xref: /linux/fs/xfs/xfs_inode.c (revision e190bfe56841551b1ad5abb42ebd0c4798cc8c01)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_dir2.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_quota.h"
51 #include "xfs_filestream.h"
52 #include "xfs_vnodeops.h"
53 #include "xfs_trace.h"
54 
55 kmem_zone_t *xfs_ifork_zone;
56 kmem_zone_t *xfs_inode_zone;
57 
58 /*
59  * Used in xfs_itruncate().  This is the maximum number of extents
60  * freed from a file in a single transaction.
61  */
62 #define	XFS_ITRUNC_MAX_EXTENTS	2
63 
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
68 
69 #ifdef DEBUG
70 /*
71  * Make sure that the extents in the given memory buffer
72  * are valid.
73  */
74 STATIC void
75 xfs_validate_extents(
76 	xfs_ifork_t		*ifp,
77 	int			nrecs,
78 	xfs_exntfmt_t		fmt)
79 {
80 	xfs_bmbt_irec_t		irec;
81 	xfs_bmbt_rec_host_t	rec;
82 	int			i;
83 
84 	for (i = 0; i < nrecs; i++) {
85 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 		rec.l0 = get_unaligned(&ep->l0);
87 		rec.l1 = get_unaligned(&ep->l1);
88 		xfs_bmbt_get_all(&rec, &irec);
89 		if (fmt == XFS_EXTFMT_NOSTATE)
90 			ASSERT(irec.br_state == XFS_EXT_NORM);
91 	}
92 }
93 #else /* DEBUG */
94 #define xfs_validate_extents(ifp, nrecs, fmt)
95 #endif /* DEBUG */
96 
97 /*
98  * Check that none of the inode's in the buffer have a next
99  * unlinked field of 0.
100  */
101 #if defined(DEBUG)
102 void
103 xfs_inobp_check(
104 	xfs_mount_t	*mp,
105 	xfs_buf_t	*bp)
106 {
107 	int		i;
108 	int		j;
109 	xfs_dinode_t	*dip;
110 
111 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
112 
113 	for (i = 0; i < j; i++) {
114 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 					i * mp->m_sb.sb_inodesize);
116 		if (!dip->di_next_unlinked)  {
117 			xfs_fs_cmn_err(CE_ALERT, mp,
118 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
119 				bp);
120 			ASSERT(dip->di_next_unlinked);
121 		}
122 	}
123 }
124 #endif
125 
126 /*
127  * Find the buffer associated with the given inode map
128  * We do basic validation checks on the buffer once it has been
129  * retrieved from disk.
130  */
131 STATIC int
132 xfs_imap_to_bp(
133 	xfs_mount_t	*mp,
134 	xfs_trans_t	*tp,
135 	struct xfs_imap	*imap,
136 	xfs_buf_t	**bpp,
137 	uint		buf_flags,
138 	uint		iget_flags)
139 {
140 	int		error;
141 	int		i;
142 	int		ni;
143 	xfs_buf_t	*bp;
144 
145 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
146 				   (int)imap->im_len, buf_flags, &bp);
147 	if (error) {
148 		if (error != EAGAIN) {
149 			cmn_err(CE_WARN,
150 				"xfs_imap_to_bp: xfs_trans_read_buf()returned "
151 				"an error %d on %s.  Returning error.",
152 				error, mp->m_fsname);
153 		} else {
154 			ASSERT(buf_flags & XBF_TRYLOCK);
155 		}
156 		return error;
157 	}
158 
159 	/*
160 	 * Validate the magic number and version of every inode in the buffer
161 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
162 	 */
163 #ifdef DEBUG
164 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
165 #else	/* usual case */
166 	ni = 1;
167 #endif
168 
169 	for (i = 0; i < ni; i++) {
170 		int		di_ok;
171 		xfs_dinode_t	*dip;
172 
173 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
174 					(i << mp->m_sb.sb_inodelog));
175 		di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
176 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
177 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
178 						XFS_ERRTAG_ITOBP_INOTOBP,
179 						XFS_RANDOM_ITOBP_INOTOBP))) {
180 			if (iget_flags & XFS_IGET_UNTRUSTED) {
181 				xfs_trans_brelse(tp, bp);
182 				return XFS_ERROR(EINVAL);
183 			}
184 			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
185 						XFS_ERRLEVEL_HIGH, mp, dip);
186 #ifdef DEBUG
187 			cmn_err(CE_PANIC,
188 					"Device %s - bad inode magic/vsn "
189 					"daddr %lld #%d (magic=%x)",
190 				XFS_BUFTARG_NAME(mp->m_ddev_targp),
191 				(unsigned long long)imap->im_blkno, i,
192 				be16_to_cpu(dip->di_magic));
193 #endif
194 			xfs_trans_brelse(tp, bp);
195 			return XFS_ERROR(EFSCORRUPTED);
196 		}
197 	}
198 
199 	xfs_inobp_check(mp, bp);
200 
201 	/*
202 	 * Mark the buffer as an inode buffer now that it looks good
203 	 */
204 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
205 
206 	*bpp = bp;
207 	return 0;
208 }
209 
210 /*
211  * This routine is called to map an inode number within a file
212  * system to the buffer containing the on-disk version of the
213  * inode.  It returns a pointer to the buffer containing the
214  * on-disk inode in the bpp parameter, and in the dip parameter
215  * it returns a pointer to the on-disk inode within that buffer.
216  *
217  * If a non-zero error is returned, then the contents of bpp and
218  * dipp are undefined.
219  *
220  * Use xfs_imap() to determine the size and location of the
221  * buffer to read from disk.
222  */
223 int
224 xfs_inotobp(
225 	xfs_mount_t	*mp,
226 	xfs_trans_t	*tp,
227 	xfs_ino_t	ino,
228 	xfs_dinode_t	**dipp,
229 	xfs_buf_t	**bpp,
230 	int		*offset,
231 	uint		imap_flags)
232 {
233 	struct xfs_imap	imap;
234 	xfs_buf_t	*bp;
235 	int		error;
236 
237 	imap.im_blkno = 0;
238 	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
239 	if (error)
240 		return error;
241 
242 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
243 	if (error)
244 		return error;
245 
246 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
247 	*bpp = bp;
248 	*offset = imap.im_boffset;
249 	return 0;
250 }
251 
252 
253 /*
254  * This routine is called to map an inode to the buffer containing
255  * the on-disk version of the inode.  It returns a pointer to the
256  * buffer containing the on-disk inode in the bpp parameter, and in
257  * the dip parameter it returns a pointer to the on-disk inode within
258  * that buffer.
259  *
260  * If a non-zero error is returned, then the contents of bpp and
261  * dipp are undefined.
262  *
263  * The inode is expected to already been mapped to its buffer and read
264  * in once, thus we can use the mapping information stored in the inode
265  * rather than calling xfs_imap().  This allows us to avoid the overhead
266  * of looking at the inode btree for small block file systems
267  * (see xfs_imap()).
268  */
269 int
270 xfs_itobp(
271 	xfs_mount_t	*mp,
272 	xfs_trans_t	*tp,
273 	xfs_inode_t	*ip,
274 	xfs_dinode_t	**dipp,
275 	xfs_buf_t	**bpp,
276 	uint		buf_flags)
277 {
278 	xfs_buf_t	*bp;
279 	int		error;
280 
281 	ASSERT(ip->i_imap.im_blkno != 0);
282 
283 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
284 	if (error)
285 		return error;
286 
287 	if (!bp) {
288 		ASSERT(buf_flags & XBF_TRYLOCK);
289 		ASSERT(tp == NULL);
290 		*bpp = NULL;
291 		return EAGAIN;
292 	}
293 
294 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
295 	*bpp = bp;
296 	return 0;
297 }
298 
299 /*
300  * Move inode type and inode format specific information from the
301  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
302  * this means set if_rdev to the proper value.  For files, directories,
303  * and symlinks this means to bring in the in-line data or extent
304  * pointers.  For a file in B-tree format, only the root is immediately
305  * brought in-core.  The rest will be in-lined in if_extents when it
306  * is first referenced (see xfs_iread_extents()).
307  */
308 STATIC int
309 xfs_iformat(
310 	xfs_inode_t		*ip,
311 	xfs_dinode_t		*dip)
312 {
313 	xfs_attr_shortform_t	*atp;
314 	int			size;
315 	int			error;
316 	xfs_fsize_t             di_size;
317 	ip->i_df.if_ext_max =
318 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
319 	error = 0;
320 
321 	if (unlikely(be32_to_cpu(dip->di_nextents) +
322 		     be16_to_cpu(dip->di_anextents) >
323 		     be64_to_cpu(dip->di_nblocks))) {
324 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
325 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
326 			(unsigned long long)ip->i_ino,
327 			(int)(be32_to_cpu(dip->di_nextents) +
328 			      be16_to_cpu(dip->di_anextents)),
329 			(unsigned long long)
330 				be64_to_cpu(dip->di_nblocks));
331 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
332 				     ip->i_mount, dip);
333 		return XFS_ERROR(EFSCORRUPTED);
334 	}
335 
336 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
337 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
338 			"corrupt dinode %Lu, forkoff = 0x%x.",
339 			(unsigned long long)ip->i_ino,
340 			dip->di_forkoff);
341 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
342 				     ip->i_mount, dip);
343 		return XFS_ERROR(EFSCORRUPTED);
344 	}
345 
346 	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
347 		     !ip->i_mount->m_rtdev_targp)) {
348 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
349 			"corrupt dinode %Lu, has realtime flag set.",
350 			ip->i_ino);
351 		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
352 				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
353 		return XFS_ERROR(EFSCORRUPTED);
354 	}
355 
356 	switch (ip->i_d.di_mode & S_IFMT) {
357 	case S_IFIFO:
358 	case S_IFCHR:
359 	case S_IFBLK:
360 	case S_IFSOCK:
361 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
362 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
363 					      ip->i_mount, dip);
364 			return XFS_ERROR(EFSCORRUPTED);
365 		}
366 		ip->i_d.di_size = 0;
367 		ip->i_size = 0;
368 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
369 		break;
370 
371 	case S_IFREG:
372 	case S_IFLNK:
373 	case S_IFDIR:
374 		switch (dip->di_format) {
375 		case XFS_DINODE_FMT_LOCAL:
376 			/*
377 			 * no local regular files yet
378 			 */
379 			if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
380 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
381 					"corrupt inode %Lu "
382 					"(local format for regular file).",
383 					(unsigned long long) ip->i_ino);
384 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
385 						     XFS_ERRLEVEL_LOW,
386 						     ip->i_mount, dip);
387 				return XFS_ERROR(EFSCORRUPTED);
388 			}
389 
390 			di_size = be64_to_cpu(dip->di_size);
391 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
392 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
393 					"corrupt inode %Lu "
394 					"(bad size %Ld for local inode).",
395 					(unsigned long long) ip->i_ino,
396 					(long long) di_size);
397 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
398 						     XFS_ERRLEVEL_LOW,
399 						     ip->i_mount, dip);
400 				return XFS_ERROR(EFSCORRUPTED);
401 			}
402 
403 			size = (int)di_size;
404 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
405 			break;
406 		case XFS_DINODE_FMT_EXTENTS:
407 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
408 			break;
409 		case XFS_DINODE_FMT_BTREE:
410 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
411 			break;
412 		default:
413 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
414 					 ip->i_mount);
415 			return XFS_ERROR(EFSCORRUPTED);
416 		}
417 		break;
418 
419 	default:
420 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
421 		return XFS_ERROR(EFSCORRUPTED);
422 	}
423 	if (error) {
424 		return error;
425 	}
426 	if (!XFS_DFORK_Q(dip))
427 		return 0;
428 	ASSERT(ip->i_afp == NULL);
429 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
430 	ip->i_afp->if_ext_max =
431 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
432 	switch (dip->di_aformat) {
433 	case XFS_DINODE_FMT_LOCAL:
434 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
435 		size = be16_to_cpu(atp->hdr.totsize);
436 
437 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
438 			xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
439 				"corrupt inode %Lu "
440 				"(bad attr fork size %Ld).",
441 				(unsigned long long) ip->i_ino,
442 				(long long) size);
443 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
444 					     XFS_ERRLEVEL_LOW,
445 					     ip->i_mount, dip);
446 			return XFS_ERROR(EFSCORRUPTED);
447 		}
448 
449 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
450 		break;
451 	case XFS_DINODE_FMT_EXTENTS:
452 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
453 		break;
454 	case XFS_DINODE_FMT_BTREE:
455 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
456 		break;
457 	default:
458 		error = XFS_ERROR(EFSCORRUPTED);
459 		break;
460 	}
461 	if (error) {
462 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
463 		ip->i_afp = NULL;
464 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
465 	}
466 	return error;
467 }
468 
469 /*
470  * The file is in-lined in the on-disk inode.
471  * If it fits into if_inline_data, then copy
472  * it there, otherwise allocate a buffer for it
473  * and copy the data there.  Either way, set
474  * if_data to point at the data.
475  * If we allocate a buffer for the data, make
476  * sure that its size is a multiple of 4 and
477  * record the real size in i_real_bytes.
478  */
479 STATIC int
480 xfs_iformat_local(
481 	xfs_inode_t	*ip,
482 	xfs_dinode_t	*dip,
483 	int		whichfork,
484 	int		size)
485 {
486 	xfs_ifork_t	*ifp;
487 	int		real_size;
488 
489 	/*
490 	 * If the size is unreasonable, then something
491 	 * is wrong and we just bail out rather than crash in
492 	 * kmem_alloc() or memcpy() below.
493 	 */
494 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
495 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
496 			"corrupt inode %Lu "
497 			"(bad size %d for local fork, size = %d).",
498 			(unsigned long long) ip->i_ino, size,
499 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
500 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
501 				     ip->i_mount, dip);
502 		return XFS_ERROR(EFSCORRUPTED);
503 	}
504 	ifp = XFS_IFORK_PTR(ip, whichfork);
505 	real_size = 0;
506 	if (size == 0)
507 		ifp->if_u1.if_data = NULL;
508 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
509 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
510 	else {
511 		real_size = roundup(size, 4);
512 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
513 	}
514 	ifp->if_bytes = size;
515 	ifp->if_real_bytes = real_size;
516 	if (size)
517 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
518 	ifp->if_flags &= ~XFS_IFEXTENTS;
519 	ifp->if_flags |= XFS_IFINLINE;
520 	return 0;
521 }
522 
523 /*
524  * The file consists of a set of extents all
525  * of which fit into the on-disk inode.
526  * If there are few enough extents to fit into
527  * the if_inline_ext, then copy them there.
528  * Otherwise allocate a buffer for them and copy
529  * them into it.  Either way, set if_extents
530  * to point at the extents.
531  */
532 STATIC int
533 xfs_iformat_extents(
534 	xfs_inode_t	*ip,
535 	xfs_dinode_t	*dip,
536 	int		whichfork)
537 {
538 	xfs_bmbt_rec_t	*dp;
539 	xfs_ifork_t	*ifp;
540 	int		nex;
541 	int		size;
542 	int		i;
543 
544 	ifp = XFS_IFORK_PTR(ip, whichfork);
545 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
546 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
547 
548 	/*
549 	 * If the number of extents is unreasonable, then something
550 	 * is wrong and we just bail out rather than crash in
551 	 * kmem_alloc() or memcpy() below.
552 	 */
553 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 			"corrupt inode %Lu ((a)extents = %d).",
556 			(unsigned long long) ip->i_ino, nex);
557 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
558 				     ip->i_mount, dip);
559 		return XFS_ERROR(EFSCORRUPTED);
560 	}
561 
562 	ifp->if_real_bytes = 0;
563 	if (nex == 0)
564 		ifp->if_u1.if_extents = NULL;
565 	else if (nex <= XFS_INLINE_EXTS)
566 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
567 	else
568 		xfs_iext_add(ifp, 0, nex);
569 
570 	ifp->if_bytes = size;
571 	if (size) {
572 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
573 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
574 		for (i = 0; i < nex; i++, dp++) {
575 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
576 			ep->l0 = get_unaligned_be64(&dp->l0);
577 			ep->l1 = get_unaligned_be64(&dp->l1);
578 		}
579 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
580 		if (whichfork != XFS_DATA_FORK ||
581 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
582 				if (unlikely(xfs_check_nostate_extents(
583 				    ifp, 0, nex))) {
584 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
585 							 XFS_ERRLEVEL_LOW,
586 							 ip->i_mount);
587 					return XFS_ERROR(EFSCORRUPTED);
588 				}
589 	}
590 	ifp->if_flags |= XFS_IFEXTENTS;
591 	return 0;
592 }
593 
594 /*
595  * The file has too many extents to fit into
596  * the inode, so they are in B-tree format.
597  * Allocate a buffer for the root of the B-tree
598  * and copy the root into it.  The i_extents
599  * field will remain NULL until all of the
600  * extents are read in (when they are needed).
601  */
602 STATIC int
603 xfs_iformat_btree(
604 	xfs_inode_t		*ip,
605 	xfs_dinode_t		*dip,
606 	int			whichfork)
607 {
608 	xfs_bmdr_block_t	*dfp;
609 	xfs_ifork_t		*ifp;
610 	/* REFERENCED */
611 	int			nrecs;
612 	int			size;
613 
614 	ifp = XFS_IFORK_PTR(ip, whichfork);
615 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
616 	size = XFS_BMAP_BROOT_SPACE(dfp);
617 	nrecs = be16_to_cpu(dfp->bb_numrecs);
618 
619 	/*
620 	 * blow out if -- fork has less extents than can fit in
621 	 * fork (fork shouldn't be a btree format), root btree
622 	 * block has more records than can fit into the fork,
623 	 * or the number of extents is greater than the number of
624 	 * blocks.
625 	 */
626 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
627 	    || XFS_BMDR_SPACE_CALC(nrecs) >
628 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
629 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
630 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
631 			"corrupt inode %Lu (btree).",
632 			(unsigned long long) ip->i_ino);
633 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
634 				 ip->i_mount);
635 		return XFS_ERROR(EFSCORRUPTED);
636 	}
637 
638 	ifp->if_broot_bytes = size;
639 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
640 	ASSERT(ifp->if_broot != NULL);
641 	/*
642 	 * Copy and convert from the on-disk structure
643 	 * to the in-memory structure.
644 	 */
645 	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
646 			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
647 			 ifp->if_broot, size);
648 	ifp->if_flags &= ~XFS_IFEXTENTS;
649 	ifp->if_flags |= XFS_IFBROOT;
650 
651 	return 0;
652 }
653 
654 STATIC void
655 xfs_dinode_from_disk(
656 	xfs_icdinode_t		*to,
657 	xfs_dinode_t		*from)
658 {
659 	to->di_magic = be16_to_cpu(from->di_magic);
660 	to->di_mode = be16_to_cpu(from->di_mode);
661 	to->di_version = from ->di_version;
662 	to->di_format = from->di_format;
663 	to->di_onlink = be16_to_cpu(from->di_onlink);
664 	to->di_uid = be32_to_cpu(from->di_uid);
665 	to->di_gid = be32_to_cpu(from->di_gid);
666 	to->di_nlink = be32_to_cpu(from->di_nlink);
667 	to->di_projid = be16_to_cpu(from->di_projid);
668 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
669 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
670 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
671 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
672 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
673 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
674 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
675 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
676 	to->di_size = be64_to_cpu(from->di_size);
677 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
678 	to->di_extsize = be32_to_cpu(from->di_extsize);
679 	to->di_nextents = be32_to_cpu(from->di_nextents);
680 	to->di_anextents = be16_to_cpu(from->di_anextents);
681 	to->di_forkoff = from->di_forkoff;
682 	to->di_aformat	= from->di_aformat;
683 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
684 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
685 	to->di_flags	= be16_to_cpu(from->di_flags);
686 	to->di_gen	= be32_to_cpu(from->di_gen);
687 }
688 
689 void
690 xfs_dinode_to_disk(
691 	xfs_dinode_t		*to,
692 	xfs_icdinode_t		*from)
693 {
694 	to->di_magic = cpu_to_be16(from->di_magic);
695 	to->di_mode = cpu_to_be16(from->di_mode);
696 	to->di_version = from ->di_version;
697 	to->di_format = from->di_format;
698 	to->di_onlink = cpu_to_be16(from->di_onlink);
699 	to->di_uid = cpu_to_be32(from->di_uid);
700 	to->di_gid = cpu_to_be32(from->di_gid);
701 	to->di_nlink = cpu_to_be32(from->di_nlink);
702 	to->di_projid = cpu_to_be16(from->di_projid);
703 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
704 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
705 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
706 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
707 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
708 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
709 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
710 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
711 	to->di_size = cpu_to_be64(from->di_size);
712 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
713 	to->di_extsize = cpu_to_be32(from->di_extsize);
714 	to->di_nextents = cpu_to_be32(from->di_nextents);
715 	to->di_anextents = cpu_to_be16(from->di_anextents);
716 	to->di_forkoff = from->di_forkoff;
717 	to->di_aformat = from->di_aformat;
718 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
719 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
720 	to->di_flags = cpu_to_be16(from->di_flags);
721 	to->di_gen = cpu_to_be32(from->di_gen);
722 }
723 
724 STATIC uint
725 _xfs_dic2xflags(
726 	__uint16_t		di_flags)
727 {
728 	uint			flags = 0;
729 
730 	if (di_flags & XFS_DIFLAG_ANY) {
731 		if (di_flags & XFS_DIFLAG_REALTIME)
732 			flags |= XFS_XFLAG_REALTIME;
733 		if (di_flags & XFS_DIFLAG_PREALLOC)
734 			flags |= XFS_XFLAG_PREALLOC;
735 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
736 			flags |= XFS_XFLAG_IMMUTABLE;
737 		if (di_flags & XFS_DIFLAG_APPEND)
738 			flags |= XFS_XFLAG_APPEND;
739 		if (di_flags & XFS_DIFLAG_SYNC)
740 			flags |= XFS_XFLAG_SYNC;
741 		if (di_flags & XFS_DIFLAG_NOATIME)
742 			flags |= XFS_XFLAG_NOATIME;
743 		if (di_flags & XFS_DIFLAG_NODUMP)
744 			flags |= XFS_XFLAG_NODUMP;
745 		if (di_flags & XFS_DIFLAG_RTINHERIT)
746 			flags |= XFS_XFLAG_RTINHERIT;
747 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
748 			flags |= XFS_XFLAG_PROJINHERIT;
749 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
750 			flags |= XFS_XFLAG_NOSYMLINKS;
751 		if (di_flags & XFS_DIFLAG_EXTSIZE)
752 			flags |= XFS_XFLAG_EXTSIZE;
753 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
754 			flags |= XFS_XFLAG_EXTSZINHERIT;
755 		if (di_flags & XFS_DIFLAG_NODEFRAG)
756 			flags |= XFS_XFLAG_NODEFRAG;
757 		if (di_flags & XFS_DIFLAG_FILESTREAM)
758 			flags |= XFS_XFLAG_FILESTREAM;
759 	}
760 
761 	return flags;
762 }
763 
764 uint
765 xfs_ip2xflags(
766 	xfs_inode_t		*ip)
767 {
768 	xfs_icdinode_t		*dic = &ip->i_d;
769 
770 	return _xfs_dic2xflags(dic->di_flags) |
771 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
772 }
773 
774 uint
775 xfs_dic2xflags(
776 	xfs_dinode_t		*dip)
777 {
778 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
779 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
780 }
781 
782 /*
783  * Read the disk inode attributes into the in-core inode structure.
784  */
785 int
786 xfs_iread(
787 	xfs_mount_t	*mp,
788 	xfs_trans_t	*tp,
789 	xfs_inode_t	*ip,
790 	uint		iget_flags)
791 {
792 	xfs_buf_t	*bp;
793 	xfs_dinode_t	*dip;
794 	int		error;
795 
796 	/*
797 	 * Fill in the location information in the in-core inode.
798 	 */
799 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
800 	if (error)
801 		return error;
802 
803 	/*
804 	 * Get pointers to the on-disk inode and the buffer containing it.
805 	 */
806 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
807 			       XBF_LOCK, iget_flags);
808 	if (error)
809 		return error;
810 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
811 
812 	/*
813 	 * If we got something that isn't an inode it means someone
814 	 * (nfs or dmi) has a stale handle.
815 	 */
816 	if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
817 #ifdef DEBUG
818 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
819 				"dip->di_magic (0x%x) != "
820 				"XFS_DINODE_MAGIC (0x%x)",
821 				be16_to_cpu(dip->di_magic),
822 				XFS_DINODE_MAGIC);
823 #endif /* DEBUG */
824 		error = XFS_ERROR(EINVAL);
825 		goto out_brelse;
826 	}
827 
828 	/*
829 	 * If the on-disk inode is already linked to a directory
830 	 * entry, copy all of the inode into the in-core inode.
831 	 * xfs_iformat() handles copying in the inode format
832 	 * specific information.
833 	 * Otherwise, just get the truly permanent information.
834 	 */
835 	if (dip->di_mode) {
836 		xfs_dinode_from_disk(&ip->i_d, dip);
837 		error = xfs_iformat(ip, dip);
838 		if (error)  {
839 #ifdef DEBUG
840 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
841 					"xfs_iformat() returned error %d",
842 					error);
843 #endif /* DEBUG */
844 			goto out_brelse;
845 		}
846 	} else {
847 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
848 		ip->i_d.di_version = dip->di_version;
849 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
850 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
851 		/*
852 		 * Make sure to pull in the mode here as well in
853 		 * case the inode is released without being used.
854 		 * This ensures that xfs_inactive() will see that
855 		 * the inode is already free and not try to mess
856 		 * with the uninitialized part of it.
857 		 */
858 		ip->i_d.di_mode = 0;
859 		/*
860 		 * Initialize the per-fork minima and maxima for a new
861 		 * inode here.  xfs_iformat will do it for old inodes.
862 		 */
863 		ip->i_df.if_ext_max =
864 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
865 	}
866 
867 	/*
868 	 * The inode format changed when we moved the link count and
869 	 * made it 32 bits long.  If this is an old format inode,
870 	 * convert it in memory to look like a new one.  If it gets
871 	 * flushed to disk we will convert back before flushing or
872 	 * logging it.  We zero out the new projid field and the old link
873 	 * count field.  We'll handle clearing the pad field (the remains
874 	 * of the old uuid field) when we actually convert the inode to
875 	 * the new format. We don't change the version number so that we
876 	 * can distinguish this from a real new format inode.
877 	 */
878 	if (ip->i_d.di_version == 1) {
879 		ip->i_d.di_nlink = ip->i_d.di_onlink;
880 		ip->i_d.di_onlink = 0;
881 		ip->i_d.di_projid = 0;
882 	}
883 
884 	ip->i_delayed_blks = 0;
885 	ip->i_size = ip->i_d.di_size;
886 
887 	/*
888 	 * Mark the buffer containing the inode as something to keep
889 	 * around for a while.  This helps to keep recently accessed
890 	 * meta-data in-core longer.
891 	 */
892 	XFS_BUF_SET_REF(bp, XFS_INO_REF);
893 
894 	/*
895 	 * Use xfs_trans_brelse() to release the buffer containing the
896 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
897 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
898 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
899 	 * will only release the buffer if it is not dirty within the
900 	 * transaction.  It will be OK to release the buffer in this case,
901 	 * because inodes on disk are never destroyed and we will be
902 	 * locking the new in-core inode before putting it in the hash
903 	 * table where other processes can find it.  Thus we don't have
904 	 * to worry about the inode being changed just because we released
905 	 * the buffer.
906 	 */
907  out_brelse:
908 	xfs_trans_brelse(tp, bp);
909 	return error;
910 }
911 
912 /*
913  * Read in extents from a btree-format inode.
914  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
915  */
916 int
917 xfs_iread_extents(
918 	xfs_trans_t	*tp,
919 	xfs_inode_t	*ip,
920 	int		whichfork)
921 {
922 	int		error;
923 	xfs_ifork_t	*ifp;
924 	xfs_extnum_t	nextents;
925 	size_t		size;
926 
927 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
928 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
929 				 ip->i_mount);
930 		return XFS_ERROR(EFSCORRUPTED);
931 	}
932 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
933 	size = nextents * sizeof(xfs_bmbt_rec_t);
934 	ifp = XFS_IFORK_PTR(ip, whichfork);
935 
936 	/*
937 	 * We know that the size is valid (it's checked in iformat_btree)
938 	 */
939 	ifp->if_lastex = NULLEXTNUM;
940 	ifp->if_bytes = ifp->if_real_bytes = 0;
941 	ifp->if_flags |= XFS_IFEXTENTS;
942 	xfs_iext_add(ifp, 0, nextents);
943 	error = xfs_bmap_read_extents(tp, ip, whichfork);
944 	if (error) {
945 		xfs_iext_destroy(ifp);
946 		ifp->if_flags &= ~XFS_IFEXTENTS;
947 		return error;
948 	}
949 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
950 	return 0;
951 }
952 
953 /*
954  * Allocate an inode on disk and return a copy of its in-core version.
955  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
956  * appropriately within the inode.  The uid and gid for the inode are
957  * set according to the contents of the given cred structure.
958  *
959  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
960  * has a free inode available, call xfs_iget()
961  * to obtain the in-core version of the allocated inode.  Finally,
962  * fill in the inode and log its initial contents.  In this case,
963  * ialloc_context would be set to NULL and call_again set to false.
964  *
965  * If xfs_dialloc() does not have an available inode,
966  * it will replenish its supply by doing an allocation. Since we can
967  * only do one allocation within a transaction without deadlocks, we
968  * must commit the current transaction before returning the inode itself.
969  * In this case, therefore, we will set call_again to true and return.
970  * The caller should then commit the current transaction, start a new
971  * transaction, and call xfs_ialloc() again to actually get the inode.
972  *
973  * To ensure that some other process does not grab the inode that
974  * was allocated during the first call to xfs_ialloc(), this routine
975  * also returns the [locked] bp pointing to the head of the freelist
976  * as ialloc_context.  The caller should hold this buffer across
977  * the commit and pass it back into this routine on the second call.
978  *
979  * If we are allocating quota inodes, we do not have a parent inode
980  * to attach to or associate with (i.e. pip == NULL) because they
981  * are not linked into the directory structure - they are attached
982  * directly to the superblock - and so have no parent.
983  */
984 int
985 xfs_ialloc(
986 	xfs_trans_t	*tp,
987 	xfs_inode_t	*pip,
988 	mode_t		mode,
989 	xfs_nlink_t	nlink,
990 	xfs_dev_t	rdev,
991 	cred_t		*cr,
992 	xfs_prid_t	prid,
993 	int		okalloc,
994 	xfs_buf_t	**ialloc_context,
995 	boolean_t	*call_again,
996 	xfs_inode_t	**ipp)
997 {
998 	xfs_ino_t	ino;
999 	xfs_inode_t	*ip;
1000 	uint		flags;
1001 	int		error;
1002 	timespec_t	tv;
1003 	int		filestreams = 0;
1004 
1005 	/*
1006 	 * Call the space management code to pick
1007 	 * the on-disk inode to be allocated.
1008 	 */
1009 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1010 			    ialloc_context, call_again, &ino);
1011 	if (error)
1012 		return error;
1013 	if (*call_again || ino == NULLFSINO) {
1014 		*ipp = NULL;
1015 		return 0;
1016 	}
1017 	ASSERT(*ialloc_context == NULL);
1018 
1019 	/*
1020 	 * Get the in-core inode with the lock held exclusively.
1021 	 * This is because we're setting fields here we need
1022 	 * to prevent others from looking at until we're done.
1023 	 */
1024 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1025 				XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1026 	if (error)
1027 		return error;
1028 	ASSERT(ip != NULL);
1029 
1030 	ip->i_d.di_mode = (__uint16_t)mode;
1031 	ip->i_d.di_onlink = 0;
1032 	ip->i_d.di_nlink = nlink;
1033 	ASSERT(ip->i_d.di_nlink == nlink);
1034 	ip->i_d.di_uid = current_fsuid();
1035 	ip->i_d.di_gid = current_fsgid();
1036 	ip->i_d.di_projid = prid;
1037 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1038 
1039 	/*
1040 	 * If the superblock version is up to where we support new format
1041 	 * inodes and this is currently an old format inode, then change
1042 	 * the inode version number now.  This way we only do the conversion
1043 	 * here rather than here and in the flush/logging code.
1044 	 */
1045 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1046 	    ip->i_d.di_version == 1) {
1047 		ip->i_d.di_version = 2;
1048 		/*
1049 		 * We've already zeroed the old link count, the projid field,
1050 		 * and the pad field.
1051 		 */
1052 	}
1053 
1054 	/*
1055 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1056 	 */
1057 	if ((prid != 0) && (ip->i_d.di_version == 1))
1058 		xfs_bump_ino_vers2(tp, ip);
1059 
1060 	if (pip && XFS_INHERIT_GID(pip)) {
1061 		ip->i_d.di_gid = pip->i_d.di_gid;
1062 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1063 			ip->i_d.di_mode |= S_ISGID;
1064 		}
1065 	}
1066 
1067 	/*
1068 	 * If the group ID of the new file does not match the effective group
1069 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1070 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1071 	 */
1072 	if ((irix_sgid_inherit) &&
1073 	    (ip->i_d.di_mode & S_ISGID) &&
1074 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1075 		ip->i_d.di_mode &= ~S_ISGID;
1076 	}
1077 
1078 	ip->i_d.di_size = 0;
1079 	ip->i_size = 0;
1080 	ip->i_d.di_nextents = 0;
1081 	ASSERT(ip->i_d.di_nblocks == 0);
1082 
1083 	nanotime(&tv);
1084 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1085 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1086 	ip->i_d.di_atime = ip->i_d.di_mtime;
1087 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1088 
1089 	/*
1090 	 * di_gen will have been taken care of in xfs_iread.
1091 	 */
1092 	ip->i_d.di_extsize = 0;
1093 	ip->i_d.di_dmevmask = 0;
1094 	ip->i_d.di_dmstate = 0;
1095 	ip->i_d.di_flags = 0;
1096 	flags = XFS_ILOG_CORE;
1097 	switch (mode & S_IFMT) {
1098 	case S_IFIFO:
1099 	case S_IFCHR:
1100 	case S_IFBLK:
1101 	case S_IFSOCK:
1102 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1103 		ip->i_df.if_u2.if_rdev = rdev;
1104 		ip->i_df.if_flags = 0;
1105 		flags |= XFS_ILOG_DEV;
1106 		break;
1107 	case S_IFREG:
1108 		/*
1109 		 * we can't set up filestreams until after the VFS inode
1110 		 * is set up properly.
1111 		 */
1112 		if (pip && xfs_inode_is_filestream(pip))
1113 			filestreams = 1;
1114 		/* fall through */
1115 	case S_IFDIR:
1116 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1117 			uint	di_flags = 0;
1118 
1119 			if ((mode & S_IFMT) == S_IFDIR) {
1120 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1121 					di_flags |= XFS_DIFLAG_RTINHERIT;
1122 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1123 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1124 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1125 				}
1126 			} else if ((mode & S_IFMT) == S_IFREG) {
1127 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1128 					di_flags |= XFS_DIFLAG_REALTIME;
1129 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1130 					di_flags |= XFS_DIFLAG_EXTSIZE;
1131 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1132 				}
1133 			}
1134 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1135 			    xfs_inherit_noatime)
1136 				di_flags |= XFS_DIFLAG_NOATIME;
1137 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1138 			    xfs_inherit_nodump)
1139 				di_flags |= XFS_DIFLAG_NODUMP;
1140 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1141 			    xfs_inherit_sync)
1142 				di_flags |= XFS_DIFLAG_SYNC;
1143 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1144 			    xfs_inherit_nosymlinks)
1145 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1146 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1147 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1148 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1149 			    xfs_inherit_nodefrag)
1150 				di_flags |= XFS_DIFLAG_NODEFRAG;
1151 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1152 				di_flags |= XFS_DIFLAG_FILESTREAM;
1153 			ip->i_d.di_flags |= di_flags;
1154 		}
1155 		/* FALLTHROUGH */
1156 	case S_IFLNK:
1157 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1158 		ip->i_df.if_flags = XFS_IFEXTENTS;
1159 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1160 		ip->i_df.if_u1.if_extents = NULL;
1161 		break;
1162 	default:
1163 		ASSERT(0);
1164 	}
1165 	/*
1166 	 * Attribute fork settings for new inode.
1167 	 */
1168 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1169 	ip->i_d.di_anextents = 0;
1170 
1171 	/*
1172 	 * Log the new values stuffed into the inode.
1173 	 */
1174 	xfs_trans_log_inode(tp, ip, flags);
1175 
1176 	/* now that we have an i_mode we can setup inode ops and unlock */
1177 	xfs_setup_inode(ip);
1178 
1179 	/* now we have set up the vfs inode we can associate the filestream */
1180 	if (filestreams) {
1181 		error = xfs_filestream_associate(pip, ip);
1182 		if (error < 0)
1183 			return -error;
1184 		if (!error)
1185 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1186 	}
1187 
1188 	*ipp = ip;
1189 	return 0;
1190 }
1191 
1192 /*
1193  * Check to make sure that there are no blocks allocated to the
1194  * file beyond the size of the file.  We don't check this for
1195  * files with fixed size extents or real time extents, but we
1196  * at least do it for regular files.
1197  */
1198 #ifdef DEBUG
1199 void
1200 xfs_isize_check(
1201 	xfs_mount_t	*mp,
1202 	xfs_inode_t	*ip,
1203 	xfs_fsize_t	isize)
1204 {
1205 	xfs_fileoff_t	map_first;
1206 	int		nimaps;
1207 	xfs_bmbt_irec_t	imaps[2];
1208 
1209 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1210 		return;
1211 
1212 	if (XFS_IS_REALTIME_INODE(ip))
1213 		return;
1214 
1215 	if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1216 		return;
1217 
1218 	nimaps = 2;
1219 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1220 	/*
1221 	 * The filesystem could be shutting down, so bmapi may return
1222 	 * an error.
1223 	 */
1224 	if (xfs_bmapi(NULL, ip, map_first,
1225 			 (XFS_B_TO_FSB(mp,
1226 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1227 			  map_first),
1228 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1229 			 NULL, NULL))
1230 	    return;
1231 	ASSERT(nimaps == 1);
1232 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1233 }
1234 #endif	/* DEBUG */
1235 
1236 /*
1237  * Calculate the last possible buffered byte in a file.  This must
1238  * include data that was buffered beyond the EOF by the write code.
1239  * This also needs to deal with overflowing the xfs_fsize_t type
1240  * which can happen for sizes near the limit.
1241  *
1242  * We also need to take into account any blocks beyond the EOF.  It
1243  * may be the case that they were buffered by a write which failed.
1244  * In that case the pages will still be in memory, but the inode size
1245  * will never have been updated.
1246  */
1247 STATIC xfs_fsize_t
1248 xfs_file_last_byte(
1249 	xfs_inode_t	*ip)
1250 {
1251 	xfs_mount_t	*mp;
1252 	xfs_fsize_t	last_byte;
1253 	xfs_fileoff_t	last_block;
1254 	xfs_fileoff_t	size_last_block;
1255 	int		error;
1256 
1257 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1258 
1259 	mp = ip->i_mount;
1260 	/*
1261 	 * Only check for blocks beyond the EOF if the extents have
1262 	 * been read in.  This eliminates the need for the inode lock,
1263 	 * and it also saves us from looking when it really isn't
1264 	 * necessary.
1265 	 */
1266 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1267 		xfs_ilock(ip, XFS_ILOCK_SHARED);
1268 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1269 			XFS_DATA_FORK);
1270 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
1271 		if (error) {
1272 			last_block = 0;
1273 		}
1274 	} else {
1275 		last_block = 0;
1276 	}
1277 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1278 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1279 
1280 	last_byte = XFS_FSB_TO_B(mp, last_block);
1281 	if (last_byte < 0) {
1282 		return XFS_MAXIOFFSET(mp);
1283 	}
1284 	last_byte += (1 << mp->m_writeio_log);
1285 	if (last_byte < 0) {
1286 		return XFS_MAXIOFFSET(mp);
1287 	}
1288 	return last_byte;
1289 }
1290 
1291 /*
1292  * Start the truncation of the file to new_size.  The new size
1293  * must be smaller than the current size.  This routine will
1294  * clear the buffer and page caches of file data in the removed
1295  * range, and xfs_itruncate_finish() will remove the underlying
1296  * disk blocks.
1297  *
1298  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1299  * must NOT have the inode lock held at all.  This is because we're
1300  * calling into the buffer/page cache code and we can't hold the
1301  * inode lock when we do so.
1302  *
1303  * We need to wait for any direct I/Os in flight to complete before we
1304  * proceed with the truncate. This is needed to prevent the extents
1305  * being read or written by the direct I/Os from being removed while the
1306  * I/O is in flight as there is no other method of synchronising
1307  * direct I/O with the truncate operation.  Also, because we hold
1308  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1309  * started until the truncate completes and drops the lock. Essentially,
1310  * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1311  * ordering between direct I/Os and the truncate operation.
1312  *
1313  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1314  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1315  * in the case that the caller is locking things out of order and
1316  * may not be able to call xfs_itruncate_finish() with the inode lock
1317  * held without dropping the I/O lock.  If the caller must drop the
1318  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1319  * must be called again with all the same restrictions as the initial
1320  * call.
1321  */
1322 int
1323 xfs_itruncate_start(
1324 	xfs_inode_t	*ip,
1325 	uint		flags,
1326 	xfs_fsize_t	new_size)
1327 {
1328 	xfs_fsize_t	last_byte;
1329 	xfs_off_t	toss_start;
1330 	xfs_mount_t	*mp;
1331 	int		error = 0;
1332 
1333 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1334 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1335 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1336 	       (flags == XFS_ITRUNC_MAYBE));
1337 
1338 	mp = ip->i_mount;
1339 
1340 	/* wait for the completion of any pending DIOs */
1341 	if (new_size == 0 || new_size < ip->i_size)
1342 		xfs_ioend_wait(ip);
1343 
1344 	/*
1345 	 * Call toss_pages or flushinval_pages to get rid of pages
1346 	 * overlapping the region being removed.  We have to use
1347 	 * the less efficient flushinval_pages in the case that the
1348 	 * caller may not be able to finish the truncate without
1349 	 * dropping the inode's I/O lock.  Make sure
1350 	 * to catch any pages brought in by buffers overlapping
1351 	 * the EOF by searching out beyond the isize by our
1352 	 * block size. We round new_size up to a block boundary
1353 	 * so that we don't toss things on the same block as
1354 	 * new_size but before it.
1355 	 *
1356 	 * Before calling toss_page or flushinval_pages, make sure to
1357 	 * call remapf() over the same region if the file is mapped.
1358 	 * This frees up mapped file references to the pages in the
1359 	 * given range and for the flushinval_pages case it ensures
1360 	 * that we get the latest mapped changes flushed out.
1361 	 */
1362 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1363 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1364 	if (toss_start < 0) {
1365 		/*
1366 		 * The place to start tossing is beyond our maximum
1367 		 * file size, so there is no way that the data extended
1368 		 * out there.
1369 		 */
1370 		return 0;
1371 	}
1372 	last_byte = xfs_file_last_byte(ip);
1373 	trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
1374 	if (last_byte > toss_start) {
1375 		if (flags & XFS_ITRUNC_DEFINITE) {
1376 			xfs_tosspages(ip, toss_start,
1377 					-1, FI_REMAPF_LOCKED);
1378 		} else {
1379 			error = xfs_flushinval_pages(ip, toss_start,
1380 					-1, FI_REMAPF_LOCKED);
1381 		}
1382 	}
1383 
1384 #ifdef DEBUG
1385 	if (new_size == 0) {
1386 		ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1387 	}
1388 #endif
1389 	return error;
1390 }
1391 
1392 /*
1393  * Shrink the file to the given new_size.  The new size must be smaller than
1394  * the current size.  This will free up the underlying blocks in the removed
1395  * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1396  *
1397  * The transaction passed to this routine must have made a permanent log
1398  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1399  * given transaction and start new ones, so make sure everything involved in
1400  * the transaction is tidy before calling here.  Some transaction will be
1401  * returned to the caller to be committed.  The incoming transaction must
1402  * already include the inode, and both inode locks must be held exclusively.
1403  * The inode must also be "held" within the transaction.  On return the inode
1404  * will be "held" within the returned transaction.  This routine does NOT
1405  * require any disk space to be reserved for it within the transaction.
1406  *
1407  * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1408  * indicates the fork which is to be truncated.  For the attribute fork we only
1409  * support truncation to size 0.
1410  *
1411  * We use the sync parameter to indicate whether or not the first transaction
1412  * we perform might have to be synchronous.  For the attr fork, it needs to be
1413  * so if the unlink of the inode is not yet known to be permanent in the log.
1414  * This keeps us from freeing and reusing the blocks of the attribute fork
1415  * before the unlink of the inode becomes permanent.
1416  *
1417  * For the data fork, we normally have to run synchronously if we're being
1418  * called out of the inactive path or we're being called out of the create path
1419  * where we're truncating an existing file.  Either way, the truncate needs to
1420  * be sync so blocks don't reappear in the file with altered data in case of a
1421  * crash.  wsync filesystems can run the first case async because anything that
1422  * shrinks the inode has to run sync so by the time we're called here from
1423  * inactive, the inode size is permanently set to 0.
1424  *
1425  * Calls from the truncate path always need to be sync unless we're in a wsync
1426  * filesystem and the file has already been unlinked.
1427  *
1428  * The caller is responsible for correctly setting the sync parameter.  It gets
1429  * too hard for us to guess here which path we're being called out of just
1430  * based on inode state.
1431  *
1432  * If we get an error, we must return with the inode locked and linked into the
1433  * current transaction. This keeps things simple for the higher level code,
1434  * because it always knows that the inode is locked and held in the transaction
1435  * that returns to it whether errors occur or not.  We don't mark the inode
1436  * dirty on error so that transactions can be easily aborted if possible.
1437  */
1438 int
1439 xfs_itruncate_finish(
1440 	xfs_trans_t	**tp,
1441 	xfs_inode_t	*ip,
1442 	xfs_fsize_t	new_size,
1443 	int		fork,
1444 	int		sync)
1445 {
1446 	xfs_fsblock_t	first_block;
1447 	xfs_fileoff_t	first_unmap_block;
1448 	xfs_fileoff_t	last_block;
1449 	xfs_filblks_t	unmap_len=0;
1450 	xfs_mount_t	*mp;
1451 	xfs_trans_t	*ntp;
1452 	int		done;
1453 	int		committed;
1454 	xfs_bmap_free_t	free_list;
1455 	int		error;
1456 
1457 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1458 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1459 	ASSERT(*tp != NULL);
1460 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1461 	ASSERT(ip->i_transp == *tp);
1462 	ASSERT(ip->i_itemp != NULL);
1463 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1464 
1465 
1466 	ntp = *tp;
1467 	mp = (ntp)->t_mountp;
1468 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1469 
1470 	/*
1471 	 * We only support truncating the entire attribute fork.
1472 	 */
1473 	if (fork == XFS_ATTR_FORK) {
1474 		new_size = 0LL;
1475 	}
1476 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1477 	trace_xfs_itruncate_finish_start(ip, new_size);
1478 
1479 	/*
1480 	 * The first thing we do is set the size to new_size permanently
1481 	 * on disk.  This way we don't have to worry about anyone ever
1482 	 * being able to look at the data being freed even in the face
1483 	 * of a crash.  What we're getting around here is the case where
1484 	 * we free a block, it is allocated to another file, it is written
1485 	 * to, and then we crash.  If the new data gets written to the
1486 	 * file but the log buffers containing the free and reallocation
1487 	 * don't, then we'd end up with garbage in the blocks being freed.
1488 	 * As long as we make the new_size permanent before actually
1489 	 * freeing any blocks it doesn't matter if they get writtten to.
1490 	 *
1491 	 * The callers must signal into us whether or not the size
1492 	 * setting here must be synchronous.  There are a few cases
1493 	 * where it doesn't have to be synchronous.  Those cases
1494 	 * occur if the file is unlinked and we know the unlink is
1495 	 * permanent or if the blocks being truncated are guaranteed
1496 	 * to be beyond the inode eof (regardless of the link count)
1497 	 * and the eof value is permanent.  Both of these cases occur
1498 	 * only on wsync-mounted filesystems.  In those cases, we're
1499 	 * guaranteed that no user will ever see the data in the blocks
1500 	 * that are being truncated so the truncate can run async.
1501 	 * In the free beyond eof case, the file may wind up with
1502 	 * more blocks allocated to it than it needs if we crash
1503 	 * and that won't get fixed until the next time the file
1504 	 * is re-opened and closed but that's ok as that shouldn't
1505 	 * be too many blocks.
1506 	 *
1507 	 * However, we can't just make all wsync xactions run async
1508 	 * because there's one call out of the create path that needs
1509 	 * to run sync where it's truncating an existing file to size
1510 	 * 0 whose size is > 0.
1511 	 *
1512 	 * It's probably possible to come up with a test in this
1513 	 * routine that would correctly distinguish all the above
1514 	 * cases from the values of the function parameters and the
1515 	 * inode state but for sanity's sake, I've decided to let the
1516 	 * layers above just tell us.  It's simpler to correctly figure
1517 	 * out in the layer above exactly under what conditions we
1518 	 * can run async and I think it's easier for others read and
1519 	 * follow the logic in case something has to be changed.
1520 	 * cscope is your friend -- rcc.
1521 	 *
1522 	 * The attribute fork is much simpler.
1523 	 *
1524 	 * For the attribute fork we allow the caller to tell us whether
1525 	 * the unlink of the inode that led to this call is yet permanent
1526 	 * in the on disk log.  If it is not and we will be freeing extents
1527 	 * in this inode then we make the first transaction synchronous
1528 	 * to make sure that the unlink is permanent by the time we free
1529 	 * the blocks.
1530 	 */
1531 	if (fork == XFS_DATA_FORK) {
1532 		if (ip->i_d.di_nextents > 0) {
1533 			/*
1534 			 * If we are not changing the file size then do
1535 			 * not update the on-disk file size - we may be
1536 			 * called from xfs_inactive_free_eofblocks().  If we
1537 			 * update the on-disk file size and then the system
1538 			 * crashes before the contents of the file are
1539 			 * flushed to disk then the files may be full of
1540 			 * holes (ie NULL files bug).
1541 			 */
1542 			if (ip->i_size != new_size) {
1543 				ip->i_d.di_size = new_size;
1544 				ip->i_size = new_size;
1545 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1546 			}
1547 		}
1548 	} else if (sync) {
1549 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1550 		if (ip->i_d.di_anextents > 0)
1551 			xfs_trans_set_sync(ntp);
1552 	}
1553 	ASSERT(fork == XFS_DATA_FORK ||
1554 		(fork == XFS_ATTR_FORK &&
1555 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1556 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1557 
1558 	/*
1559 	 * Since it is possible for space to become allocated beyond
1560 	 * the end of the file (in a crash where the space is allocated
1561 	 * but the inode size is not yet updated), simply remove any
1562 	 * blocks which show up between the new EOF and the maximum
1563 	 * possible file size.  If the first block to be removed is
1564 	 * beyond the maximum file size (ie it is the same as last_block),
1565 	 * then there is nothing to do.
1566 	 */
1567 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1568 	ASSERT(first_unmap_block <= last_block);
1569 	done = 0;
1570 	if (last_block == first_unmap_block) {
1571 		done = 1;
1572 	} else {
1573 		unmap_len = last_block - first_unmap_block + 1;
1574 	}
1575 	while (!done) {
1576 		/*
1577 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1578 		 * will tell us whether it freed the entire range or
1579 		 * not.  If this is a synchronous mount (wsync),
1580 		 * then we can tell bunmapi to keep all the
1581 		 * transactions asynchronous since the unlink
1582 		 * transaction that made this inode inactive has
1583 		 * already hit the disk.  There's no danger of
1584 		 * the freed blocks being reused, there being a
1585 		 * crash, and the reused blocks suddenly reappearing
1586 		 * in this file with garbage in them once recovery
1587 		 * runs.
1588 		 */
1589 		xfs_bmap_init(&free_list, &first_block);
1590 		error = xfs_bunmapi(ntp, ip,
1591 				    first_unmap_block, unmap_len,
1592 				    xfs_bmapi_aflag(fork) |
1593 				      (sync ? 0 : XFS_BMAPI_ASYNC),
1594 				    XFS_ITRUNC_MAX_EXTENTS,
1595 				    &first_block, &free_list,
1596 				    NULL, &done);
1597 		if (error) {
1598 			/*
1599 			 * If the bunmapi call encounters an error,
1600 			 * return to the caller where the transaction
1601 			 * can be properly aborted.  We just need to
1602 			 * make sure we're not holding any resources
1603 			 * that we were not when we came in.
1604 			 */
1605 			xfs_bmap_cancel(&free_list);
1606 			return error;
1607 		}
1608 
1609 		/*
1610 		 * Duplicate the transaction that has the permanent
1611 		 * reservation and commit the old transaction.
1612 		 */
1613 		error = xfs_bmap_finish(tp, &free_list, &committed);
1614 		ntp = *tp;
1615 		if (committed) {
1616 			/* link the inode into the next xact in the chain */
1617 			xfs_trans_ijoin(ntp, ip,
1618 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1619 			xfs_trans_ihold(ntp, ip);
1620 		}
1621 
1622 		if (error) {
1623 			/*
1624 			 * If the bmap finish call encounters an error, return
1625 			 * to the caller where the transaction can be properly
1626 			 * aborted.  We just need to make sure we're not
1627 			 * holding any resources that we were not when we came
1628 			 * in.
1629 			 *
1630 			 * Aborting from this point might lose some blocks in
1631 			 * the file system, but oh well.
1632 			 */
1633 			xfs_bmap_cancel(&free_list);
1634 			return error;
1635 		}
1636 
1637 		if (committed) {
1638 			/*
1639 			 * Mark the inode dirty so it will be logged and
1640 			 * moved forward in the log as part of every commit.
1641 			 */
1642 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1643 		}
1644 
1645 		ntp = xfs_trans_dup(ntp);
1646 		error = xfs_trans_commit(*tp, 0);
1647 		*tp = ntp;
1648 
1649 		/* link the inode into the next transaction in the chain */
1650 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1651 		xfs_trans_ihold(ntp, ip);
1652 
1653 		if (error)
1654 			return error;
1655 		/*
1656 		 * transaction commit worked ok so we can drop the extra ticket
1657 		 * reference that we gained in xfs_trans_dup()
1658 		 */
1659 		xfs_log_ticket_put(ntp->t_ticket);
1660 		error = xfs_trans_reserve(ntp, 0,
1661 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1662 					XFS_TRANS_PERM_LOG_RES,
1663 					XFS_ITRUNCATE_LOG_COUNT);
1664 		if (error)
1665 			return error;
1666 	}
1667 	/*
1668 	 * Only update the size in the case of the data fork, but
1669 	 * always re-log the inode so that our permanent transaction
1670 	 * can keep on rolling it forward in the log.
1671 	 */
1672 	if (fork == XFS_DATA_FORK) {
1673 		xfs_isize_check(mp, ip, new_size);
1674 		/*
1675 		 * If we are not changing the file size then do
1676 		 * not update the on-disk file size - we may be
1677 		 * called from xfs_inactive_free_eofblocks().  If we
1678 		 * update the on-disk file size and then the system
1679 		 * crashes before the contents of the file are
1680 		 * flushed to disk then the files may be full of
1681 		 * holes (ie NULL files bug).
1682 		 */
1683 		if (ip->i_size != new_size) {
1684 			ip->i_d.di_size = new_size;
1685 			ip->i_size = new_size;
1686 		}
1687 	}
1688 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1689 	ASSERT((new_size != 0) ||
1690 	       (fork == XFS_ATTR_FORK) ||
1691 	       (ip->i_delayed_blks == 0));
1692 	ASSERT((new_size != 0) ||
1693 	       (fork == XFS_ATTR_FORK) ||
1694 	       (ip->i_d.di_nextents == 0));
1695 	trace_xfs_itruncate_finish_end(ip, new_size);
1696 	return 0;
1697 }
1698 
1699 /*
1700  * This is called when the inode's link count goes to 0.
1701  * We place the on-disk inode on a list in the AGI.  It
1702  * will be pulled from this list when the inode is freed.
1703  */
1704 int
1705 xfs_iunlink(
1706 	xfs_trans_t	*tp,
1707 	xfs_inode_t	*ip)
1708 {
1709 	xfs_mount_t	*mp;
1710 	xfs_agi_t	*agi;
1711 	xfs_dinode_t	*dip;
1712 	xfs_buf_t	*agibp;
1713 	xfs_buf_t	*ibp;
1714 	xfs_agino_t	agino;
1715 	short		bucket_index;
1716 	int		offset;
1717 	int		error;
1718 
1719 	ASSERT(ip->i_d.di_nlink == 0);
1720 	ASSERT(ip->i_d.di_mode != 0);
1721 	ASSERT(ip->i_transp == tp);
1722 
1723 	mp = tp->t_mountp;
1724 
1725 	/*
1726 	 * Get the agi buffer first.  It ensures lock ordering
1727 	 * on the list.
1728 	 */
1729 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1730 	if (error)
1731 		return error;
1732 	agi = XFS_BUF_TO_AGI(agibp);
1733 
1734 	/*
1735 	 * Get the index into the agi hash table for the
1736 	 * list this inode will go on.
1737 	 */
1738 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1739 	ASSERT(agino != 0);
1740 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1741 	ASSERT(agi->agi_unlinked[bucket_index]);
1742 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1743 
1744 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1745 		/*
1746 		 * There is already another inode in the bucket we need
1747 		 * to add ourselves to.  Add us at the front of the list.
1748 		 * Here we put the head pointer into our next pointer,
1749 		 * and then we fall through to point the head at us.
1750 		 */
1751 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1752 		if (error)
1753 			return error;
1754 
1755 		ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1756 		/* both on-disk, don't endian flip twice */
1757 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1758 		offset = ip->i_imap.im_boffset +
1759 			offsetof(xfs_dinode_t, di_next_unlinked);
1760 		xfs_trans_inode_buf(tp, ibp);
1761 		xfs_trans_log_buf(tp, ibp, offset,
1762 				  (offset + sizeof(xfs_agino_t) - 1));
1763 		xfs_inobp_check(mp, ibp);
1764 	}
1765 
1766 	/*
1767 	 * Point the bucket head pointer at the inode being inserted.
1768 	 */
1769 	ASSERT(agino != 0);
1770 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1771 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1772 		(sizeof(xfs_agino_t) * bucket_index);
1773 	xfs_trans_log_buf(tp, agibp, offset,
1774 			  (offset + sizeof(xfs_agino_t) - 1));
1775 	return 0;
1776 }
1777 
1778 /*
1779  * Pull the on-disk inode from the AGI unlinked list.
1780  */
1781 STATIC int
1782 xfs_iunlink_remove(
1783 	xfs_trans_t	*tp,
1784 	xfs_inode_t	*ip)
1785 {
1786 	xfs_ino_t	next_ino;
1787 	xfs_mount_t	*mp;
1788 	xfs_agi_t	*agi;
1789 	xfs_dinode_t	*dip;
1790 	xfs_buf_t	*agibp;
1791 	xfs_buf_t	*ibp;
1792 	xfs_agnumber_t	agno;
1793 	xfs_agino_t	agino;
1794 	xfs_agino_t	next_agino;
1795 	xfs_buf_t	*last_ibp;
1796 	xfs_dinode_t	*last_dip = NULL;
1797 	short		bucket_index;
1798 	int		offset, last_offset = 0;
1799 	int		error;
1800 
1801 	mp = tp->t_mountp;
1802 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1803 
1804 	/*
1805 	 * Get the agi buffer first.  It ensures lock ordering
1806 	 * on the list.
1807 	 */
1808 	error = xfs_read_agi(mp, tp, agno, &agibp);
1809 	if (error)
1810 		return error;
1811 
1812 	agi = XFS_BUF_TO_AGI(agibp);
1813 
1814 	/*
1815 	 * Get the index into the agi hash table for the
1816 	 * list this inode will go on.
1817 	 */
1818 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1819 	ASSERT(agino != 0);
1820 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1821 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1822 	ASSERT(agi->agi_unlinked[bucket_index]);
1823 
1824 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1825 		/*
1826 		 * We're at the head of the list.  Get the inode's
1827 		 * on-disk buffer to see if there is anyone after us
1828 		 * on the list.  Only modify our next pointer if it
1829 		 * is not already NULLAGINO.  This saves us the overhead
1830 		 * of dealing with the buffer when there is no need to
1831 		 * change it.
1832 		 */
1833 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1834 		if (error) {
1835 			cmn_err(CE_WARN,
1836 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1837 				error, mp->m_fsname);
1838 			return error;
1839 		}
1840 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1841 		ASSERT(next_agino != 0);
1842 		if (next_agino != NULLAGINO) {
1843 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1844 			offset = ip->i_imap.im_boffset +
1845 				offsetof(xfs_dinode_t, di_next_unlinked);
1846 			xfs_trans_inode_buf(tp, ibp);
1847 			xfs_trans_log_buf(tp, ibp, offset,
1848 					  (offset + sizeof(xfs_agino_t) - 1));
1849 			xfs_inobp_check(mp, ibp);
1850 		} else {
1851 			xfs_trans_brelse(tp, ibp);
1852 		}
1853 		/*
1854 		 * Point the bucket head pointer at the next inode.
1855 		 */
1856 		ASSERT(next_agino != 0);
1857 		ASSERT(next_agino != agino);
1858 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1859 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1860 			(sizeof(xfs_agino_t) * bucket_index);
1861 		xfs_trans_log_buf(tp, agibp, offset,
1862 				  (offset + sizeof(xfs_agino_t) - 1));
1863 	} else {
1864 		/*
1865 		 * We need to search the list for the inode being freed.
1866 		 */
1867 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1868 		last_ibp = NULL;
1869 		while (next_agino != agino) {
1870 			/*
1871 			 * If the last inode wasn't the one pointing to
1872 			 * us, then release its buffer since we're not
1873 			 * going to do anything with it.
1874 			 */
1875 			if (last_ibp != NULL) {
1876 				xfs_trans_brelse(tp, last_ibp);
1877 			}
1878 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1879 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1880 					    &last_ibp, &last_offset, 0);
1881 			if (error) {
1882 				cmn_err(CE_WARN,
1883 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
1884 					error, mp->m_fsname);
1885 				return error;
1886 			}
1887 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1888 			ASSERT(next_agino != NULLAGINO);
1889 			ASSERT(next_agino != 0);
1890 		}
1891 		/*
1892 		 * Now last_ibp points to the buffer previous to us on
1893 		 * the unlinked list.  Pull us from the list.
1894 		 */
1895 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1896 		if (error) {
1897 			cmn_err(CE_WARN,
1898 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1899 				error, mp->m_fsname);
1900 			return error;
1901 		}
1902 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1903 		ASSERT(next_agino != 0);
1904 		ASSERT(next_agino != agino);
1905 		if (next_agino != NULLAGINO) {
1906 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1907 			offset = ip->i_imap.im_boffset +
1908 				offsetof(xfs_dinode_t, di_next_unlinked);
1909 			xfs_trans_inode_buf(tp, ibp);
1910 			xfs_trans_log_buf(tp, ibp, offset,
1911 					  (offset + sizeof(xfs_agino_t) - 1));
1912 			xfs_inobp_check(mp, ibp);
1913 		} else {
1914 			xfs_trans_brelse(tp, ibp);
1915 		}
1916 		/*
1917 		 * Point the previous inode on the list to the next inode.
1918 		 */
1919 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1920 		ASSERT(next_agino != 0);
1921 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1922 		xfs_trans_inode_buf(tp, last_ibp);
1923 		xfs_trans_log_buf(tp, last_ibp, offset,
1924 				  (offset + sizeof(xfs_agino_t) - 1));
1925 		xfs_inobp_check(mp, last_ibp);
1926 	}
1927 	return 0;
1928 }
1929 
1930 STATIC void
1931 xfs_ifree_cluster(
1932 	xfs_inode_t	*free_ip,
1933 	xfs_trans_t	*tp,
1934 	xfs_ino_t	inum)
1935 {
1936 	xfs_mount_t		*mp = free_ip->i_mount;
1937 	int			blks_per_cluster;
1938 	int			nbufs;
1939 	int			ninodes;
1940 	int			i, j;
1941 	xfs_daddr_t		blkno;
1942 	xfs_buf_t		*bp;
1943 	xfs_inode_t		*ip;
1944 	xfs_inode_log_item_t	*iip;
1945 	xfs_log_item_t		*lip;
1946 	struct xfs_perag	*pag;
1947 
1948 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1949 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1950 		blks_per_cluster = 1;
1951 		ninodes = mp->m_sb.sb_inopblock;
1952 		nbufs = XFS_IALLOC_BLOCKS(mp);
1953 	} else {
1954 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1955 					mp->m_sb.sb_blocksize;
1956 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1957 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1958 	}
1959 
1960 	for (j = 0; j < nbufs; j++, inum += ninodes) {
1961 		int	found = 0;
1962 
1963 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1964 					 XFS_INO_TO_AGBNO(mp, inum));
1965 
1966 		/*
1967 		 * We obtain and lock the backing buffer first in the process
1968 		 * here, as we have to ensure that any dirty inode that we
1969 		 * can't get the flush lock on is attached to the buffer.
1970 		 * If we scan the in-memory inodes first, then buffer IO can
1971 		 * complete before we get a lock on it, and hence we may fail
1972 		 * to mark all the active inodes on the buffer stale.
1973 		 */
1974 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1975 					mp->m_bsize * blks_per_cluster,
1976 					XBF_LOCK);
1977 
1978 		/*
1979 		 * Walk the inodes already attached to the buffer and mark them
1980 		 * stale. These will all have the flush locks held, so an
1981 		 * in-memory inode walk can't lock them.
1982 		 */
1983 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1984 		while (lip) {
1985 			if (lip->li_type == XFS_LI_INODE) {
1986 				iip = (xfs_inode_log_item_t *)lip;
1987 				ASSERT(iip->ili_logged == 1);
1988 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
1989 				xfs_trans_ail_copy_lsn(mp->m_ail,
1990 							&iip->ili_flush_lsn,
1991 							&iip->ili_item.li_lsn);
1992 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1993 				found++;
1994 			}
1995 			lip = lip->li_bio_list;
1996 		}
1997 
1998 		/*
1999 		 * For each inode in memory attempt to add it to the inode
2000 		 * buffer and set it up for being staled on buffer IO
2001 		 * completion.  This is safe as we've locked out tail pushing
2002 		 * and flushing by locking the buffer.
2003 		 *
2004 		 * We have already marked every inode that was part of a
2005 		 * transaction stale above, which means there is no point in
2006 		 * even trying to lock them.
2007 		 */
2008 		for (i = 0; i < ninodes; i++) {
2009 			read_lock(&pag->pag_ici_lock);
2010 			ip = radix_tree_lookup(&pag->pag_ici_root,
2011 					XFS_INO_TO_AGINO(mp, (inum + i)));
2012 
2013 			/* Inode not in memory or stale, nothing to do */
2014 			if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2015 				read_unlock(&pag->pag_ici_lock);
2016 				continue;
2017 			}
2018 
2019 			/* don't try to lock/unlock the current inode */
2020 			if (ip != free_ip &&
2021 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2022 				read_unlock(&pag->pag_ici_lock);
2023 				continue;
2024 			}
2025 			read_unlock(&pag->pag_ici_lock);
2026 
2027 			if (!xfs_iflock_nowait(ip)) {
2028 				if (ip != free_ip)
2029 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2030 				continue;
2031 			}
2032 
2033 			xfs_iflags_set(ip, XFS_ISTALE);
2034 			if (xfs_inode_clean(ip)) {
2035 				ASSERT(ip != free_ip);
2036 				xfs_ifunlock(ip);
2037 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2038 				continue;
2039 			}
2040 
2041 			iip = ip->i_itemp;
2042 			if (!iip) {
2043 				/* inode with unlogged changes only */
2044 				ASSERT(ip != free_ip);
2045 				ip->i_update_core = 0;
2046 				xfs_ifunlock(ip);
2047 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2048 				continue;
2049 			}
2050 			found++;
2051 
2052 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2053 			iip->ili_format.ilf_fields = 0;
2054 			iip->ili_logged = 1;
2055 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2056 						&iip->ili_item.li_lsn);
2057 
2058 			xfs_buf_attach_iodone(bp,
2059 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2060 				xfs_istale_done, (xfs_log_item_t *)iip);
2061 
2062 			if (ip != free_ip)
2063 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2064 		}
2065 
2066 		if (found)
2067 			xfs_trans_stale_inode_buf(tp, bp);
2068 		xfs_trans_binval(tp, bp);
2069 	}
2070 
2071 	xfs_perag_put(pag);
2072 }
2073 
2074 /*
2075  * This is called to return an inode to the inode free list.
2076  * The inode should already be truncated to 0 length and have
2077  * no pages associated with it.  This routine also assumes that
2078  * the inode is already a part of the transaction.
2079  *
2080  * The on-disk copy of the inode will have been added to the list
2081  * of unlinked inodes in the AGI. We need to remove the inode from
2082  * that list atomically with respect to freeing it here.
2083  */
2084 int
2085 xfs_ifree(
2086 	xfs_trans_t	*tp,
2087 	xfs_inode_t	*ip,
2088 	xfs_bmap_free_t	*flist)
2089 {
2090 	int			error;
2091 	int			delete;
2092 	xfs_ino_t		first_ino;
2093 	xfs_dinode_t    	*dip;
2094 	xfs_buf_t       	*ibp;
2095 
2096 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2097 	ASSERT(ip->i_transp == tp);
2098 	ASSERT(ip->i_d.di_nlink == 0);
2099 	ASSERT(ip->i_d.di_nextents == 0);
2100 	ASSERT(ip->i_d.di_anextents == 0);
2101 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2102 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2103 	ASSERT(ip->i_d.di_nblocks == 0);
2104 
2105 	/*
2106 	 * Pull the on-disk inode from the AGI unlinked list.
2107 	 */
2108 	error = xfs_iunlink_remove(tp, ip);
2109 	if (error != 0) {
2110 		return error;
2111 	}
2112 
2113 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2114 	if (error != 0) {
2115 		return error;
2116 	}
2117 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2118 	ip->i_d.di_flags = 0;
2119 	ip->i_d.di_dmevmask = 0;
2120 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2121 	ip->i_df.if_ext_max =
2122 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2123 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2124 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2125 	/*
2126 	 * Bump the generation count so no one will be confused
2127 	 * by reincarnations of this inode.
2128 	 */
2129 	ip->i_d.di_gen++;
2130 
2131 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2132 
2133 	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
2134 	if (error)
2135 		return error;
2136 
2137         /*
2138 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2139 	* from picking up this inode when it is reclaimed (its incore state
2140 	* initialzed but not flushed to disk yet). The in-core di_mode is
2141 	* already cleared  and a corresponding transaction logged.
2142 	* The hack here just synchronizes the in-core to on-disk
2143 	* di_mode value in advance before the actual inode sync to disk.
2144 	* This is OK because the inode is already unlinked and would never
2145 	* change its di_mode again for this inode generation.
2146 	* This is a temporary hack that would require a proper fix
2147 	* in the future.
2148 	*/
2149 	dip->di_mode = 0;
2150 
2151 	if (delete) {
2152 		xfs_ifree_cluster(ip, tp, first_ino);
2153 	}
2154 
2155 	return 0;
2156 }
2157 
2158 /*
2159  * Reallocate the space for if_broot based on the number of records
2160  * being added or deleted as indicated in rec_diff.  Move the records
2161  * and pointers in if_broot to fit the new size.  When shrinking this
2162  * will eliminate holes between the records and pointers created by
2163  * the caller.  When growing this will create holes to be filled in
2164  * by the caller.
2165  *
2166  * The caller must not request to add more records than would fit in
2167  * the on-disk inode root.  If the if_broot is currently NULL, then
2168  * if we adding records one will be allocated.  The caller must also
2169  * not request that the number of records go below zero, although
2170  * it can go to zero.
2171  *
2172  * ip -- the inode whose if_broot area is changing
2173  * ext_diff -- the change in the number of records, positive or negative,
2174  *	 requested for the if_broot array.
2175  */
2176 void
2177 xfs_iroot_realloc(
2178 	xfs_inode_t		*ip,
2179 	int			rec_diff,
2180 	int			whichfork)
2181 {
2182 	struct xfs_mount	*mp = ip->i_mount;
2183 	int			cur_max;
2184 	xfs_ifork_t		*ifp;
2185 	struct xfs_btree_block	*new_broot;
2186 	int			new_max;
2187 	size_t			new_size;
2188 	char			*np;
2189 	char			*op;
2190 
2191 	/*
2192 	 * Handle the degenerate case quietly.
2193 	 */
2194 	if (rec_diff == 0) {
2195 		return;
2196 	}
2197 
2198 	ifp = XFS_IFORK_PTR(ip, whichfork);
2199 	if (rec_diff > 0) {
2200 		/*
2201 		 * If there wasn't any memory allocated before, just
2202 		 * allocate it now and get out.
2203 		 */
2204 		if (ifp->if_broot_bytes == 0) {
2205 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2206 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
2207 			ifp->if_broot_bytes = (int)new_size;
2208 			return;
2209 		}
2210 
2211 		/*
2212 		 * If there is already an existing if_broot, then we need
2213 		 * to realloc() it and shift the pointers to their new
2214 		 * location.  The records don't change location because
2215 		 * they are kept butted up against the btree block header.
2216 		 */
2217 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2218 		new_max = cur_max + rec_diff;
2219 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2220 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2221 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2222 				KM_SLEEP);
2223 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2224 						     ifp->if_broot_bytes);
2225 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2226 						     (int)new_size);
2227 		ifp->if_broot_bytes = (int)new_size;
2228 		ASSERT(ifp->if_broot_bytes <=
2229 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2230 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2231 		return;
2232 	}
2233 
2234 	/*
2235 	 * rec_diff is less than 0.  In this case, we are shrinking the
2236 	 * if_broot buffer.  It must already exist.  If we go to zero
2237 	 * records, just get rid of the root and clear the status bit.
2238 	 */
2239 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2240 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2241 	new_max = cur_max + rec_diff;
2242 	ASSERT(new_max >= 0);
2243 	if (new_max > 0)
2244 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2245 	else
2246 		new_size = 0;
2247 	if (new_size > 0) {
2248 		new_broot = kmem_alloc(new_size, KM_SLEEP);
2249 		/*
2250 		 * First copy over the btree block header.
2251 		 */
2252 		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2253 	} else {
2254 		new_broot = NULL;
2255 		ifp->if_flags &= ~XFS_IFBROOT;
2256 	}
2257 
2258 	/*
2259 	 * Only copy the records and pointers if there are any.
2260 	 */
2261 	if (new_max > 0) {
2262 		/*
2263 		 * First copy the records.
2264 		 */
2265 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2266 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2267 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2268 
2269 		/*
2270 		 * Then copy the pointers.
2271 		 */
2272 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2273 						     ifp->if_broot_bytes);
2274 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2275 						     (int)new_size);
2276 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2277 	}
2278 	kmem_free(ifp->if_broot);
2279 	ifp->if_broot = new_broot;
2280 	ifp->if_broot_bytes = (int)new_size;
2281 	ASSERT(ifp->if_broot_bytes <=
2282 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2283 	return;
2284 }
2285 
2286 
2287 /*
2288  * This is called when the amount of space needed for if_data
2289  * is increased or decreased.  The change in size is indicated by
2290  * the number of bytes that need to be added or deleted in the
2291  * byte_diff parameter.
2292  *
2293  * If the amount of space needed has decreased below the size of the
2294  * inline buffer, then switch to using the inline buffer.  Otherwise,
2295  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2296  * to what is needed.
2297  *
2298  * ip -- the inode whose if_data area is changing
2299  * byte_diff -- the change in the number of bytes, positive or negative,
2300  *	 requested for the if_data array.
2301  */
2302 void
2303 xfs_idata_realloc(
2304 	xfs_inode_t	*ip,
2305 	int		byte_diff,
2306 	int		whichfork)
2307 {
2308 	xfs_ifork_t	*ifp;
2309 	int		new_size;
2310 	int		real_size;
2311 
2312 	if (byte_diff == 0) {
2313 		return;
2314 	}
2315 
2316 	ifp = XFS_IFORK_PTR(ip, whichfork);
2317 	new_size = (int)ifp->if_bytes + byte_diff;
2318 	ASSERT(new_size >= 0);
2319 
2320 	if (new_size == 0) {
2321 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2322 			kmem_free(ifp->if_u1.if_data);
2323 		}
2324 		ifp->if_u1.if_data = NULL;
2325 		real_size = 0;
2326 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2327 		/*
2328 		 * If the valid extents/data can fit in if_inline_ext/data,
2329 		 * copy them from the malloc'd vector and free it.
2330 		 */
2331 		if (ifp->if_u1.if_data == NULL) {
2332 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2333 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2334 			ASSERT(ifp->if_real_bytes != 0);
2335 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2336 			      new_size);
2337 			kmem_free(ifp->if_u1.if_data);
2338 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2339 		}
2340 		real_size = 0;
2341 	} else {
2342 		/*
2343 		 * Stuck with malloc/realloc.
2344 		 * For inline data, the underlying buffer must be
2345 		 * a multiple of 4 bytes in size so that it can be
2346 		 * logged and stay on word boundaries.  We enforce
2347 		 * that here.
2348 		 */
2349 		real_size = roundup(new_size, 4);
2350 		if (ifp->if_u1.if_data == NULL) {
2351 			ASSERT(ifp->if_real_bytes == 0);
2352 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2353 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2354 			/*
2355 			 * Only do the realloc if the underlying size
2356 			 * is really changing.
2357 			 */
2358 			if (ifp->if_real_bytes != real_size) {
2359 				ifp->if_u1.if_data =
2360 					kmem_realloc(ifp->if_u1.if_data,
2361 							real_size,
2362 							ifp->if_real_bytes,
2363 							KM_SLEEP);
2364 			}
2365 		} else {
2366 			ASSERT(ifp->if_real_bytes == 0);
2367 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2368 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2369 				ifp->if_bytes);
2370 		}
2371 	}
2372 	ifp->if_real_bytes = real_size;
2373 	ifp->if_bytes = new_size;
2374 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2375 }
2376 
2377 void
2378 xfs_idestroy_fork(
2379 	xfs_inode_t	*ip,
2380 	int		whichfork)
2381 {
2382 	xfs_ifork_t	*ifp;
2383 
2384 	ifp = XFS_IFORK_PTR(ip, whichfork);
2385 	if (ifp->if_broot != NULL) {
2386 		kmem_free(ifp->if_broot);
2387 		ifp->if_broot = NULL;
2388 	}
2389 
2390 	/*
2391 	 * If the format is local, then we can't have an extents
2392 	 * array so just look for an inline data array.  If we're
2393 	 * not local then we may or may not have an extents list,
2394 	 * so check and free it up if we do.
2395 	 */
2396 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2397 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2398 		    (ifp->if_u1.if_data != NULL)) {
2399 			ASSERT(ifp->if_real_bytes != 0);
2400 			kmem_free(ifp->if_u1.if_data);
2401 			ifp->if_u1.if_data = NULL;
2402 			ifp->if_real_bytes = 0;
2403 		}
2404 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2405 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2406 		    ((ifp->if_u1.if_extents != NULL) &&
2407 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2408 		ASSERT(ifp->if_real_bytes != 0);
2409 		xfs_iext_destroy(ifp);
2410 	}
2411 	ASSERT(ifp->if_u1.if_extents == NULL ||
2412 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2413 	ASSERT(ifp->if_real_bytes == 0);
2414 	if (whichfork == XFS_ATTR_FORK) {
2415 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2416 		ip->i_afp = NULL;
2417 	}
2418 }
2419 
2420 /*
2421  * This is called to unpin an inode.  The caller must have the inode locked
2422  * in at least shared mode so that the buffer cannot be subsequently pinned
2423  * once someone is waiting for it to be unpinned.
2424  */
2425 static void
2426 xfs_iunpin_nowait(
2427 	struct xfs_inode	*ip)
2428 {
2429 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2430 
2431 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2432 
2433 	/* Give the log a push to start the unpinning I/O */
2434 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2435 
2436 }
2437 
2438 void
2439 xfs_iunpin_wait(
2440 	struct xfs_inode	*ip)
2441 {
2442 	if (xfs_ipincount(ip)) {
2443 		xfs_iunpin_nowait(ip);
2444 		wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2445 	}
2446 }
2447 
2448 /*
2449  * xfs_iextents_copy()
2450  *
2451  * This is called to copy the REAL extents (as opposed to the delayed
2452  * allocation extents) from the inode into the given buffer.  It
2453  * returns the number of bytes copied into the buffer.
2454  *
2455  * If there are no delayed allocation extents, then we can just
2456  * memcpy() the extents into the buffer.  Otherwise, we need to
2457  * examine each extent in turn and skip those which are delayed.
2458  */
2459 int
2460 xfs_iextents_copy(
2461 	xfs_inode_t		*ip,
2462 	xfs_bmbt_rec_t		*dp,
2463 	int			whichfork)
2464 {
2465 	int			copied;
2466 	int			i;
2467 	xfs_ifork_t		*ifp;
2468 	int			nrecs;
2469 	xfs_fsblock_t		start_block;
2470 
2471 	ifp = XFS_IFORK_PTR(ip, whichfork);
2472 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2473 	ASSERT(ifp->if_bytes > 0);
2474 
2475 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2476 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2477 	ASSERT(nrecs > 0);
2478 
2479 	/*
2480 	 * There are some delayed allocation extents in the
2481 	 * inode, so copy the extents one at a time and skip
2482 	 * the delayed ones.  There must be at least one
2483 	 * non-delayed extent.
2484 	 */
2485 	copied = 0;
2486 	for (i = 0; i < nrecs; i++) {
2487 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2488 		start_block = xfs_bmbt_get_startblock(ep);
2489 		if (isnullstartblock(start_block)) {
2490 			/*
2491 			 * It's a delayed allocation extent, so skip it.
2492 			 */
2493 			continue;
2494 		}
2495 
2496 		/* Translate to on disk format */
2497 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2498 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2499 		dp++;
2500 		copied++;
2501 	}
2502 	ASSERT(copied != 0);
2503 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2504 
2505 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2506 }
2507 
2508 /*
2509  * Each of the following cases stores data into the same region
2510  * of the on-disk inode, so only one of them can be valid at
2511  * any given time. While it is possible to have conflicting formats
2512  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2513  * in EXTENTS format, this can only happen when the fork has
2514  * changed formats after being modified but before being flushed.
2515  * In these cases, the format always takes precedence, because the
2516  * format indicates the current state of the fork.
2517  */
2518 /*ARGSUSED*/
2519 STATIC void
2520 xfs_iflush_fork(
2521 	xfs_inode_t		*ip,
2522 	xfs_dinode_t		*dip,
2523 	xfs_inode_log_item_t	*iip,
2524 	int			whichfork,
2525 	xfs_buf_t		*bp)
2526 {
2527 	char			*cp;
2528 	xfs_ifork_t		*ifp;
2529 	xfs_mount_t		*mp;
2530 #ifdef XFS_TRANS_DEBUG
2531 	int			first;
2532 #endif
2533 	static const short	brootflag[2] =
2534 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2535 	static const short	dataflag[2] =
2536 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2537 	static const short	extflag[2] =
2538 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2539 
2540 	if (!iip)
2541 		return;
2542 	ifp = XFS_IFORK_PTR(ip, whichfork);
2543 	/*
2544 	 * This can happen if we gave up in iformat in an error path,
2545 	 * for the attribute fork.
2546 	 */
2547 	if (!ifp) {
2548 		ASSERT(whichfork == XFS_ATTR_FORK);
2549 		return;
2550 	}
2551 	cp = XFS_DFORK_PTR(dip, whichfork);
2552 	mp = ip->i_mount;
2553 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2554 	case XFS_DINODE_FMT_LOCAL:
2555 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2556 		    (ifp->if_bytes > 0)) {
2557 			ASSERT(ifp->if_u1.if_data != NULL);
2558 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2559 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2560 		}
2561 		break;
2562 
2563 	case XFS_DINODE_FMT_EXTENTS:
2564 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2565 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2566 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2567 			(ifp->if_bytes == 0));
2568 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2569 			(ifp->if_bytes > 0));
2570 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2571 		    (ifp->if_bytes > 0)) {
2572 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2573 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2574 				whichfork);
2575 		}
2576 		break;
2577 
2578 	case XFS_DINODE_FMT_BTREE:
2579 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2580 		    (ifp->if_broot_bytes > 0)) {
2581 			ASSERT(ifp->if_broot != NULL);
2582 			ASSERT(ifp->if_broot_bytes <=
2583 			       (XFS_IFORK_SIZE(ip, whichfork) +
2584 				XFS_BROOT_SIZE_ADJ));
2585 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2586 				(xfs_bmdr_block_t *)cp,
2587 				XFS_DFORK_SIZE(dip, mp, whichfork));
2588 		}
2589 		break;
2590 
2591 	case XFS_DINODE_FMT_DEV:
2592 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2593 			ASSERT(whichfork == XFS_DATA_FORK);
2594 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2595 		}
2596 		break;
2597 
2598 	case XFS_DINODE_FMT_UUID:
2599 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2600 			ASSERT(whichfork == XFS_DATA_FORK);
2601 			memcpy(XFS_DFORK_DPTR(dip),
2602 			       &ip->i_df.if_u2.if_uuid,
2603 			       sizeof(uuid_t));
2604 		}
2605 		break;
2606 
2607 	default:
2608 		ASSERT(0);
2609 		break;
2610 	}
2611 }
2612 
2613 STATIC int
2614 xfs_iflush_cluster(
2615 	xfs_inode_t	*ip,
2616 	xfs_buf_t	*bp)
2617 {
2618 	xfs_mount_t		*mp = ip->i_mount;
2619 	struct xfs_perag	*pag;
2620 	unsigned long		first_index, mask;
2621 	unsigned long		inodes_per_cluster;
2622 	int			ilist_size;
2623 	xfs_inode_t		**ilist;
2624 	xfs_inode_t		*iq;
2625 	int			nr_found;
2626 	int			clcount = 0;
2627 	int			bufwasdelwri;
2628 	int			i;
2629 
2630 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2631 
2632 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2633 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2634 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2635 	if (!ilist)
2636 		goto out_put;
2637 
2638 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2639 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2640 	read_lock(&pag->pag_ici_lock);
2641 	/* really need a gang lookup range call here */
2642 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2643 					first_index, inodes_per_cluster);
2644 	if (nr_found == 0)
2645 		goto out_free;
2646 
2647 	for (i = 0; i < nr_found; i++) {
2648 		iq = ilist[i];
2649 		if (iq == ip)
2650 			continue;
2651 		/* if the inode lies outside this cluster, we're done. */
2652 		if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2653 			break;
2654 		/*
2655 		 * Do an un-protected check to see if the inode is dirty and
2656 		 * is a candidate for flushing.  These checks will be repeated
2657 		 * later after the appropriate locks are acquired.
2658 		 */
2659 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2660 			continue;
2661 
2662 		/*
2663 		 * Try to get locks.  If any are unavailable or it is pinned,
2664 		 * then this inode cannot be flushed and is skipped.
2665 		 */
2666 
2667 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2668 			continue;
2669 		if (!xfs_iflock_nowait(iq)) {
2670 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2671 			continue;
2672 		}
2673 		if (xfs_ipincount(iq)) {
2674 			xfs_ifunlock(iq);
2675 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2676 			continue;
2677 		}
2678 
2679 		/*
2680 		 * arriving here means that this inode can be flushed.  First
2681 		 * re-check that it's dirty before flushing.
2682 		 */
2683 		if (!xfs_inode_clean(iq)) {
2684 			int	error;
2685 			error = xfs_iflush_int(iq, bp);
2686 			if (error) {
2687 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2688 				goto cluster_corrupt_out;
2689 			}
2690 			clcount++;
2691 		} else {
2692 			xfs_ifunlock(iq);
2693 		}
2694 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2695 	}
2696 
2697 	if (clcount) {
2698 		XFS_STATS_INC(xs_icluster_flushcnt);
2699 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2700 	}
2701 
2702 out_free:
2703 	read_unlock(&pag->pag_ici_lock);
2704 	kmem_free(ilist);
2705 out_put:
2706 	xfs_perag_put(pag);
2707 	return 0;
2708 
2709 
2710 cluster_corrupt_out:
2711 	/*
2712 	 * Corruption detected in the clustering loop.  Invalidate the
2713 	 * inode buffer and shut down the filesystem.
2714 	 */
2715 	read_unlock(&pag->pag_ici_lock);
2716 	/*
2717 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
2718 	 * brelse can handle it with no problems.  If not, shut down the
2719 	 * filesystem before releasing the buffer.
2720 	 */
2721 	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2722 	if (bufwasdelwri)
2723 		xfs_buf_relse(bp);
2724 
2725 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2726 
2727 	if (!bufwasdelwri) {
2728 		/*
2729 		 * Just like incore_relse: if we have b_iodone functions,
2730 		 * mark the buffer as an error and call them.  Otherwise
2731 		 * mark it as stale and brelse.
2732 		 */
2733 		if (XFS_BUF_IODONE_FUNC(bp)) {
2734 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
2735 			XFS_BUF_UNDONE(bp);
2736 			XFS_BUF_STALE(bp);
2737 			XFS_BUF_ERROR(bp,EIO);
2738 			xfs_biodone(bp);
2739 		} else {
2740 			XFS_BUF_STALE(bp);
2741 			xfs_buf_relse(bp);
2742 		}
2743 	}
2744 
2745 	/*
2746 	 * Unlocks the flush lock
2747 	 */
2748 	xfs_iflush_abort(iq);
2749 	kmem_free(ilist);
2750 	xfs_perag_put(pag);
2751 	return XFS_ERROR(EFSCORRUPTED);
2752 }
2753 
2754 /*
2755  * xfs_iflush() will write a modified inode's changes out to the
2756  * inode's on disk home.  The caller must have the inode lock held
2757  * in at least shared mode and the inode flush completion must be
2758  * active as well.  The inode lock will still be held upon return from
2759  * the call and the caller is free to unlock it.
2760  * The inode flush will be completed when the inode reaches the disk.
2761  * The flags indicate how the inode's buffer should be written out.
2762  */
2763 int
2764 xfs_iflush(
2765 	xfs_inode_t		*ip,
2766 	uint			flags)
2767 {
2768 	xfs_inode_log_item_t	*iip;
2769 	xfs_buf_t		*bp;
2770 	xfs_dinode_t		*dip;
2771 	xfs_mount_t		*mp;
2772 	int			error;
2773 
2774 	XFS_STATS_INC(xs_iflush_count);
2775 
2776 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2777 	ASSERT(!completion_done(&ip->i_flush));
2778 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2779 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2780 
2781 	iip = ip->i_itemp;
2782 	mp = ip->i_mount;
2783 
2784 	/*
2785 	 * We can't flush the inode until it is unpinned, so wait for it if we
2786 	 * are allowed to block.  We know noone new can pin it, because we are
2787 	 * holding the inode lock shared and you need to hold it exclusively to
2788 	 * pin the inode.
2789 	 *
2790 	 * If we are not allowed to block, force the log out asynchronously so
2791 	 * that when we come back the inode will be unpinned. If other inodes
2792 	 * in the same cluster are dirty, they will probably write the inode
2793 	 * out for us if they occur after the log force completes.
2794 	 */
2795 	if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2796 		xfs_iunpin_nowait(ip);
2797 		xfs_ifunlock(ip);
2798 		return EAGAIN;
2799 	}
2800 	xfs_iunpin_wait(ip);
2801 
2802 	/*
2803 	 * For stale inodes we cannot rely on the backing buffer remaining
2804 	 * stale in cache for the remaining life of the stale inode and so
2805 	 * xfs_itobp() below may give us a buffer that no longer contains
2806 	 * inodes below. We have to check this after ensuring the inode is
2807 	 * unpinned so that it is safe to reclaim the stale inode after the
2808 	 * flush call.
2809 	 */
2810 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2811 		xfs_ifunlock(ip);
2812 		return 0;
2813 	}
2814 
2815 	/*
2816 	 * This may have been unpinned because the filesystem is shutting
2817 	 * down forcibly. If that's the case we must not write this inode
2818 	 * to disk, because the log record didn't make it to disk!
2819 	 */
2820 	if (XFS_FORCED_SHUTDOWN(mp)) {
2821 		ip->i_update_core = 0;
2822 		if (iip)
2823 			iip->ili_format.ilf_fields = 0;
2824 		xfs_ifunlock(ip);
2825 		return XFS_ERROR(EIO);
2826 	}
2827 
2828 	/*
2829 	 * Get the buffer containing the on-disk inode.
2830 	 */
2831 	error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2832 				(flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
2833 	if (error || !bp) {
2834 		xfs_ifunlock(ip);
2835 		return error;
2836 	}
2837 
2838 	/*
2839 	 * First flush out the inode that xfs_iflush was called with.
2840 	 */
2841 	error = xfs_iflush_int(ip, bp);
2842 	if (error)
2843 		goto corrupt_out;
2844 
2845 	/*
2846 	 * If the buffer is pinned then push on the log now so we won't
2847 	 * get stuck waiting in the write for too long.
2848 	 */
2849 	if (XFS_BUF_ISPINNED(bp))
2850 		xfs_log_force(mp, 0);
2851 
2852 	/*
2853 	 * inode clustering:
2854 	 * see if other inodes can be gathered into this write
2855 	 */
2856 	error = xfs_iflush_cluster(ip, bp);
2857 	if (error)
2858 		goto cluster_corrupt_out;
2859 
2860 	if (flags & SYNC_WAIT)
2861 		error = xfs_bwrite(mp, bp);
2862 	else
2863 		xfs_bdwrite(mp, bp);
2864 	return error;
2865 
2866 corrupt_out:
2867 	xfs_buf_relse(bp);
2868 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2869 cluster_corrupt_out:
2870 	/*
2871 	 * Unlocks the flush lock
2872 	 */
2873 	xfs_iflush_abort(ip);
2874 	return XFS_ERROR(EFSCORRUPTED);
2875 }
2876 
2877 
2878 STATIC int
2879 xfs_iflush_int(
2880 	xfs_inode_t		*ip,
2881 	xfs_buf_t		*bp)
2882 {
2883 	xfs_inode_log_item_t	*iip;
2884 	xfs_dinode_t		*dip;
2885 	xfs_mount_t		*mp;
2886 #ifdef XFS_TRANS_DEBUG
2887 	int			first;
2888 #endif
2889 
2890 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2891 	ASSERT(!completion_done(&ip->i_flush));
2892 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2893 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2894 
2895 	iip = ip->i_itemp;
2896 	mp = ip->i_mount;
2897 
2898 	/* set *dip = inode's place in the buffer */
2899 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2900 
2901 	/*
2902 	 * Clear i_update_core before copying out the data.
2903 	 * This is for coordination with our timestamp updates
2904 	 * that don't hold the inode lock. They will always
2905 	 * update the timestamps BEFORE setting i_update_core,
2906 	 * so if we clear i_update_core after they set it we
2907 	 * are guaranteed to see their updates to the timestamps.
2908 	 * I believe that this depends on strongly ordered memory
2909 	 * semantics, but we have that.  We use the SYNCHRONIZE
2910 	 * macro to make sure that the compiler does not reorder
2911 	 * the i_update_core access below the data copy below.
2912 	 */
2913 	ip->i_update_core = 0;
2914 	SYNCHRONIZE();
2915 
2916 	/*
2917 	 * Make sure to get the latest timestamps from the Linux inode.
2918 	 */
2919 	xfs_synchronize_times(ip);
2920 
2921 	if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
2922 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2923 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2924 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2925 			ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2926 		goto corrupt_out;
2927 	}
2928 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2929 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2930 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2931 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2932 			ip->i_ino, ip, ip->i_d.di_magic);
2933 		goto corrupt_out;
2934 	}
2935 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
2936 		if (XFS_TEST_ERROR(
2937 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2938 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2939 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2940 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2941 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
2942 				ip->i_ino, ip);
2943 			goto corrupt_out;
2944 		}
2945 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
2946 		if (XFS_TEST_ERROR(
2947 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2948 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2949 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2950 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2951 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2952 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
2953 				ip->i_ino, ip);
2954 			goto corrupt_out;
2955 		}
2956 	}
2957 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2958 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2959 				XFS_RANDOM_IFLUSH_5)) {
2960 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2961 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
2962 			ip->i_ino,
2963 			ip->i_d.di_nextents + ip->i_d.di_anextents,
2964 			ip->i_d.di_nblocks,
2965 			ip);
2966 		goto corrupt_out;
2967 	}
2968 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2969 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2970 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2971 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2972 			ip->i_ino, ip->i_d.di_forkoff, ip);
2973 		goto corrupt_out;
2974 	}
2975 	/*
2976 	 * bump the flush iteration count, used to detect flushes which
2977 	 * postdate a log record during recovery.
2978 	 */
2979 
2980 	ip->i_d.di_flushiter++;
2981 
2982 	/*
2983 	 * Copy the dirty parts of the inode into the on-disk
2984 	 * inode.  We always copy out the core of the inode,
2985 	 * because if the inode is dirty at all the core must
2986 	 * be.
2987 	 */
2988 	xfs_dinode_to_disk(dip, &ip->i_d);
2989 
2990 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2991 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2992 		ip->i_d.di_flushiter = 0;
2993 
2994 	/*
2995 	 * If this is really an old format inode and the superblock version
2996 	 * has not been updated to support only new format inodes, then
2997 	 * convert back to the old inode format.  If the superblock version
2998 	 * has been updated, then make the conversion permanent.
2999 	 */
3000 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3001 	if (ip->i_d.di_version == 1) {
3002 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3003 			/*
3004 			 * Convert it back.
3005 			 */
3006 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3007 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3008 		} else {
3009 			/*
3010 			 * The superblock version has already been bumped,
3011 			 * so just make the conversion to the new inode
3012 			 * format permanent.
3013 			 */
3014 			ip->i_d.di_version = 2;
3015 			dip->di_version = 2;
3016 			ip->i_d.di_onlink = 0;
3017 			dip->di_onlink = 0;
3018 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3019 			memset(&(dip->di_pad[0]), 0,
3020 			      sizeof(dip->di_pad));
3021 			ASSERT(ip->i_d.di_projid == 0);
3022 		}
3023 	}
3024 
3025 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3026 	if (XFS_IFORK_Q(ip))
3027 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3028 	xfs_inobp_check(mp, bp);
3029 
3030 	/*
3031 	 * We've recorded everything logged in the inode, so we'd
3032 	 * like to clear the ilf_fields bits so we don't log and
3033 	 * flush things unnecessarily.  However, we can't stop
3034 	 * logging all this information until the data we've copied
3035 	 * into the disk buffer is written to disk.  If we did we might
3036 	 * overwrite the copy of the inode in the log with all the
3037 	 * data after re-logging only part of it, and in the face of
3038 	 * a crash we wouldn't have all the data we need to recover.
3039 	 *
3040 	 * What we do is move the bits to the ili_last_fields field.
3041 	 * When logging the inode, these bits are moved back to the
3042 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3043 	 * clear ili_last_fields, since we know that the information
3044 	 * those bits represent is permanently on disk.  As long as
3045 	 * the flush completes before the inode is logged again, then
3046 	 * both ilf_fields and ili_last_fields will be cleared.
3047 	 *
3048 	 * We can play with the ilf_fields bits here, because the inode
3049 	 * lock must be held exclusively in order to set bits there
3050 	 * and the flush lock protects the ili_last_fields bits.
3051 	 * Set ili_logged so the flush done
3052 	 * routine can tell whether or not to look in the AIL.
3053 	 * Also, store the current LSN of the inode so that we can tell
3054 	 * whether the item has moved in the AIL from xfs_iflush_done().
3055 	 * In order to read the lsn we need the AIL lock, because
3056 	 * it is a 64 bit value that cannot be read atomically.
3057 	 */
3058 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3059 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3060 		iip->ili_format.ilf_fields = 0;
3061 		iip->ili_logged = 1;
3062 
3063 		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3064 					&iip->ili_item.li_lsn);
3065 
3066 		/*
3067 		 * Attach the function xfs_iflush_done to the inode's
3068 		 * buffer.  This will remove the inode from the AIL
3069 		 * and unlock the inode's flush lock when the inode is
3070 		 * completely written to disk.
3071 		 */
3072 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3073 				      xfs_iflush_done, (xfs_log_item_t *)iip);
3074 
3075 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3076 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3077 	} else {
3078 		/*
3079 		 * We're flushing an inode which is not in the AIL and has
3080 		 * not been logged but has i_update_core set.  For this
3081 		 * case we can use a B_DELWRI flush and immediately drop
3082 		 * the inode flush lock because we can avoid the whole
3083 		 * AIL state thing.  It's OK to drop the flush lock now,
3084 		 * because we've already locked the buffer and to do anything
3085 		 * you really need both.
3086 		 */
3087 		if (iip != NULL) {
3088 			ASSERT(iip->ili_logged == 0);
3089 			ASSERT(iip->ili_last_fields == 0);
3090 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3091 		}
3092 		xfs_ifunlock(ip);
3093 	}
3094 
3095 	return 0;
3096 
3097 corrupt_out:
3098 	return XFS_ERROR(EFSCORRUPTED);
3099 }
3100 
3101 /*
3102  * Return a pointer to the extent record at file index idx.
3103  */
3104 xfs_bmbt_rec_host_t *
3105 xfs_iext_get_ext(
3106 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3107 	xfs_extnum_t	idx)		/* index of target extent */
3108 {
3109 	ASSERT(idx >= 0);
3110 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3111 		return ifp->if_u1.if_ext_irec->er_extbuf;
3112 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3113 		xfs_ext_irec_t	*erp;		/* irec pointer */
3114 		int		erp_idx = 0;	/* irec index */
3115 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3116 
3117 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3118 		return &erp->er_extbuf[page_idx];
3119 	} else if (ifp->if_bytes) {
3120 		return &ifp->if_u1.if_extents[idx];
3121 	} else {
3122 		return NULL;
3123 	}
3124 }
3125 
3126 /*
3127  * Insert new item(s) into the extent records for incore inode
3128  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3129  */
3130 void
3131 xfs_iext_insert(
3132 	xfs_inode_t	*ip,		/* incore inode pointer */
3133 	xfs_extnum_t	idx,		/* starting index of new items */
3134 	xfs_extnum_t	count,		/* number of inserted items */
3135 	xfs_bmbt_irec_t	*new,		/* items to insert */
3136 	int		state)		/* type of extent conversion */
3137 {
3138 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3139 	xfs_extnum_t	i;		/* extent record index */
3140 
3141 	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3142 
3143 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3144 	xfs_iext_add(ifp, idx, count);
3145 	for (i = idx; i < idx + count; i++, new++)
3146 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3147 }
3148 
3149 /*
3150  * This is called when the amount of space required for incore file
3151  * extents needs to be increased. The ext_diff parameter stores the
3152  * number of new extents being added and the idx parameter contains
3153  * the extent index where the new extents will be added. If the new
3154  * extents are being appended, then we just need to (re)allocate and
3155  * initialize the space. Otherwise, if the new extents are being
3156  * inserted into the middle of the existing entries, a bit more work
3157  * is required to make room for the new extents to be inserted. The
3158  * caller is responsible for filling in the new extent entries upon
3159  * return.
3160  */
3161 void
3162 xfs_iext_add(
3163 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3164 	xfs_extnum_t	idx,		/* index to begin adding exts */
3165 	int		ext_diff)	/* number of extents to add */
3166 {
3167 	int		byte_diff;	/* new bytes being added */
3168 	int		new_size;	/* size of extents after adding */
3169 	xfs_extnum_t	nextents;	/* number of extents in file */
3170 
3171 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3172 	ASSERT((idx >= 0) && (idx <= nextents));
3173 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3174 	new_size = ifp->if_bytes + byte_diff;
3175 	/*
3176 	 * If the new number of extents (nextents + ext_diff)
3177 	 * fits inside the inode, then continue to use the inline
3178 	 * extent buffer.
3179 	 */
3180 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3181 		if (idx < nextents) {
3182 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3183 				&ifp->if_u2.if_inline_ext[idx],
3184 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3185 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3186 		}
3187 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3188 		ifp->if_real_bytes = 0;
3189 		ifp->if_lastex = nextents + ext_diff;
3190 	}
3191 	/*
3192 	 * Otherwise use a linear (direct) extent list.
3193 	 * If the extents are currently inside the inode,
3194 	 * xfs_iext_realloc_direct will switch us from
3195 	 * inline to direct extent allocation mode.
3196 	 */
3197 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3198 		xfs_iext_realloc_direct(ifp, new_size);
3199 		if (idx < nextents) {
3200 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3201 				&ifp->if_u1.if_extents[idx],
3202 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3203 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3204 		}
3205 	}
3206 	/* Indirection array */
3207 	else {
3208 		xfs_ext_irec_t	*erp;
3209 		int		erp_idx = 0;
3210 		int		page_idx = idx;
3211 
3212 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3213 		if (ifp->if_flags & XFS_IFEXTIREC) {
3214 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3215 		} else {
3216 			xfs_iext_irec_init(ifp);
3217 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3218 			erp = ifp->if_u1.if_ext_irec;
3219 		}
3220 		/* Extents fit in target extent page */
3221 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3222 			if (page_idx < erp->er_extcount) {
3223 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3224 					&erp->er_extbuf[page_idx],
3225 					(erp->er_extcount - page_idx) *
3226 					sizeof(xfs_bmbt_rec_t));
3227 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3228 			}
3229 			erp->er_extcount += ext_diff;
3230 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3231 		}
3232 		/* Insert a new extent page */
3233 		else if (erp) {
3234 			xfs_iext_add_indirect_multi(ifp,
3235 				erp_idx, page_idx, ext_diff);
3236 		}
3237 		/*
3238 		 * If extent(s) are being appended to the last page in
3239 		 * the indirection array and the new extent(s) don't fit
3240 		 * in the page, then erp is NULL and erp_idx is set to
3241 		 * the next index needed in the indirection array.
3242 		 */
3243 		else {
3244 			int	count = ext_diff;
3245 
3246 			while (count) {
3247 				erp = xfs_iext_irec_new(ifp, erp_idx);
3248 				erp->er_extcount = count;
3249 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3250 				if (count) {
3251 					erp_idx++;
3252 				}
3253 			}
3254 		}
3255 	}
3256 	ifp->if_bytes = new_size;
3257 }
3258 
3259 /*
3260  * This is called when incore extents are being added to the indirection
3261  * array and the new extents do not fit in the target extent list. The
3262  * erp_idx parameter contains the irec index for the target extent list
3263  * in the indirection array, and the idx parameter contains the extent
3264  * index within the list. The number of extents being added is stored
3265  * in the count parameter.
3266  *
3267  *    |-------|   |-------|
3268  *    |       |   |       |    idx - number of extents before idx
3269  *    |  idx  |   | count |
3270  *    |       |   |       |    count - number of extents being inserted at idx
3271  *    |-------|   |-------|
3272  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3273  *    |-------|   |-------|
3274  */
3275 void
3276 xfs_iext_add_indirect_multi(
3277 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3278 	int		erp_idx,		/* target extent irec index */
3279 	xfs_extnum_t	idx,			/* index within target list */
3280 	int		count)			/* new extents being added */
3281 {
3282 	int		byte_diff;		/* new bytes being added */
3283 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3284 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3285 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3286 	xfs_extnum_t	nex2;			/* extents after idx + count */
3287 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3288 	int		nlists;			/* number of irec's (lists) */
3289 
3290 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3291 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3292 	nex2 = erp->er_extcount - idx;
3293 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3294 
3295 	/*
3296 	 * Save second part of target extent list
3297 	 * (all extents past */
3298 	if (nex2) {
3299 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3300 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3301 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3302 		erp->er_extcount -= nex2;
3303 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3304 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3305 	}
3306 
3307 	/*
3308 	 * Add the new extents to the end of the target
3309 	 * list, then allocate new irec record(s) and
3310 	 * extent buffer(s) as needed to store the rest
3311 	 * of the new extents.
3312 	 */
3313 	ext_cnt = count;
3314 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3315 	if (ext_diff) {
3316 		erp->er_extcount += ext_diff;
3317 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3318 		ext_cnt -= ext_diff;
3319 	}
3320 	while (ext_cnt) {
3321 		erp_idx++;
3322 		erp = xfs_iext_irec_new(ifp, erp_idx);
3323 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3324 		erp->er_extcount = ext_diff;
3325 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3326 		ext_cnt -= ext_diff;
3327 	}
3328 
3329 	/* Add nex2 extents back to indirection array */
3330 	if (nex2) {
3331 		xfs_extnum_t	ext_avail;
3332 		int		i;
3333 
3334 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3335 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3336 		i = 0;
3337 		/*
3338 		 * If nex2 extents fit in the current page, append
3339 		 * nex2_ep after the new extents.
3340 		 */
3341 		if (nex2 <= ext_avail) {
3342 			i = erp->er_extcount;
3343 		}
3344 		/*
3345 		 * Otherwise, check if space is available in the
3346 		 * next page.
3347 		 */
3348 		else if ((erp_idx < nlists - 1) &&
3349 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3350 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3351 			erp_idx++;
3352 			erp++;
3353 			/* Create a hole for nex2 extents */
3354 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3355 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3356 		}
3357 		/*
3358 		 * Final choice, create a new extent page for
3359 		 * nex2 extents.
3360 		 */
3361 		else {
3362 			erp_idx++;
3363 			erp = xfs_iext_irec_new(ifp, erp_idx);
3364 		}
3365 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3366 		kmem_free(nex2_ep);
3367 		erp->er_extcount += nex2;
3368 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3369 	}
3370 }
3371 
3372 /*
3373  * This is called when the amount of space required for incore file
3374  * extents needs to be decreased. The ext_diff parameter stores the
3375  * number of extents to be removed and the idx parameter contains
3376  * the extent index where the extents will be removed from.
3377  *
3378  * If the amount of space needed has decreased below the linear
3379  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3380  * extent array.  Otherwise, use kmem_realloc() to adjust the
3381  * size to what is needed.
3382  */
3383 void
3384 xfs_iext_remove(
3385 	xfs_inode_t	*ip,		/* incore inode pointer */
3386 	xfs_extnum_t	idx,		/* index to begin removing exts */
3387 	int		ext_diff,	/* number of extents to remove */
3388 	int		state)		/* type of extent conversion */
3389 {
3390 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3391 	xfs_extnum_t	nextents;	/* number of extents in file */
3392 	int		new_size;	/* size of extents after removal */
3393 
3394 	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3395 
3396 	ASSERT(ext_diff > 0);
3397 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3398 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3399 
3400 	if (new_size == 0) {
3401 		xfs_iext_destroy(ifp);
3402 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3403 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3404 	} else if (ifp->if_real_bytes) {
3405 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3406 	} else {
3407 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3408 	}
3409 	ifp->if_bytes = new_size;
3410 }
3411 
3412 /*
3413  * This removes ext_diff extents from the inline buffer, beginning
3414  * at extent index idx.
3415  */
3416 void
3417 xfs_iext_remove_inline(
3418 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3419 	xfs_extnum_t	idx,		/* index to begin removing exts */
3420 	int		ext_diff)	/* number of extents to remove */
3421 {
3422 	int		nextents;	/* number of extents in file */
3423 
3424 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3425 	ASSERT(idx < XFS_INLINE_EXTS);
3426 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3427 	ASSERT(((nextents - ext_diff) > 0) &&
3428 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3429 
3430 	if (idx + ext_diff < nextents) {
3431 		memmove(&ifp->if_u2.if_inline_ext[idx],
3432 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3433 			(nextents - (idx + ext_diff)) *
3434 			 sizeof(xfs_bmbt_rec_t));
3435 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3436 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3437 	} else {
3438 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3439 			ext_diff * sizeof(xfs_bmbt_rec_t));
3440 	}
3441 }
3442 
3443 /*
3444  * This removes ext_diff extents from a linear (direct) extent list,
3445  * beginning at extent index idx. If the extents are being removed
3446  * from the end of the list (ie. truncate) then we just need to re-
3447  * allocate the list to remove the extra space. Otherwise, if the
3448  * extents are being removed from the middle of the existing extent
3449  * entries, then we first need to move the extent records beginning
3450  * at idx + ext_diff up in the list to overwrite the records being
3451  * removed, then remove the extra space via kmem_realloc.
3452  */
3453 void
3454 xfs_iext_remove_direct(
3455 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3456 	xfs_extnum_t	idx,		/* index to begin removing exts */
3457 	int		ext_diff)	/* number of extents to remove */
3458 {
3459 	xfs_extnum_t	nextents;	/* number of extents in file */
3460 	int		new_size;	/* size of extents after removal */
3461 
3462 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3463 	new_size = ifp->if_bytes -
3464 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3465 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3466 
3467 	if (new_size == 0) {
3468 		xfs_iext_destroy(ifp);
3469 		return;
3470 	}
3471 	/* Move extents up in the list (if needed) */
3472 	if (idx + ext_diff < nextents) {
3473 		memmove(&ifp->if_u1.if_extents[idx],
3474 			&ifp->if_u1.if_extents[idx + ext_diff],
3475 			(nextents - (idx + ext_diff)) *
3476 			 sizeof(xfs_bmbt_rec_t));
3477 	}
3478 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3479 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3480 	/*
3481 	 * Reallocate the direct extent list. If the extents
3482 	 * will fit inside the inode then xfs_iext_realloc_direct
3483 	 * will switch from direct to inline extent allocation
3484 	 * mode for us.
3485 	 */
3486 	xfs_iext_realloc_direct(ifp, new_size);
3487 	ifp->if_bytes = new_size;
3488 }
3489 
3490 /*
3491  * This is called when incore extents are being removed from the
3492  * indirection array and the extents being removed span multiple extent
3493  * buffers. The idx parameter contains the file extent index where we
3494  * want to begin removing extents, and the count parameter contains
3495  * how many extents need to be removed.
3496  *
3497  *    |-------|   |-------|
3498  *    | nex1  |   |       |    nex1 - number of extents before idx
3499  *    |-------|   | count |
3500  *    |       |   |       |    count - number of extents being removed at idx
3501  *    | count |   |-------|
3502  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3503  *    |-------|   |-------|
3504  */
3505 void
3506 xfs_iext_remove_indirect(
3507 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3508 	xfs_extnum_t	idx,		/* index to begin removing extents */
3509 	int		count)		/* number of extents to remove */
3510 {
3511 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3512 	int		erp_idx = 0;	/* indirection array index */
3513 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3514 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3515 	xfs_extnum_t	nex1;		/* number of extents before idx */
3516 	xfs_extnum_t	nex2;		/* extents after idx + count */
3517 	int		nlists;		/* entries in indirection array */
3518 	int		page_idx = idx;	/* index in target extent list */
3519 
3520 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3521 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3522 	ASSERT(erp != NULL);
3523 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3524 	nex1 = page_idx;
3525 	ext_cnt = count;
3526 	while (ext_cnt) {
3527 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3528 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3529 		/*
3530 		 * Check for deletion of entire list;
3531 		 * xfs_iext_irec_remove() updates extent offsets.
3532 		 */
3533 		if (ext_diff == erp->er_extcount) {
3534 			xfs_iext_irec_remove(ifp, erp_idx);
3535 			ext_cnt -= ext_diff;
3536 			nex1 = 0;
3537 			if (ext_cnt) {
3538 				ASSERT(erp_idx < ifp->if_real_bytes /
3539 					XFS_IEXT_BUFSZ);
3540 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3541 				nex1 = 0;
3542 				continue;
3543 			} else {
3544 				break;
3545 			}
3546 		}
3547 		/* Move extents up (if needed) */
3548 		if (nex2) {
3549 			memmove(&erp->er_extbuf[nex1],
3550 				&erp->er_extbuf[nex1 + ext_diff],
3551 				nex2 * sizeof(xfs_bmbt_rec_t));
3552 		}
3553 		/* Zero out rest of page */
3554 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3555 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3556 		/* Update remaining counters */
3557 		erp->er_extcount -= ext_diff;
3558 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3559 		ext_cnt -= ext_diff;
3560 		nex1 = 0;
3561 		erp_idx++;
3562 		erp++;
3563 	}
3564 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3565 	xfs_iext_irec_compact(ifp);
3566 }
3567 
3568 /*
3569  * Create, destroy, or resize a linear (direct) block of extents.
3570  */
3571 void
3572 xfs_iext_realloc_direct(
3573 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3574 	int		new_size)	/* new size of extents */
3575 {
3576 	int		rnew_size;	/* real new size of extents */
3577 
3578 	rnew_size = new_size;
3579 
3580 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3581 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3582 		 (new_size != ifp->if_real_bytes)));
3583 
3584 	/* Free extent records */
3585 	if (new_size == 0) {
3586 		xfs_iext_destroy(ifp);
3587 	}
3588 	/* Resize direct extent list and zero any new bytes */
3589 	else if (ifp->if_real_bytes) {
3590 		/* Check if extents will fit inside the inode */
3591 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3592 			xfs_iext_direct_to_inline(ifp, new_size /
3593 				(uint)sizeof(xfs_bmbt_rec_t));
3594 			ifp->if_bytes = new_size;
3595 			return;
3596 		}
3597 		if (!is_power_of_2(new_size)){
3598 			rnew_size = roundup_pow_of_two(new_size);
3599 		}
3600 		if (rnew_size != ifp->if_real_bytes) {
3601 			ifp->if_u1.if_extents =
3602 				kmem_realloc(ifp->if_u1.if_extents,
3603 						rnew_size,
3604 						ifp->if_real_bytes, KM_NOFS);
3605 		}
3606 		if (rnew_size > ifp->if_real_bytes) {
3607 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3608 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3609 				rnew_size - ifp->if_real_bytes);
3610 		}
3611 	}
3612 	/*
3613 	 * Switch from the inline extent buffer to a direct
3614 	 * extent list. Be sure to include the inline extent
3615 	 * bytes in new_size.
3616 	 */
3617 	else {
3618 		new_size += ifp->if_bytes;
3619 		if (!is_power_of_2(new_size)) {
3620 			rnew_size = roundup_pow_of_two(new_size);
3621 		}
3622 		xfs_iext_inline_to_direct(ifp, rnew_size);
3623 	}
3624 	ifp->if_real_bytes = rnew_size;
3625 	ifp->if_bytes = new_size;
3626 }
3627 
3628 /*
3629  * Switch from linear (direct) extent records to inline buffer.
3630  */
3631 void
3632 xfs_iext_direct_to_inline(
3633 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3634 	xfs_extnum_t	nextents)	/* number of extents in file */
3635 {
3636 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3637 	ASSERT(nextents <= XFS_INLINE_EXTS);
3638 	/*
3639 	 * The inline buffer was zeroed when we switched
3640 	 * from inline to direct extent allocation mode,
3641 	 * so we don't need to clear it here.
3642 	 */
3643 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3644 		nextents * sizeof(xfs_bmbt_rec_t));
3645 	kmem_free(ifp->if_u1.if_extents);
3646 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3647 	ifp->if_real_bytes = 0;
3648 }
3649 
3650 /*
3651  * Switch from inline buffer to linear (direct) extent records.
3652  * new_size should already be rounded up to the next power of 2
3653  * by the caller (when appropriate), so use new_size as it is.
3654  * However, since new_size may be rounded up, we can't update
3655  * if_bytes here. It is the caller's responsibility to update
3656  * if_bytes upon return.
3657  */
3658 void
3659 xfs_iext_inline_to_direct(
3660 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3661 	int		new_size)	/* number of extents in file */
3662 {
3663 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3664 	memset(ifp->if_u1.if_extents, 0, new_size);
3665 	if (ifp->if_bytes) {
3666 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3667 			ifp->if_bytes);
3668 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3669 			sizeof(xfs_bmbt_rec_t));
3670 	}
3671 	ifp->if_real_bytes = new_size;
3672 }
3673 
3674 /*
3675  * Resize an extent indirection array to new_size bytes.
3676  */
3677 STATIC void
3678 xfs_iext_realloc_indirect(
3679 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3680 	int		new_size)	/* new indirection array size */
3681 {
3682 	int		nlists;		/* number of irec's (ex lists) */
3683 	int		size;		/* current indirection array size */
3684 
3685 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3686 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3687 	size = nlists * sizeof(xfs_ext_irec_t);
3688 	ASSERT(ifp->if_real_bytes);
3689 	ASSERT((new_size >= 0) && (new_size != size));
3690 	if (new_size == 0) {
3691 		xfs_iext_destroy(ifp);
3692 	} else {
3693 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3694 			kmem_realloc(ifp->if_u1.if_ext_irec,
3695 				new_size, size, KM_NOFS);
3696 	}
3697 }
3698 
3699 /*
3700  * Switch from indirection array to linear (direct) extent allocations.
3701  */
3702 STATIC void
3703 xfs_iext_indirect_to_direct(
3704 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3705 {
3706 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3707 	xfs_extnum_t	nextents;	/* number of extents in file */
3708 	int		size;		/* size of file extents */
3709 
3710 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3711 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3712 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3713 	size = nextents * sizeof(xfs_bmbt_rec_t);
3714 
3715 	xfs_iext_irec_compact_pages(ifp);
3716 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3717 
3718 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3719 	kmem_free(ifp->if_u1.if_ext_irec);
3720 	ifp->if_flags &= ~XFS_IFEXTIREC;
3721 	ifp->if_u1.if_extents = ep;
3722 	ifp->if_bytes = size;
3723 	if (nextents < XFS_LINEAR_EXTS) {
3724 		xfs_iext_realloc_direct(ifp, size);
3725 	}
3726 }
3727 
3728 /*
3729  * Free incore file extents.
3730  */
3731 void
3732 xfs_iext_destroy(
3733 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3734 {
3735 	if (ifp->if_flags & XFS_IFEXTIREC) {
3736 		int	erp_idx;
3737 		int	nlists;
3738 
3739 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3740 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3741 			xfs_iext_irec_remove(ifp, erp_idx);
3742 		}
3743 		ifp->if_flags &= ~XFS_IFEXTIREC;
3744 	} else if (ifp->if_real_bytes) {
3745 		kmem_free(ifp->if_u1.if_extents);
3746 	} else if (ifp->if_bytes) {
3747 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3748 			sizeof(xfs_bmbt_rec_t));
3749 	}
3750 	ifp->if_u1.if_extents = NULL;
3751 	ifp->if_real_bytes = 0;
3752 	ifp->if_bytes = 0;
3753 }
3754 
3755 /*
3756  * Return a pointer to the extent record for file system block bno.
3757  */
3758 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3759 xfs_iext_bno_to_ext(
3760 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3761 	xfs_fileoff_t	bno,		/* block number to search for */
3762 	xfs_extnum_t	*idxp)		/* index of target extent */
3763 {
3764 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3765 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3766 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3767 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3768 	int		high;		/* upper boundary in search */
3769 	xfs_extnum_t	idx = 0;	/* index of target extent */
3770 	int		low;		/* lower boundary in search */
3771 	xfs_extnum_t	nextents;	/* number of file extents */
3772 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3773 
3774 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3775 	if (nextents == 0) {
3776 		*idxp = 0;
3777 		return NULL;
3778 	}
3779 	low = 0;
3780 	if (ifp->if_flags & XFS_IFEXTIREC) {
3781 		/* Find target extent list */
3782 		int	erp_idx = 0;
3783 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3784 		base = erp->er_extbuf;
3785 		high = erp->er_extcount - 1;
3786 	} else {
3787 		base = ifp->if_u1.if_extents;
3788 		high = nextents - 1;
3789 	}
3790 	/* Binary search extent records */
3791 	while (low <= high) {
3792 		idx = (low + high) >> 1;
3793 		ep = base + idx;
3794 		startoff = xfs_bmbt_get_startoff(ep);
3795 		blockcount = xfs_bmbt_get_blockcount(ep);
3796 		if (bno < startoff) {
3797 			high = idx - 1;
3798 		} else if (bno >= startoff + blockcount) {
3799 			low = idx + 1;
3800 		} else {
3801 			/* Convert back to file-based extent index */
3802 			if (ifp->if_flags & XFS_IFEXTIREC) {
3803 				idx += erp->er_extoff;
3804 			}
3805 			*idxp = idx;
3806 			return ep;
3807 		}
3808 	}
3809 	/* Convert back to file-based extent index */
3810 	if (ifp->if_flags & XFS_IFEXTIREC) {
3811 		idx += erp->er_extoff;
3812 	}
3813 	if (bno >= startoff + blockcount) {
3814 		if (++idx == nextents) {
3815 			ep = NULL;
3816 		} else {
3817 			ep = xfs_iext_get_ext(ifp, idx);
3818 		}
3819 	}
3820 	*idxp = idx;
3821 	return ep;
3822 }
3823 
3824 /*
3825  * Return a pointer to the indirection array entry containing the
3826  * extent record for filesystem block bno. Store the index of the
3827  * target irec in *erp_idxp.
3828  */
3829 xfs_ext_irec_t *			/* pointer to found extent record */
3830 xfs_iext_bno_to_irec(
3831 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3832 	xfs_fileoff_t	bno,		/* block number to search for */
3833 	int		*erp_idxp)	/* irec index of target ext list */
3834 {
3835 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3836 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3837 	int		erp_idx;	/* indirection array index */
3838 	int		nlists;		/* number of extent irec's (lists) */
3839 	int		high;		/* binary search upper limit */
3840 	int		low;		/* binary search lower limit */
3841 
3842 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3843 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3844 	erp_idx = 0;
3845 	low = 0;
3846 	high = nlists - 1;
3847 	while (low <= high) {
3848 		erp_idx = (low + high) >> 1;
3849 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3850 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3851 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3852 			high = erp_idx - 1;
3853 		} else if (erp_next && bno >=
3854 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3855 			low = erp_idx + 1;
3856 		} else {
3857 			break;
3858 		}
3859 	}
3860 	*erp_idxp = erp_idx;
3861 	return erp;
3862 }
3863 
3864 /*
3865  * Return a pointer to the indirection array entry containing the
3866  * extent record at file extent index *idxp. Store the index of the
3867  * target irec in *erp_idxp and store the page index of the target
3868  * extent record in *idxp.
3869  */
3870 xfs_ext_irec_t *
3871 xfs_iext_idx_to_irec(
3872 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3873 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3874 	int		*erp_idxp,	/* pointer to target irec */
3875 	int		realloc)	/* new bytes were just added */
3876 {
3877 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3878 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3879 	int		erp_idx;	/* indirection array index */
3880 	int		nlists;		/* number of irec's (ex lists) */
3881 	int		high;		/* binary search upper limit */
3882 	int		low;		/* binary search lower limit */
3883 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3884 
3885 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3886 	ASSERT(page_idx >= 0 && page_idx <=
3887 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
3888 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3889 	erp_idx = 0;
3890 	low = 0;
3891 	high = nlists - 1;
3892 
3893 	/* Binary search extent irec's */
3894 	while (low <= high) {
3895 		erp_idx = (low + high) >> 1;
3896 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3897 		prev = erp_idx > 0 ? erp - 1 : NULL;
3898 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3899 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3900 			high = erp_idx - 1;
3901 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3902 			   (page_idx == erp->er_extoff + erp->er_extcount &&
3903 			    !realloc)) {
3904 			low = erp_idx + 1;
3905 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3906 			   erp->er_extcount == XFS_LINEAR_EXTS) {
3907 			ASSERT(realloc);
3908 			page_idx = 0;
3909 			erp_idx++;
3910 			erp = erp_idx < nlists ? erp + 1 : NULL;
3911 			break;
3912 		} else {
3913 			page_idx -= erp->er_extoff;
3914 			break;
3915 		}
3916 	}
3917 	*idxp = page_idx;
3918 	*erp_idxp = erp_idx;
3919 	return(erp);
3920 }
3921 
3922 /*
3923  * Allocate and initialize an indirection array once the space needed
3924  * for incore extents increases above XFS_IEXT_BUFSZ.
3925  */
3926 void
3927 xfs_iext_irec_init(
3928 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3929 {
3930 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3931 	xfs_extnum_t	nextents;	/* number of extents in file */
3932 
3933 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3934 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3935 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3936 
3937 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3938 
3939 	if (nextents == 0) {
3940 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3941 	} else if (!ifp->if_real_bytes) {
3942 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3943 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3944 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3945 	}
3946 	erp->er_extbuf = ifp->if_u1.if_extents;
3947 	erp->er_extcount = nextents;
3948 	erp->er_extoff = 0;
3949 
3950 	ifp->if_flags |= XFS_IFEXTIREC;
3951 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3952 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3953 	ifp->if_u1.if_ext_irec = erp;
3954 
3955 	return;
3956 }
3957 
3958 /*
3959  * Allocate and initialize a new entry in the indirection array.
3960  */
3961 xfs_ext_irec_t *
3962 xfs_iext_irec_new(
3963 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3964 	int		erp_idx)	/* index for new irec */
3965 {
3966 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3967 	int		i;		/* loop counter */
3968 	int		nlists;		/* number of irec's (ex lists) */
3969 
3970 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3971 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3972 
3973 	/* Resize indirection array */
3974 	xfs_iext_realloc_indirect(ifp, ++nlists *
3975 				  sizeof(xfs_ext_irec_t));
3976 	/*
3977 	 * Move records down in the array so the
3978 	 * new page can use erp_idx.
3979 	 */
3980 	erp = ifp->if_u1.if_ext_irec;
3981 	for (i = nlists - 1; i > erp_idx; i--) {
3982 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3983 	}
3984 	ASSERT(i == erp_idx);
3985 
3986 	/* Initialize new extent record */
3987 	erp = ifp->if_u1.if_ext_irec;
3988 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3989 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3990 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3991 	erp[erp_idx].er_extcount = 0;
3992 	erp[erp_idx].er_extoff = erp_idx > 0 ?
3993 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3994 	return (&erp[erp_idx]);
3995 }
3996 
3997 /*
3998  * Remove a record from the indirection array.
3999  */
4000 void
4001 xfs_iext_irec_remove(
4002 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4003 	int		erp_idx)	/* irec index to remove */
4004 {
4005 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4006 	int		i;		/* loop counter */
4007 	int		nlists;		/* number of irec's (ex lists) */
4008 
4009 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4010 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4011 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4012 	if (erp->er_extbuf) {
4013 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4014 			-erp->er_extcount);
4015 		kmem_free(erp->er_extbuf);
4016 	}
4017 	/* Compact extent records */
4018 	erp = ifp->if_u1.if_ext_irec;
4019 	for (i = erp_idx; i < nlists - 1; i++) {
4020 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4021 	}
4022 	/*
4023 	 * Manually free the last extent record from the indirection
4024 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4025 	 * of zero would result in a call to xfs_iext_destroy() which
4026 	 * would in turn call this function again, creating a nasty
4027 	 * infinite loop.
4028 	 */
4029 	if (--nlists) {
4030 		xfs_iext_realloc_indirect(ifp,
4031 			nlists * sizeof(xfs_ext_irec_t));
4032 	} else {
4033 		kmem_free(ifp->if_u1.if_ext_irec);
4034 	}
4035 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4036 }
4037 
4038 /*
4039  * This is called to clean up large amounts of unused memory allocated
4040  * by the indirection array.  Before compacting anything though, verify
4041  * that the indirection array is still needed and switch back to the
4042  * linear extent list (or even the inline buffer) if possible.  The
4043  * compaction policy is as follows:
4044  *
4045  *    Full Compaction: Extents fit into a single page (or inline buffer)
4046  * Partial Compaction: Extents occupy less than 50% of allocated space
4047  *      No Compaction: Extents occupy at least 50% of allocated space
4048  */
4049 void
4050 xfs_iext_irec_compact(
4051 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4052 {
4053 	xfs_extnum_t	nextents;	/* number of extents in file */
4054 	int		nlists;		/* number of irec's (ex lists) */
4055 
4056 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4057 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4058 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4059 
4060 	if (nextents == 0) {
4061 		xfs_iext_destroy(ifp);
4062 	} else if (nextents <= XFS_INLINE_EXTS) {
4063 		xfs_iext_indirect_to_direct(ifp);
4064 		xfs_iext_direct_to_inline(ifp, nextents);
4065 	} else if (nextents <= XFS_LINEAR_EXTS) {
4066 		xfs_iext_indirect_to_direct(ifp);
4067 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4068 		xfs_iext_irec_compact_pages(ifp);
4069 	}
4070 }
4071 
4072 /*
4073  * Combine extents from neighboring extent pages.
4074  */
4075 void
4076 xfs_iext_irec_compact_pages(
4077 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4078 {
4079 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4080 	int		erp_idx = 0;	/* indirection array index */
4081 	int		nlists;		/* number of irec's (ex lists) */
4082 
4083 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4084 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4085 	while (erp_idx < nlists - 1) {
4086 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4087 		erp_next = erp + 1;
4088 		if (erp_next->er_extcount <=
4089 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4090 			memcpy(&erp->er_extbuf[erp->er_extcount],
4091 				erp_next->er_extbuf, erp_next->er_extcount *
4092 				sizeof(xfs_bmbt_rec_t));
4093 			erp->er_extcount += erp_next->er_extcount;
4094 			/*
4095 			 * Free page before removing extent record
4096 			 * so er_extoffs don't get modified in
4097 			 * xfs_iext_irec_remove.
4098 			 */
4099 			kmem_free(erp_next->er_extbuf);
4100 			erp_next->er_extbuf = NULL;
4101 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4102 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4103 		} else {
4104 			erp_idx++;
4105 		}
4106 	}
4107 }
4108 
4109 /*
4110  * This is called to update the er_extoff field in the indirection
4111  * array when extents have been added or removed from one of the
4112  * extent lists. erp_idx contains the irec index to begin updating
4113  * at and ext_diff contains the number of extents that were added
4114  * or removed.
4115  */
4116 void
4117 xfs_iext_irec_update_extoffs(
4118 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4119 	int		erp_idx,	/* irec index to update */
4120 	int		ext_diff)	/* number of new extents */
4121 {
4122 	int		i;		/* loop counter */
4123 	int		nlists;		/* number of irec's (ex lists */
4124 
4125 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4126 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4127 	for (i = erp_idx; i < nlists; i++) {
4128 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4129 	}
4130 }
4131