs_agino_t) - 1)); 1982 xfs_inobp_check(mp, ibp); 1983 } 1984 1985 /* 1986 * Point the bucket head pointer at the inode being inserted. 1987 */ 1988 ASSERT(agino != 0); 1989 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1990 offset = offsetof(xfs_agi_t, agi_unlinked) + 1991 (sizeof(xfs_agino_t) * bucket_index); 1992 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF); 1993 xfs_trans_log_buf(tp, agibp, offset, 1994 (offset + sizeof(xfs_agino_t) - 1)); 1995 return 0; 1996 } 1997 1998 /* 1999 * Pull the on-disk inode from the AGI unlinked list. 2000 */ 2001 STATIC int 2002 xfs_iunlink_remove( 2003 xfs_trans_t *tp, 2004 xfs_inode_t *ip) 2005 { 2006 xfs_ino_t next_ino; 2007 xfs_mount_t *mp; 2008 xfs_agi_t *agi; 2009 xfs_dinode_t *dip; 2010 xfs_buf_t *agibp; 2011 xfs_buf_t *ibp; 2012 xfs_agnumber_t agno; 2013 xfs_agino_t agino; 2014 xfs_agino_t next_agino; 2015 xfs_buf_t *last_ibp; 2016 xfs_dinode_t *last_dip = NULL; 2017 short bucket_index; 2018 int offset, last_offset = 0; 2019 int error; 2020 2021 mp = tp->t_mountp; 2022 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2023 2024 /* 2025 * Get the agi buffer first. It ensures lock ordering 2026 * on the list. 2027 */ 2028 error = xfs_read_agi(mp, tp, agno, &agibp); 2029 if (error) 2030 return error; 2031 2032 agi = XFS_BUF_TO_AGI(agibp); 2033 2034 /* 2035 * Get the index into the agi hash table for the 2036 * list this inode will go on. 2037 */ 2038 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2039 ASSERT(agino != 0); 2040 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2041 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 2042 ASSERT(agi->agi_unlinked[bucket_index]); 2043 2044 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2045 /* 2046 * We're at the head of the list. Get the inode's on-disk 2047 * buffer to see if there is anyone after us on the list. 2048 * Only modify our next pointer if it is not already NULLAGINO. 2049 * This saves us the overhead of dealing with the buffer when 2050 * there is no need to change it. 2051 */ 2052 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2053 0, 0); 2054 if (error) { 2055 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2056 __func__, error); 2057 return error; 2058 } 2059 next_agino = be32_to_cpu(dip->di_next_unlinked); 2060 ASSERT(next_agino != 0); 2061 if (next_agino != NULLAGINO) { 2062 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2063 offset = ip->i_imap.im_boffset + 2064 offsetof(xfs_dinode_t, di_next_unlinked); 2065 2066 /* need to recalc the inode CRC if appropriate */ 2067 xfs_dinode_calc_crc(mp, dip); 2068 2069 xfs_trans_inode_buf(tp, ibp); 2070 xfs_trans_log_buf(tp, ibp, offset, 2071 (offset + sizeof(xfs_agino_t) - 1)); 2072 xfs_inobp_check(mp, ibp); 2073 } else { 2074 xfs_trans_brelse(tp, ibp); 2075 } 2076 /* 2077 * Point the bucket head pointer at the next inode. 2078 */ 2079 ASSERT(next_agino != 0); 2080 ASSERT(next_agino != agino); 2081 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2082 offset = offsetof(xfs_agi_t, agi_unlinked) + 2083 (sizeof(xfs_agino_t) * bucket_index); 2084 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF); 2085 xfs_trans_log_buf(tp, agibp, offset, 2086 (offset + sizeof(xfs_agino_t) - 1)); 2087 } else { 2088 /* 2089 * We need to search the list for the inode being freed. 2090 */ 2091 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2092 last_ibp = NULL; 2093 while (next_agino != agino) { 2094 struct xfs_imap imap; 2095 2096 if (last_ibp) 2097 xfs_trans_brelse(tp, last_ibp); 2098 2099 imap.im_blkno = 0; 2100 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2101 2102 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2103 if (error) { 2104 xfs_warn(mp, 2105 "%s: xfs_imap returned error %d.", 2106 __func__, error); 2107 return error; 2108 } 2109 2110 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2111 &last_ibp, 0, 0); 2112 if (error) { 2113 xfs_warn(mp, 2114 "%s: xfs_imap_to_bp returned error %d.", 2115 __func__, error); 2116 return error; 2117 } 2118 2119 last_offset = imap.im_boffset; 2120 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2121 ASSERT(next_agino != NULLAGINO); 2122 ASSERT(next_agino != 0); 2123 } 2124 2125 /* 2126 * Now last_ibp points to the buffer previous to us on the 2127 * unlinked list. Pull us from the list. 2128 */ 2129 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2130 0, 0); 2131 if (error) { 2132 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2133 __func__, error); 2134 return error; 2135 } 2136 next_agino = be32_to_cpu(dip->di_next_unlinked); 2137 ASSERT(next_agino != 0); 2138 ASSERT(next_agino != agino); 2139 if (next_agino != NULLAGINO) { 2140 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2141 offset = ip->i_imap.im_boffset + 2142 offsetof(xfs_dinode_t, di_next_unlinked); 2143 2144 /* need to recalc the inode CRC if appropriate */ 2145 xfs_dinode_calc_crc(mp, dip); 2146 2147 xfs_trans_inode_buf(tp, ibp); 2148 xfs_trans_log_buf(tp, ibp, offset, 2149 (offset + sizeof(xfs_agino_t) - 1)); 2150 xfs_inobp_check(mp, ibp); 2151 } else { 2152 xfs_trans_brelse(tp, ibp); 2153 } 2154 /* 2155 * Point the previous inode on the list to the next inode. 2156 */ 2157 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2158 ASSERT(next_agino != 0); 2159 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2160 2161 /* need to recalc the inode CRC if appropriate */ 2162 xfs_dinode_calc_crc(mp, last_dip); 2163 2164 xfs_trans_inode_buf(tp, last_ibp); 2165 xfs_trans_log_buf(tp, last_ibp, offset, 2166 (offset + sizeof(xfs_agino_t) - 1)); 2167 xfs_inobp_check(mp, last_ibp); 2168 } 2169 return 0; 2170 } 2171 2172 /* 2173 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2174 * inodes that are in memory - they all must be marked stale and attached to 2175 * the cluster buffer. 2176 */ 2177 STATIC int 2178 xfs_ifree_cluster( 2179 xfs_inode_t *free_ip, 2180 xfs_trans_t *tp, 2181 struct xfs_icluster *xic) 2182 { 2183 xfs_mount_t *mp = free_ip->i_mount; 2184 int blks_per_cluster; 2185 int inodes_per_cluster; 2186 int nbufs; 2187 int i, j; 2188 int ioffset; 2189 xfs_daddr_t blkno; 2190 xfs_buf_t *bp; 2191 xfs_inode_t *ip; 2192 xfs_inode_log_item_t *iip; 2193 xfs_log_item_t *lip; 2194 struct xfs_perag *pag; 2195 xfs_ino_t inum; 2196 2197 inum = xic->first_ino; 2198 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2199 blks_per_cluster = xfs_icluster_size_fsb(mp); 2200 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 2201 nbufs = mp->m_ialloc_blks / blks_per_cluster; 2202 2203 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { 2204 /* 2205 * The allocation bitmap tells us which inodes of the chunk were 2206 * physically allocated. Skip the cluster if an inode falls into 2207 * a sparse region. 2208 */ 2209 ioffset = inum - xic->first_ino; 2210 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2211 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0); 2212 continue; 2213 } 2214 2215 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2216 XFS_INO_TO_AGBNO(mp, inum)); 2217 2218 /* 2219 * We obtain and lock the backing buffer first in the process 2220 * here, as we have to ensure that any dirty inode that we 2221 * can't get the flush lock on is attached to the buffer. 2222 * If we scan the in-memory inodes first, then buffer IO can 2223 * complete before we get a lock on it, and hence we may fail 2224 * to mark all the active inodes on the buffer stale. 2225 */ 2226 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2227 mp->m_bsize * blks_per_cluster, 2228 XBF_UNMAPPED); 2229 2230 if (!bp) 2231 return -ENOMEM; 2232 2233 /* 2234 * This buffer may not have been correctly initialised as we 2235 * didn't read it from disk. That's not important because we are 2236 * only using to mark the buffer as stale in the log, and to 2237 * attach stale cached inodes on it. That means it will never be 2238 * dispatched for IO. If it is, we want to know about it, and we 2239 * want it to fail. We can acheive this by adding a write 2240 * verifier to the buffer. 2241 */ 2242 bp->b_ops = &xfs_inode_buf_ops; 2243 2244 /* 2245 * Walk the inodes already attached to the buffer and mark them 2246 * stale. These will all have the flush locks held, so an 2247 * in-memory inode walk can't lock them. By marking them all 2248 * stale first, we will not attempt to lock them in the loop 2249 * below as the XFS_ISTALE flag will be set. 2250 */ 2251 lip = bp->b_fspriv; 2252 while (lip) { 2253 if (lip->li_type == XFS_LI_INODE) { 2254 iip = (xfs_inode_log_item_t *)lip; 2255 ASSERT(iip->ili_logged == 1); 2256 lip->li_cb = xfs_istale_done; 2257 xfs_trans_ail_copy_lsn(mp->m_ail, 2258 &iip->ili_flush_lsn, 2259 &iip->ili_item.li_lsn); 2260 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2261 } 2262 lip = lip->li_bio_list; 2263 } 2264 2265 2266 /* 2267 * For each inode in memory attempt to add it to the inode 2268 * buffer and set it up for being staled on buffer IO 2269 * completion. This is safe as we've locked out tail pushing 2270 * and flushing by locking the buffer. 2271 * 2272 * We have already marked every inode that was part of a 2273 * transaction stale above, which means there is no point in 2274 * even trying to lock them. 2275 */ 2276 for (i = 0; i < inodes_per_cluster; i++) { 2277 retry: 2278 rcu_read_lock(); 2279 ip = radix_tree_lookup(&pag->pag_ici_root, 2280 XFS_INO_TO_AGINO(mp, (inum + i))); 2281 2282 /* Inode not in memory, nothing to do */ 2283 if (!ip) { 2284 rcu_read_unlock(); 2285 continue; 2286 } 2287 2288 /* 2289 * because this is an RCU protected lookup, we could 2290 * find a recently freed or even reallocated inode 2291 * during the lookup. We need to check under the 2292 * i_flags_lock for a valid inode here. Skip it if it 2293 * is not valid, the wrong inode or stale. 2294 */ 2295 spin_lock(&ip->i_flags_lock); 2296 if (ip->i_ino != inum + i || 2297 __xfs_iflags_test(ip, XFS_ISTALE)) { 2298 spin_unlock(&ip->i_flags_lock); 2299 rcu_read_unlock(); 2300 continue; 2301 } 2302 spin_unlock(&ip->i_flags_lock); 2303 2304 /* 2305 * Don't try to lock/unlock the current inode, but we 2306 * _cannot_ skip the other inodes that we did not find 2307 * in the list attached to the buffer and are not 2308 * already marked stale. If we can't lock it, back off 2309 * and retry. 2310 */ 2311 if (ip != free_ip && 2312 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2313 rcu_read_unlock(); 2314 delay(1); 2315 goto retry; 2316 } 2317 rcu_read_unlock(); 2318 2319 xfs_iflock(ip); 2320 xfs_iflags_set(ip, XFS_ISTALE); 2321 2322 /* 2323 * we don't need to attach clean inodes or those only 2324 * with unlogged changes (which we throw away, anyway). 2325 */ 2326 iip = ip->i_itemp; 2327 if (!iip || xfs_inode_clean(ip)) { 2328 ASSERT(ip != free_ip); 2329 xfs_ifunlock(ip); 2330 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2331 continue; 2332 } 2333 2334 iip->ili_last_fields = iip->ili_fields; 2335 iip->ili_fields = 0; 2336 iip->ili_fsync_fields = 0; 2337 iip->ili_logged = 1; 2338 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2339 &iip->ili_item.li_lsn); 2340 2341 xfs_buf_attach_iodone(bp, xfs_istale_done, 2342 &iip->ili_item); 2343 2344 if (ip != free_ip) 2345 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2346 } 2347 2348 xfs_trans_stale_inode_buf(tp, bp); 2349 xfs_trans_binval(tp, bp); 2350 } 2351 2352 xfs_perag_put(pag); 2353 return 0; 2354 } 2355 2356 /* 2357 * This is called to return an inode to the inode free list. 2358 * The inode should already be truncated to 0 length and have 2359 * no pages associated with it. This routine also assumes that 2360 * the inode is already a part of the transaction. 2361 * 2362 * The on-disk copy of the inode will have been added to the list 2363 * of unlinked inodes in the AGI. We need to remove the inode from 2364 * that list atomically with respect to freeing it here. 2365 */ 2366 int 2367 xfs_ifree( 2368 xfs_trans_t *tp, 2369 xfs_inode_t *ip, 2370 xfs_bmap_free_t *flist) 2371 { 2372 int error; 2373 struct xfs_icluster xic = { 0 }; 2374 2375 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2376 ASSERT(VFS_I(ip)->i_nlink == 0); 2377 ASSERT(ip->i_d.di_nextents == 0); 2378 ASSERT(ip->i_d.di_anextents == 0); 2379 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2380 ASSERT(ip->i_d.di_nblocks == 0); 2381 2382 /* 2383 * Pull the on-disk inode from the AGI unlinked list. 2384 */ 2385 error = xfs_iunlink_remove(tp, ip); 2386 if (error) 2387 return error; 2388 2389 error = xfs_difree(tp, ip->i_ino, flist, &xic); 2390 if (error) 2391 return error; 2392 2393 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2394 ip->i_d.di_flags = 0; 2395 ip->i_d.di_dmevmask = 0; 2396 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2397 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2398 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2399 /* 2400 * Bump the generation count so no one will be confused 2401 * by reincarnations of this inode. 2402 */ 2403 VFS_I(ip)->i_generation++; 2404 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2405 2406 if (xic.deleted) 2407 error = xfs_ifree_cluster(ip, tp, &xic); 2408 2409 return error; 2410 } 2411 2412 /* 2413 * This is called to unpin an inode. The caller must have the inode locked 2414 * in at least shared mode so that the buffer cannot be subsequently pinned 2415 * once someone is waiting for it to be unpinned. 2416 */ 2417 static void 2418 xfs_iunpin( 2419 struct xfs_inode *ip) 2420 { 2421 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2422 2423 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2424 2425 /* Give the log a push to start the unpinning I/O */ 2426 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2427 2428 } 2429 2430 static void 2431 __xfs_iunpin_wait( 2432 struct xfs_inode *ip) 2433 { 2434 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2435 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2436 2437 xfs_iunpin(ip); 2438 2439 do { 2440 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2441 if (xfs_ipincount(ip)) 2442 io_schedule(); 2443 } while (xfs_ipincount(ip)); 2444 finish_wait(wq, &wait.wait); 2445 } 2446 2447 void 2448 xfs_iunpin_wait( 2449 struct xfs_inode *ip) 2450 { 2451 if (xfs_ipincount(ip)) 2452 __xfs_iunpin_wait(ip); 2453 } 2454 2455 /* 2456 * Removing an inode from the namespace involves removing the directory entry 2457 * and dropping the link count on the inode. Removing the directory entry can 2458 * result in locking an AGF (directory blocks were freed) and removing a link 2459 * count can result in placing the inode on an unlinked list which results in 2460 * locking an AGI. 2461 * 2462 * The big problem here is that we have an ordering constraint on AGF and AGI 2463 * locking - inode allocation locks the AGI, then can allocate a new extent for 2464 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2465 * removes the inode from the unlinked list, requiring that we lock the AGI 2466 * first, and then freeing the inode can result in an inode chunk being freed 2467 * and hence freeing disk space requiring that we lock an AGF. 2468 * 2469 * Hence the ordering that is imposed by other parts of the code is AGI before 2470 * AGF. This means we cannot remove the directory entry before we drop the inode 2471 * reference count and put it on the unlinked list as this results in a lock 2472 * order of AGF then AGI, and this can deadlock against inode allocation and 2473 * freeing. Therefore we must drop the link counts before we remove the 2474 * directory entry. 2475 * 2476 * This is still safe from a transactional point of view - it is not until we 2477 * get to xfs_bmap_finish() that we have the possibility of multiple 2478 * transactions in this operation. Hence as long as we remove the directory 2479 * entry and drop the link count in the first transaction of the remove 2480 * operation, there are no transactional constraints on the ordering here. 2481 */ 2482 int 2483 xfs_remove( 2484 xfs_inode_t *dp, 2485 struct xfs_name *name, 2486 xfs_inode_t *ip) 2487 { 2488 xfs_mount_t *mp = dp->i_mount; 2489 xfs_trans_t *tp = NULL; 2490 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2491 int error = 0; 2492 xfs_bmap_free_t free_list; 2493 xfs_fsblock_t first_block; 2494 uint resblks; 2495 2496 trace_xfs_remove(dp, name); 2497 2498 if (XFS_FORCED_SHUTDOWN(mp)) 2499 return -EIO; 2500 2501 error = xfs_qm_dqattach(dp, 0); 2502 if (error) 2503 goto std_return; 2504 2505 error = xfs_qm_dqattach(ip, 0); 2506 if (error) 2507 goto std_return; 2508 2509 /* 2510 * We try to get the real space reservation first, 2511 * allowing for directory btree deletion(s) implying 2512 * possible bmap insert(s). If we can't get the space 2513 * reservation then we use 0 instead, and avoid the bmap 2514 * btree insert(s) in the directory code by, if the bmap 2515 * insert tries to happen, instead trimming the LAST 2516 * block from the directory. 2517 */ 2518 resblks = XFS_REMOVE_SPACE_RES(mp); 2519 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2520 if (error == -ENOSPC) { 2521 resblks = 0; 2522 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2523 &tp); 2524 } 2525 if (error) { 2526 ASSERT(error != -ENOSPC); 2527 goto std_return; 2528 } 2529 2530 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 2531 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL); 2532 2533 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 2534 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2535 2536 /* 2537 * If we're removing a directory perform some additional validation. 2538 */ 2539 if (is_dir) { 2540 ASSERT(VFS_I(ip)->i_nlink >= 2); 2541 if (VFS_I(ip)->i_nlink != 2) { 2542 error = -ENOTEMPTY; 2543 goto out_trans_cancel; 2544 } 2545 if (!xfs_dir_isempty(ip)) { 2546 error = -ENOTEMPTY; 2547 goto out_trans_cancel; 2548 } 2549 2550 /* Drop the link from ip's "..". */ 2551 error = xfs_droplink(tp, dp); 2552 if (error) 2553 goto out_trans_cancel; 2554 2555 /* Drop the "." link from ip to self. */ 2556 error = xfs_droplink(tp, ip); 2557 if (error) 2558 goto out_trans_cancel; 2559 } else { 2560 /* 2561 * When removing a non-directory we need to log the parent 2562 * inode here. For a directory this is done implicitly 2563 * by the xfs_droplink call for the ".." entry. 2564 */ 2565 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2566 } 2567 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2568 2569 /* Drop the link from dp to ip. */ 2570 error = xfs_droplink(tp, ip); 2571 if (error) 2572 goto out_trans_cancel; 2573 2574 xfs_bmap_init(&free_list, &first_block); 2575 error = xfs_dir_removename(tp, dp, name, ip->i_ino, 2576 &first_block, &free_list, resblks); 2577 if (error) { 2578 ASSERT(error != -ENOENT); 2579 goto out_bmap_cancel; 2580 } 2581 2582 /* 2583 * If this is a synchronous mount, make sure that the 2584 * remove transaction goes to disk before returning to 2585 * the user. 2586 */ 2587 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2588 xfs_trans_set_sync(tp); 2589 2590 error = xfs_bmap_finish(&tp, &free_list, NULL); 2591 if (error) 2592 goto out_bmap_cancel; 2593 2594 error = xfs_trans_commit(tp); 2595 if (error) 2596 goto std_return; 2597 2598 if (is_dir && xfs_inode_is_filestream(ip)) 2599 xfs_filestream_deassociate(ip); 2600 2601 return 0; 2602 2603 out_bmap_cancel: 2604 xfs_bmap_cancel(&free_list); 2605 out_trans_cancel: 2606 xfs_trans_cancel(tp); 2607 std_return: 2608 return error; 2609 } 2610 2611 /* 2612 * Enter all inodes for a rename transaction into a sorted array. 2613 */ 2614 #define __XFS_SORT_INODES 5 2615 STATIC void 2616 xfs_sort_for_rename( 2617 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2618 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2619 struct xfs_inode *ip1, /* in: inode of old entry */ 2620 struct xfs_inode *ip2, /* in: inode of new entry */ 2621 struct xfs_inode *wip, /* in: whiteout inode */ 2622 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2623 int *num_inodes) /* in/out: inodes in array */ 2624 { 2625 int i, j; 2626 2627 ASSERT(*num_inodes == __XFS_SORT_INODES); 2628 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2629 2630 /* 2631 * i_tab contains a list of pointers to inodes. We initialize 2632 * the table here & we'll sort it. We will then use it to 2633 * order the acquisition of the inode locks. 2634 * 2635 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2636 */ 2637 i = 0; 2638 i_tab[i++] = dp1; 2639 i_tab[i++] = dp2; 2640 i_tab[i++] = ip1; 2641 if (ip2) 2642 i_tab[i++] = ip2; 2643 if (wip) 2644 i_tab[i++] = wip; 2645 *num_inodes = i; 2646 2647 /* 2648 * Sort the elements via bubble sort. (Remember, there are at 2649 * most 5 elements to sort, so this is adequate.) 2650 */ 2651 for (i = 0; i < *num_inodes; i++) { 2652 for (j = 1; j < *num_inodes; j++) { 2653 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2654 struct xfs_inode *temp = i_tab[j]; 2655 i_tab[j] = i_tab[j-1]; 2656 i_tab[j-1] = temp; 2657 } 2658 } 2659 } 2660 } 2661 2662 static int 2663 xfs_finish_rename( 2664 struct xfs_trans *tp, 2665 struct xfs_bmap_free *free_list) 2666 { 2667 int error; 2668 2669 /* 2670 * If this is a synchronous mount, make sure that the rename transaction 2671 * goes to disk before returning to the user. 2672 */ 2673 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2674 xfs_trans_set_sync(tp); 2675 2676 error = xfs_bmap_finish(&tp, free_list, NULL); 2677 if (error) { 2678 xfs_bmap_cancel(free_list); 2679 xfs_trans_cancel(tp); 2680 return error; 2681 } 2682 2683 return xfs_trans_commit(tp); 2684 } 2685 2686 /* 2687 * xfs_cross_rename() 2688 * 2689 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 2690 */ 2691 STATIC int 2692 xfs_cross_rename( 2693 struct xfs_trans *tp, 2694 struct xfs_inode *dp1, 2695 struct xfs_name *name1, 2696 struct xfs_inode *ip1, 2697 struct xfs_inode *dp2, 2698 struct xfs_name *name2, 2699 struct xfs_inode *ip2, 2700 struct xfs_bmap_free *free_list, 2701 xfs_fsblock_t *first_block, 2702 int spaceres) 2703 { 2704 int error = 0; 2705 int ip1_flags = 0; 2706 int ip2_flags = 0; 2707 int dp2_flags = 0; 2708 2709 /* Swap inode number for dirent in first parent */ 2710 error = xfs_dir_replace(tp, dp1, name1, 2711 ip2->i_ino, 2712 first_block, free_list, spaceres); 2713 if (error) 2714 goto out_trans_abort; 2715 2716 /* Swap inode number for dirent in second parent */ 2717 error = xfs_dir_replace(tp, dp2, name2, 2718 ip1->i_ino, 2719 first_block, free_list, spaceres); 2720 if (error) 2721 goto out_trans_abort; 2722 2723 /* 2724 * If we're renaming one or more directories across different parents, 2725 * update the respective ".." entries (and link counts) to match the new 2726 * parents. 2727 */ 2728 if (dp1 != dp2) { 2729 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2730 2731 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2732 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2733 dp1->i_ino, first_block, 2734 free_list, spaceres); 2735 if (error) 2736 goto out_trans_abort; 2737 2738 /* transfer ip2 ".." reference to dp1 */ 2739 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2740 error = xfs_droplink(tp, dp2); 2741 if (error) 2742 goto out_trans_abort; 2743 error = xfs_bumplink(tp, dp1); 2744 if (error) 2745 goto out_trans_abort; 2746 } 2747 2748 /* 2749 * Although ip1 isn't changed here, userspace needs 2750 * to be warned about the change, so that applications 2751 * relying on it (like backup ones), will properly 2752 * notify the change 2753 */ 2754 ip1_flags |= XFS_ICHGTIME_CHG; 2755 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2756 } 2757 2758 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2759 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2760 dp2->i_ino, first_block, 2761 free_list, spaceres); 2762 if (error) 2763 goto out_trans_abort; 2764 2765 /* transfer ip1 ".." reference to dp2 */ 2766 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2767 error = xfs_droplink(tp, dp1); 2768 if (error) 2769 goto out_trans_abort; 2770 error = xfs_bumplink(tp, dp2); 2771 if (error) 2772 goto out_trans_abort; 2773 } 2774 2775 /* 2776 * Although ip2 isn't changed here, userspace needs 2777 * to be warned about the change, so that applications 2778 * relying on it (like backup ones), will properly 2779 * notify the change 2780 */ 2781 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2782 ip2_flags |= XFS_ICHGTIME_CHG; 2783 } 2784 } 2785 2786 if (ip1_flags) { 2787 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2788 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2789 } 2790 if (ip2_flags) { 2791 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2792 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2793 } 2794 if (dp2_flags) { 2795 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2796 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2797 } 2798 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2799 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2800 return xfs_finish_rename(tp, free_list); 2801 2802 out_trans_abort: 2803 xfs_bmap_cancel(free_list); 2804 xfs_trans_cancel(tp); 2805 return error; 2806 } 2807 2808 /* 2809 * xfs_rename_alloc_whiteout() 2810 * 2811 * Return a referenced, unlinked, unlocked inode that that can be used as a 2812 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2813 * crash between allocating the inode and linking it into the rename transaction 2814 * recovery will free the inode and we won't leak it. 2815 */ 2816 static int 2817 xfs_rename_alloc_whiteout( 2818 struct xfs_inode *dp, 2819 struct xfs_inode **wip) 2820 { 2821 struct xfs_inode *tmpfile; 2822 int error; 2823 2824 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile); 2825 if (error) 2826 return error; 2827 2828 /* 2829 * Prepare the tmpfile inode as if it were created through the VFS. 2830 * Otherwise, the link increment paths will complain about nlink 0->1. 2831 * Drop the link count as done by d_tmpfile(), complete the inode setup 2832 * and flag it as linkable. 2833 */ 2834 drop_nlink(VFS_I(tmpfile)); 2835 xfs_setup_iops(tmpfile); 2836 xfs_finish_inode_setup(tmpfile); 2837 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2838 2839 *wip = tmpfile; 2840 return 0; 2841 } 2842 2843 /* 2844 * xfs_rename 2845 */ 2846 int 2847 xfs_rename( 2848 struct xfs_inode *src_dp, 2849 struct xfs_name *src_name, 2850 struct xfs_inode *src_ip, 2851 struct xfs_inode *target_dp, 2852 struct xfs_name *target_name, 2853 struct xfs_inode *target_ip, 2854 unsigned int flags) 2855 { 2856 struct xfs_mount *mp = src_dp->i_mount; 2857 struct xfs_trans *tp; 2858 struct xfs_bmap_free free_list; 2859 xfs_fsblock_t first_block; 2860 struct xfs_inode *wip = NULL; /* whiteout inode */ 2861 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2862 int num_inodes = __XFS_SORT_INODES; 2863 bool new_parent = (src_dp != target_dp); 2864 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2865 int spaceres; 2866 int error; 2867 2868 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2869 2870 if ((flags & RENAME_EXCHANGE) && !target_ip) 2871 return -EINVAL; 2872 2873 /* 2874 * If we are doing a whiteout operation, allocate the whiteout inode 2875 * we will be placing at the target and ensure the type is set 2876 * appropriately. 2877 */ 2878 if (flags & RENAME_WHITEOUT) { 2879 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 2880 error = xfs_rename_alloc_whiteout(target_dp, &wip); 2881 if (error) 2882 return error; 2883 2884 /* setup target dirent info as whiteout */ 2885 src_name->type = XFS_DIR3_FT_CHRDEV; 2886 } 2887 2888 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 2889 inodes, &num_inodes); 2890 2891 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2892 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 2893 if (error == -ENOSPC) { 2894 spaceres = 0; 2895 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 2896 &tp); 2897 } 2898 if (error) 2899 goto out_release_wip; 2900 2901 /* 2902 * Attach the dquots to the inodes 2903 */ 2904 error = xfs_qm_vop_rename_dqattach(inodes); 2905 if (error) 2906 goto out_trans_cancel; 2907 2908 /* 2909 * Lock all the participating inodes. Depending upon whether 2910 * the target_name exists in the target directory, and 2911 * whether the target directory is the same as the source 2912 * directory, we can lock from 2 to 4 inodes. 2913 */ 2914 if (!new_parent) 2915 xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 2916 else 2917 xfs_lock_two_inodes(src_dp, target_dp, 2918 XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 2919 2920 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2921 2922 /* 2923 * Join all the inodes to the transaction. From this point on, 2924 * we can rely on either trans_commit or trans_cancel to unlock 2925 * them. 2926 */ 2927 xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 2928 if (new_parent) 2929 xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 2930 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2931 if (target_ip) 2932 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2933 if (wip) 2934 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 2935 2936 /* 2937 * If we are using project inheritance, we only allow renames 2938 * into our tree when the project IDs are the same; else the 2939 * tree quota mechanism would be circumvented. 2940 */ 2941 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 2942 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 2943 error = -EXDEV; 2944 goto out_trans_cancel; 2945 } 2946 2947 xfs_bmap_init(&free_list, &first_block); 2948 2949 /* RENAME_EXCHANGE is unique from here on. */ 2950 if (flags & RENAME_EXCHANGE) 2951 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 2952 target_dp, target_name, target_ip, 2953 &free_list, &first_block, spaceres); 2954 2955 /* 2956 * Set up the target. 2957 */ 2958 if (target_ip == NULL) { 2959 /* 2960 * If there's no space reservation, check the entry will 2961 * fit before actually inserting it. 2962 */ 2963 if (!spaceres) { 2964 error = xfs_dir_canenter(tp, target_dp, target_name); 2965 if (error) 2966 goto out_trans_cancel; 2967 } 2968 /* 2969 * If target does not exist and the rename crosses 2970 * directories, adjust the target directory link count 2971 * to account for the ".." reference from the new entry. 2972 */ 2973 error = xfs_dir_createname(tp, target_dp, target_name, 2974 src_ip->i_ino, &first_block, 2975 &free_list, spaceres); 2976 if (error) 2977 goto out_bmap_cancel; 2978 2979 xfs_trans_ichgtime(tp, target_dp, 2980 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2981 2982 if (new_parent && src_is_directory) { 2983 error = xfs_bumplink(tp, target_dp); 2984 if (error) 2985 goto out_bmap_cancel; 2986 } 2987 } else { /* target_ip != NULL */ 2988 /* 2989 * If target exists and it's a directory, check that both 2990 * target and source are directories and that target can be 2991 * destroyed, or that neither is a directory. 2992 */ 2993 if (S_ISDIR(VFS_I(target_ip)->i_mode)) { 2994 /* 2995 * Make sure target dir is empty. 2996 */ 2997 if (!(xfs_dir_isempty(target_ip)) || 2998 (VFS_I(target_ip)->i_nlink > 2)) { 2999 error = -EEXIST; 3000 goto out_trans_cancel; 3001 } 3002 } 3003 3004 /* 3005 * Link the source inode under the target name. 3006 * If the source inode is a directory and we are moving 3007 * it across directories, its ".." entry will be 3008 * inconsistent until we replace that down below. 3009 * 3010 * In case there is already an entry with the same 3011 * name at the destination directory, remove it first. 3012 */ 3013 error = xfs_dir_replace(tp, target_dp, target_name, 3014 src_ip->i_ino, 3015 &first_block, &free_list, spaceres); 3016 if (error) 3017 goto out_bmap_cancel; 3018 3019 xfs_trans_ichgtime(tp, target_dp, 3020 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3021 3022 /* 3023 * Decrement the link count on the target since the target 3024 * dir no longer points to it. 3025 */ 3026 error = xfs_droplink(tp, target_ip); 3027 if (error) 3028 goto out_bmap_cancel; 3029 3030 if (src_is_directory) { 3031 /* 3032 * Drop the link from the old "." entry. 3033 */ 3034 error = xfs_droplink(tp, target_ip); 3035 if (error) 3036 goto out_bmap_cancel; 3037 } 3038 } /* target_ip != NULL */ 3039 3040 /* 3041 * Remove the source. 3042 */ 3043 if (new_parent && src_is_directory) { 3044 /* 3045 * Rewrite the ".." entry to point to the new 3046 * directory. 3047 */ 3048 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3049 target_dp->i_ino, 3050 &first_block, &free_list, spaceres); 3051 ASSERT(error != -EEXIST); 3052 if (error) 3053 goto out_bmap_cancel; 3054 } 3055 3056 /* 3057 * We always want to hit the ctime on the source inode. 3058 * 3059 * This isn't strictly required by the standards since the source 3060 * inode isn't really being changed, but old unix file systems did 3061 * it and some incremental backup programs won't work without it. 3062 */ 3063 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3064 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3065 3066 /* 3067 * Adjust the link count on src_dp. This is necessary when 3068 * renaming a directory, either within one parent when 3069 * the target existed, or across two parent directories. 3070 */ 3071 if (src_is_directory && (new_parent || target_ip != NULL)) { 3072 3073 /* 3074 * Decrement link count on src_directory since the 3075 * entry that's moved no longer points to it. 3076 */ 3077 error = xfs_droplink(tp, src_dp); 3078 if (error) 3079 goto out_bmap_cancel; 3080 } 3081 3082 /* 3083 * For whiteouts, we only need to update the source dirent with the 3084 * inode number of the whiteout inode rather than removing it 3085 * altogether. 3086 */ 3087 if (wip) { 3088 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3089 &first_block, &free_list, spaceres); 3090 } else 3091 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3092 &first_block, &free_list, spaceres); 3093 if (error) 3094 goto out_bmap_cancel; 3095 3096 /* 3097 * For whiteouts, we need to bump the link count on the whiteout inode. 3098 * This means that failures all the way up to this point leave the inode 3099 * on the unlinked list and so cleanup is a simple matter of dropping 3100 * the remaining reference to it. If we fail here after bumping the link 3101 * count, we're shutting down the filesystem so we'll never see the 3102 * intermediate state on disk. 3103 */ 3104 if (wip) { 3105 ASSERT(VFS_I(wip)->i_nlink == 0); 3106 error = xfs_bumplink(tp, wip); 3107 if (error) 3108 goto out_bmap_cancel; 3109 error = xfs_iunlink_remove(tp, wip); 3110 if (error) 3111 goto out_bmap_cancel; 3112 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); 3113 3114 /* 3115 * Now we have a real link, clear the "I'm a tmpfile" state 3116 * flag from the inode so it doesn't accidentally get misused in 3117 * future. 3118 */ 3119 VFS_I(wip)->i_state &= ~I_LINKABLE; 3120 } 3121 3122 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3123 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3124 if (new_parent) 3125 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3126 3127 error = xfs_finish_rename(tp, &free_list); 3128 if (wip) 3129 IRELE(wip); 3130 return error; 3131 3132 out_bmap_cancel: 3133 xfs_bmap_cancel(&free_list); 3134 out_trans_cancel: 3135 xfs_trans_cancel(tp); 3136 out_release_wip: 3137 if (wip) 3138 IRELE(wip); 3139 return error; 3140 } 3141 3142 STATIC int 3143 xfs_iflush_cluster( 3144 struct xfs_inode *ip, 3145 struct xfs_buf *bp) 3146 { 3147 struct xfs_mount *mp = ip->i_mount; 3148 struct xfs_perag *pag; 3149 unsigned long first_index, mask; 3150 unsigned long inodes_per_cluster; 3151 int cilist_size; 3152 struct xfs_inode **cilist; 3153 struct xfs_inode *cip; 3154 int nr_found; 3155 int clcount = 0; 3156 int bufwasdelwri; 3157 int i; 3158 3159 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3160 3161 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 3162 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 3163 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); 3164 if (!cilist) 3165 goto out_put; 3166 3167 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 3168 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3169 rcu_read_lock(); 3170 /* really need a gang lookup range call here */ 3171 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, 3172 first_index, inodes_per_cluster); 3173 if (nr_found == 0) 3174 goto out_free; 3175 3176 for (i = 0; i < nr_found; i++) { 3177 cip = cilist[i]; 3178 if (cip == ip) 3179 continue; 3180 3181 /* 3182 * because this is an RCU protected lookup, we could find a 3183 * recently freed or even reallocated inode during the lookup. 3184 * We need to check under the i_flags_lock for a valid inode 3185 * here. Skip it if it is not valid or the wrong inode. 3186 */ 3187 spin_lock(&cip->i_flags_lock); 3188 if (!cip->i_ino || 3189 __xfs_iflags_test(cip, XFS_ISTALE)) { 3190 spin_unlock(&cip->i_flags_lock); 3191 continue; 3192 } 3193 3194 /* 3195 * Once we fall off the end of the cluster, no point checking 3196 * any more inodes in the list because they will also all be 3197 * outside the cluster. 3198 */ 3199 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { 3200 spin_unlock(&cip->i_flags_lock); 3201 break; 3202 } 3203 spin_unlock(&cip->i_flags_lock); 3204 3205 /* 3206 * Do an un-protected check to see if the inode is dirty and 3207 * is a candidate for flushing. These checks will be repeated 3208 * later after the appropriate locks are acquired. 3209 */ 3210 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) 3211 continue; 3212 3213 /* 3214 * Try to get locks. If any are unavailable or it is pinned, 3215 * then this inode cannot be flushed and is skipped. 3216 */ 3217 3218 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) 3219 continue; 3220 if (!xfs_iflock_nowait(cip)) { 3221 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3222 continue; 3223 } 3224 if (xfs_ipincount(cip)) { 3225 xfs_ifunlock(cip); 3226 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3227 continue; 3228 } 3229 3230 3231 /* 3232 * Check the inode number again, just to be certain we are not 3233 * racing with freeing in xfs_reclaim_inode(). See the comments 3234 * in that function for more information as to why the initial 3235 * check is not sufficient. 3236 */ 3237 if (!cip->i_ino) { 3238 xfs_ifunlock(cip); 3239 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3240 continue; 3241 } 3242 3243 /* 3244 * arriving here means that this inode can be flushed. First 3245 * re-check that it's dirty before flushing. 3246 */ 3247 if (!xfs_inode_clean(cip)) { 3248 int error; 3249 error = xfs_iflush_int(cip, bp); 3250 if (error) { 3251 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3252 goto cluster_corrupt_out; 3253 } 3254 clcount++; 3255 } else { 3256 xfs_ifunlock(cip); 3257 } 3258 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3259 } 3260 3261 if (clcount) { 3262 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3263 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3264 } 3265 3266 out_free: 3267 rcu_read_unlock(); 3268 kmem_free(cilist); 3269 out_put: 3270 xfs_perag_put(pag); 3271 return 0; 3272 3273 3274 cluster_corrupt_out: 3275 /* 3276 * Corruption detected in the clustering loop. Invalidate the 3277 * inode buffer and shut down the filesystem. 3278 */ 3279 rcu_read_unlock(); 3280 /* 3281 * Clean up the buffer. If it was delwri, just release it -- 3282 * brelse can handle it with no problems. If not, shut down the 3283 * filesystem before releasing the buffer. 3284 */ 3285 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 3286 if (bufwasdelwri) 3287 xfs_buf_relse(bp); 3288 3289 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3290 3291 if (!bufwasdelwri) { 3292 /* 3293 * Just like incore_relse: if we have b_iodone functions, 3294 * mark the buffer as an error and call them. Otherwise 3295 * mark it as stale and brelse. 3296 */ 3297 if (bp->b_iodone) { 3298 bp->b_flags &= ~XBF_DONE; 3299 xfs_buf_stale(bp); 3300 xfs_buf_ioerror(bp, -EIO); 3301 xfs_buf_ioend(bp); 3302 } else { 3303 xfs_buf_stale(bp); 3304 xfs_buf_relse(bp); 3305 } 3306 } 3307 3308 /* 3309 * Unlocks the flush lock 3310 */ 3311 xfs_iflush_abort(cip, false); 3312 kmem_free(cilist); 3313 xfs_perag_put(pag); 3314 return -EFSCORRUPTED; 3315 } 3316 3317 /* 3318 * Flush dirty inode metadata into the backing buffer. 3319 * 3320 * The caller must have the inode lock and the inode flush lock held. The 3321 * inode lock will still be held upon return to the caller, and the inode 3322 * flush lock will be released after the inode has reached the disk. 3323 * 3324 * The caller must write out the buffer returned in *bpp and release it. 3325 */ 3326 int 3327 xfs_iflush( 3328 struct xfs_inode *ip, 3329 struct xfs_buf **bpp) 3330 { 3331 struct xfs_mount *mp = ip->i_mount; 3332 struct xfs_buf *bp = NULL; 3333 struct xfs_dinode *dip; 3334 int error; 3335 3336 XFS_STATS_INC(mp, xs_iflush_count); 3337 3338 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3339 ASSERT(xfs_isiflocked(ip)); 3340 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3341 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3342 3343 *bpp = NULL; 3344 3345 xfs_iunpin_wait(ip); 3346 3347 /* 3348 * For stale inodes we cannot rely on the backing buffer remaining 3349 * stale in cache for the remaining life of the stale inode and so 3350 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3351 * inodes below. We have to check this after ensuring the inode is 3352 * unpinned so that it is safe to reclaim the stale inode after the 3353 * flush call. 3354 */ 3355 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3356 xfs_ifunlock(ip); 3357 return 0; 3358 } 3359 3360 /* 3361 * This may have been unpinned because the filesystem is shutting 3362 * down forcibly. If that's the case we must not write this inode 3363 * to disk, because the log record didn't make it to disk. 3364 * 3365 * We also have to remove the log item from the AIL in this case, 3366 * as we wait for an empty AIL as part of the unmount process. 3367 */ 3368 if (XFS_FORCED_SHUTDOWN(mp)) { 3369 error = -EIO; 3370 goto abort_out; 3371 } 3372 3373 /* 3374 * Get the buffer containing the on-disk inode. We are doing a try-lock 3375 * operation here, so we may get an EAGAIN error. In that case, we 3376 * simply want to return with the inode still dirty. 3377 * 3378 * If we get any other error, we effectively have a corruption situation 3379 * and we cannot flush the inode, so we treat it the same as failing 3380 * xfs_iflush_int(). 3381 */ 3382 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3383 0); 3384 if (error == -EAGAIN) { 3385 xfs_ifunlock(ip); 3386 return error; 3387 } 3388 if (error) 3389 goto corrupt_out; 3390 3391 /* 3392 * First flush out the inode that xfs_iflush was called with. 3393 */ 3394 error = xfs_iflush_int(ip, bp); 3395 if (error) 3396 goto corrupt_out; 3397 3398 /* 3399 * If the buffer is pinned then push on the log now so we won't 3400 * get stuck waiting in the write for too long. 3401 */ 3402 if (xfs_buf_ispinned(bp)) 3403 xfs_log_force(mp, 0); 3404 3405 /* 3406 * inode clustering: 3407 * see if other inodes can be gathered into this write 3408 */ 3409 error = xfs_iflush_cluster(ip, bp); 3410 if (error) 3411 goto cluster_corrupt_out; 3412 3413 *bpp = bp; 3414 return 0; 3415 3416 corrupt_out: 3417 if (bp) 3418 xfs_buf_relse(bp); 3419 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3420 cluster_corrupt_out: 3421 error = -EFSCORRUPTED; 3422 abort_out: 3423 /* 3424 * Unlocks the flush lock 3425 */ 3426 xfs_iflush_abort(ip, false); 3427 return error; 3428 } 3429 3430 STATIC int 3431 xfs_iflush_int( 3432 struct xfs_inode *ip, 3433 struct xfs_buf *bp) 3434 { 3435 struct xfs_inode_log_item *iip = ip->i_itemp; 3436 struct xfs_dinode *dip; 3437 struct xfs_mount *mp = ip->i_mount; 3438 3439 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3440 ASSERT(xfs_isiflocked(ip)); 3441 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3442 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3443 ASSERT(iip != NULL && iip->ili_fields != 0); 3444 ASSERT(ip->i_d.di_version > 1); 3445 3446 /* set *dip = inode's place in the buffer */ 3447 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3448 3449 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3450 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3451 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3452 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3453 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3454 goto corrupt_out; 3455 } 3456 if (S_ISREG(VFS_I(ip)->i_mode)) { 3457 if (XFS_TEST_ERROR( 3458 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3459 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3460 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3461 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3462 "%s: Bad regular inode %Lu, ptr 0x%p", 3463 __func__, ip->i_ino, ip); 3464 goto corrupt_out; 3465 } 3466 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3467 if (XFS_TEST_ERROR( 3468 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3469 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3470 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3471 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3472 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3473 "%s: Bad directory inode %Lu, ptr 0x%p", 3474 __func__, ip->i_ino, ip); 3475 goto corrupt_out; 3476 } 3477 } 3478 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3479 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3480 XFS_RANDOM_IFLUSH_5)) { 3481 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3482 "%s: detected corrupt incore inode %Lu, " 3483 "total extents = %d, nblocks = %Ld, ptr 0x%p", 3484 __func__, ip->i_ino, 3485 ip->i_d.di_nextents + ip->i_d.di_anextents, 3486 ip->i_d.di_nblocks, ip); 3487 goto corrupt_out; 3488 } 3489 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3490 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3491 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3492 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3493 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3494 goto corrupt_out; 3495 } 3496 3497 /* 3498 * Inode item log recovery for v2 inodes are dependent on the 3499 * di_flushiter count for correct sequencing. We bump the flush 3500 * iteration count so we can detect flushes which postdate a log record 3501 * during recovery. This is redundant as we now log every change and 3502 * hence this can't happen but we need to still do it to ensure 3503 * backwards compatibility with old kernels that predate logging all 3504 * inode changes. 3505 */ 3506 if (ip->i_d.di_version < 3) 3507 ip->i_d.di_flushiter++; 3508 3509 /* 3510 * Copy the dirty parts of the inode into the on-disk inode. We always 3511 * copy out the core of the inode, because if the inode is dirty at all 3512 * the core must be. 3513 */ 3514 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3515 3516 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3517 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3518 ip->i_d.di_flushiter = 0; 3519 3520 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3521 if (XFS_IFORK_Q(ip)) 3522 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3523 xfs_inobp_check(mp, bp); 3524 3525 /* 3526 * We've recorded everything logged in the inode, so we'd like to clear 3527 * the ili_fields bits so we don't log and flush things unnecessarily. 3528 * However, we can't stop logging all this information until the data 3529 * we've copied into the disk buffer is written to disk. If we did we 3530 * might overwrite the copy of the inode in the log with all the data 3531 * after re-logging only part of it, and in the face of a crash we 3532 * wouldn't have all the data we need to recover. 3533 * 3534 * What we do is move the bits to the ili_last_fields field. When 3535 * logging the inode, these bits are moved back to the ili_fields field. 3536 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3537 * know that the information those bits represent is permanently on 3538 * disk. As long as the flush completes before the inode is logged 3539 * again, then both ili_fields and ili_last_fields will be cleared. 3540 * 3541 * We can play with the ili_fields bits here, because the inode lock 3542 * must be held exclusively in order to set bits there and the flush 3543 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3544 * done routine can tell whether or not to look in the AIL. Also, store 3545 * the current LSN of the inode so that we can tell whether the item has 3546 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3547 * need the AIL lock, because it is a 64 bit value that cannot be read 3548 * atomically. 3549 */ 3550 iip->ili_last_fields = iip->ili_fields; 3551 iip->ili_fields = 0; 3552 iip->ili_fsync_fields = 0; 3553 iip->ili_logged = 1; 3554 3555 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3556 &iip->ili_item.li_lsn); 3557 3558 /* 3559 * Attach the function xfs_iflush_done to the inode's 3560 * buffer. This will remove the inode from the AIL 3561 * and unlock the inode's flush lock when the inode is 3562 * completely written to disk. 3563 */ 3564 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3565 3566 /* generate the checksum. */ 3567 xfs_dinode_calc_crc(mp, dip); 3568 3569 ASSERT(bp->b_fspriv != NULL); 3570 ASSERT(bp->b_iodone != NULL); 3571 return 0; 3572 3573 corrupt_out: 3574 return -EFSCORRUPTED; 3575 } 3576