1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_shared.h" 23 #include "xfs_format.h" 24 #include "xfs_log_format.h" 25 #include "xfs_trans_resv.h" 26 #include "xfs_sb.h" 27 #include "xfs_mount.h" 28 #include "xfs_defer.h" 29 #include "xfs_inode.h" 30 #include "xfs_da_format.h" 31 #include "xfs_da_btree.h" 32 #include "xfs_dir2.h" 33 #include "xfs_attr_sf.h" 34 #include "xfs_attr.h" 35 #include "xfs_trans_space.h" 36 #include "xfs_trans.h" 37 #include "xfs_buf_item.h" 38 #include "xfs_inode_item.h" 39 #include "xfs_ialloc.h" 40 #include "xfs_bmap.h" 41 #include "xfs_bmap_util.h" 42 #include "xfs_error.h" 43 #include "xfs_quota.h" 44 #include "xfs_filestream.h" 45 #include "xfs_cksum.h" 46 #include "xfs_trace.h" 47 #include "xfs_icache.h" 48 #include "xfs_symlink.h" 49 #include "xfs_trans_priv.h" 50 #include "xfs_log.h" 51 #include "xfs_bmap_btree.h" 52 #include "xfs_reflink.h" 53 #include "xfs_dir2_priv.h" 54 55 kmem_zone_t *xfs_inode_zone; 56 57 /* 58 * Used in xfs_itruncate_extents(). This is the maximum number of extents 59 * freed from a file in a single transaction. 60 */ 61 #define XFS_ITRUNC_MAX_EXTENTS 2 62 63 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); 64 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 65 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 66 67 /* 68 * helper function to extract extent size hint from inode 69 */ 70 xfs_extlen_t 71 xfs_get_extsz_hint( 72 struct xfs_inode *ip) 73 { 74 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 75 return ip->i_d.di_extsize; 76 if (XFS_IS_REALTIME_INODE(ip)) 77 return ip->i_mount->m_sb.sb_rextsize; 78 return 0; 79 } 80 81 /* 82 * Helper function to extract CoW extent size hint from inode. 83 * Between the extent size hint and the CoW extent size hint, we 84 * return the greater of the two. If the value is zero (automatic), 85 * use the default size. 86 */ 87 xfs_extlen_t 88 xfs_get_cowextsz_hint( 89 struct xfs_inode *ip) 90 { 91 xfs_extlen_t a, b; 92 93 a = 0; 94 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 95 a = ip->i_d.di_cowextsize; 96 b = xfs_get_extsz_hint(ip); 97 98 a = max(a, b); 99 if (a == 0) 100 return XFS_DEFAULT_COWEXTSZ_HINT; 101 return a; 102 } 103 104 /* 105 * These two are wrapper routines around the xfs_ilock() routine used to 106 * centralize some grungy code. They are used in places that wish to lock the 107 * inode solely for reading the extents. The reason these places can't just 108 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 109 * bringing in of the extents from disk for a file in b-tree format. If the 110 * inode is in b-tree format, then we need to lock the inode exclusively until 111 * the extents are read in. Locking it exclusively all the time would limit 112 * our parallelism unnecessarily, though. What we do instead is check to see 113 * if the extents have been read in yet, and only lock the inode exclusively 114 * if they have not. 115 * 116 * The functions return a value which should be given to the corresponding 117 * xfs_iunlock() call. 118 */ 119 uint 120 xfs_ilock_data_map_shared( 121 struct xfs_inode *ip) 122 { 123 uint lock_mode = XFS_ILOCK_SHARED; 124 125 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 126 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 127 lock_mode = XFS_ILOCK_EXCL; 128 xfs_ilock(ip, lock_mode); 129 return lock_mode; 130 } 131 132 uint 133 xfs_ilock_attr_map_shared( 134 struct xfs_inode *ip) 135 { 136 uint lock_mode = XFS_ILOCK_SHARED; 137 138 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 139 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 140 lock_mode = XFS_ILOCK_EXCL; 141 xfs_ilock(ip, lock_mode); 142 return lock_mode; 143 } 144 145 /* 146 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 147 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 148 * various combinations of the locks to be obtained. 149 * 150 * The 3 locks should always be ordered so that the IO lock is obtained first, 151 * the mmap lock second and the ilock last in order to prevent deadlock. 152 * 153 * Basic locking order: 154 * 155 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 156 * 157 * mmap_sem locking order: 158 * 159 * i_rwsem -> page lock -> mmap_sem 160 * mmap_sem -> i_mmap_lock -> page_lock 161 * 162 * The difference in mmap_sem locking order mean that we cannot hold the 163 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 164 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem 165 * in get_user_pages() to map the user pages into the kernel address space for 166 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 167 * page faults already hold the mmap_sem. 168 * 169 * Hence to serialise fully against both syscall and mmap based IO, we need to 170 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 171 * taken in places where we need to invalidate the page cache in a race 172 * free manner (e.g. truncate, hole punch and other extent manipulation 173 * functions). 174 */ 175 void 176 xfs_ilock( 177 xfs_inode_t *ip, 178 uint lock_flags) 179 { 180 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 181 182 /* 183 * You can't set both SHARED and EXCL for the same lock, 184 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 185 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 186 */ 187 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 188 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 189 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 190 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 191 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 192 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 193 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 194 195 if (lock_flags & XFS_IOLOCK_EXCL) { 196 down_write_nested(&VFS_I(ip)->i_rwsem, 197 XFS_IOLOCK_DEP(lock_flags)); 198 } else if (lock_flags & XFS_IOLOCK_SHARED) { 199 down_read_nested(&VFS_I(ip)->i_rwsem, 200 XFS_IOLOCK_DEP(lock_flags)); 201 } 202 203 if (lock_flags & XFS_MMAPLOCK_EXCL) 204 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 205 else if (lock_flags & XFS_MMAPLOCK_SHARED) 206 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 207 208 if (lock_flags & XFS_ILOCK_EXCL) 209 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 210 else if (lock_flags & XFS_ILOCK_SHARED) 211 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 212 } 213 214 /* 215 * This is just like xfs_ilock(), except that the caller 216 * is guaranteed not to sleep. It returns 1 if it gets 217 * the requested locks and 0 otherwise. If the IO lock is 218 * obtained but the inode lock cannot be, then the IO lock 219 * is dropped before returning. 220 * 221 * ip -- the inode being locked 222 * lock_flags -- this parameter indicates the inode's locks to be 223 * to be locked. See the comment for xfs_ilock() for a list 224 * of valid values. 225 */ 226 int 227 xfs_ilock_nowait( 228 xfs_inode_t *ip, 229 uint lock_flags) 230 { 231 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 232 233 /* 234 * You can't set both SHARED and EXCL for the same lock, 235 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 236 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 237 */ 238 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 239 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 240 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 241 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 242 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 243 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 244 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 245 246 if (lock_flags & XFS_IOLOCK_EXCL) { 247 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 248 goto out; 249 } else if (lock_flags & XFS_IOLOCK_SHARED) { 250 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 251 goto out; 252 } 253 254 if (lock_flags & XFS_MMAPLOCK_EXCL) { 255 if (!mrtryupdate(&ip->i_mmaplock)) 256 goto out_undo_iolock; 257 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 258 if (!mrtryaccess(&ip->i_mmaplock)) 259 goto out_undo_iolock; 260 } 261 262 if (lock_flags & XFS_ILOCK_EXCL) { 263 if (!mrtryupdate(&ip->i_lock)) 264 goto out_undo_mmaplock; 265 } else if (lock_flags & XFS_ILOCK_SHARED) { 266 if (!mrtryaccess(&ip->i_lock)) 267 goto out_undo_mmaplock; 268 } 269 return 1; 270 271 out_undo_mmaplock: 272 if (lock_flags & XFS_MMAPLOCK_EXCL) 273 mrunlock_excl(&ip->i_mmaplock); 274 else if (lock_flags & XFS_MMAPLOCK_SHARED) 275 mrunlock_shared(&ip->i_mmaplock); 276 out_undo_iolock: 277 if (lock_flags & XFS_IOLOCK_EXCL) 278 up_write(&VFS_I(ip)->i_rwsem); 279 else if (lock_flags & XFS_IOLOCK_SHARED) 280 up_read(&VFS_I(ip)->i_rwsem); 281 out: 282 return 0; 283 } 284 285 /* 286 * xfs_iunlock() is used to drop the inode locks acquired with 287 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 288 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 289 * that we know which locks to drop. 290 * 291 * ip -- the inode being unlocked 292 * lock_flags -- this parameter indicates the inode's locks to be 293 * to be unlocked. See the comment for xfs_ilock() for a list 294 * of valid values for this parameter. 295 * 296 */ 297 void 298 xfs_iunlock( 299 xfs_inode_t *ip, 300 uint lock_flags) 301 { 302 /* 303 * You can't set both SHARED and EXCL for the same lock, 304 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 305 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 306 */ 307 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 308 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 309 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 310 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 311 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 312 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 313 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 314 ASSERT(lock_flags != 0); 315 316 if (lock_flags & XFS_IOLOCK_EXCL) 317 up_write(&VFS_I(ip)->i_rwsem); 318 else if (lock_flags & XFS_IOLOCK_SHARED) 319 up_read(&VFS_I(ip)->i_rwsem); 320 321 if (lock_flags & XFS_MMAPLOCK_EXCL) 322 mrunlock_excl(&ip->i_mmaplock); 323 else if (lock_flags & XFS_MMAPLOCK_SHARED) 324 mrunlock_shared(&ip->i_mmaplock); 325 326 if (lock_flags & XFS_ILOCK_EXCL) 327 mrunlock_excl(&ip->i_lock); 328 else if (lock_flags & XFS_ILOCK_SHARED) 329 mrunlock_shared(&ip->i_lock); 330 331 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 332 } 333 334 /* 335 * give up write locks. the i/o lock cannot be held nested 336 * if it is being demoted. 337 */ 338 void 339 xfs_ilock_demote( 340 xfs_inode_t *ip, 341 uint lock_flags) 342 { 343 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 344 ASSERT((lock_flags & 345 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 346 347 if (lock_flags & XFS_ILOCK_EXCL) 348 mrdemote(&ip->i_lock); 349 if (lock_flags & XFS_MMAPLOCK_EXCL) 350 mrdemote(&ip->i_mmaplock); 351 if (lock_flags & XFS_IOLOCK_EXCL) 352 downgrade_write(&VFS_I(ip)->i_rwsem); 353 354 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 355 } 356 357 #if defined(DEBUG) || defined(XFS_WARN) 358 int 359 xfs_isilocked( 360 xfs_inode_t *ip, 361 uint lock_flags) 362 { 363 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 364 if (!(lock_flags & XFS_ILOCK_SHARED)) 365 return !!ip->i_lock.mr_writer; 366 return rwsem_is_locked(&ip->i_lock.mr_lock); 367 } 368 369 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 370 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 371 return !!ip->i_mmaplock.mr_writer; 372 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 373 } 374 375 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 376 if (!(lock_flags & XFS_IOLOCK_SHARED)) 377 return !debug_locks || 378 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 379 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 380 } 381 382 ASSERT(0); 383 return 0; 384 } 385 #endif 386 387 #ifdef DEBUG 388 int xfs_locked_n; 389 int xfs_small_retries; 390 int xfs_middle_retries; 391 int xfs_lots_retries; 392 int xfs_lock_delays; 393 #endif 394 395 /* 396 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 397 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 398 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 399 * errors and warnings. 400 */ 401 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 402 static bool 403 xfs_lockdep_subclass_ok( 404 int subclass) 405 { 406 return subclass < MAX_LOCKDEP_SUBCLASSES; 407 } 408 #else 409 #define xfs_lockdep_subclass_ok(subclass) (true) 410 #endif 411 412 /* 413 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 414 * value. This can be called for any type of inode lock combination, including 415 * parent locking. Care must be taken to ensure we don't overrun the subclass 416 * storage fields in the class mask we build. 417 */ 418 static inline int 419 xfs_lock_inumorder(int lock_mode, int subclass) 420 { 421 int class = 0; 422 423 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 424 XFS_ILOCK_RTSUM))); 425 ASSERT(xfs_lockdep_subclass_ok(subclass)); 426 427 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 428 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 429 class += subclass << XFS_IOLOCK_SHIFT; 430 } 431 432 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 433 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 434 class += subclass << XFS_MMAPLOCK_SHIFT; 435 } 436 437 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 438 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 439 class += subclass << XFS_ILOCK_SHIFT; 440 } 441 442 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 443 } 444 445 /* 446 * The following routine will lock n inodes in exclusive mode. We assume the 447 * caller calls us with the inodes in i_ino order. 448 * 449 * We need to detect deadlock where an inode that we lock is in the AIL and we 450 * start waiting for another inode that is locked by a thread in a long running 451 * transaction (such as truncate). This can result in deadlock since the long 452 * running trans might need to wait for the inode we just locked in order to 453 * push the tail and free space in the log. 454 * 455 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 456 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 457 * lock more than one at a time, lockdep will report false positives saying we 458 * have violated locking orders. 459 */ 460 static void 461 xfs_lock_inodes( 462 xfs_inode_t **ips, 463 int inodes, 464 uint lock_mode) 465 { 466 int attempts = 0, i, j, try_lock; 467 xfs_log_item_t *lp; 468 469 /* 470 * Currently supports between 2 and 5 inodes with exclusive locking. We 471 * support an arbitrary depth of locking here, but absolute limits on 472 * inodes depend on the the type of locking and the limits placed by 473 * lockdep annotations in xfs_lock_inumorder. These are all checked by 474 * the asserts. 475 */ 476 ASSERT(ips && inodes >= 2 && inodes <= 5); 477 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 478 XFS_ILOCK_EXCL)); 479 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 480 XFS_ILOCK_SHARED))); 481 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 482 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 483 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 484 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 485 486 if (lock_mode & XFS_IOLOCK_EXCL) { 487 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 488 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 489 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 490 491 try_lock = 0; 492 i = 0; 493 again: 494 for (; i < inodes; i++) { 495 ASSERT(ips[i]); 496 497 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 498 continue; 499 500 /* 501 * If try_lock is not set yet, make sure all locked inodes are 502 * not in the AIL. If any are, set try_lock to be used later. 503 */ 504 if (!try_lock) { 505 for (j = (i - 1); j >= 0 && !try_lock; j--) { 506 lp = (xfs_log_item_t *)ips[j]->i_itemp; 507 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) 508 try_lock++; 509 } 510 } 511 512 /* 513 * If any of the previous locks we have locked is in the AIL, 514 * we must TRY to get the second and subsequent locks. If 515 * we can't get any, we must release all we have 516 * and try again. 517 */ 518 if (!try_lock) { 519 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 520 continue; 521 } 522 523 /* try_lock means we have an inode locked that is in the AIL. */ 524 ASSERT(i != 0); 525 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 526 continue; 527 528 /* 529 * Unlock all previous guys and try again. xfs_iunlock will try 530 * to push the tail if the inode is in the AIL. 531 */ 532 attempts++; 533 for (j = i - 1; j >= 0; j--) { 534 /* 535 * Check to see if we've already unlocked this one. Not 536 * the first one going back, and the inode ptr is the 537 * same. 538 */ 539 if (j != (i - 1) && ips[j] == ips[j + 1]) 540 continue; 541 542 xfs_iunlock(ips[j], lock_mode); 543 } 544 545 if ((attempts % 5) == 0) { 546 delay(1); /* Don't just spin the CPU */ 547 #ifdef DEBUG 548 xfs_lock_delays++; 549 #endif 550 } 551 i = 0; 552 try_lock = 0; 553 goto again; 554 } 555 556 #ifdef DEBUG 557 if (attempts) { 558 if (attempts < 5) xfs_small_retries++; 559 else if (attempts < 100) xfs_middle_retries++; 560 else xfs_lots_retries++; 561 } else { 562 xfs_locked_n++; 563 } 564 #endif 565 } 566 567 /* 568 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 569 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 570 * lock more than one at a time, lockdep will report false positives saying we 571 * have violated locking orders. 572 */ 573 void 574 xfs_lock_two_inodes( 575 xfs_inode_t *ip0, 576 xfs_inode_t *ip1, 577 uint lock_mode) 578 { 579 xfs_inode_t *temp; 580 int attempts = 0; 581 xfs_log_item_t *lp; 582 583 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 584 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) 585 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 586 587 ASSERT(ip0->i_ino != ip1->i_ino); 588 589 if (ip0->i_ino > ip1->i_ino) { 590 temp = ip0; 591 ip0 = ip1; 592 ip1 = temp; 593 } 594 595 again: 596 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0)); 597 598 /* 599 * If the first lock we have locked is in the AIL, we must TRY to get 600 * the second lock. If we can't get it, we must release the first one 601 * and try again. 602 */ 603 lp = (xfs_log_item_t *)ip0->i_itemp; 604 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 605 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) { 606 xfs_iunlock(ip0, lock_mode); 607 if ((++attempts % 5) == 0) 608 delay(1); /* Don't just spin the CPU */ 609 goto again; 610 } 611 } else { 612 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1)); 613 } 614 } 615 616 617 void 618 __xfs_iflock( 619 struct xfs_inode *ip) 620 { 621 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 622 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 623 624 do { 625 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 626 if (xfs_isiflocked(ip)) 627 io_schedule(); 628 } while (!xfs_iflock_nowait(ip)); 629 630 finish_wait(wq, &wait.wait); 631 } 632 633 STATIC uint 634 _xfs_dic2xflags( 635 __uint16_t di_flags, 636 uint64_t di_flags2, 637 bool has_attr) 638 { 639 uint flags = 0; 640 641 if (di_flags & XFS_DIFLAG_ANY) { 642 if (di_flags & XFS_DIFLAG_REALTIME) 643 flags |= FS_XFLAG_REALTIME; 644 if (di_flags & XFS_DIFLAG_PREALLOC) 645 flags |= FS_XFLAG_PREALLOC; 646 if (di_flags & XFS_DIFLAG_IMMUTABLE) 647 flags |= FS_XFLAG_IMMUTABLE; 648 if (di_flags & XFS_DIFLAG_APPEND) 649 flags |= FS_XFLAG_APPEND; 650 if (di_flags & XFS_DIFLAG_SYNC) 651 flags |= FS_XFLAG_SYNC; 652 if (di_flags & XFS_DIFLAG_NOATIME) 653 flags |= FS_XFLAG_NOATIME; 654 if (di_flags & XFS_DIFLAG_NODUMP) 655 flags |= FS_XFLAG_NODUMP; 656 if (di_flags & XFS_DIFLAG_RTINHERIT) 657 flags |= FS_XFLAG_RTINHERIT; 658 if (di_flags & XFS_DIFLAG_PROJINHERIT) 659 flags |= FS_XFLAG_PROJINHERIT; 660 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 661 flags |= FS_XFLAG_NOSYMLINKS; 662 if (di_flags & XFS_DIFLAG_EXTSIZE) 663 flags |= FS_XFLAG_EXTSIZE; 664 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 665 flags |= FS_XFLAG_EXTSZINHERIT; 666 if (di_flags & XFS_DIFLAG_NODEFRAG) 667 flags |= FS_XFLAG_NODEFRAG; 668 if (di_flags & XFS_DIFLAG_FILESTREAM) 669 flags |= FS_XFLAG_FILESTREAM; 670 } 671 672 if (di_flags2 & XFS_DIFLAG2_ANY) { 673 if (di_flags2 & XFS_DIFLAG2_DAX) 674 flags |= FS_XFLAG_DAX; 675 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 676 flags |= FS_XFLAG_COWEXTSIZE; 677 } 678 679 if (has_attr) 680 flags |= FS_XFLAG_HASATTR; 681 682 return flags; 683 } 684 685 uint 686 xfs_ip2xflags( 687 struct xfs_inode *ip) 688 { 689 struct xfs_icdinode *dic = &ip->i_d; 690 691 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 692 } 693 694 /* 695 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 696 * is allowed, otherwise it has to be an exact match. If a CI match is found, 697 * ci_name->name will point to a the actual name (caller must free) or 698 * will be set to NULL if an exact match is found. 699 */ 700 int 701 xfs_lookup( 702 xfs_inode_t *dp, 703 struct xfs_name *name, 704 xfs_inode_t **ipp, 705 struct xfs_name *ci_name) 706 { 707 xfs_ino_t inum; 708 int error; 709 710 trace_xfs_lookup(dp, name); 711 712 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 713 return -EIO; 714 715 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 716 if (error) 717 goto out_unlock; 718 719 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 720 if (error) 721 goto out_free_name; 722 723 return 0; 724 725 out_free_name: 726 if (ci_name) 727 kmem_free(ci_name->name); 728 out_unlock: 729 *ipp = NULL; 730 return error; 731 } 732 733 /* 734 * Allocate an inode on disk and return a copy of its in-core version. 735 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 736 * appropriately within the inode. The uid and gid for the inode are 737 * set according to the contents of the given cred structure. 738 * 739 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 740 * has a free inode available, call xfs_iget() to obtain the in-core 741 * version of the allocated inode. Finally, fill in the inode and 742 * log its initial contents. In this case, ialloc_context would be 743 * set to NULL. 744 * 745 * If xfs_dialloc() does not have an available inode, it will replenish 746 * its supply by doing an allocation. Since we can only do one 747 * allocation within a transaction without deadlocks, we must commit 748 * the current transaction before returning the inode itself. 749 * In this case, therefore, we will set ialloc_context and return. 750 * The caller should then commit the current transaction, start a new 751 * transaction, and call xfs_ialloc() again to actually get the inode. 752 * 753 * To ensure that some other process does not grab the inode that 754 * was allocated during the first call to xfs_ialloc(), this routine 755 * also returns the [locked] bp pointing to the head of the freelist 756 * as ialloc_context. The caller should hold this buffer across 757 * the commit and pass it back into this routine on the second call. 758 * 759 * If we are allocating quota inodes, we do not have a parent inode 760 * to attach to or associate with (i.e. pip == NULL) because they 761 * are not linked into the directory structure - they are attached 762 * directly to the superblock - and so have no parent. 763 */ 764 static int 765 xfs_ialloc( 766 xfs_trans_t *tp, 767 xfs_inode_t *pip, 768 umode_t mode, 769 xfs_nlink_t nlink, 770 xfs_dev_t rdev, 771 prid_t prid, 772 int okalloc, 773 xfs_buf_t **ialloc_context, 774 xfs_inode_t **ipp) 775 { 776 struct xfs_mount *mp = tp->t_mountp; 777 xfs_ino_t ino; 778 xfs_inode_t *ip; 779 uint flags; 780 int error; 781 struct timespec tv; 782 struct inode *inode; 783 784 /* 785 * Call the space management code to pick 786 * the on-disk inode to be allocated. 787 */ 788 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 789 ialloc_context, &ino); 790 if (error) 791 return error; 792 if (*ialloc_context || ino == NULLFSINO) { 793 *ipp = NULL; 794 return 0; 795 } 796 ASSERT(*ialloc_context == NULL); 797 798 /* 799 * Get the in-core inode with the lock held exclusively. 800 * This is because we're setting fields here we need 801 * to prevent others from looking at until we're done. 802 */ 803 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 804 XFS_ILOCK_EXCL, &ip); 805 if (error) 806 return error; 807 ASSERT(ip != NULL); 808 inode = VFS_I(ip); 809 810 /* 811 * We always convert v1 inodes to v2 now - we only support filesystems 812 * with >= v2 inode capability, so there is no reason for ever leaving 813 * an inode in v1 format. 814 */ 815 if (ip->i_d.di_version == 1) 816 ip->i_d.di_version = 2; 817 818 inode->i_mode = mode; 819 set_nlink(inode, nlink); 820 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 821 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 822 xfs_set_projid(ip, prid); 823 824 if (pip && XFS_INHERIT_GID(pip)) { 825 ip->i_d.di_gid = pip->i_d.di_gid; 826 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 827 inode->i_mode |= S_ISGID; 828 } 829 830 /* 831 * If the group ID of the new file does not match the effective group 832 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 833 * (and only if the irix_sgid_inherit compatibility variable is set). 834 */ 835 if ((irix_sgid_inherit) && 836 (inode->i_mode & S_ISGID) && 837 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) 838 inode->i_mode &= ~S_ISGID; 839 840 ip->i_d.di_size = 0; 841 ip->i_d.di_nextents = 0; 842 ASSERT(ip->i_d.di_nblocks == 0); 843 844 tv = current_time(inode); 845 inode->i_mtime = tv; 846 inode->i_atime = tv; 847 inode->i_ctime = tv; 848 849 ip->i_d.di_extsize = 0; 850 ip->i_d.di_dmevmask = 0; 851 ip->i_d.di_dmstate = 0; 852 ip->i_d.di_flags = 0; 853 854 if (ip->i_d.di_version == 3) { 855 inode->i_version = 1; 856 ip->i_d.di_flags2 = 0; 857 ip->i_d.di_cowextsize = 0; 858 ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec; 859 ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec; 860 } 861 862 863 flags = XFS_ILOG_CORE; 864 switch (mode & S_IFMT) { 865 case S_IFIFO: 866 case S_IFCHR: 867 case S_IFBLK: 868 case S_IFSOCK: 869 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 870 ip->i_df.if_u2.if_rdev = rdev; 871 ip->i_df.if_flags = 0; 872 flags |= XFS_ILOG_DEV; 873 break; 874 case S_IFREG: 875 case S_IFDIR: 876 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 877 uint64_t di_flags2 = 0; 878 uint di_flags = 0; 879 880 if (S_ISDIR(mode)) { 881 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 882 di_flags |= XFS_DIFLAG_RTINHERIT; 883 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 884 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 885 ip->i_d.di_extsize = pip->i_d.di_extsize; 886 } 887 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 888 di_flags |= XFS_DIFLAG_PROJINHERIT; 889 } else if (S_ISREG(mode)) { 890 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 891 di_flags |= XFS_DIFLAG_REALTIME; 892 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 893 di_flags |= XFS_DIFLAG_EXTSIZE; 894 ip->i_d.di_extsize = pip->i_d.di_extsize; 895 } 896 } 897 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 898 xfs_inherit_noatime) 899 di_flags |= XFS_DIFLAG_NOATIME; 900 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 901 xfs_inherit_nodump) 902 di_flags |= XFS_DIFLAG_NODUMP; 903 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 904 xfs_inherit_sync) 905 di_flags |= XFS_DIFLAG_SYNC; 906 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 907 xfs_inherit_nosymlinks) 908 di_flags |= XFS_DIFLAG_NOSYMLINKS; 909 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 910 xfs_inherit_nodefrag) 911 di_flags |= XFS_DIFLAG_NODEFRAG; 912 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 913 di_flags |= XFS_DIFLAG_FILESTREAM; 914 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 915 di_flags2 |= XFS_DIFLAG2_DAX; 916 917 ip->i_d.di_flags |= di_flags; 918 ip->i_d.di_flags2 |= di_flags2; 919 } 920 if (pip && 921 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && 922 pip->i_d.di_version == 3 && 923 ip->i_d.di_version == 3) { 924 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 925 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 926 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 927 } 928 } 929 /* FALLTHROUGH */ 930 case S_IFLNK: 931 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 932 ip->i_df.if_flags = XFS_IFEXTENTS; 933 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 934 ip->i_df.if_u1.if_extents = NULL; 935 break; 936 default: 937 ASSERT(0); 938 } 939 /* 940 * Attribute fork settings for new inode. 941 */ 942 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 943 ip->i_d.di_anextents = 0; 944 945 /* 946 * Log the new values stuffed into the inode. 947 */ 948 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 949 xfs_trans_log_inode(tp, ip, flags); 950 951 /* now that we have an i_mode we can setup the inode structure */ 952 xfs_setup_inode(ip); 953 954 *ipp = ip; 955 return 0; 956 } 957 958 /* 959 * Allocates a new inode from disk and return a pointer to the 960 * incore copy. This routine will internally commit the current 961 * transaction and allocate a new one if the Space Manager needed 962 * to do an allocation to replenish the inode free-list. 963 * 964 * This routine is designed to be called from xfs_create and 965 * xfs_create_dir. 966 * 967 */ 968 int 969 xfs_dir_ialloc( 970 xfs_trans_t **tpp, /* input: current transaction; 971 output: may be a new transaction. */ 972 xfs_inode_t *dp, /* directory within whose allocate 973 the inode. */ 974 umode_t mode, 975 xfs_nlink_t nlink, 976 xfs_dev_t rdev, 977 prid_t prid, /* project id */ 978 int okalloc, /* ok to allocate new space */ 979 xfs_inode_t **ipp, /* pointer to inode; it will be 980 locked. */ 981 int *committed) 982 983 { 984 xfs_trans_t *tp; 985 xfs_inode_t *ip; 986 xfs_buf_t *ialloc_context = NULL; 987 int code; 988 void *dqinfo; 989 uint tflags; 990 991 tp = *tpp; 992 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 993 994 /* 995 * xfs_ialloc will return a pointer to an incore inode if 996 * the Space Manager has an available inode on the free 997 * list. Otherwise, it will do an allocation and replenish 998 * the freelist. Since we can only do one allocation per 999 * transaction without deadlocks, we will need to commit the 1000 * current transaction and start a new one. We will then 1001 * need to call xfs_ialloc again to get the inode. 1002 * 1003 * If xfs_ialloc did an allocation to replenish the freelist, 1004 * it returns the bp containing the head of the freelist as 1005 * ialloc_context. We will hold a lock on it across the 1006 * transaction commit so that no other process can steal 1007 * the inode(s) that we've just allocated. 1008 */ 1009 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc, 1010 &ialloc_context, &ip); 1011 1012 /* 1013 * Return an error if we were unable to allocate a new inode. 1014 * This should only happen if we run out of space on disk or 1015 * encounter a disk error. 1016 */ 1017 if (code) { 1018 *ipp = NULL; 1019 return code; 1020 } 1021 if (!ialloc_context && !ip) { 1022 *ipp = NULL; 1023 return -ENOSPC; 1024 } 1025 1026 /* 1027 * If the AGI buffer is non-NULL, then we were unable to get an 1028 * inode in one operation. We need to commit the current 1029 * transaction and call xfs_ialloc() again. It is guaranteed 1030 * to succeed the second time. 1031 */ 1032 if (ialloc_context) { 1033 /* 1034 * Normally, xfs_trans_commit releases all the locks. 1035 * We call bhold to hang on to the ialloc_context across 1036 * the commit. Holding this buffer prevents any other 1037 * processes from doing any allocations in this 1038 * allocation group. 1039 */ 1040 xfs_trans_bhold(tp, ialloc_context); 1041 1042 /* 1043 * We want the quota changes to be associated with the next 1044 * transaction, NOT this one. So, detach the dqinfo from this 1045 * and attach it to the next transaction. 1046 */ 1047 dqinfo = NULL; 1048 tflags = 0; 1049 if (tp->t_dqinfo) { 1050 dqinfo = (void *)tp->t_dqinfo; 1051 tp->t_dqinfo = NULL; 1052 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1053 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1054 } 1055 1056 code = xfs_trans_roll(&tp, NULL); 1057 if (committed != NULL) 1058 *committed = 1; 1059 1060 /* 1061 * Re-attach the quota info that we detached from prev trx. 1062 */ 1063 if (dqinfo) { 1064 tp->t_dqinfo = dqinfo; 1065 tp->t_flags |= tflags; 1066 } 1067 1068 if (code) { 1069 xfs_buf_relse(ialloc_context); 1070 *tpp = tp; 1071 *ipp = NULL; 1072 return code; 1073 } 1074 xfs_trans_bjoin(tp, ialloc_context); 1075 1076 /* 1077 * Call ialloc again. Since we've locked out all 1078 * other allocations in this allocation group, 1079 * this call should always succeed. 1080 */ 1081 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1082 okalloc, &ialloc_context, &ip); 1083 1084 /* 1085 * If we get an error at this point, return to the caller 1086 * so that the current transaction can be aborted. 1087 */ 1088 if (code) { 1089 *tpp = tp; 1090 *ipp = NULL; 1091 return code; 1092 } 1093 ASSERT(!ialloc_context && ip); 1094 1095 } else { 1096 if (committed != NULL) 1097 *committed = 0; 1098 } 1099 1100 *ipp = ip; 1101 *tpp = tp; 1102 1103 return 0; 1104 } 1105 1106 /* 1107 * Decrement the link count on an inode & log the change. If this causes the 1108 * link count to go to zero, move the inode to AGI unlinked list so that it can 1109 * be freed when the last active reference goes away via xfs_inactive(). 1110 */ 1111 static int /* error */ 1112 xfs_droplink( 1113 xfs_trans_t *tp, 1114 xfs_inode_t *ip) 1115 { 1116 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1117 1118 drop_nlink(VFS_I(ip)); 1119 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1120 1121 if (VFS_I(ip)->i_nlink) 1122 return 0; 1123 1124 return xfs_iunlink(tp, ip); 1125 } 1126 1127 /* 1128 * Increment the link count on an inode & log the change. 1129 */ 1130 static int 1131 xfs_bumplink( 1132 xfs_trans_t *tp, 1133 xfs_inode_t *ip) 1134 { 1135 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1136 1137 ASSERT(ip->i_d.di_version > 1); 1138 inc_nlink(VFS_I(ip)); 1139 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1140 return 0; 1141 } 1142 1143 int 1144 xfs_create( 1145 xfs_inode_t *dp, 1146 struct xfs_name *name, 1147 umode_t mode, 1148 xfs_dev_t rdev, 1149 xfs_inode_t **ipp) 1150 { 1151 int is_dir = S_ISDIR(mode); 1152 struct xfs_mount *mp = dp->i_mount; 1153 struct xfs_inode *ip = NULL; 1154 struct xfs_trans *tp = NULL; 1155 int error; 1156 struct xfs_defer_ops dfops; 1157 xfs_fsblock_t first_block; 1158 bool unlock_dp_on_error = false; 1159 prid_t prid; 1160 struct xfs_dquot *udqp = NULL; 1161 struct xfs_dquot *gdqp = NULL; 1162 struct xfs_dquot *pdqp = NULL; 1163 struct xfs_trans_res *tres; 1164 uint resblks; 1165 1166 trace_xfs_create(dp, name); 1167 1168 if (XFS_FORCED_SHUTDOWN(mp)) 1169 return -EIO; 1170 1171 prid = xfs_get_initial_prid(dp); 1172 1173 /* 1174 * Make sure that we have allocated dquot(s) on disk. 1175 */ 1176 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1177 xfs_kgid_to_gid(current_fsgid()), prid, 1178 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1179 &udqp, &gdqp, &pdqp); 1180 if (error) 1181 return error; 1182 1183 if (is_dir) { 1184 rdev = 0; 1185 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1186 tres = &M_RES(mp)->tr_mkdir; 1187 } else { 1188 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1189 tres = &M_RES(mp)->tr_create; 1190 } 1191 1192 /* 1193 * Initially assume that the file does not exist and 1194 * reserve the resources for that case. If that is not 1195 * the case we'll drop the one we have and get a more 1196 * appropriate transaction later. 1197 */ 1198 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1199 if (error == -ENOSPC) { 1200 /* flush outstanding delalloc blocks and retry */ 1201 xfs_flush_inodes(mp); 1202 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1203 } 1204 if (error == -ENOSPC) { 1205 /* No space at all so try a "no-allocation" reservation */ 1206 resblks = 0; 1207 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp); 1208 } 1209 if (error) 1210 goto out_release_inode; 1211 1212 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1213 unlock_dp_on_error = true; 1214 1215 xfs_defer_init(&dfops, &first_block); 1216 1217 /* 1218 * Reserve disk quota and the inode. 1219 */ 1220 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1221 pdqp, resblks, 1, 0); 1222 if (error) 1223 goto out_trans_cancel; 1224 1225 if (!resblks) { 1226 error = xfs_dir_canenter(tp, dp, name); 1227 if (error) 1228 goto out_trans_cancel; 1229 } 1230 1231 /* 1232 * A newly created regular or special file just has one directory 1233 * entry pointing to them, but a directory also the "." entry 1234 * pointing to itself. 1235 */ 1236 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, 1237 prid, resblks > 0, &ip, NULL); 1238 if (error) 1239 goto out_trans_cancel; 1240 1241 /* 1242 * Now we join the directory inode to the transaction. We do not do it 1243 * earlier because xfs_dir_ialloc might commit the previous transaction 1244 * (and release all the locks). An error from here on will result in 1245 * the transaction cancel unlocking dp so don't do it explicitly in the 1246 * error path. 1247 */ 1248 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1249 unlock_dp_on_error = false; 1250 1251 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1252 &first_block, &dfops, resblks ? 1253 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1254 if (error) { 1255 ASSERT(error != -ENOSPC); 1256 goto out_trans_cancel; 1257 } 1258 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1259 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1260 1261 if (is_dir) { 1262 error = xfs_dir_init(tp, ip, dp); 1263 if (error) 1264 goto out_bmap_cancel; 1265 1266 error = xfs_bumplink(tp, dp); 1267 if (error) 1268 goto out_bmap_cancel; 1269 } 1270 1271 /* 1272 * If this is a synchronous mount, make sure that the 1273 * create transaction goes to disk before returning to 1274 * the user. 1275 */ 1276 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1277 xfs_trans_set_sync(tp); 1278 1279 /* 1280 * Attach the dquot(s) to the inodes and modify them incore. 1281 * These ids of the inode couldn't have changed since the new 1282 * inode has been locked ever since it was created. 1283 */ 1284 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1285 1286 error = xfs_defer_finish(&tp, &dfops, NULL); 1287 if (error) 1288 goto out_bmap_cancel; 1289 1290 error = xfs_trans_commit(tp); 1291 if (error) 1292 goto out_release_inode; 1293 1294 xfs_qm_dqrele(udqp); 1295 xfs_qm_dqrele(gdqp); 1296 xfs_qm_dqrele(pdqp); 1297 1298 *ipp = ip; 1299 return 0; 1300 1301 out_bmap_cancel: 1302 xfs_defer_cancel(&dfops); 1303 out_trans_cancel: 1304 xfs_trans_cancel(tp); 1305 out_release_inode: 1306 /* 1307 * Wait until after the current transaction is aborted to finish the 1308 * setup of the inode and release the inode. This prevents recursive 1309 * transactions and deadlocks from xfs_inactive. 1310 */ 1311 if (ip) { 1312 xfs_finish_inode_setup(ip); 1313 IRELE(ip); 1314 } 1315 1316 xfs_qm_dqrele(udqp); 1317 xfs_qm_dqrele(gdqp); 1318 xfs_qm_dqrele(pdqp); 1319 1320 if (unlock_dp_on_error) 1321 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1322 return error; 1323 } 1324 1325 int 1326 xfs_create_tmpfile( 1327 struct xfs_inode *dp, 1328 struct dentry *dentry, 1329 umode_t mode, 1330 struct xfs_inode **ipp) 1331 { 1332 struct xfs_mount *mp = dp->i_mount; 1333 struct xfs_inode *ip = NULL; 1334 struct xfs_trans *tp = NULL; 1335 int error; 1336 prid_t prid; 1337 struct xfs_dquot *udqp = NULL; 1338 struct xfs_dquot *gdqp = NULL; 1339 struct xfs_dquot *pdqp = NULL; 1340 struct xfs_trans_res *tres; 1341 uint resblks; 1342 1343 if (XFS_FORCED_SHUTDOWN(mp)) 1344 return -EIO; 1345 1346 prid = xfs_get_initial_prid(dp); 1347 1348 /* 1349 * Make sure that we have allocated dquot(s) on disk. 1350 */ 1351 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1352 xfs_kgid_to_gid(current_fsgid()), prid, 1353 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1354 &udqp, &gdqp, &pdqp); 1355 if (error) 1356 return error; 1357 1358 resblks = XFS_IALLOC_SPACE_RES(mp); 1359 tres = &M_RES(mp)->tr_create_tmpfile; 1360 1361 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1362 if (error == -ENOSPC) { 1363 /* No space at all so try a "no-allocation" reservation */ 1364 resblks = 0; 1365 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp); 1366 } 1367 if (error) 1368 goto out_release_inode; 1369 1370 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1371 pdqp, resblks, 1, 0); 1372 if (error) 1373 goto out_trans_cancel; 1374 1375 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, 1376 prid, resblks > 0, &ip, NULL); 1377 if (error) 1378 goto out_trans_cancel; 1379 1380 if (mp->m_flags & XFS_MOUNT_WSYNC) 1381 xfs_trans_set_sync(tp); 1382 1383 /* 1384 * Attach the dquot(s) to the inodes and modify them incore. 1385 * These ids of the inode couldn't have changed since the new 1386 * inode has been locked ever since it was created. 1387 */ 1388 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1389 1390 error = xfs_iunlink(tp, ip); 1391 if (error) 1392 goto out_trans_cancel; 1393 1394 error = xfs_trans_commit(tp); 1395 if (error) 1396 goto out_release_inode; 1397 1398 xfs_qm_dqrele(udqp); 1399 xfs_qm_dqrele(gdqp); 1400 xfs_qm_dqrele(pdqp); 1401 1402 *ipp = ip; 1403 return 0; 1404 1405 out_trans_cancel: 1406 xfs_trans_cancel(tp); 1407 out_release_inode: 1408 /* 1409 * Wait until after the current transaction is aborted to finish the 1410 * setup of the inode and release the inode. This prevents recursive 1411 * transactions and deadlocks from xfs_inactive. 1412 */ 1413 if (ip) { 1414 xfs_finish_inode_setup(ip); 1415 IRELE(ip); 1416 } 1417 1418 xfs_qm_dqrele(udqp); 1419 xfs_qm_dqrele(gdqp); 1420 xfs_qm_dqrele(pdqp); 1421 1422 return error; 1423 } 1424 1425 int 1426 xfs_link( 1427 xfs_inode_t *tdp, 1428 xfs_inode_t *sip, 1429 struct xfs_name *target_name) 1430 { 1431 xfs_mount_t *mp = tdp->i_mount; 1432 xfs_trans_t *tp; 1433 int error; 1434 struct xfs_defer_ops dfops; 1435 xfs_fsblock_t first_block; 1436 int resblks; 1437 1438 trace_xfs_link(tdp, target_name); 1439 1440 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1441 1442 if (XFS_FORCED_SHUTDOWN(mp)) 1443 return -EIO; 1444 1445 error = xfs_qm_dqattach(sip, 0); 1446 if (error) 1447 goto std_return; 1448 1449 error = xfs_qm_dqattach(tdp, 0); 1450 if (error) 1451 goto std_return; 1452 1453 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1454 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1455 if (error == -ENOSPC) { 1456 resblks = 0; 1457 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1458 } 1459 if (error) 1460 goto std_return; 1461 1462 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL); 1463 1464 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1465 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1466 1467 /* 1468 * If we are using project inheritance, we only allow hard link 1469 * creation in our tree when the project IDs are the same; else 1470 * the tree quota mechanism could be circumvented. 1471 */ 1472 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1473 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1474 error = -EXDEV; 1475 goto error_return; 1476 } 1477 1478 if (!resblks) { 1479 error = xfs_dir_canenter(tp, tdp, target_name); 1480 if (error) 1481 goto error_return; 1482 } 1483 1484 xfs_defer_init(&dfops, &first_block); 1485 1486 /* 1487 * Handle initial link state of O_TMPFILE inode 1488 */ 1489 if (VFS_I(sip)->i_nlink == 0) { 1490 error = xfs_iunlink_remove(tp, sip); 1491 if (error) 1492 goto error_return; 1493 } 1494 1495 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1496 &first_block, &dfops, resblks); 1497 if (error) 1498 goto error_return; 1499 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1500 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1501 1502 error = xfs_bumplink(tp, sip); 1503 if (error) 1504 goto error_return; 1505 1506 /* 1507 * If this is a synchronous mount, make sure that the 1508 * link transaction goes to disk before returning to 1509 * the user. 1510 */ 1511 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1512 xfs_trans_set_sync(tp); 1513 1514 error = xfs_defer_finish(&tp, &dfops, NULL); 1515 if (error) { 1516 xfs_defer_cancel(&dfops); 1517 goto error_return; 1518 } 1519 1520 return xfs_trans_commit(tp); 1521 1522 error_return: 1523 xfs_trans_cancel(tp); 1524 std_return: 1525 return error; 1526 } 1527 1528 /* 1529 * Free up the underlying blocks past new_size. The new size must be smaller 1530 * than the current size. This routine can be used both for the attribute and 1531 * data fork, and does not modify the inode size, which is left to the caller. 1532 * 1533 * The transaction passed to this routine must have made a permanent log 1534 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1535 * given transaction and start new ones, so make sure everything involved in 1536 * the transaction is tidy before calling here. Some transaction will be 1537 * returned to the caller to be committed. The incoming transaction must 1538 * already include the inode, and both inode locks must be held exclusively. 1539 * The inode must also be "held" within the transaction. On return the inode 1540 * will be "held" within the returned transaction. This routine does NOT 1541 * require any disk space to be reserved for it within the transaction. 1542 * 1543 * If we get an error, we must return with the inode locked and linked into the 1544 * current transaction. This keeps things simple for the higher level code, 1545 * because it always knows that the inode is locked and held in the transaction 1546 * that returns to it whether errors occur or not. We don't mark the inode 1547 * dirty on error so that transactions can be easily aborted if possible. 1548 */ 1549 int 1550 xfs_itruncate_extents( 1551 struct xfs_trans **tpp, 1552 struct xfs_inode *ip, 1553 int whichfork, 1554 xfs_fsize_t new_size) 1555 { 1556 struct xfs_mount *mp = ip->i_mount; 1557 struct xfs_trans *tp = *tpp; 1558 struct xfs_defer_ops dfops; 1559 xfs_fsblock_t first_block; 1560 xfs_fileoff_t first_unmap_block; 1561 xfs_fileoff_t last_block; 1562 xfs_filblks_t unmap_len; 1563 int error = 0; 1564 int done = 0; 1565 1566 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1567 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1568 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1569 ASSERT(new_size <= XFS_ISIZE(ip)); 1570 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1571 ASSERT(ip->i_itemp != NULL); 1572 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1573 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1574 1575 trace_xfs_itruncate_extents_start(ip, new_size); 1576 1577 /* 1578 * Since it is possible for space to become allocated beyond 1579 * the end of the file (in a crash where the space is allocated 1580 * but the inode size is not yet updated), simply remove any 1581 * blocks which show up between the new EOF and the maximum 1582 * possible file size. If the first block to be removed is 1583 * beyond the maximum file size (ie it is the same as last_block), 1584 * then there is nothing to do. 1585 */ 1586 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1587 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1588 if (first_unmap_block == last_block) 1589 return 0; 1590 1591 ASSERT(first_unmap_block < last_block); 1592 unmap_len = last_block - first_unmap_block + 1; 1593 while (!done) { 1594 xfs_defer_init(&dfops, &first_block); 1595 error = xfs_bunmapi(tp, ip, 1596 first_unmap_block, unmap_len, 1597 xfs_bmapi_aflag(whichfork), 1598 XFS_ITRUNC_MAX_EXTENTS, 1599 &first_block, &dfops, 1600 &done); 1601 if (error) 1602 goto out_bmap_cancel; 1603 1604 /* 1605 * Duplicate the transaction that has the permanent 1606 * reservation and commit the old transaction. 1607 */ 1608 error = xfs_defer_finish(&tp, &dfops, ip); 1609 if (error) 1610 goto out_bmap_cancel; 1611 1612 error = xfs_trans_roll(&tp, ip); 1613 if (error) 1614 goto out; 1615 } 1616 1617 /* Remove all pending CoW reservations. */ 1618 error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block, 1619 last_block, true); 1620 if (error) 1621 goto out; 1622 1623 /* 1624 * Clear the reflink flag if we truncated everything. 1625 */ 1626 if (ip->i_d.di_nblocks == 0 && xfs_is_reflink_inode(ip)) { 1627 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1628 xfs_inode_clear_cowblocks_tag(ip); 1629 } 1630 1631 /* 1632 * Always re-log the inode so that our permanent transaction can keep 1633 * on rolling it forward in the log. 1634 */ 1635 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1636 1637 trace_xfs_itruncate_extents_end(ip, new_size); 1638 1639 out: 1640 *tpp = tp; 1641 return error; 1642 out_bmap_cancel: 1643 /* 1644 * If the bunmapi call encounters an error, return to the caller where 1645 * the transaction can be properly aborted. We just need to make sure 1646 * we're not holding any resources that we were not when we came in. 1647 */ 1648 xfs_defer_cancel(&dfops); 1649 goto out; 1650 } 1651 1652 int 1653 xfs_release( 1654 xfs_inode_t *ip) 1655 { 1656 xfs_mount_t *mp = ip->i_mount; 1657 int error; 1658 1659 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1660 return 0; 1661 1662 /* If this is a read-only mount, don't do this (would generate I/O) */ 1663 if (mp->m_flags & XFS_MOUNT_RDONLY) 1664 return 0; 1665 1666 if (!XFS_FORCED_SHUTDOWN(mp)) { 1667 int truncated; 1668 1669 /* 1670 * If we previously truncated this file and removed old data 1671 * in the process, we want to initiate "early" writeout on 1672 * the last close. This is an attempt to combat the notorious 1673 * NULL files problem which is particularly noticeable from a 1674 * truncate down, buffered (re-)write (delalloc), followed by 1675 * a crash. What we are effectively doing here is 1676 * significantly reducing the time window where we'd otherwise 1677 * be exposed to that problem. 1678 */ 1679 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1680 if (truncated) { 1681 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1682 if (ip->i_delayed_blks > 0) { 1683 error = filemap_flush(VFS_I(ip)->i_mapping); 1684 if (error) 1685 return error; 1686 } 1687 } 1688 } 1689 1690 if (VFS_I(ip)->i_nlink == 0) 1691 return 0; 1692 1693 if (xfs_can_free_eofblocks(ip, false)) { 1694 1695 /* 1696 * Check if the inode is being opened, written and closed 1697 * frequently and we have delayed allocation blocks outstanding 1698 * (e.g. streaming writes from the NFS server), truncating the 1699 * blocks past EOF will cause fragmentation to occur. 1700 * 1701 * In this case don't do the truncation, but we have to be 1702 * careful how we detect this case. Blocks beyond EOF show up as 1703 * i_delayed_blks even when the inode is clean, so we need to 1704 * truncate them away first before checking for a dirty release. 1705 * Hence on the first dirty close we will still remove the 1706 * speculative allocation, but after that we will leave it in 1707 * place. 1708 */ 1709 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1710 return 0; 1711 /* 1712 * If we can't get the iolock just skip truncating the blocks 1713 * past EOF because we could deadlock with the mmap_sem 1714 * otherwise. We'll get another chance to drop them once the 1715 * last reference to the inode is dropped, so we'll never leak 1716 * blocks permanently. 1717 */ 1718 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1719 error = xfs_free_eofblocks(ip); 1720 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1721 if (error) 1722 return error; 1723 } 1724 1725 /* delalloc blocks after truncation means it really is dirty */ 1726 if (ip->i_delayed_blks) 1727 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1728 } 1729 return 0; 1730 } 1731 1732 /* 1733 * xfs_inactive_truncate 1734 * 1735 * Called to perform a truncate when an inode becomes unlinked. 1736 */ 1737 STATIC int 1738 xfs_inactive_truncate( 1739 struct xfs_inode *ip) 1740 { 1741 struct xfs_mount *mp = ip->i_mount; 1742 struct xfs_trans *tp; 1743 int error; 1744 1745 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1746 if (error) { 1747 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1748 return error; 1749 } 1750 1751 xfs_ilock(ip, XFS_ILOCK_EXCL); 1752 xfs_trans_ijoin(tp, ip, 0); 1753 1754 /* 1755 * Log the inode size first to prevent stale data exposure in the event 1756 * of a system crash before the truncate completes. See the related 1757 * comment in xfs_vn_setattr_size() for details. 1758 */ 1759 ip->i_d.di_size = 0; 1760 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1761 1762 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1763 if (error) 1764 goto error_trans_cancel; 1765 1766 ASSERT(ip->i_d.di_nextents == 0); 1767 1768 error = xfs_trans_commit(tp); 1769 if (error) 1770 goto error_unlock; 1771 1772 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1773 return 0; 1774 1775 error_trans_cancel: 1776 xfs_trans_cancel(tp); 1777 error_unlock: 1778 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1779 return error; 1780 } 1781 1782 /* 1783 * xfs_inactive_ifree() 1784 * 1785 * Perform the inode free when an inode is unlinked. 1786 */ 1787 STATIC int 1788 xfs_inactive_ifree( 1789 struct xfs_inode *ip) 1790 { 1791 struct xfs_defer_ops dfops; 1792 xfs_fsblock_t first_block; 1793 struct xfs_mount *mp = ip->i_mount; 1794 struct xfs_trans *tp; 1795 int error; 1796 1797 /* 1798 * We try to use a per-AG reservation for any block needed by the finobt 1799 * tree, but as the finobt feature predates the per-AG reservation 1800 * support a degraded file system might not have enough space for the 1801 * reservation at mount time. In that case try to dip into the reserved 1802 * pool and pray. 1803 * 1804 * Send a warning if the reservation does happen to fail, as the inode 1805 * now remains allocated and sits on the unlinked list until the fs is 1806 * repaired. 1807 */ 1808 if (unlikely(mp->m_inotbt_nores)) { 1809 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1810 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1811 &tp); 1812 } else { 1813 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1814 } 1815 if (error) { 1816 if (error == -ENOSPC) { 1817 xfs_warn_ratelimited(mp, 1818 "Failed to remove inode(s) from unlinked list. " 1819 "Please free space, unmount and run xfs_repair."); 1820 } else { 1821 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1822 } 1823 return error; 1824 } 1825 1826 xfs_ilock(ip, XFS_ILOCK_EXCL); 1827 xfs_trans_ijoin(tp, ip, 0); 1828 1829 xfs_defer_init(&dfops, &first_block); 1830 error = xfs_ifree(tp, ip, &dfops); 1831 if (error) { 1832 /* 1833 * If we fail to free the inode, shut down. The cancel 1834 * might do that, we need to make sure. Otherwise the 1835 * inode might be lost for a long time or forever. 1836 */ 1837 if (!XFS_FORCED_SHUTDOWN(mp)) { 1838 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1839 __func__, error); 1840 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1841 } 1842 xfs_trans_cancel(tp); 1843 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1844 return error; 1845 } 1846 1847 /* 1848 * Credit the quota account(s). The inode is gone. 1849 */ 1850 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1851 1852 /* 1853 * Just ignore errors at this point. There is nothing we can do except 1854 * to try to keep going. Make sure it's not a silent error. 1855 */ 1856 error = xfs_defer_finish(&tp, &dfops, NULL); 1857 if (error) { 1858 xfs_notice(mp, "%s: xfs_defer_finish returned error %d", 1859 __func__, error); 1860 xfs_defer_cancel(&dfops); 1861 } 1862 error = xfs_trans_commit(tp); 1863 if (error) 1864 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1865 __func__, error); 1866 1867 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1868 return 0; 1869 } 1870 1871 /* 1872 * xfs_inactive 1873 * 1874 * This is called when the vnode reference count for the vnode 1875 * goes to zero. If the file has been unlinked, then it must 1876 * now be truncated. Also, we clear all of the read-ahead state 1877 * kept for the inode here since the file is now closed. 1878 */ 1879 void 1880 xfs_inactive( 1881 xfs_inode_t *ip) 1882 { 1883 struct xfs_mount *mp; 1884 int error; 1885 int truncate = 0; 1886 1887 /* 1888 * If the inode is already free, then there can be nothing 1889 * to clean up here. 1890 */ 1891 if (VFS_I(ip)->i_mode == 0) { 1892 ASSERT(ip->i_df.if_real_bytes == 0); 1893 ASSERT(ip->i_df.if_broot_bytes == 0); 1894 return; 1895 } 1896 1897 mp = ip->i_mount; 1898 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1899 1900 /* If this is a read-only mount, don't do this (would generate I/O) */ 1901 if (mp->m_flags & XFS_MOUNT_RDONLY) 1902 return; 1903 1904 if (VFS_I(ip)->i_nlink != 0) { 1905 /* 1906 * force is true because we are evicting an inode from the 1907 * cache. Post-eof blocks must be freed, lest we end up with 1908 * broken free space accounting. 1909 */ 1910 if (xfs_can_free_eofblocks(ip, true)) { 1911 xfs_ilock(ip, XFS_IOLOCK_EXCL); 1912 xfs_free_eofblocks(ip); 1913 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1914 } 1915 1916 return; 1917 } 1918 1919 if (S_ISREG(VFS_I(ip)->i_mode) && 1920 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1921 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1922 truncate = 1; 1923 1924 error = xfs_qm_dqattach(ip, 0); 1925 if (error) 1926 return; 1927 1928 if (S_ISLNK(VFS_I(ip)->i_mode)) 1929 error = xfs_inactive_symlink(ip); 1930 else if (truncate) 1931 error = xfs_inactive_truncate(ip); 1932 if (error) 1933 return; 1934 1935 /* 1936 * If there are attributes associated with the file then blow them away 1937 * now. The code calls a routine that recursively deconstructs the 1938 * attribute fork. If also blows away the in-core attribute fork. 1939 */ 1940 if (XFS_IFORK_Q(ip)) { 1941 error = xfs_attr_inactive(ip); 1942 if (error) 1943 return; 1944 } 1945 1946 ASSERT(!ip->i_afp); 1947 ASSERT(ip->i_d.di_anextents == 0); 1948 ASSERT(ip->i_d.di_forkoff == 0); 1949 1950 /* 1951 * Free the inode. 1952 */ 1953 error = xfs_inactive_ifree(ip); 1954 if (error) 1955 return; 1956 1957 /* 1958 * Release the dquots held by inode, if any. 1959 */ 1960 xfs_qm_dqdetach(ip); 1961 } 1962 1963 /* 1964 * This is called when the inode's link count goes to 0 or we are creating a 1965 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be 1966 * set to true as the link count is dropped to zero by the VFS after we've 1967 * created the file successfully, so we have to add it to the unlinked list 1968 * while the link count is non-zero. 1969 * 1970 * We place the on-disk inode on a list in the AGI. It will be pulled from this 1971 * list when the inode is freed. 1972 */ 1973 STATIC int 1974 xfs_iunlink( 1975 struct xfs_trans *tp, 1976 struct xfs_inode *ip) 1977 { 1978 xfs_mount_t *mp = tp->t_mountp; 1979 xfs_agi_t *agi; 1980 xfs_dinode_t *dip; 1981 xfs_buf_t *agibp; 1982 xfs_buf_t *ibp; 1983 xfs_agino_t agino; 1984 short bucket_index; 1985 int offset; 1986 int error; 1987 1988 ASSERT(VFS_I(ip)->i_mode != 0); 1989 1990 /* 1991 * Get the agi buffer first. It ensures lock ordering 1992 * on the list. 1993 */ 1994 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1995 if (error) 1996 return error; 1997 agi = XFS_BUF_TO_AGI(agibp); 1998 1999 /* 2000 * Get the index into the agi hash table for the 2001 * list this inode will go on. 2002 */ 2003 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2004 ASSERT(agino != 0); 2005 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2006 ASSERT(agi->agi_unlinked[bucket_index]); 2007 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 2008 2009 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 2010 /* 2011 * There is already another inode in the bucket we need 2012 * to add ourselves to. Add us at the front of the list. 2013 * Here we put the head pointer into our next pointer, 2014 * and then we fall through to point the head at us. 2015 */ 2016 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2017 0, 0); 2018 if (error) 2019 return error; 2020 2021 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 2022 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 2023 offset = ip->i_imap.im_boffset + 2024 offsetof(xfs_dinode_t, di_next_unlinked); 2025 2026 /* need to recalc the inode CRC if appropriate */ 2027 xfs_dinode_calc_crc(mp, dip); 2028 2029 xfs_trans_inode_buf(tp, ibp); 2030 xfs_trans_log_buf(tp, ibp, offset, 2031 (offset + sizeof(xfs_agino_t) - 1)); 2032 xfs_inobp_check(mp, ibp); 2033 } 2034 2035 /* 2036 * Point the bucket head pointer at the inode being inserted. 2037 */ 2038 ASSERT(agino != 0); 2039 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 2040 offset = offsetof(xfs_agi_t, agi_unlinked) + 2041 (sizeof(xfs_agino_t) * bucket_index); 2042 xfs_trans_log_buf(tp, agibp, offset, 2043 (offset + sizeof(xfs_agino_t) - 1)); 2044 return 0; 2045 } 2046 2047 /* 2048 * Pull the on-disk inode from the AGI unlinked list. 2049 */ 2050 STATIC int 2051 xfs_iunlink_remove( 2052 xfs_trans_t *tp, 2053 xfs_inode_t *ip) 2054 { 2055 xfs_ino_t next_ino; 2056 xfs_mount_t *mp; 2057 xfs_agi_t *agi; 2058 xfs_dinode_t *dip; 2059 xfs_buf_t *agibp; 2060 xfs_buf_t *ibp; 2061 xfs_agnumber_t agno; 2062 xfs_agino_t agino; 2063 xfs_agino_t next_agino; 2064 xfs_buf_t *last_ibp; 2065 xfs_dinode_t *last_dip = NULL; 2066 short bucket_index; 2067 int offset, last_offset = 0; 2068 int error; 2069 2070 mp = tp->t_mountp; 2071 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2072 2073 /* 2074 * Get the agi buffer first. It ensures lock ordering 2075 * on the list. 2076 */ 2077 error = xfs_read_agi(mp, tp, agno, &agibp); 2078 if (error) 2079 return error; 2080 2081 agi = XFS_BUF_TO_AGI(agibp); 2082 2083 /* 2084 * Get the index into the agi hash table for the 2085 * list this inode will go on. 2086 */ 2087 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2088 ASSERT(agino != 0); 2089 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2090 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 2091 ASSERT(agi->agi_unlinked[bucket_index]); 2092 2093 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2094 /* 2095 * We're at the head of the list. Get the inode's on-disk 2096 * buffer to see if there is anyone after us on the list. 2097 * Only modify our next pointer if it is not already NULLAGINO. 2098 * This saves us the overhead of dealing with the buffer when 2099 * there is no need to change it. 2100 */ 2101 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2102 0, 0); 2103 if (error) { 2104 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2105 __func__, error); 2106 return error; 2107 } 2108 next_agino = be32_to_cpu(dip->di_next_unlinked); 2109 ASSERT(next_agino != 0); 2110 if (next_agino != NULLAGINO) { 2111 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2112 offset = ip->i_imap.im_boffset + 2113 offsetof(xfs_dinode_t, di_next_unlinked); 2114 2115 /* need to recalc the inode CRC if appropriate */ 2116 xfs_dinode_calc_crc(mp, dip); 2117 2118 xfs_trans_inode_buf(tp, ibp); 2119 xfs_trans_log_buf(tp, ibp, offset, 2120 (offset + sizeof(xfs_agino_t) - 1)); 2121 xfs_inobp_check(mp, ibp); 2122 } else { 2123 xfs_trans_brelse(tp, ibp); 2124 } 2125 /* 2126 * Point the bucket head pointer at the next inode. 2127 */ 2128 ASSERT(next_agino != 0); 2129 ASSERT(next_agino != agino); 2130 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2131 offset = offsetof(xfs_agi_t, agi_unlinked) + 2132 (sizeof(xfs_agino_t) * bucket_index); 2133 xfs_trans_log_buf(tp, agibp, offset, 2134 (offset + sizeof(xfs_agino_t) - 1)); 2135 } else { 2136 /* 2137 * We need to search the list for the inode being freed. 2138 */ 2139 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2140 last_ibp = NULL; 2141 while (next_agino != agino) { 2142 struct xfs_imap imap; 2143 2144 if (last_ibp) 2145 xfs_trans_brelse(tp, last_ibp); 2146 2147 imap.im_blkno = 0; 2148 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2149 2150 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2151 if (error) { 2152 xfs_warn(mp, 2153 "%s: xfs_imap returned error %d.", 2154 __func__, error); 2155 return error; 2156 } 2157 2158 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2159 &last_ibp, 0, 0); 2160 if (error) { 2161 xfs_warn(mp, 2162 "%s: xfs_imap_to_bp returned error %d.", 2163 __func__, error); 2164 return error; 2165 } 2166 2167 last_offset = imap.im_boffset; 2168 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2169 ASSERT(next_agino != NULLAGINO); 2170 ASSERT(next_agino != 0); 2171 } 2172 2173 /* 2174 * Now last_ibp points to the buffer previous to us on the 2175 * unlinked list. Pull us from the list. 2176 */ 2177 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2178 0, 0); 2179 if (error) { 2180 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2181 __func__, error); 2182 return error; 2183 } 2184 next_agino = be32_to_cpu(dip->di_next_unlinked); 2185 ASSERT(next_agino != 0); 2186 ASSERT(next_agino != agino); 2187 if (next_agino != NULLAGINO) { 2188 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2189 offset = ip->i_imap.im_boffset + 2190 offsetof(xfs_dinode_t, di_next_unlinked); 2191 2192 /* need to recalc the inode CRC if appropriate */ 2193 xfs_dinode_calc_crc(mp, dip); 2194 2195 xfs_trans_inode_buf(tp, ibp); 2196 xfs_trans_log_buf(tp, ibp, offset, 2197 (offset + sizeof(xfs_agino_t) - 1)); 2198 xfs_inobp_check(mp, ibp); 2199 } else { 2200 xfs_trans_brelse(tp, ibp); 2201 } 2202 /* 2203 * Point the previous inode on the list to the next inode. 2204 */ 2205 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2206 ASSERT(next_agino != 0); 2207 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2208 2209 /* need to recalc the inode CRC if appropriate */ 2210 xfs_dinode_calc_crc(mp, last_dip); 2211 2212 xfs_trans_inode_buf(tp, last_ibp); 2213 xfs_trans_log_buf(tp, last_ibp, offset, 2214 (offset + sizeof(xfs_agino_t) - 1)); 2215 xfs_inobp_check(mp, last_ibp); 2216 } 2217 return 0; 2218 } 2219 2220 /* 2221 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2222 * inodes that are in memory - they all must be marked stale and attached to 2223 * the cluster buffer. 2224 */ 2225 STATIC int 2226 xfs_ifree_cluster( 2227 xfs_inode_t *free_ip, 2228 xfs_trans_t *tp, 2229 struct xfs_icluster *xic) 2230 { 2231 xfs_mount_t *mp = free_ip->i_mount; 2232 int blks_per_cluster; 2233 int inodes_per_cluster; 2234 int nbufs; 2235 int i, j; 2236 int ioffset; 2237 xfs_daddr_t blkno; 2238 xfs_buf_t *bp; 2239 xfs_inode_t *ip; 2240 xfs_inode_log_item_t *iip; 2241 xfs_log_item_t *lip; 2242 struct xfs_perag *pag; 2243 xfs_ino_t inum; 2244 2245 inum = xic->first_ino; 2246 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2247 blks_per_cluster = xfs_icluster_size_fsb(mp); 2248 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 2249 nbufs = mp->m_ialloc_blks / blks_per_cluster; 2250 2251 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { 2252 /* 2253 * The allocation bitmap tells us which inodes of the chunk were 2254 * physically allocated. Skip the cluster if an inode falls into 2255 * a sparse region. 2256 */ 2257 ioffset = inum - xic->first_ino; 2258 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2259 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0); 2260 continue; 2261 } 2262 2263 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2264 XFS_INO_TO_AGBNO(mp, inum)); 2265 2266 /* 2267 * We obtain and lock the backing buffer first in the process 2268 * here, as we have to ensure that any dirty inode that we 2269 * can't get the flush lock on is attached to the buffer. 2270 * If we scan the in-memory inodes first, then buffer IO can 2271 * complete before we get a lock on it, and hence we may fail 2272 * to mark all the active inodes on the buffer stale. 2273 */ 2274 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2275 mp->m_bsize * blks_per_cluster, 2276 XBF_UNMAPPED); 2277 2278 if (!bp) 2279 return -ENOMEM; 2280 2281 /* 2282 * This buffer may not have been correctly initialised as we 2283 * didn't read it from disk. That's not important because we are 2284 * only using to mark the buffer as stale in the log, and to 2285 * attach stale cached inodes on it. That means it will never be 2286 * dispatched for IO. If it is, we want to know about it, and we 2287 * want it to fail. We can acheive this by adding a write 2288 * verifier to the buffer. 2289 */ 2290 bp->b_ops = &xfs_inode_buf_ops; 2291 2292 /* 2293 * Walk the inodes already attached to the buffer and mark them 2294 * stale. These will all have the flush locks held, so an 2295 * in-memory inode walk can't lock them. By marking them all 2296 * stale first, we will not attempt to lock them in the loop 2297 * below as the XFS_ISTALE flag will be set. 2298 */ 2299 lip = bp->b_fspriv; 2300 while (lip) { 2301 if (lip->li_type == XFS_LI_INODE) { 2302 iip = (xfs_inode_log_item_t *)lip; 2303 ASSERT(iip->ili_logged == 1); 2304 lip->li_cb = xfs_istale_done; 2305 xfs_trans_ail_copy_lsn(mp->m_ail, 2306 &iip->ili_flush_lsn, 2307 &iip->ili_item.li_lsn); 2308 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2309 } 2310 lip = lip->li_bio_list; 2311 } 2312 2313 2314 /* 2315 * For each inode in memory attempt to add it to the inode 2316 * buffer and set it up for being staled on buffer IO 2317 * completion. This is safe as we've locked out tail pushing 2318 * and flushing by locking the buffer. 2319 * 2320 * We have already marked every inode that was part of a 2321 * transaction stale above, which means there is no point in 2322 * even trying to lock them. 2323 */ 2324 for (i = 0; i < inodes_per_cluster; i++) { 2325 retry: 2326 rcu_read_lock(); 2327 ip = radix_tree_lookup(&pag->pag_ici_root, 2328 XFS_INO_TO_AGINO(mp, (inum + i))); 2329 2330 /* Inode not in memory, nothing to do */ 2331 if (!ip) { 2332 rcu_read_unlock(); 2333 continue; 2334 } 2335 2336 /* 2337 * because this is an RCU protected lookup, we could 2338 * find a recently freed or even reallocated inode 2339 * during the lookup. We need to check under the 2340 * i_flags_lock for a valid inode here. Skip it if it 2341 * is not valid, the wrong inode or stale. 2342 */ 2343 spin_lock(&ip->i_flags_lock); 2344 if (ip->i_ino != inum + i || 2345 __xfs_iflags_test(ip, XFS_ISTALE)) { 2346 spin_unlock(&ip->i_flags_lock); 2347 rcu_read_unlock(); 2348 continue; 2349 } 2350 spin_unlock(&ip->i_flags_lock); 2351 2352 /* 2353 * Don't try to lock/unlock the current inode, but we 2354 * _cannot_ skip the other inodes that we did not find 2355 * in the list attached to the buffer and are not 2356 * already marked stale. If we can't lock it, back off 2357 * and retry. 2358 */ 2359 if (ip != free_ip && 2360 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2361 rcu_read_unlock(); 2362 delay(1); 2363 goto retry; 2364 } 2365 rcu_read_unlock(); 2366 2367 xfs_iflock(ip); 2368 xfs_iflags_set(ip, XFS_ISTALE); 2369 2370 /* 2371 * we don't need to attach clean inodes or those only 2372 * with unlogged changes (which we throw away, anyway). 2373 */ 2374 iip = ip->i_itemp; 2375 if (!iip || xfs_inode_clean(ip)) { 2376 ASSERT(ip != free_ip); 2377 xfs_ifunlock(ip); 2378 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2379 continue; 2380 } 2381 2382 iip->ili_last_fields = iip->ili_fields; 2383 iip->ili_fields = 0; 2384 iip->ili_fsync_fields = 0; 2385 iip->ili_logged = 1; 2386 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2387 &iip->ili_item.li_lsn); 2388 2389 xfs_buf_attach_iodone(bp, xfs_istale_done, 2390 &iip->ili_item); 2391 2392 if (ip != free_ip) 2393 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2394 } 2395 2396 xfs_trans_stale_inode_buf(tp, bp); 2397 xfs_trans_binval(tp, bp); 2398 } 2399 2400 xfs_perag_put(pag); 2401 return 0; 2402 } 2403 2404 /* 2405 * This is called to return an inode to the inode free list. 2406 * The inode should already be truncated to 0 length and have 2407 * no pages associated with it. This routine also assumes that 2408 * the inode is already a part of the transaction. 2409 * 2410 * The on-disk copy of the inode will have been added to the list 2411 * of unlinked inodes in the AGI. We need to remove the inode from 2412 * that list atomically with respect to freeing it here. 2413 */ 2414 int 2415 xfs_ifree( 2416 xfs_trans_t *tp, 2417 xfs_inode_t *ip, 2418 struct xfs_defer_ops *dfops) 2419 { 2420 int error; 2421 struct xfs_icluster xic = { 0 }; 2422 2423 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2424 ASSERT(VFS_I(ip)->i_nlink == 0); 2425 ASSERT(ip->i_d.di_nextents == 0); 2426 ASSERT(ip->i_d.di_anextents == 0); 2427 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2428 ASSERT(ip->i_d.di_nblocks == 0); 2429 2430 /* 2431 * Pull the on-disk inode from the AGI unlinked list. 2432 */ 2433 error = xfs_iunlink_remove(tp, ip); 2434 if (error) 2435 return error; 2436 2437 error = xfs_difree(tp, ip->i_ino, dfops, &xic); 2438 if (error) 2439 return error; 2440 2441 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2442 ip->i_d.di_flags = 0; 2443 ip->i_d.di_dmevmask = 0; 2444 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2445 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2446 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2447 /* 2448 * Bump the generation count so no one will be confused 2449 * by reincarnations of this inode. 2450 */ 2451 VFS_I(ip)->i_generation++; 2452 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2453 2454 if (xic.deleted) 2455 error = xfs_ifree_cluster(ip, tp, &xic); 2456 2457 return error; 2458 } 2459 2460 /* 2461 * This is called to unpin an inode. The caller must have the inode locked 2462 * in at least shared mode so that the buffer cannot be subsequently pinned 2463 * once someone is waiting for it to be unpinned. 2464 */ 2465 static void 2466 xfs_iunpin( 2467 struct xfs_inode *ip) 2468 { 2469 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2470 2471 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2472 2473 /* Give the log a push to start the unpinning I/O */ 2474 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2475 2476 } 2477 2478 static void 2479 __xfs_iunpin_wait( 2480 struct xfs_inode *ip) 2481 { 2482 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2483 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2484 2485 xfs_iunpin(ip); 2486 2487 do { 2488 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2489 if (xfs_ipincount(ip)) 2490 io_schedule(); 2491 } while (xfs_ipincount(ip)); 2492 finish_wait(wq, &wait.wait); 2493 } 2494 2495 void 2496 xfs_iunpin_wait( 2497 struct xfs_inode *ip) 2498 { 2499 if (xfs_ipincount(ip)) 2500 __xfs_iunpin_wait(ip); 2501 } 2502 2503 /* 2504 * Removing an inode from the namespace involves removing the directory entry 2505 * and dropping the link count on the inode. Removing the directory entry can 2506 * result in locking an AGF (directory blocks were freed) and removing a link 2507 * count can result in placing the inode on an unlinked list which results in 2508 * locking an AGI. 2509 * 2510 * The big problem here is that we have an ordering constraint on AGF and AGI 2511 * locking - inode allocation locks the AGI, then can allocate a new extent for 2512 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2513 * removes the inode from the unlinked list, requiring that we lock the AGI 2514 * first, and then freeing the inode can result in an inode chunk being freed 2515 * and hence freeing disk space requiring that we lock an AGF. 2516 * 2517 * Hence the ordering that is imposed by other parts of the code is AGI before 2518 * AGF. This means we cannot remove the directory entry before we drop the inode 2519 * reference count and put it on the unlinked list as this results in a lock 2520 * order of AGF then AGI, and this can deadlock against inode allocation and 2521 * freeing. Therefore we must drop the link counts before we remove the 2522 * directory entry. 2523 * 2524 * This is still safe from a transactional point of view - it is not until we 2525 * get to xfs_defer_finish() that we have the possibility of multiple 2526 * transactions in this operation. Hence as long as we remove the directory 2527 * entry and drop the link count in the first transaction of the remove 2528 * operation, there are no transactional constraints on the ordering here. 2529 */ 2530 int 2531 xfs_remove( 2532 xfs_inode_t *dp, 2533 struct xfs_name *name, 2534 xfs_inode_t *ip) 2535 { 2536 xfs_mount_t *mp = dp->i_mount; 2537 xfs_trans_t *tp = NULL; 2538 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2539 int error = 0; 2540 struct xfs_defer_ops dfops; 2541 xfs_fsblock_t first_block; 2542 uint resblks; 2543 2544 trace_xfs_remove(dp, name); 2545 2546 if (XFS_FORCED_SHUTDOWN(mp)) 2547 return -EIO; 2548 2549 error = xfs_qm_dqattach(dp, 0); 2550 if (error) 2551 goto std_return; 2552 2553 error = xfs_qm_dqattach(ip, 0); 2554 if (error) 2555 goto std_return; 2556 2557 /* 2558 * We try to get the real space reservation first, 2559 * allowing for directory btree deletion(s) implying 2560 * possible bmap insert(s). If we can't get the space 2561 * reservation then we use 0 instead, and avoid the bmap 2562 * btree insert(s) in the directory code by, if the bmap 2563 * insert tries to happen, instead trimming the LAST 2564 * block from the directory. 2565 */ 2566 resblks = XFS_REMOVE_SPACE_RES(mp); 2567 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2568 if (error == -ENOSPC) { 2569 resblks = 0; 2570 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2571 &tp); 2572 } 2573 if (error) { 2574 ASSERT(error != -ENOSPC); 2575 goto std_return; 2576 } 2577 2578 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL); 2579 2580 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2581 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2582 2583 /* 2584 * If we're removing a directory perform some additional validation. 2585 */ 2586 if (is_dir) { 2587 ASSERT(VFS_I(ip)->i_nlink >= 2); 2588 if (VFS_I(ip)->i_nlink != 2) { 2589 error = -ENOTEMPTY; 2590 goto out_trans_cancel; 2591 } 2592 if (!xfs_dir_isempty(ip)) { 2593 error = -ENOTEMPTY; 2594 goto out_trans_cancel; 2595 } 2596 2597 /* Drop the link from ip's "..". */ 2598 error = xfs_droplink(tp, dp); 2599 if (error) 2600 goto out_trans_cancel; 2601 2602 /* Drop the "." link from ip to self. */ 2603 error = xfs_droplink(tp, ip); 2604 if (error) 2605 goto out_trans_cancel; 2606 } else { 2607 /* 2608 * When removing a non-directory we need to log the parent 2609 * inode here. For a directory this is done implicitly 2610 * by the xfs_droplink call for the ".." entry. 2611 */ 2612 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2613 } 2614 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2615 2616 /* Drop the link from dp to ip. */ 2617 error = xfs_droplink(tp, ip); 2618 if (error) 2619 goto out_trans_cancel; 2620 2621 xfs_defer_init(&dfops, &first_block); 2622 error = xfs_dir_removename(tp, dp, name, ip->i_ino, 2623 &first_block, &dfops, resblks); 2624 if (error) { 2625 ASSERT(error != -ENOENT); 2626 goto out_bmap_cancel; 2627 } 2628 2629 /* 2630 * If this is a synchronous mount, make sure that the 2631 * remove transaction goes to disk before returning to 2632 * the user. 2633 */ 2634 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2635 xfs_trans_set_sync(tp); 2636 2637 error = xfs_defer_finish(&tp, &dfops, NULL); 2638 if (error) 2639 goto out_bmap_cancel; 2640 2641 error = xfs_trans_commit(tp); 2642 if (error) 2643 goto std_return; 2644 2645 if (is_dir && xfs_inode_is_filestream(ip)) 2646 xfs_filestream_deassociate(ip); 2647 2648 return 0; 2649 2650 out_bmap_cancel: 2651 xfs_defer_cancel(&dfops); 2652 out_trans_cancel: 2653 xfs_trans_cancel(tp); 2654 std_return: 2655 return error; 2656 } 2657 2658 /* 2659 * Enter all inodes for a rename transaction into a sorted array. 2660 */ 2661 #define __XFS_SORT_INODES 5 2662 STATIC void 2663 xfs_sort_for_rename( 2664 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2665 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2666 struct xfs_inode *ip1, /* in: inode of old entry */ 2667 struct xfs_inode *ip2, /* in: inode of new entry */ 2668 struct xfs_inode *wip, /* in: whiteout inode */ 2669 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2670 int *num_inodes) /* in/out: inodes in array */ 2671 { 2672 int i, j; 2673 2674 ASSERT(*num_inodes == __XFS_SORT_INODES); 2675 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2676 2677 /* 2678 * i_tab contains a list of pointers to inodes. We initialize 2679 * the table here & we'll sort it. We will then use it to 2680 * order the acquisition of the inode locks. 2681 * 2682 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2683 */ 2684 i = 0; 2685 i_tab[i++] = dp1; 2686 i_tab[i++] = dp2; 2687 i_tab[i++] = ip1; 2688 if (ip2) 2689 i_tab[i++] = ip2; 2690 if (wip) 2691 i_tab[i++] = wip; 2692 *num_inodes = i; 2693 2694 /* 2695 * Sort the elements via bubble sort. (Remember, there are at 2696 * most 5 elements to sort, so this is adequate.) 2697 */ 2698 for (i = 0; i < *num_inodes; i++) { 2699 for (j = 1; j < *num_inodes; j++) { 2700 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2701 struct xfs_inode *temp = i_tab[j]; 2702 i_tab[j] = i_tab[j-1]; 2703 i_tab[j-1] = temp; 2704 } 2705 } 2706 } 2707 } 2708 2709 static int 2710 xfs_finish_rename( 2711 struct xfs_trans *tp, 2712 struct xfs_defer_ops *dfops) 2713 { 2714 int error; 2715 2716 /* 2717 * If this is a synchronous mount, make sure that the rename transaction 2718 * goes to disk before returning to the user. 2719 */ 2720 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2721 xfs_trans_set_sync(tp); 2722 2723 error = xfs_defer_finish(&tp, dfops, NULL); 2724 if (error) { 2725 xfs_defer_cancel(dfops); 2726 xfs_trans_cancel(tp); 2727 return error; 2728 } 2729 2730 return xfs_trans_commit(tp); 2731 } 2732 2733 /* 2734 * xfs_cross_rename() 2735 * 2736 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 2737 */ 2738 STATIC int 2739 xfs_cross_rename( 2740 struct xfs_trans *tp, 2741 struct xfs_inode *dp1, 2742 struct xfs_name *name1, 2743 struct xfs_inode *ip1, 2744 struct xfs_inode *dp2, 2745 struct xfs_name *name2, 2746 struct xfs_inode *ip2, 2747 struct xfs_defer_ops *dfops, 2748 xfs_fsblock_t *first_block, 2749 int spaceres) 2750 { 2751 int error = 0; 2752 int ip1_flags = 0; 2753 int ip2_flags = 0; 2754 int dp2_flags = 0; 2755 2756 /* Swap inode number for dirent in first parent */ 2757 error = xfs_dir_replace(tp, dp1, name1, 2758 ip2->i_ino, 2759 first_block, dfops, spaceres); 2760 if (error) 2761 goto out_trans_abort; 2762 2763 /* Swap inode number for dirent in second parent */ 2764 error = xfs_dir_replace(tp, dp2, name2, 2765 ip1->i_ino, 2766 first_block, dfops, spaceres); 2767 if (error) 2768 goto out_trans_abort; 2769 2770 /* 2771 * If we're renaming one or more directories across different parents, 2772 * update the respective ".." entries (and link counts) to match the new 2773 * parents. 2774 */ 2775 if (dp1 != dp2) { 2776 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2777 2778 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2779 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2780 dp1->i_ino, first_block, 2781 dfops, spaceres); 2782 if (error) 2783 goto out_trans_abort; 2784 2785 /* transfer ip2 ".." reference to dp1 */ 2786 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2787 error = xfs_droplink(tp, dp2); 2788 if (error) 2789 goto out_trans_abort; 2790 error = xfs_bumplink(tp, dp1); 2791 if (error) 2792 goto out_trans_abort; 2793 } 2794 2795 /* 2796 * Although ip1 isn't changed here, userspace needs 2797 * to be warned about the change, so that applications 2798 * relying on it (like backup ones), will properly 2799 * notify the change 2800 */ 2801 ip1_flags |= XFS_ICHGTIME_CHG; 2802 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2803 } 2804 2805 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2806 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2807 dp2->i_ino, first_block, 2808 dfops, spaceres); 2809 if (error) 2810 goto out_trans_abort; 2811 2812 /* transfer ip1 ".." reference to dp2 */ 2813 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2814 error = xfs_droplink(tp, dp1); 2815 if (error) 2816 goto out_trans_abort; 2817 error = xfs_bumplink(tp, dp2); 2818 if (error) 2819 goto out_trans_abort; 2820 } 2821 2822 /* 2823 * Although ip2 isn't changed here, userspace needs 2824 * to be warned about the change, so that applications 2825 * relying on it (like backup ones), will properly 2826 * notify the change 2827 */ 2828 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2829 ip2_flags |= XFS_ICHGTIME_CHG; 2830 } 2831 } 2832 2833 if (ip1_flags) { 2834 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2835 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2836 } 2837 if (ip2_flags) { 2838 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2839 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2840 } 2841 if (dp2_flags) { 2842 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2843 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2844 } 2845 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2846 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2847 return xfs_finish_rename(tp, dfops); 2848 2849 out_trans_abort: 2850 xfs_defer_cancel(dfops); 2851 xfs_trans_cancel(tp); 2852 return error; 2853 } 2854 2855 /* 2856 * xfs_rename_alloc_whiteout() 2857 * 2858 * Return a referenced, unlinked, unlocked inode that that can be used as a 2859 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2860 * crash between allocating the inode and linking it into the rename transaction 2861 * recovery will free the inode and we won't leak it. 2862 */ 2863 static int 2864 xfs_rename_alloc_whiteout( 2865 struct xfs_inode *dp, 2866 struct xfs_inode **wip) 2867 { 2868 struct xfs_inode *tmpfile; 2869 int error; 2870 2871 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile); 2872 if (error) 2873 return error; 2874 2875 /* 2876 * Prepare the tmpfile inode as if it were created through the VFS. 2877 * Otherwise, the link increment paths will complain about nlink 0->1. 2878 * Drop the link count as done by d_tmpfile(), complete the inode setup 2879 * and flag it as linkable. 2880 */ 2881 drop_nlink(VFS_I(tmpfile)); 2882 xfs_setup_iops(tmpfile); 2883 xfs_finish_inode_setup(tmpfile); 2884 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2885 2886 *wip = tmpfile; 2887 return 0; 2888 } 2889 2890 /* 2891 * xfs_rename 2892 */ 2893 int 2894 xfs_rename( 2895 struct xfs_inode *src_dp, 2896 struct xfs_name *src_name, 2897 struct xfs_inode *src_ip, 2898 struct xfs_inode *target_dp, 2899 struct xfs_name *target_name, 2900 struct xfs_inode *target_ip, 2901 unsigned int flags) 2902 { 2903 struct xfs_mount *mp = src_dp->i_mount; 2904 struct xfs_trans *tp; 2905 struct xfs_defer_ops dfops; 2906 xfs_fsblock_t first_block; 2907 struct xfs_inode *wip = NULL; /* whiteout inode */ 2908 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2909 int num_inodes = __XFS_SORT_INODES; 2910 bool new_parent = (src_dp != target_dp); 2911 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2912 int spaceres; 2913 int error; 2914 2915 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2916 2917 if ((flags & RENAME_EXCHANGE) && !target_ip) 2918 return -EINVAL; 2919 2920 /* 2921 * If we are doing a whiteout operation, allocate the whiteout inode 2922 * we will be placing at the target and ensure the type is set 2923 * appropriately. 2924 */ 2925 if (flags & RENAME_WHITEOUT) { 2926 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 2927 error = xfs_rename_alloc_whiteout(target_dp, &wip); 2928 if (error) 2929 return error; 2930 2931 /* setup target dirent info as whiteout */ 2932 src_name->type = XFS_DIR3_FT_CHRDEV; 2933 } 2934 2935 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 2936 inodes, &num_inodes); 2937 2938 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2939 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 2940 if (error == -ENOSPC) { 2941 spaceres = 0; 2942 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 2943 &tp); 2944 } 2945 if (error) 2946 goto out_release_wip; 2947 2948 /* 2949 * Attach the dquots to the inodes 2950 */ 2951 error = xfs_qm_vop_rename_dqattach(inodes); 2952 if (error) 2953 goto out_trans_cancel; 2954 2955 /* 2956 * Lock all the participating inodes. Depending upon whether 2957 * the target_name exists in the target directory, and 2958 * whether the target directory is the same as the source 2959 * directory, we can lock from 2 to 4 inodes. 2960 */ 2961 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2962 2963 /* 2964 * Join all the inodes to the transaction. From this point on, 2965 * we can rely on either trans_commit or trans_cancel to unlock 2966 * them. 2967 */ 2968 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 2969 if (new_parent) 2970 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 2971 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2972 if (target_ip) 2973 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2974 if (wip) 2975 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 2976 2977 /* 2978 * If we are using project inheritance, we only allow renames 2979 * into our tree when the project IDs are the same; else the 2980 * tree quota mechanism would be circumvented. 2981 */ 2982 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 2983 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 2984 error = -EXDEV; 2985 goto out_trans_cancel; 2986 } 2987 2988 xfs_defer_init(&dfops, &first_block); 2989 2990 /* RENAME_EXCHANGE is unique from here on. */ 2991 if (flags & RENAME_EXCHANGE) 2992 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 2993 target_dp, target_name, target_ip, 2994 &dfops, &first_block, spaceres); 2995 2996 /* 2997 * Set up the target. 2998 */ 2999 if (target_ip == NULL) { 3000 /* 3001 * If there's no space reservation, check the entry will 3002 * fit before actually inserting it. 3003 */ 3004 if (!spaceres) { 3005 error = xfs_dir_canenter(tp, target_dp, target_name); 3006 if (error) 3007 goto out_trans_cancel; 3008 } 3009 /* 3010 * If target does not exist and the rename crosses 3011 * directories, adjust the target directory link count 3012 * to account for the ".." reference from the new entry. 3013 */ 3014 error = xfs_dir_createname(tp, target_dp, target_name, 3015 src_ip->i_ino, &first_block, 3016 &dfops, spaceres); 3017 if (error) 3018 goto out_bmap_cancel; 3019 3020 xfs_trans_ichgtime(tp, target_dp, 3021 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3022 3023 if (new_parent && src_is_directory) { 3024 error = xfs_bumplink(tp, target_dp); 3025 if (error) 3026 goto out_bmap_cancel; 3027 } 3028 } else { /* target_ip != NULL */ 3029 /* 3030 * If target exists and it's a directory, check that both 3031 * target and source are directories and that target can be 3032 * destroyed, or that neither is a directory. 3033 */ 3034 if (S_ISDIR(VFS_I(target_ip)->i_mode)) { 3035 /* 3036 * Make sure target dir is empty. 3037 */ 3038 if (!(xfs_dir_isempty(target_ip)) || 3039 (VFS_I(target_ip)->i_nlink > 2)) { 3040 error = -EEXIST; 3041 goto out_trans_cancel; 3042 } 3043 } 3044 3045 /* 3046 * Link the source inode under the target name. 3047 * If the source inode is a directory and we are moving 3048 * it across directories, its ".." entry will be 3049 * inconsistent until we replace that down below. 3050 * 3051 * In case there is already an entry with the same 3052 * name at the destination directory, remove it first. 3053 */ 3054 error = xfs_dir_replace(tp, target_dp, target_name, 3055 src_ip->i_ino, 3056 &first_block, &dfops, spaceres); 3057 if (error) 3058 goto out_bmap_cancel; 3059 3060 xfs_trans_ichgtime(tp, target_dp, 3061 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3062 3063 /* 3064 * Decrement the link count on the target since the target 3065 * dir no longer points to it. 3066 */ 3067 error = xfs_droplink(tp, target_ip); 3068 if (error) 3069 goto out_bmap_cancel; 3070 3071 if (src_is_directory) { 3072 /* 3073 * Drop the link from the old "." entry. 3074 */ 3075 error = xfs_droplink(tp, target_ip); 3076 if (error) 3077 goto out_bmap_cancel; 3078 } 3079 } /* target_ip != NULL */ 3080 3081 /* 3082 * Remove the source. 3083 */ 3084 if (new_parent && src_is_directory) { 3085 /* 3086 * Rewrite the ".." entry to point to the new 3087 * directory. 3088 */ 3089 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3090 target_dp->i_ino, 3091 &first_block, &dfops, spaceres); 3092 ASSERT(error != -EEXIST); 3093 if (error) 3094 goto out_bmap_cancel; 3095 } 3096 3097 /* 3098 * We always want to hit the ctime on the source inode. 3099 * 3100 * This isn't strictly required by the standards since the source 3101 * inode isn't really being changed, but old unix file systems did 3102 * it and some incremental backup programs won't work without it. 3103 */ 3104 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3105 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3106 3107 /* 3108 * Adjust the link count on src_dp. This is necessary when 3109 * renaming a directory, either within one parent when 3110 * the target existed, or across two parent directories. 3111 */ 3112 if (src_is_directory && (new_parent || target_ip != NULL)) { 3113 3114 /* 3115 * Decrement link count on src_directory since the 3116 * entry that's moved no longer points to it. 3117 */ 3118 error = xfs_droplink(tp, src_dp); 3119 if (error) 3120 goto out_bmap_cancel; 3121 } 3122 3123 /* 3124 * For whiteouts, we only need to update the source dirent with the 3125 * inode number of the whiteout inode rather than removing it 3126 * altogether. 3127 */ 3128 if (wip) { 3129 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3130 &first_block, &dfops, spaceres); 3131 } else 3132 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3133 &first_block, &dfops, spaceres); 3134 if (error) 3135 goto out_bmap_cancel; 3136 3137 /* 3138 * For whiteouts, we need to bump the link count on the whiteout inode. 3139 * This means that failures all the way up to this point leave the inode 3140 * on the unlinked list and so cleanup is a simple matter of dropping 3141 * the remaining reference to it. If we fail here after bumping the link 3142 * count, we're shutting down the filesystem so we'll never see the 3143 * intermediate state on disk. 3144 */ 3145 if (wip) { 3146 ASSERT(VFS_I(wip)->i_nlink == 0); 3147 error = xfs_bumplink(tp, wip); 3148 if (error) 3149 goto out_bmap_cancel; 3150 error = xfs_iunlink_remove(tp, wip); 3151 if (error) 3152 goto out_bmap_cancel; 3153 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); 3154 3155 /* 3156 * Now we have a real link, clear the "I'm a tmpfile" state 3157 * flag from the inode so it doesn't accidentally get misused in 3158 * future. 3159 */ 3160 VFS_I(wip)->i_state &= ~I_LINKABLE; 3161 } 3162 3163 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3164 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3165 if (new_parent) 3166 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3167 3168 error = xfs_finish_rename(tp, &dfops); 3169 if (wip) 3170 IRELE(wip); 3171 return error; 3172 3173 out_bmap_cancel: 3174 xfs_defer_cancel(&dfops); 3175 out_trans_cancel: 3176 xfs_trans_cancel(tp); 3177 out_release_wip: 3178 if (wip) 3179 IRELE(wip); 3180 return error; 3181 } 3182 3183 STATIC int 3184 xfs_iflush_cluster( 3185 struct xfs_inode *ip, 3186 struct xfs_buf *bp) 3187 { 3188 struct xfs_mount *mp = ip->i_mount; 3189 struct xfs_perag *pag; 3190 unsigned long first_index, mask; 3191 unsigned long inodes_per_cluster; 3192 int cilist_size; 3193 struct xfs_inode **cilist; 3194 struct xfs_inode *cip; 3195 int nr_found; 3196 int clcount = 0; 3197 int bufwasdelwri; 3198 int i; 3199 3200 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3201 3202 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 3203 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 3204 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); 3205 if (!cilist) 3206 goto out_put; 3207 3208 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 3209 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3210 rcu_read_lock(); 3211 /* really need a gang lookup range call here */ 3212 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, 3213 first_index, inodes_per_cluster); 3214 if (nr_found == 0) 3215 goto out_free; 3216 3217 for (i = 0; i < nr_found; i++) { 3218 cip = cilist[i]; 3219 if (cip == ip) 3220 continue; 3221 3222 /* 3223 * because this is an RCU protected lookup, we could find a 3224 * recently freed or even reallocated inode during the lookup. 3225 * We need to check under the i_flags_lock for a valid inode 3226 * here. Skip it if it is not valid or the wrong inode. 3227 */ 3228 spin_lock(&cip->i_flags_lock); 3229 if (!cip->i_ino || 3230 __xfs_iflags_test(cip, XFS_ISTALE)) { 3231 spin_unlock(&cip->i_flags_lock); 3232 continue; 3233 } 3234 3235 /* 3236 * Once we fall off the end of the cluster, no point checking 3237 * any more inodes in the list because they will also all be 3238 * outside the cluster. 3239 */ 3240 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { 3241 spin_unlock(&cip->i_flags_lock); 3242 break; 3243 } 3244 spin_unlock(&cip->i_flags_lock); 3245 3246 /* 3247 * Do an un-protected check to see if the inode is dirty and 3248 * is a candidate for flushing. These checks will be repeated 3249 * later after the appropriate locks are acquired. 3250 */ 3251 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) 3252 continue; 3253 3254 /* 3255 * Try to get locks. If any are unavailable or it is pinned, 3256 * then this inode cannot be flushed and is skipped. 3257 */ 3258 3259 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) 3260 continue; 3261 if (!xfs_iflock_nowait(cip)) { 3262 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3263 continue; 3264 } 3265 if (xfs_ipincount(cip)) { 3266 xfs_ifunlock(cip); 3267 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3268 continue; 3269 } 3270 3271 3272 /* 3273 * Check the inode number again, just to be certain we are not 3274 * racing with freeing in xfs_reclaim_inode(). See the comments 3275 * in that function for more information as to why the initial 3276 * check is not sufficient. 3277 */ 3278 if (!cip->i_ino) { 3279 xfs_ifunlock(cip); 3280 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3281 continue; 3282 } 3283 3284 /* 3285 * arriving here means that this inode can be flushed. First 3286 * re-check that it's dirty before flushing. 3287 */ 3288 if (!xfs_inode_clean(cip)) { 3289 int error; 3290 error = xfs_iflush_int(cip, bp); 3291 if (error) { 3292 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3293 goto cluster_corrupt_out; 3294 } 3295 clcount++; 3296 } else { 3297 xfs_ifunlock(cip); 3298 } 3299 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3300 } 3301 3302 if (clcount) { 3303 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3304 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3305 } 3306 3307 out_free: 3308 rcu_read_unlock(); 3309 kmem_free(cilist); 3310 out_put: 3311 xfs_perag_put(pag); 3312 return 0; 3313 3314 3315 cluster_corrupt_out: 3316 /* 3317 * Corruption detected in the clustering loop. Invalidate the 3318 * inode buffer and shut down the filesystem. 3319 */ 3320 rcu_read_unlock(); 3321 /* 3322 * Clean up the buffer. If it was delwri, just release it -- 3323 * brelse can handle it with no problems. If not, shut down the 3324 * filesystem before releasing the buffer. 3325 */ 3326 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 3327 if (bufwasdelwri) 3328 xfs_buf_relse(bp); 3329 3330 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3331 3332 if (!bufwasdelwri) { 3333 /* 3334 * Just like incore_relse: if we have b_iodone functions, 3335 * mark the buffer as an error and call them. Otherwise 3336 * mark it as stale and brelse. 3337 */ 3338 if (bp->b_iodone) { 3339 bp->b_flags &= ~XBF_DONE; 3340 xfs_buf_stale(bp); 3341 xfs_buf_ioerror(bp, -EIO); 3342 xfs_buf_ioend(bp); 3343 } else { 3344 xfs_buf_stale(bp); 3345 xfs_buf_relse(bp); 3346 } 3347 } 3348 3349 /* 3350 * Unlocks the flush lock 3351 */ 3352 xfs_iflush_abort(cip, false); 3353 kmem_free(cilist); 3354 xfs_perag_put(pag); 3355 return -EFSCORRUPTED; 3356 } 3357 3358 /* 3359 * Flush dirty inode metadata into the backing buffer. 3360 * 3361 * The caller must have the inode lock and the inode flush lock held. The 3362 * inode lock will still be held upon return to the caller, and the inode 3363 * flush lock will be released after the inode has reached the disk. 3364 * 3365 * The caller must write out the buffer returned in *bpp and release it. 3366 */ 3367 int 3368 xfs_iflush( 3369 struct xfs_inode *ip, 3370 struct xfs_buf **bpp) 3371 { 3372 struct xfs_mount *mp = ip->i_mount; 3373 struct xfs_buf *bp = NULL; 3374 struct xfs_dinode *dip; 3375 int error; 3376 3377 XFS_STATS_INC(mp, xs_iflush_count); 3378 3379 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3380 ASSERT(xfs_isiflocked(ip)); 3381 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3382 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3383 3384 *bpp = NULL; 3385 3386 xfs_iunpin_wait(ip); 3387 3388 /* 3389 * For stale inodes we cannot rely on the backing buffer remaining 3390 * stale in cache for the remaining life of the stale inode and so 3391 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3392 * inodes below. We have to check this after ensuring the inode is 3393 * unpinned so that it is safe to reclaim the stale inode after the 3394 * flush call. 3395 */ 3396 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3397 xfs_ifunlock(ip); 3398 return 0; 3399 } 3400 3401 /* 3402 * This may have been unpinned because the filesystem is shutting 3403 * down forcibly. If that's the case we must not write this inode 3404 * to disk, because the log record didn't make it to disk. 3405 * 3406 * We also have to remove the log item from the AIL in this case, 3407 * as we wait for an empty AIL as part of the unmount process. 3408 */ 3409 if (XFS_FORCED_SHUTDOWN(mp)) { 3410 error = -EIO; 3411 goto abort_out; 3412 } 3413 3414 /* 3415 * Get the buffer containing the on-disk inode. We are doing a try-lock 3416 * operation here, so we may get an EAGAIN error. In that case, we 3417 * simply want to return with the inode still dirty. 3418 * 3419 * If we get any other error, we effectively have a corruption situation 3420 * and we cannot flush the inode, so we treat it the same as failing 3421 * xfs_iflush_int(). 3422 */ 3423 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3424 0); 3425 if (error == -EAGAIN) { 3426 xfs_ifunlock(ip); 3427 return error; 3428 } 3429 if (error) 3430 goto corrupt_out; 3431 3432 /* 3433 * First flush out the inode that xfs_iflush was called with. 3434 */ 3435 error = xfs_iflush_int(ip, bp); 3436 if (error) 3437 goto corrupt_out; 3438 3439 /* 3440 * If the buffer is pinned then push on the log now so we won't 3441 * get stuck waiting in the write for too long. 3442 */ 3443 if (xfs_buf_ispinned(bp)) 3444 xfs_log_force(mp, 0); 3445 3446 /* 3447 * inode clustering: 3448 * see if other inodes can be gathered into this write 3449 */ 3450 error = xfs_iflush_cluster(ip, bp); 3451 if (error) 3452 goto cluster_corrupt_out; 3453 3454 *bpp = bp; 3455 return 0; 3456 3457 corrupt_out: 3458 if (bp) 3459 xfs_buf_relse(bp); 3460 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3461 cluster_corrupt_out: 3462 error = -EFSCORRUPTED; 3463 abort_out: 3464 /* 3465 * Unlocks the flush lock 3466 */ 3467 xfs_iflush_abort(ip, false); 3468 return error; 3469 } 3470 3471 STATIC int 3472 xfs_iflush_int( 3473 struct xfs_inode *ip, 3474 struct xfs_buf *bp) 3475 { 3476 struct xfs_inode_log_item *iip = ip->i_itemp; 3477 struct xfs_dinode *dip; 3478 struct xfs_mount *mp = ip->i_mount; 3479 3480 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3481 ASSERT(xfs_isiflocked(ip)); 3482 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3483 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3484 ASSERT(iip != NULL && iip->ili_fields != 0); 3485 ASSERT(ip->i_d.di_version > 1); 3486 3487 /* set *dip = inode's place in the buffer */ 3488 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3489 3490 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3491 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3492 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3493 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3494 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3495 goto corrupt_out; 3496 } 3497 if (S_ISREG(VFS_I(ip)->i_mode)) { 3498 if (XFS_TEST_ERROR( 3499 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3500 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3501 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3502 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3503 "%s: Bad regular inode %Lu, ptr 0x%p", 3504 __func__, ip->i_ino, ip); 3505 goto corrupt_out; 3506 } 3507 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3508 if (XFS_TEST_ERROR( 3509 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3510 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3511 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3512 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3513 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3514 "%s: Bad directory inode %Lu, ptr 0x%p", 3515 __func__, ip->i_ino, ip); 3516 goto corrupt_out; 3517 } 3518 } 3519 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3520 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3521 XFS_RANDOM_IFLUSH_5)) { 3522 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3523 "%s: detected corrupt incore inode %Lu, " 3524 "total extents = %d, nblocks = %Ld, ptr 0x%p", 3525 __func__, ip->i_ino, 3526 ip->i_d.di_nextents + ip->i_d.di_anextents, 3527 ip->i_d.di_nblocks, ip); 3528 goto corrupt_out; 3529 } 3530 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3531 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3532 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3533 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3534 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3535 goto corrupt_out; 3536 } 3537 3538 /* 3539 * Inode item log recovery for v2 inodes are dependent on the 3540 * di_flushiter count for correct sequencing. We bump the flush 3541 * iteration count so we can detect flushes which postdate a log record 3542 * during recovery. This is redundant as we now log every change and 3543 * hence this can't happen but we need to still do it to ensure 3544 * backwards compatibility with old kernels that predate logging all 3545 * inode changes. 3546 */ 3547 if (ip->i_d.di_version < 3) 3548 ip->i_d.di_flushiter++; 3549 3550 /* Check the inline directory data. */ 3551 if (S_ISDIR(VFS_I(ip)->i_mode) && 3552 ip->i_d.di_format == XFS_DINODE_FMT_LOCAL && 3553 xfs_dir2_sf_verify(ip)) 3554 goto corrupt_out; 3555 3556 /* 3557 * Copy the dirty parts of the inode into the on-disk inode. We always 3558 * copy out the core of the inode, because if the inode is dirty at all 3559 * the core must be. 3560 */ 3561 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3562 3563 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3564 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3565 ip->i_d.di_flushiter = 0; 3566 3567 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3568 if (XFS_IFORK_Q(ip)) 3569 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3570 xfs_inobp_check(mp, bp); 3571 3572 /* 3573 * We've recorded everything logged in the inode, so we'd like to clear 3574 * the ili_fields bits so we don't log and flush things unnecessarily. 3575 * However, we can't stop logging all this information until the data 3576 * we've copied into the disk buffer is written to disk. If we did we 3577 * might overwrite the copy of the inode in the log with all the data 3578 * after re-logging only part of it, and in the face of a crash we 3579 * wouldn't have all the data we need to recover. 3580 * 3581 * What we do is move the bits to the ili_last_fields field. When 3582 * logging the inode, these bits are moved back to the ili_fields field. 3583 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3584 * know that the information those bits represent is permanently on 3585 * disk. As long as the flush completes before the inode is logged 3586 * again, then both ili_fields and ili_last_fields will be cleared. 3587 * 3588 * We can play with the ili_fields bits here, because the inode lock 3589 * must be held exclusively in order to set bits there and the flush 3590 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3591 * done routine can tell whether or not to look in the AIL. Also, store 3592 * the current LSN of the inode so that we can tell whether the item has 3593 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3594 * need the AIL lock, because it is a 64 bit value that cannot be read 3595 * atomically. 3596 */ 3597 iip->ili_last_fields = iip->ili_fields; 3598 iip->ili_fields = 0; 3599 iip->ili_fsync_fields = 0; 3600 iip->ili_logged = 1; 3601 3602 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3603 &iip->ili_item.li_lsn); 3604 3605 /* 3606 * Attach the function xfs_iflush_done to the inode's 3607 * buffer. This will remove the inode from the AIL 3608 * and unlock the inode's flush lock when the inode is 3609 * completely written to disk. 3610 */ 3611 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3612 3613 /* generate the checksum. */ 3614 xfs_dinode_calc_crc(mp, dip); 3615 3616 ASSERT(bp->b_fspriv != NULL); 3617 ASSERT(bp->b_iodone != NULL); 3618 return 0; 3619 3620 corrupt_out: 3621 return -EFSCORRUPTED; 3622 } 3623