1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_dir2.h" 18 #include "xfs_attr.h" 19 #include "xfs_trans_space.h" 20 #include "xfs_trans.h" 21 #include "xfs_buf_item.h" 22 #include "xfs_inode_item.h" 23 #include "xfs_ialloc.h" 24 #include "xfs_bmap.h" 25 #include "xfs_bmap_util.h" 26 #include "xfs_errortag.h" 27 #include "xfs_error.h" 28 #include "xfs_quota.h" 29 #include "xfs_filestream.h" 30 #include "xfs_trace.h" 31 #include "xfs_icache.h" 32 #include "xfs_symlink.h" 33 #include "xfs_trans_priv.h" 34 #include "xfs_log.h" 35 #include "xfs_bmap_btree.h" 36 #include "xfs_reflink.h" 37 #include "xfs_ag.h" 38 #include "xfs_log_priv.h" 39 40 struct kmem_cache *xfs_inode_cache; 41 42 /* 43 * Used in xfs_itruncate_extents(). This is the maximum number of extents 44 * freed from a file in a single transaction. 45 */ 46 #define XFS_ITRUNC_MAX_EXTENTS 2 47 48 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 49 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag, 50 struct xfs_inode *); 51 52 /* 53 * helper function to extract extent size hint from inode 54 */ 55 xfs_extlen_t 56 xfs_get_extsz_hint( 57 struct xfs_inode *ip) 58 { 59 /* 60 * No point in aligning allocations if we need to COW to actually 61 * write to them. 62 */ 63 if (xfs_is_always_cow_inode(ip)) 64 return 0; 65 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize) 66 return ip->i_extsize; 67 if (XFS_IS_REALTIME_INODE(ip)) 68 return ip->i_mount->m_sb.sb_rextsize; 69 return 0; 70 } 71 72 /* 73 * Helper function to extract CoW extent size hint from inode. 74 * Between the extent size hint and the CoW extent size hint, we 75 * return the greater of the two. If the value is zero (automatic), 76 * use the default size. 77 */ 78 xfs_extlen_t 79 xfs_get_cowextsz_hint( 80 struct xfs_inode *ip) 81 { 82 xfs_extlen_t a, b; 83 84 a = 0; 85 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 86 a = ip->i_cowextsize; 87 b = xfs_get_extsz_hint(ip); 88 89 a = max(a, b); 90 if (a == 0) 91 return XFS_DEFAULT_COWEXTSZ_HINT; 92 return a; 93 } 94 95 /* 96 * These two are wrapper routines around the xfs_ilock() routine used to 97 * centralize some grungy code. They are used in places that wish to lock the 98 * inode solely for reading the extents. The reason these places can't just 99 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 100 * bringing in of the extents from disk for a file in b-tree format. If the 101 * inode is in b-tree format, then we need to lock the inode exclusively until 102 * the extents are read in. Locking it exclusively all the time would limit 103 * our parallelism unnecessarily, though. What we do instead is check to see 104 * if the extents have been read in yet, and only lock the inode exclusively 105 * if they have not. 106 * 107 * The functions return a value which should be given to the corresponding 108 * xfs_iunlock() call. 109 */ 110 uint 111 xfs_ilock_data_map_shared( 112 struct xfs_inode *ip) 113 { 114 uint lock_mode = XFS_ILOCK_SHARED; 115 116 if (xfs_need_iread_extents(&ip->i_df)) 117 lock_mode = XFS_ILOCK_EXCL; 118 xfs_ilock(ip, lock_mode); 119 return lock_mode; 120 } 121 122 uint 123 xfs_ilock_attr_map_shared( 124 struct xfs_inode *ip) 125 { 126 uint lock_mode = XFS_ILOCK_SHARED; 127 128 if (ip->i_afp && xfs_need_iread_extents(ip->i_afp)) 129 lock_mode = XFS_ILOCK_EXCL; 130 xfs_ilock(ip, lock_mode); 131 return lock_mode; 132 } 133 134 /* 135 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 136 * multi-reader locks: invalidate_lock and the i_lock. This routine allows 137 * various combinations of the locks to be obtained. 138 * 139 * The 3 locks should always be ordered so that the IO lock is obtained first, 140 * the mmap lock second and the ilock last in order to prevent deadlock. 141 * 142 * Basic locking order: 143 * 144 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock 145 * 146 * mmap_lock locking order: 147 * 148 * i_rwsem -> page lock -> mmap_lock 149 * mmap_lock -> invalidate_lock -> page_lock 150 * 151 * The difference in mmap_lock locking order mean that we cannot hold the 152 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths 153 * can fault in pages during copy in/out (for buffered IO) or require the 154 * mmap_lock in get_user_pages() to map the user pages into the kernel address 155 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page 156 * fault because page faults already hold the mmap_lock. 157 * 158 * Hence to serialise fully against both syscall and mmap based IO, we need to 159 * take both the i_rwsem and the invalidate_lock. These locks should *only* be 160 * both taken in places where we need to invalidate the page cache in a race 161 * free manner (e.g. truncate, hole punch and other extent manipulation 162 * functions). 163 */ 164 void 165 xfs_ilock( 166 xfs_inode_t *ip, 167 uint lock_flags) 168 { 169 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 170 171 /* 172 * You can't set both SHARED and EXCL for the same lock, 173 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 174 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 175 */ 176 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 177 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 178 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 179 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 180 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 181 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 182 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 183 184 if (lock_flags & XFS_IOLOCK_EXCL) { 185 down_write_nested(&VFS_I(ip)->i_rwsem, 186 XFS_IOLOCK_DEP(lock_flags)); 187 } else if (lock_flags & XFS_IOLOCK_SHARED) { 188 down_read_nested(&VFS_I(ip)->i_rwsem, 189 XFS_IOLOCK_DEP(lock_flags)); 190 } 191 192 if (lock_flags & XFS_MMAPLOCK_EXCL) { 193 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 194 XFS_MMAPLOCK_DEP(lock_flags)); 195 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 196 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 197 XFS_MMAPLOCK_DEP(lock_flags)); 198 } 199 200 if (lock_flags & XFS_ILOCK_EXCL) 201 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 202 else if (lock_flags & XFS_ILOCK_SHARED) 203 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 204 } 205 206 /* 207 * This is just like xfs_ilock(), except that the caller 208 * is guaranteed not to sleep. It returns 1 if it gets 209 * the requested locks and 0 otherwise. If the IO lock is 210 * obtained but the inode lock cannot be, then the IO lock 211 * is dropped before returning. 212 * 213 * ip -- the inode being locked 214 * lock_flags -- this parameter indicates the inode's locks to be 215 * to be locked. See the comment for xfs_ilock() for a list 216 * of valid values. 217 */ 218 int 219 xfs_ilock_nowait( 220 xfs_inode_t *ip, 221 uint lock_flags) 222 { 223 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 224 225 /* 226 * You can't set both SHARED and EXCL for the same lock, 227 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 228 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 229 */ 230 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 231 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 232 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 233 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 234 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 235 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 236 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 237 238 if (lock_flags & XFS_IOLOCK_EXCL) { 239 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 240 goto out; 241 } else if (lock_flags & XFS_IOLOCK_SHARED) { 242 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 243 goto out; 244 } 245 246 if (lock_flags & XFS_MMAPLOCK_EXCL) { 247 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 248 goto out_undo_iolock; 249 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 250 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 251 goto out_undo_iolock; 252 } 253 254 if (lock_flags & XFS_ILOCK_EXCL) { 255 if (!mrtryupdate(&ip->i_lock)) 256 goto out_undo_mmaplock; 257 } else if (lock_flags & XFS_ILOCK_SHARED) { 258 if (!mrtryaccess(&ip->i_lock)) 259 goto out_undo_mmaplock; 260 } 261 return 1; 262 263 out_undo_mmaplock: 264 if (lock_flags & XFS_MMAPLOCK_EXCL) 265 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 266 else if (lock_flags & XFS_MMAPLOCK_SHARED) 267 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 268 out_undo_iolock: 269 if (lock_flags & XFS_IOLOCK_EXCL) 270 up_write(&VFS_I(ip)->i_rwsem); 271 else if (lock_flags & XFS_IOLOCK_SHARED) 272 up_read(&VFS_I(ip)->i_rwsem); 273 out: 274 return 0; 275 } 276 277 /* 278 * xfs_iunlock() is used to drop the inode locks acquired with 279 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 280 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 281 * that we know which locks to drop. 282 * 283 * ip -- the inode being unlocked 284 * lock_flags -- this parameter indicates the inode's locks to be 285 * to be unlocked. See the comment for xfs_ilock() for a list 286 * of valid values for this parameter. 287 * 288 */ 289 void 290 xfs_iunlock( 291 xfs_inode_t *ip, 292 uint lock_flags) 293 { 294 /* 295 * You can't set both SHARED and EXCL for the same lock, 296 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 297 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 298 */ 299 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 300 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 301 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 302 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 303 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 304 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 305 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 306 ASSERT(lock_flags != 0); 307 308 if (lock_flags & XFS_IOLOCK_EXCL) 309 up_write(&VFS_I(ip)->i_rwsem); 310 else if (lock_flags & XFS_IOLOCK_SHARED) 311 up_read(&VFS_I(ip)->i_rwsem); 312 313 if (lock_flags & XFS_MMAPLOCK_EXCL) 314 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 315 else if (lock_flags & XFS_MMAPLOCK_SHARED) 316 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 317 318 if (lock_flags & XFS_ILOCK_EXCL) 319 mrunlock_excl(&ip->i_lock); 320 else if (lock_flags & XFS_ILOCK_SHARED) 321 mrunlock_shared(&ip->i_lock); 322 323 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 324 } 325 326 /* 327 * give up write locks. the i/o lock cannot be held nested 328 * if it is being demoted. 329 */ 330 void 331 xfs_ilock_demote( 332 xfs_inode_t *ip, 333 uint lock_flags) 334 { 335 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 336 ASSERT((lock_flags & 337 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 338 339 if (lock_flags & XFS_ILOCK_EXCL) 340 mrdemote(&ip->i_lock); 341 if (lock_flags & XFS_MMAPLOCK_EXCL) 342 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); 343 if (lock_flags & XFS_IOLOCK_EXCL) 344 downgrade_write(&VFS_I(ip)->i_rwsem); 345 346 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 347 } 348 349 #if defined(DEBUG) || defined(XFS_WARN) 350 static inline bool 351 __xfs_rwsem_islocked( 352 struct rw_semaphore *rwsem, 353 bool shared) 354 { 355 if (!debug_locks) 356 return rwsem_is_locked(rwsem); 357 358 if (!shared) 359 return lockdep_is_held_type(rwsem, 0); 360 361 /* 362 * We are checking that the lock is held at least in shared 363 * mode but don't care that it might be held exclusively 364 * (i.e. shared | excl). Hence we check if the lock is held 365 * in any mode rather than an explicit shared mode. 366 */ 367 return lockdep_is_held_type(rwsem, -1); 368 } 369 370 bool 371 xfs_isilocked( 372 struct xfs_inode *ip, 373 uint lock_flags) 374 { 375 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 376 if (!(lock_flags & XFS_ILOCK_SHARED)) 377 return !!ip->i_lock.mr_writer; 378 return rwsem_is_locked(&ip->i_lock.mr_lock); 379 } 380 381 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 382 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem, 383 (lock_flags & XFS_IOLOCK_SHARED)); 384 } 385 386 if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) { 387 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem, 388 (lock_flags & XFS_IOLOCK_SHARED)); 389 } 390 391 ASSERT(0); 392 return false; 393 } 394 #endif 395 396 /* 397 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 398 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 399 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 400 * errors and warnings. 401 */ 402 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 403 static bool 404 xfs_lockdep_subclass_ok( 405 int subclass) 406 { 407 return subclass < MAX_LOCKDEP_SUBCLASSES; 408 } 409 #else 410 #define xfs_lockdep_subclass_ok(subclass) (true) 411 #endif 412 413 /* 414 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 415 * value. This can be called for any type of inode lock combination, including 416 * parent locking. Care must be taken to ensure we don't overrun the subclass 417 * storage fields in the class mask we build. 418 */ 419 static inline uint 420 xfs_lock_inumorder( 421 uint lock_mode, 422 uint subclass) 423 { 424 uint class = 0; 425 426 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 427 XFS_ILOCK_RTSUM))); 428 ASSERT(xfs_lockdep_subclass_ok(subclass)); 429 430 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 431 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 432 class += subclass << XFS_IOLOCK_SHIFT; 433 } 434 435 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 436 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 437 class += subclass << XFS_MMAPLOCK_SHIFT; 438 } 439 440 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 441 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 442 class += subclass << XFS_ILOCK_SHIFT; 443 } 444 445 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 446 } 447 448 /* 449 * The following routine will lock n inodes in exclusive mode. We assume the 450 * caller calls us with the inodes in i_ino order. 451 * 452 * We need to detect deadlock where an inode that we lock is in the AIL and we 453 * start waiting for another inode that is locked by a thread in a long running 454 * transaction (such as truncate). This can result in deadlock since the long 455 * running trans might need to wait for the inode we just locked in order to 456 * push the tail and free space in the log. 457 * 458 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 459 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 460 * lock more than one at a time, lockdep will report false positives saying we 461 * have violated locking orders. 462 */ 463 static void 464 xfs_lock_inodes( 465 struct xfs_inode **ips, 466 int inodes, 467 uint lock_mode) 468 { 469 int attempts = 0; 470 uint i; 471 int j; 472 bool try_lock; 473 struct xfs_log_item *lp; 474 475 /* 476 * Currently supports between 2 and 5 inodes with exclusive locking. We 477 * support an arbitrary depth of locking here, but absolute limits on 478 * inodes depend on the type of locking and the limits placed by 479 * lockdep annotations in xfs_lock_inumorder. These are all checked by 480 * the asserts. 481 */ 482 ASSERT(ips && inodes >= 2 && inodes <= 5); 483 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 484 XFS_ILOCK_EXCL)); 485 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 486 XFS_ILOCK_SHARED))); 487 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 488 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 489 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 490 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 491 492 if (lock_mode & XFS_IOLOCK_EXCL) { 493 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 494 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 495 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 496 497 again: 498 try_lock = false; 499 i = 0; 500 for (; i < inodes; i++) { 501 ASSERT(ips[i]); 502 503 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 504 continue; 505 506 /* 507 * If try_lock is not set yet, make sure all locked inodes are 508 * not in the AIL. If any are, set try_lock to be used later. 509 */ 510 if (!try_lock) { 511 for (j = (i - 1); j >= 0 && !try_lock; j--) { 512 lp = &ips[j]->i_itemp->ili_item; 513 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 514 try_lock = true; 515 } 516 } 517 518 /* 519 * If any of the previous locks we have locked is in the AIL, 520 * we must TRY to get the second and subsequent locks. If 521 * we can't get any, we must release all we have 522 * and try again. 523 */ 524 if (!try_lock) { 525 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 526 continue; 527 } 528 529 /* try_lock means we have an inode locked that is in the AIL. */ 530 ASSERT(i != 0); 531 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 532 continue; 533 534 /* 535 * Unlock all previous guys and try again. xfs_iunlock will try 536 * to push the tail if the inode is in the AIL. 537 */ 538 attempts++; 539 for (j = i - 1; j >= 0; j--) { 540 /* 541 * Check to see if we've already unlocked this one. Not 542 * the first one going back, and the inode ptr is the 543 * same. 544 */ 545 if (j != (i - 1) && ips[j] == ips[j + 1]) 546 continue; 547 548 xfs_iunlock(ips[j], lock_mode); 549 } 550 551 if ((attempts % 5) == 0) { 552 delay(1); /* Don't just spin the CPU */ 553 } 554 goto again; 555 } 556 } 557 558 /* 559 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and 560 * mmaplock must be double-locked separately since we use i_rwsem and 561 * invalidate_lock for that. We now support taking one lock EXCL and the 562 * other SHARED. 563 */ 564 void 565 xfs_lock_two_inodes( 566 struct xfs_inode *ip0, 567 uint ip0_mode, 568 struct xfs_inode *ip1, 569 uint ip1_mode) 570 { 571 int attempts = 0; 572 struct xfs_log_item *lp; 573 574 ASSERT(hweight32(ip0_mode) == 1); 575 ASSERT(hweight32(ip1_mode) == 1); 576 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 577 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 578 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 579 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 580 ASSERT(ip0->i_ino != ip1->i_ino); 581 582 if (ip0->i_ino > ip1->i_ino) { 583 swap(ip0, ip1); 584 swap(ip0_mode, ip1_mode); 585 } 586 587 again: 588 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 589 590 /* 591 * If the first lock we have locked is in the AIL, we must TRY to get 592 * the second lock. If we can't get it, we must release the first one 593 * and try again. 594 */ 595 lp = &ip0->i_itemp->ili_item; 596 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 597 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 598 xfs_iunlock(ip0, ip0_mode); 599 if ((++attempts % 5) == 0) 600 delay(1); /* Don't just spin the CPU */ 601 goto again; 602 } 603 } else { 604 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 605 } 606 } 607 608 uint 609 xfs_ip2xflags( 610 struct xfs_inode *ip) 611 { 612 uint flags = 0; 613 614 if (ip->i_diflags & XFS_DIFLAG_ANY) { 615 if (ip->i_diflags & XFS_DIFLAG_REALTIME) 616 flags |= FS_XFLAG_REALTIME; 617 if (ip->i_diflags & XFS_DIFLAG_PREALLOC) 618 flags |= FS_XFLAG_PREALLOC; 619 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 620 flags |= FS_XFLAG_IMMUTABLE; 621 if (ip->i_diflags & XFS_DIFLAG_APPEND) 622 flags |= FS_XFLAG_APPEND; 623 if (ip->i_diflags & XFS_DIFLAG_SYNC) 624 flags |= FS_XFLAG_SYNC; 625 if (ip->i_diflags & XFS_DIFLAG_NOATIME) 626 flags |= FS_XFLAG_NOATIME; 627 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 628 flags |= FS_XFLAG_NODUMP; 629 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) 630 flags |= FS_XFLAG_RTINHERIT; 631 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT) 632 flags |= FS_XFLAG_PROJINHERIT; 633 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS) 634 flags |= FS_XFLAG_NOSYMLINKS; 635 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE) 636 flags |= FS_XFLAG_EXTSIZE; 637 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) 638 flags |= FS_XFLAG_EXTSZINHERIT; 639 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG) 640 flags |= FS_XFLAG_NODEFRAG; 641 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM) 642 flags |= FS_XFLAG_FILESTREAM; 643 } 644 645 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) { 646 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 647 flags |= FS_XFLAG_DAX; 648 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 649 flags |= FS_XFLAG_COWEXTSIZE; 650 } 651 652 if (XFS_IFORK_Q(ip)) 653 flags |= FS_XFLAG_HASATTR; 654 return flags; 655 } 656 657 /* 658 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 659 * is allowed, otherwise it has to be an exact match. If a CI match is found, 660 * ci_name->name will point to a the actual name (caller must free) or 661 * will be set to NULL if an exact match is found. 662 */ 663 int 664 xfs_lookup( 665 struct xfs_inode *dp, 666 const struct xfs_name *name, 667 struct xfs_inode **ipp, 668 struct xfs_name *ci_name) 669 { 670 xfs_ino_t inum; 671 int error; 672 673 trace_xfs_lookup(dp, name); 674 675 if (xfs_is_shutdown(dp->i_mount)) 676 return -EIO; 677 678 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 679 if (error) 680 goto out_unlock; 681 682 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 683 if (error) 684 goto out_free_name; 685 686 return 0; 687 688 out_free_name: 689 if (ci_name) 690 kmem_free(ci_name->name); 691 out_unlock: 692 *ipp = NULL; 693 return error; 694 } 695 696 /* Propagate di_flags from a parent inode to a child inode. */ 697 static void 698 xfs_inode_inherit_flags( 699 struct xfs_inode *ip, 700 const struct xfs_inode *pip) 701 { 702 unsigned int di_flags = 0; 703 xfs_failaddr_t failaddr; 704 umode_t mode = VFS_I(ip)->i_mode; 705 706 if (S_ISDIR(mode)) { 707 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT) 708 di_flags |= XFS_DIFLAG_RTINHERIT; 709 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 710 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 711 ip->i_extsize = pip->i_extsize; 712 } 713 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT) 714 di_flags |= XFS_DIFLAG_PROJINHERIT; 715 } else if (S_ISREG(mode)) { 716 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) && 717 xfs_has_realtime(ip->i_mount)) 718 di_flags |= XFS_DIFLAG_REALTIME; 719 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 720 di_flags |= XFS_DIFLAG_EXTSIZE; 721 ip->i_extsize = pip->i_extsize; 722 } 723 } 724 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) && 725 xfs_inherit_noatime) 726 di_flags |= XFS_DIFLAG_NOATIME; 727 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) && 728 xfs_inherit_nodump) 729 di_flags |= XFS_DIFLAG_NODUMP; 730 if ((pip->i_diflags & XFS_DIFLAG_SYNC) && 731 xfs_inherit_sync) 732 di_flags |= XFS_DIFLAG_SYNC; 733 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) && 734 xfs_inherit_nosymlinks) 735 di_flags |= XFS_DIFLAG_NOSYMLINKS; 736 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) && 737 xfs_inherit_nodefrag) 738 di_flags |= XFS_DIFLAG_NODEFRAG; 739 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM) 740 di_flags |= XFS_DIFLAG_FILESTREAM; 741 742 ip->i_diflags |= di_flags; 743 744 /* 745 * Inode verifiers on older kernels only check that the extent size 746 * hint is an integer multiple of the rt extent size on realtime files. 747 * They did not check the hint alignment on a directory with both 748 * rtinherit and extszinherit flags set. If the misaligned hint is 749 * propagated from a directory into a new realtime file, new file 750 * allocations will fail due to math errors in the rt allocator and/or 751 * trip the verifiers. Validate the hint settings in the new file so 752 * that we don't let broken hints propagate. 753 */ 754 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize, 755 VFS_I(ip)->i_mode, ip->i_diflags); 756 if (failaddr) { 757 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 758 XFS_DIFLAG_EXTSZINHERIT); 759 ip->i_extsize = 0; 760 } 761 } 762 763 /* Propagate di_flags2 from a parent inode to a child inode. */ 764 static void 765 xfs_inode_inherit_flags2( 766 struct xfs_inode *ip, 767 const struct xfs_inode *pip) 768 { 769 xfs_failaddr_t failaddr; 770 771 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) { 772 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 773 ip->i_cowextsize = pip->i_cowextsize; 774 } 775 if (pip->i_diflags2 & XFS_DIFLAG2_DAX) 776 ip->i_diflags2 |= XFS_DIFLAG2_DAX; 777 778 /* Don't let invalid cowextsize hints propagate. */ 779 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize, 780 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2); 781 if (failaddr) { 782 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE; 783 ip->i_cowextsize = 0; 784 } 785 } 786 787 /* 788 * Initialise a newly allocated inode and return the in-core inode to the 789 * caller locked exclusively. 790 */ 791 int 792 xfs_init_new_inode( 793 struct user_namespace *mnt_userns, 794 struct xfs_trans *tp, 795 struct xfs_inode *pip, 796 xfs_ino_t ino, 797 umode_t mode, 798 xfs_nlink_t nlink, 799 dev_t rdev, 800 prid_t prid, 801 bool init_xattrs, 802 struct xfs_inode **ipp) 803 { 804 struct inode *dir = pip ? VFS_I(pip) : NULL; 805 struct xfs_mount *mp = tp->t_mountp; 806 struct xfs_inode *ip; 807 unsigned int flags; 808 int error; 809 struct timespec64 tv; 810 struct inode *inode; 811 812 /* 813 * Protect against obviously corrupt allocation btree records. Later 814 * xfs_iget checks will catch re-allocation of other active in-memory 815 * and on-disk inodes. If we don't catch reallocating the parent inode 816 * here we will deadlock in xfs_iget() so we have to do these checks 817 * first. 818 */ 819 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 820 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 821 return -EFSCORRUPTED; 822 } 823 824 /* 825 * Get the in-core inode with the lock held exclusively to prevent 826 * others from looking at until we're done. 827 */ 828 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 829 if (error) 830 return error; 831 832 ASSERT(ip != NULL); 833 inode = VFS_I(ip); 834 set_nlink(inode, nlink); 835 inode->i_rdev = rdev; 836 ip->i_projid = prid; 837 838 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) { 839 inode_fsuid_set(inode, mnt_userns); 840 inode->i_gid = dir->i_gid; 841 inode->i_mode = mode; 842 } else { 843 inode_init_owner(mnt_userns, inode, dir, mode); 844 } 845 846 /* 847 * If the group ID of the new file does not match the effective group 848 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 849 * (and only if the irix_sgid_inherit compatibility variable is set). 850 */ 851 if (irix_sgid_inherit && 852 (inode->i_mode & S_ISGID) && 853 !in_group_p(i_gid_into_mnt(mnt_userns, inode))) 854 inode->i_mode &= ~S_ISGID; 855 856 ip->i_disk_size = 0; 857 ip->i_df.if_nextents = 0; 858 ASSERT(ip->i_nblocks == 0); 859 860 tv = current_time(inode); 861 inode->i_mtime = tv; 862 inode->i_atime = tv; 863 inode->i_ctime = tv; 864 865 ip->i_extsize = 0; 866 ip->i_diflags = 0; 867 868 if (xfs_has_v3inodes(mp)) { 869 inode_set_iversion(inode, 1); 870 ip->i_cowextsize = 0; 871 ip->i_crtime = tv; 872 } 873 874 flags = XFS_ILOG_CORE; 875 switch (mode & S_IFMT) { 876 case S_IFIFO: 877 case S_IFCHR: 878 case S_IFBLK: 879 case S_IFSOCK: 880 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 881 flags |= XFS_ILOG_DEV; 882 break; 883 case S_IFREG: 884 case S_IFDIR: 885 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY)) 886 xfs_inode_inherit_flags(ip, pip); 887 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY)) 888 xfs_inode_inherit_flags2(ip, pip); 889 fallthrough; 890 case S_IFLNK: 891 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 892 ip->i_df.if_bytes = 0; 893 ip->i_df.if_u1.if_root = NULL; 894 break; 895 default: 896 ASSERT(0); 897 } 898 899 /* 900 * If we need to create attributes immediately after allocating the 901 * inode, initialise an empty attribute fork right now. We use the 902 * default fork offset for attributes here as we don't know exactly what 903 * size or how many attributes we might be adding. We can do this 904 * safely here because we know the data fork is completely empty and 905 * this saves us from needing to run a separate transaction to set the 906 * fork offset in the immediate future. 907 */ 908 if (init_xattrs && xfs_has_attr(mp)) { 909 ip->i_forkoff = xfs_default_attroffset(ip) >> 3; 910 ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0); 911 } 912 913 /* 914 * Log the new values stuffed into the inode. 915 */ 916 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 917 xfs_trans_log_inode(tp, ip, flags); 918 919 /* now that we have an i_mode we can setup the inode structure */ 920 xfs_setup_inode(ip); 921 922 *ipp = ip; 923 return 0; 924 } 925 926 /* 927 * Decrement the link count on an inode & log the change. If this causes the 928 * link count to go to zero, move the inode to AGI unlinked list so that it can 929 * be freed when the last active reference goes away via xfs_inactive(). 930 */ 931 static int /* error */ 932 xfs_droplink( 933 xfs_trans_t *tp, 934 xfs_inode_t *ip) 935 { 936 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 937 938 drop_nlink(VFS_I(ip)); 939 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 940 941 if (VFS_I(ip)->i_nlink) 942 return 0; 943 944 return xfs_iunlink(tp, ip); 945 } 946 947 /* 948 * Increment the link count on an inode & log the change. 949 */ 950 static void 951 xfs_bumplink( 952 xfs_trans_t *tp, 953 xfs_inode_t *ip) 954 { 955 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 956 957 inc_nlink(VFS_I(ip)); 958 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 959 } 960 961 int 962 xfs_create( 963 struct user_namespace *mnt_userns, 964 xfs_inode_t *dp, 965 struct xfs_name *name, 966 umode_t mode, 967 dev_t rdev, 968 bool init_xattrs, 969 xfs_inode_t **ipp) 970 { 971 int is_dir = S_ISDIR(mode); 972 struct xfs_mount *mp = dp->i_mount; 973 struct xfs_inode *ip = NULL; 974 struct xfs_trans *tp = NULL; 975 int error; 976 bool unlock_dp_on_error = false; 977 prid_t prid; 978 struct xfs_dquot *udqp = NULL; 979 struct xfs_dquot *gdqp = NULL; 980 struct xfs_dquot *pdqp = NULL; 981 struct xfs_trans_res *tres; 982 uint resblks; 983 xfs_ino_t ino; 984 985 trace_xfs_create(dp, name); 986 987 if (xfs_is_shutdown(mp)) 988 return -EIO; 989 990 prid = xfs_get_initial_prid(dp); 991 992 /* 993 * Make sure that we have allocated dquot(s) on disk. 994 */ 995 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns), 996 mapped_fsgid(mnt_userns, &init_user_ns), prid, 997 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 998 &udqp, &gdqp, &pdqp); 999 if (error) 1000 return error; 1001 1002 if (is_dir) { 1003 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1004 tres = &M_RES(mp)->tr_mkdir; 1005 } else { 1006 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1007 tres = &M_RES(mp)->tr_create; 1008 } 1009 1010 /* 1011 * Initially assume that the file does not exist and 1012 * reserve the resources for that case. If that is not 1013 * the case we'll drop the one we have and get a more 1014 * appropriate transaction later. 1015 */ 1016 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1017 &tp); 1018 if (error == -ENOSPC) { 1019 /* flush outstanding delalloc blocks and retry */ 1020 xfs_flush_inodes(mp); 1021 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 1022 resblks, &tp); 1023 } 1024 if (error) 1025 goto out_release_dquots; 1026 1027 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1028 unlock_dp_on_error = true; 1029 1030 /* 1031 * A newly created regular or special file just has one directory 1032 * entry pointing to them, but a directory also the "." entry 1033 * pointing to itself. 1034 */ 1035 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1036 if (!error) 1037 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode, 1038 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip); 1039 if (error) 1040 goto out_trans_cancel; 1041 1042 /* 1043 * Now we join the directory inode to the transaction. We do not do it 1044 * earlier because xfs_dialloc might commit the previous transaction 1045 * (and release all the locks). An error from here on will result in 1046 * the transaction cancel unlocking dp so don't do it explicitly in the 1047 * error path. 1048 */ 1049 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1050 unlock_dp_on_error = false; 1051 1052 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1053 resblks - XFS_IALLOC_SPACE_RES(mp)); 1054 if (error) { 1055 ASSERT(error != -ENOSPC); 1056 goto out_trans_cancel; 1057 } 1058 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1059 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1060 1061 if (is_dir) { 1062 error = xfs_dir_init(tp, ip, dp); 1063 if (error) 1064 goto out_trans_cancel; 1065 1066 xfs_bumplink(tp, dp); 1067 } 1068 1069 /* 1070 * If this is a synchronous mount, make sure that the 1071 * create transaction goes to disk before returning to 1072 * the user. 1073 */ 1074 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1075 xfs_trans_set_sync(tp); 1076 1077 /* 1078 * Attach the dquot(s) to the inodes and modify them incore. 1079 * These ids of the inode couldn't have changed since the new 1080 * inode has been locked ever since it was created. 1081 */ 1082 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1083 1084 error = xfs_trans_commit(tp); 1085 if (error) 1086 goto out_release_inode; 1087 1088 xfs_qm_dqrele(udqp); 1089 xfs_qm_dqrele(gdqp); 1090 xfs_qm_dqrele(pdqp); 1091 1092 *ipp = ip; 1093 return 0; 1094 1095 out_trans_cancel: 1096 xfs_trans_cancel(tp); 1097 out_release_inode: 1098 /* 1099 * Wait until after the current transaction is aborted to finish the 1100 * setup of the inode and release the inode. This prevents recursive 1101 * transactions and deadlocks from xfs_inactive. 1102 */ 1103 if (ip) { 1104 xfs_finish_inode_setup(ip); 1105 xfs_irele(ip); 1106 } 1107 out_release_dquots: 1108 xfs_qm_dqrele(udqp); 1109 xfs_qm_dqrele(gdqp); 1110 xfs_qm_dqrele(pdqp); 1111 1112 if (unlock_dp_on_error) 1113 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1114 return error; 1115 } 1116 1117 int 1118 xfs_create_tmpfile( 1119 struct user_namespace *mnt_userns, 1120 struct xfs_inode *dp, 1121 umode_t mode, 1122 struct xfs_inode **ipp) 1123 { 1124 struct xfs_mount *mp = dp->i_mount; 1125 struct xfs_inode *ip = NULL; 1126 struct xfs_trans *tp = NULL; 1127 int error; 1128 prid_t prid; 1129 struct xfs_dquot *udqp = NULL; 1130 struct xfs_dquot *gdqp = NULL; 1131 struct xfs_dquot *pdqp = NULL; 1132 struct xfs_trans_res *tres; 1133 uint resblks; 1134 xfs_ino_t ino; 1135 1136 if (xfs_is_shutdown(mp)) 1137 return -EIO; 1138 1139 prid = xfs_get_initial_prid(dp); 1140 1141 /* 1142 * Make sure that we have allocated dquot(s) on disk. 1143 */ 1144 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns), 1145 mapped_fsgid(mnt_userns, &init_user_ns), prid, 1146 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1147 &udqp, &gdqp, &pdqp); 1148 if (error) 1149 return error; 1150 1151 resblks = XFS_IALLOC_SPACE_RES(mp); 1152 tres = &M_RES(mp)->tr_create_tmpfile; 1153 1154 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1155 &tp); 1156 if (error) 1157 goto out_release_dquots; 1158 1159 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1160 if (!error) 1161 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode, 1162 0, 0, prid, false, &ip); 1163 if (error) 1164 goto out_trans_cancel; 1165 1166 if (xfs_has_wsync(mp)) 1167 xfs_trans_set_sync(tp); 1168 1169 /* 1170 * Attach the dquot(s) to the inodes and modify them incore. 1171 * These ids of the inode couldn't have changed since the new 1172 * inode has been locked ever since it was created. 1173 */ 1174 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1175 1176 error = xfs_iunlink(tp, ip); 1177 if (error) 1178 goto out_trans_cancel; 1179 1180 error = xfs_trans_commit(tp); 1181 if (error) 1182 goto out_release_inode; 1183 1184 xfs_qm_dqrele(udqp); 1185 xfs_qm_dqrele(gdqp); 1186 xfs_qm_dqrele(pdqp); 1187 1188 *ipp = ip; 1189 return 0; 1190 1191 out_trans_cancel: 1192 xfs_trans_cancel(tp); 1193 out_release_inode: 1194 /* 1195 * Wait until after the current transaction is aborted to finish the 1196 * setup of the inode and release the inode. This prevents recursive 1197 * transactions and deadlocks from xfs_inactive. 1198 */ 1199 if (ip) { 1200 xfs_finish_inode_setup(ip); 1201 xfs_irele(ip); 1202 } 1203 out_release_dquots: 1204 xfs_qm_dqrele(udqp); 1205 xfs_qm_dqrele(gdqp); 1206 xfs_qm_dqrele(pdqp); 1207 1208 return error; 1209 } 1210 1211 int 1212 xfs_link( 1213 xfs_inode_t *tdp, 1214 xfs_inode_t *sip, 1215 struct xfs_name *target_name) 1216 { 1217 xfs_mount_t *mp = tdp->i_mount; 1218 xfs_trans_t *tp; 1219 int error, nospace_error = 0; 1220 int resblks; 1221 1222 trace_xfs_link(tdp, target_name); 1223 1224 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1225 1226 if (xfs_is_shutdown(mp)) 1227 return -EIO; 1228 1229 error = xfs_qm_dqattach(sip); 1230 if (error) 1231 goto std_return; 1232 1233 error = xfs_qm_dqattach(tdp); 1234 if (error) 1235 goto std_return; 1236 1237 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1238 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks, 1239 &tp, &nospace_error); 1240 if (error) 1241 goto std_return; 1242 1243 /* 1244 * If we are using project inheritance, we only allow hard link 1245 * creation in our tree when the project IDs are the same; else 1246 * the tree quota mechanism could be circumvented. 1247 */ 1248 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 1249 tdp->i_projid != sip->i_projid)) { 1250 error = -EXDEV; 1251 goto error_return; 1252 } 1253 1254 if (!resblks) { 1255 error = xfs_dir_canenter(tp, tdp, target_name); 1256 if (error) 1257 goto error_return; 1258 } 1259 1260 /* 1261 * Handle initial link state of O_TMPFILE inode 1262 */ 1263 if (VFS_I(sip)->i_nlink == 0) { 1264 struct xfs_perag *pag; 1265 1266 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino)); 1267 error = xfs_iunlink_remove(tp, pag, sip); 1268 xfs_perag_put(pag); 1269 if (error) 1270 goto error_return; 1271 } 1272 1273 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1274 resblks); 1275 if (error) 1276 goto error_return; 1277 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1278 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1279 1280 xfs_bumplink(tp, sip); 1281 1282 /* 1283 * If this is a synchronous mount, make sure that the 1284 * link transaction goes to disk before returning to 1285 * the user. 1286 */ 1287 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1288 xfs_trans_set_sync(tp); 1289 1290 return xfs_trans_commit(tp); 1291 1292 error_return: 1293 xfs_trans_cancel(tp); 1294 std_return: 1295 if (error == -ENOSPC && nospace_error) 1296 error = nospace_error; 1297 return error; 1298 } 1299 1300 /* Clear the reflink flag and the cowblocks tag if possible. */ 1301 static void 1302 xfs_itruncate_clear_reflink_flags( 1303 struct xfs_inode *ip) 1304 { 1305 struct xfs_ifork *dfork; 1306 struct xfs_ifork *cfork; 1307 1308 if (!xfs_is_reflink_inode(ip)) 1309 return; 1310 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1311 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1312 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1313 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1314 if (cfork->if_bytes == 0) 1315 xfs_inode_clear_cowblocks_tag(ip); 1316 } 1317 1318 /* 1319 * Free up the underlying blocks past new_size. The new size must be smaller 1320 * than the current size. This routine can be used both for the attribute and 1321 * data fork, and does not modify the inode size, which is left to the caller. 1322 * 1323 * The transaction passed to this routine must have made a permanent log 1324 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1325 * given transaction and start new ones, so make sure everything involved in 1326 * the transaction is tidy before calling here. Some transaction will be 1327 * returned to the caller to be committed. The incoming transaction must 1328 * already include the inode, and both inode locks must be held exclusively. 1329 * The inode must also be "held" within the transaction. On return the inode 1330 * will be "held" within the returned transaction. This routine does NOT 1331 * require any disk space to be reserved for it within the transaction. 1332 * 1333 * If we get an error, we must return with the inode locked and linked into the 1334 * current transaction. This keeps things simple for the higher level code, 1335 * because it always knows that the inode is locked and held in the transaction 1336 * that returns to it whether errors occur or not. We don't mark the inode 1337 * dirty on error so that transactions can be easily aborted if possible. 1338 */ 1339 int 1340 xfs_itruncate_extents_flags( 1341 struct xfs_trans **tpp, 1342 struct xfs_inode *ip, 1343 int whichfork, 1344 xfs_fsize_t new_size, 1345 int flags) 1346 { 1347 struct xfs_mount *mp = ip->i_mount; 1348 struct xfs_trans *tp = *tpp; 1349 xfs_fileoff_t first_unmap_block; 1350 xfs_filblks_t unmap_len; 1351 int error = 0; 1352 1353 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1354 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1355 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1356 ASSERT(new_size <= XFS_ISIZE(ip)); 1357 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1358 ASSERT(ip->i_itemp != NULL); 1359 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1360 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1361 1362 trace_xfs_itruncate_extents_start(ip, new_size); 1363 1364 flags |= xfs_bmapi_aflag(whichfork); 1365 1366 /* 1367 * Since it is possible for space to become allocated beyond 1368 * the end of the file (in a crash where the space is allocated 1369 * but the inode size is not yet updated), simply remove any 1370 * blocks which show up between the new EOF and the maximum 1371 * possible file size. 1372 * 1373 * We have to free all the blocks to the bmbt maximum offset, even if 1374 * the page cache can't scale that far. 1375 */ 1376 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1377 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1378 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1379 return 0; 1380 } 1381 1382 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; 1383 while (unmap_len > 0) { 1384 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1385 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, 1386 flags, XFS_ITRUNC_MAX_EXTENTS); 1387 if (error) 1388 goto out; 1389 1390 /* free the just unmapped extents */ 1391 error = xfs_defer_finish(&tp); 1392 if (error) 1393 goto out; 1394 } 1395 1396 if (whichfork == XFS_DATA_FORK) { 1397 /* Remove all pending CoW reservations. */ 1398 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1399 first_unmap_block, XFS_MAX_FILEOFF, true); 1400 if (error) 1401 goto out; 1402 1403 xfs_itruncate_clear_reflink_flags(ip); 1404 } 1405 1406 /* 1407 * Always re-log the inode so that our permanent transaction can keep 1408 * on rolling it forward in the log. 1409 */ 1410 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1411 1412 trace_xfs_itruncate_extents_end(ip, new_size); 1413 1414 out: 1415 *tpp = tp; 1416 return error; 1417 } 1418 1419 int 1420 xfs_release( 1421 xfs_inode_t *ip) 1422 { 1423 xfs_mount_t *mp = ip->i_mount; 1424 int error = 0; 1425 1426 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1427 return 0; 1428 1429 /* If this is a read-only mount, don't do this (would generate I/O) */ 1430 if (xfs_is_readonly(mp)) 1431 return 0; 1432 1433 if (!xfs_is_shutdown(mp)) { 1434 int truncated; 1435 1436 /* 1437 * If we previously truncated this file and removed old data 1438 * in the process, we want to initiate "early" writeout on 1439 * the last close. This is an attempt to combat the notorious 1440 * NULL files problem which is particularly noticeable from a 1441 * truncate down, buffered (re-)write (delalloc), followed by 1442 * a crash. What we are effectively doing here is 1443 * significantly reducing the time window where we'd otherwise 1444 * be exposed to that problem. 1445 */ 1446 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1447 if (truncated) { 1448 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1449 if (ip->i_delayed_blks > 0) { 1450 error = filemap_flush(VFS_I(ip)->i_mapping); 1451 if (error) 1452 return error; 1453 } 1454 } 1455 } 1456 1457 if (VFS_I(ip)->i_nlink == 0) 1458 return 0; 1459 1460 /* 1461 * If we can't get the iolock just skip truncating the blocks past EOF 1462 * because we could deadlock with the mmap_lock otherwise. We'll get 1463 * another chance to drop them once the last reference to the inode is 1464 * dropped, so we'll never leak blocks permanently. 1465 */ 1466 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) 1467 return 0; 1468 1469 if (xfs_can_free_eofblocks(ip, false)) { 1470 /* 1471 * Check if the inode is being opened, written and closed 1472 * frequently and we have delayed allocation blocks outstanding 1473 * (e.g. streaming writes from the NFS server), truncating the 1474 * blocks past EOF will cause fragmentation to occur. 1475 * 1476 * In this case don't do the truncation, but we have to be 1477 * careful how we detect this case. Blocks beyond EOF show up as 1478 * i_delayed_blks even when the inode is clean, so we need to 1479 * truncate them away first before checking for a dirty release. 1480 * Hence on the first dirty close we will still remove the 1481 * speculative allocation, but after that we will leave it in 1482 * place. 1483 */ 1484 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1485 goto out_unlock; 1486 1487 error = xfs_free_eofblocks(ip); 1488 if (error) 1489 goto out_unlock; 1490 1491 /* delalloc blocks after truncation means it really is dirty */ 1492 if (ip->i_delayed_blks) 1493 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1494 } 1495 1496 out_unlock: 1497 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1498 return error; 1499 } 1500 1501 /* 1502 * xfs_inactive_truncate 1503 * 1504 * Called to perform a truncate when an inode becomes unlinked. 1505 */ 1506 STATIC int 1507 xfs_inactive_truncate( 1508 struct xfs_inode *ip) 1509 { 1510 struct xfs_mount *mp = ip->i_mount; 1511 struct xfs_trans *tp; 1512 int error; 1513 1514 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1515 if (error) { 1516 ASSERT(xfs_is_shutdown(mp)); 1517 return error; 1518 } 1519 xfs_ilock(ip, XFS_ILOCK_EXCL); 1520 xfs_trans_ijoin(tp, ip, 0); 1521 1522 /* 1523 * Log the inode size first to prevent stale data exposure in the event 1524 * of a system crash before the truncate completes. See the related 1525 * comment in xfs_vn_setattr_size() for details. 1526 */ 1527 ip->i_disk_size = 0; 1528 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1529 1530 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1531 if (error) 1532 goto error_trans_cancel; 1533 1534 ASSERT(ip->i_df.if_nextents == 0); 1535 1536 error = xfs_trans_commit(tp); 1537 if (error) 1538 goto error_unlock; 1539 1540 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1541 return 0; 1542 1543 error_trans_cancel: 1544 xfs_trans_cancel(tp); 1545 error_unlock: 1546 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1547 return error; 1548 } 1549 1550 /* 1551 * xfs_inactive_ifree() 1552 * 1553 * Perform the inode free when an inode is unlinked. 1554 */ 1555 STATIC int 1556 xfs_inactive_ifree( 1557 struct xfs_inode *ip) 1558 { 1559 struct xfs_mount *mp = ip->i_mount; 1560 struct xfs_trans *tp; 1561 int error; 1562 1563 /* 1564 * We try to use a per-AG reservation for any block needed by the finobt 1565 * tree, but as the finobt feature predates the per-AG reservation 1566 * support a degraded file system might not have enough space for the 1567 * reservation at mount time. In that case try to dip into the reserved 1568 * pool and pray. 1569 * 1570 * Send a warning if the reservation does happen to fail, as the inode 1571 * now remains allocated and sits on the unlinked list until the fs is 1572 * repaired. 1573 */ 1574 if (unlikely(mp->m_finobt_nores)) { 1575 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1576 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1577 &tp); 1578 } else { 1579 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1580 } 1581 if (error) { 1582 if (error == -ENOSPC) { 1583 xfs_warn_ratelimited(mp, 1584 "Failed to remove inode(s) from unlinked list. " 1585 "Please free space, unmount and run xfs_repair."); 1586 } else { 1587 ASSERT(xfs_is_shutdown(mp)); 1588 } 1589 return error; 1590 } 1591 1592 /* 1593 * We do not hold the inode locked across the entire rolling transaction 1594 * here. We only need to hold it for the first transaction that 1595 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1596 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1597 * here breaks the relationship between cluster buffer invalidation and 1598 * stale inode invalidation on cluster buffer item journal commit 1599 * completion, and can result in leaving dirty stale inodes hanging 1600 * around in memory. 1601 * 1602 * We have no need for serialising this inode operation against other 1603 * operations - we freed the inode and hence reallocation is required 1604 * and that will serialise on reallocating the space the deferops need 1605 * to free. Hence we can unlock the inode on the first commit of 1606 * the transaction rather than roll it right through the deferops. This 1607 * avoids relogging the XFS_ISTALE inode. 1608 * 1609 * We check that xfs_ifree() hasn't grown an internal transaction roll 1610 * by asserting that the inode is still locked when it returns. 1611 */ 1612 xfs_ilock(ip, XFS_ILOCK_EXCL); 1613 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1614 1615 error = xfs_ifree(tp, ip); 1616 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1617 if (error) { 1618 /* 1619 * If we fail to free the inode, shut down. The cancel 1620 * might do that, we need to make sure. Otherwise the 1621 * inode might be lost for a long time or forever. 1622 */ 1623 if (!xfs_is_shutdown(mp)) { 1624 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1625 __func__, error); 1626 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1627 } 1628 xfs_trans_cancel(tp); 1629 return error; 1630 } 1631 1632 /* 1633 * Credit the quota account(s). The inode is gone. 1634 */ 1635 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1636 1637 /* 1638 * Just ignore errors at this point. There is nothing we can do except 1639 * to try to keep going. Make sure it's not a silent error. 1640 */ 1641 error = xfs_trans_commit(tp); 1642 if (error) 1643 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1644 __func__, error); 1645 1646 return 0; 1647 } 1648 1649 /* 1650 * Returns true if we need to update the on-disk metadata before we can free 1651 * the memory used by this inode. Updates include freeing post-eof 1652 * preallocations; freeing COW staging extents; and marking the inode free in 1653 * the inobt if it is on the unlinked list. 1654 */ 1655 bool 1656 xfs_inode_needs_inactive( 1657 struct xfs_inode *ip) 1658 { 1659 struct xfs_mount *mp = ip->i_mount; 1660 struct xfs_ifork *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1661 1662 /* 1663 * If the inode is already free, then there can be nothing 1664 * to clean up here. 1665 */ 1666 if (VFS_I(ip)->i_mode == 0) 1667 return false; 1668 1669 /* If this is a read-only mount, don't do this (would generate I/O) */ 1670 if (xfs_is_readonly(mp)) 1671 return false; 1672 1673 /* If the log isn't running, push inodes straight to reclaim. */ 1674 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) 1675 return false; 1676 1677 /* Metadata inodes require explicit resource cleanup. */ 1678 if (xfs_is_metadata_inode(ip)) 1679 return false; 1680 1681 /* Want to clean out the cow blocks if there are any. */ 1682 if (cow_ifp && cow_ifp->if_bytes > 0) 1683 return true; 1684 1685 /* Unlinked files must be freed. */ 1686 if (VFS_I(ip)->i_nlink == 0) 1687 return true; 1688 1689 /* 1690 * This file isn't being freed, so check if there are post-eof blocks 1691 * to free. @force is true because we are evicting an inode from the 1692 * cache. Post-eof blocks must be freed, lest we end up with broken 1693 * free space accounting. 1694 * 1695 * Note: don't bother with iolock here since lockdep complains about 1696 * acquiring it in reclaim context. We have the only reference to the 1697 * inode at this point anyways. 1698 */ 1699 return xfs_can_free_eofblocks(ip, true); 1700 } 1701 1702 /* 1703 * xfs_inactive 1704 * 1705 * This is called when the vnode reference count for the vnode 1706 * goes to zero. If the file has been unlinked, then it must 1707 * now be truncated. Also, we clear all of the read-ahead state 1708 * kept for the inode here since the file is now closed. 1709 */ 1710 void 1711 xfs_inactive( 1712 xfs_inode_t *ip) 1713 { 1714 struct xfs_mount *mp; 1715 int error; 1716 int truncate = 0; 1717 1718 /* 1719 * If the inode is already free, then there can be nothing 1720 * to clean up here. 1721 */ 1722 if (VFS_I(ip)->i_mode == 0) { 1723 ASSERT(ip->i_df.if_broot_bytes == 0); 1724 goto out; 1725 } 1726 1727 mp = ip->i_mount; 1728 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1729 1730 /* If this is a read-only mount, don't do this (would generate I/O) */ 1731 if (xfs_is_readonly(mp)) 1732 goto out; 1733 1734 /* Metadata inodes require explicit resource cleanup. */ 1735 if (xfs_is_metadata_inode(ip)) 1736 goto out; 1737 1738 /* Try to clean out the cow blocks if there are any. */ 1739 if (xfs_inode_has_cow_data(ip)) 1740 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1741 1742 if (VFS_I(ip)->i_nlink != 0) { 1743 /* 1744 * force is true because we are evicting an inode from the 1745 * cache. Post-eof blocks must be freed, lest we end up with 1746 * broken free space accounting. 1747 * 1748 * Note: don't bother with iolock here since lockdep complains 1749 * about acquiring it in reclaim context. We have the only 1750 * reference to the inode at this point anyways. 1751 */ 1752 if (xfs_can_free_eofblocks(ip, true)) 1753 xfs_free_eofblocks(ip); 1754 1755 goto out; 1756 } 1757 1758 if (S_ISREG(VFS_I(ip)->i_mode) && 1759 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || 1760 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1761 truncate = 1; 1762 1763 error = xfs_qm_dqattach(ip); 1764 if (error) 1765 goto out; 1766 1767 if (S_ISLNK(VFS_I(ip)->i_mode)) 1768 error = xfs_inactive_symlink(ip); 1769 else if (truncate) 1770 error = xfs_inactive_truncate(ip); 1771 if (error) 1772 goto out; 1773 1774 /* 1775 * If there are attributes associated with the file then blow them away 1776 * now. The code calls a routine that recursively deconstructs the 1777 * attribute fork. If also blows away the in-core attribute fork. 1778 */ 1779 if (XFS_IFORK_Q(ip)) { 1780 error = xfs_attr_inactive(ip); 1781 if (error) 1782 goto out; 1783 } 1784 1785 ASSERT(!ip->i_afp); 1786 ASSERT(ip->i_forkoff == 0); 1787 1788 /* 1789 * Free the inode. 1790 */ 1791 xfs_inactive_ifree(ip); 1792 1793 out: 1794 /* 1795 * We're done making metadata updates for this inode, so we can release 1796 * the attached dquots. 1797 */ 1798 xfs_qm_dqdetach(ip); 1799 } 1800 1801 /* 1802 * In-Core Unlinked List Lookups 1803 * ============================= 1804 * 1805 * Every inode is supposed to be reachable from some other piece of metadata 1806 * with the exception of the root directory. Inodes with a connection to a 1807 * file descriptor but not linked from anywhere in the on-disk directory tree 1808 * are collectively known as unlinked inodes, though the filesystem itself 1809 * maintains links to these inodes so that on-disk metadata are consistent. 1810 * 1811 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1812 * header contains a number of buckets that point to an inode, and each inode 1813 * record has a pointer to the next inode in the hash chain. This 1814 * singly-linked list causes scaling problems in the iunlink remove function 1815 * because we must walk that list to find the inode that points to the inode 1816 * being removed from the unlinked hash bucket list. 1817 * 1818 * What if we modelled the unlinked list as a collection of records capturing 1819 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd 1820 * have a fast way to look up unlinked list predecessors, which avoids the 1821 * slow list walk. That's exactly what we do here (in-core) with a per-AG 1822 * rhashtable. 1823 * 1824 * Because this is a backref cache, we ignore operational failures since the 1825 * iunlink code can fall back to the slow bucket walk. The only errors that 1826 * should bubble out are for obviously incorrect situations. 1827 * 1828 * All users of the backref cache MUST hold the AGI buffer lock to serialize 1829 * access or have otherwise provided for concurrency control. 1830 */ 1831 1832 /* Capture a "X.next_unlinked = Y" relationship. */ 1833 struct xfs_iunlink { 1834 struct rhash_head iu_rhash_head; 1835 xfs_agino_t iu_agino; /* X */ 1836 xfs_agino_t iu_next_unlinked; /* Y */ 1837 }; 1838 1839 /* Unlinked list predecessor lookup hashtable construction */ 1840 static int 1841 xfs_iunlink_obj_cmpfn( 1842 struct rhashtable_compare_arg *arg, 1843 const void *obj) 1844 { 1845 const xfs_agino_t *key = arg->key; 1846 const struct xfs_iunlink *iu = obj; 1847 1848 if (iu->iu_next_unlinked != *key) 1849 return 1; 1850 return 0; 1851 } 1852 1853 static const struct rhashtable_params xfs_iunlink_hash_params = { 1854 .min_size = XFS_AGI_UNLINKED_BUCKETS, 1855 .key_len = sizeof(xfs_agino_t), 1856 .key_offset = offsetof(struct xfs_iunlink, 1857 iu_next_unlinked), 1858 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), 1859 .automatic_shrinking = true, 1860 .obj_cmpfn = xfs_iunlink_obj_cmpfn, 1861 }; 1862 1863 /* 1864 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such 1865 * relation is found. 1866 */ 1867 static xfs_agino_t 1868 xfs_iunlink_lookup_backref( 1869 struct xfs_perag *pag, 1870 xfs_agino_t agino) 1871 { 1872 struct xfs_iunlink *iu; 1873 1874 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1875 xfs_iunlink_hash_params); 1876 return iu ? iu->iu_agino : NULLAGINO; 1877 } 1878 1879 /* 1880 * Take ownership of an iunlink cache entry and insert it into the hash table. 1881 * If successful, the entry will be owned by the cache; if not, it is freed. 1882 * Either way, the caller does not own @iu after this call. 1883 */ 1884 static int 1885 xfs_iunlink_insert_backref( 1886 struct xfs_perag *pag, 1887 struct xfs_iunlink *iu) 1888 { 1889 int error; 1890 1891 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, 1892 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1893 /* 1894 * Fail loudly if there already was an entry because that's a sign of 1895 * corruption of in-memory data. Also fail loudly if we see an error 1896 * code we didn't anticipate from the rhashtable code. Currently we 1897 * only anticipate ENOMEM. 1898 */ 1899 if (error) { 1900 WARN(error != -ENOMEM, "iunlink cache insert error %d", error); 1901 kmem_free(iu); 1902 } 1903 /* 1904 * Absorb any runtime errors that aren't a result of corruption because 1905 * this is a cache and we can always fall back to bucket list scanning. 1906 */ 1907 if (error != 0 && error != -EEXIST) 1908 error = 0; 1909 return error; 1910 } 1911 1912 /* Remember that @prev_agino.next_unlinked = @this_agino. */ 1913 static int 1914 xfs_iunlink_add_backref( 1915 struct xfs_perag *pag, 1916 xfs_agino_t prev_agino, 1917 xfs_agino_t this_agino) 1918 { 1919 struct xfs_iunlink *iu; 1920 1921 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) 1922 return 0; 1923 1924 iu = kmem_zalloc(sizeof(*iu), KM_NOFS); 1925 iu->iu_agino = prev_agino; 1926 iu->iu_next_unlinked = this_agino; 1927 1928 return xfs_iunlink_insert_backref(pag, iu); 1929 } 1930 1931 /* 1932 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. 1933 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there 1934 * wasn't any such entry then we don't bother. 1935 */ 1936 static int 1937 xfs_iunlink_change_backref( 1938 struct xfs_perag *pag, 1939 xfs_agino_t agino, 1940 xfs_agino_t next_unlinked) 1941 { 1942 struct xfs_iunlink *iu; 1943 int error; 1944 1945 /* Look up the old entry; if there wasn't one then exit. */ 1946 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1947 xfs_iunlink_hash_params); 1948 if (!iu) 1949 return 0; 1950 1951 /* 1952 * Remove the entry. This shouldn't ever return an error, but if we 1953 * couldn't remove the old entry we don't want to add it again to the 1954 * hash table, and if the entry disappeared on us then someone's 1955 * violated the locking rules and we need to fail loudly. Either way 1956 * we cannot remove the inode because internal state is or would have 1957 * been corrupt. 1958 */ 1959 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, 1960 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1961 if (error) 1962 return error; 1963 1964 /* If there is no new next entry just free our item and return. */ 1965 if (next_unlinked == NULLAGINO) { 1966 kmem_free(iu); 1967 return 0; 1968 } 1969 1970 /* Update the entry and re-add it to the hash table. */ 1971 iu->iu_next_unlinked = next_unlinked; 1972 return xfs_iunlink_insert_backref(pag, iu); 1973 } 1974 1975 /* Set up the in-core predecessor structures. */ 1976 int 1977 xfs_iunlink_init( 1978 struct xfs_perag *pag) 1979 { 1980 return rhashtable_init(&pag->pagi_unlinked_hash, 1981 &xfs_iunlink_hash_params); 1982 } 1983 1984 /* Free the in-core predecessor structures. */ 1985 static void 1986 xfs_iunlink_free_item( 1987 void *ptr, 1988 void *arg) 1989 { 1990 struct xfs_iunlink *iu = ptr; 1991 bool *freed_anything = arg; 1992 1993 *freed_anything = true; 1994 kmem_free(iu); 1995 } 1996 1997 void 1998 xfs_iunlink_destroy( 1999 struct xfs_perag *pag) 2000 { 2001 bool freed_anything = false; 2002 2003 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, 2004 xfs_iunlink_free_item, &freed_anything); 2005 2006 ASSERT(freed_anything == false || xfs_is_shutdown(pag->pag_mount)); 2007 } 2008 2009 /* 2010 * Point the AGI unlinked bucket at an inode and log the results. The caller 2011 * is responsible for validating the old value. 2012 */ 2013 STATIC int 2014 xfs_iunlink_update_bucket( 2015 struct xfs_trans *tp, 2016 struct xfs_perag *pag, 2017 struct xfs_buf *agibp, 2018 unsigned int bucket_index, 2019 xfs_agino_t new_agino) 2020 { 2021 struct xfs_agi *agi = agibp->b_addr; 2022 xfs_agino_t old_value; 2023 int offset; 2024 2025 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino)); 2026 2027 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2028 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index, 2029 old_value, new_agino); 2030 2031 /* 2032 * We should never find the head of the list already set to the value 2033 * passed in because either we're adding or removing ourselves from the 2034 * head of the list. 2035 */ 2036 if (old_value == new_agino) { 2037 xfs_buf_mark_corrupt(agibp); 2038 return -EFSCORRUPTED; 2039 } 2040 2041 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2042 offset = offsetof(struct xfs_agi, agi_unlinked) + 2043 (sizeof(xfs_agino_t) * bucket_index); 2044 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2045 return 0; 2046 } 2047 2048 /* Set an on-disk inode's next_unlinked pointer. */ 2049 STATIC void 2050 xfs_iunlink_update_dinode( 2051 struct xfs_trans *tp, 2052 struct xfs_perag *pag, 2053 xfs_agino_t agino, 2054 struct xfs_buf *ibp, 2055 struct xfs_dinode *dip, 2056 struct xfs_imap *imap, 2057 xfs_agino_t next_agino) 2058 { 2059 struct xfs_mount *mp = tp->t_mountp; 2060 int offset; 2061 2062 ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)); 2063 2064 trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino, 2065 be32_to_cpu(dip->di_next_unlinked), next_agino); 2066 2067 dip->di_next_unlinked = cpu_to_be32(next_agino); 2068 offset = imap->im_boffset + 2069 offsetof(struct xfs_dinode, di_next_unlinked); 2070 2071 /* need to recalc the inode CRC if appropriate */ 2072 xfs_dinode_calc_crc(mp, dip); 2073 xfs_trans_inode_buf(tp, ibp); 2074 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); 2075 } 2076 2077 /* Set an in-core inode's unlinked pointer and return the old value. */ 2078 STATIC int 2079 xfs_iunlink_update_inode( 2080 struct xfs_trans *tp, 2081 struct xfs_inode *ip, 2082 struct xfs_perag *pag, 2083 xfs_agino_t next_agino, 2084 xfs_agino_t *old_next_agino) 2085 { 2086 struct xfs_mount *mp = tp->t_mountp; 2087 struct xfs_dinode *dip; 2088 struct xfs_buf *ibp; 2089 xfs_agino_t old_value; 2090 int error; 2091 2092 ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)); 2093 2094 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp); 2095 if (error) 2096 return error; 2097 dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset); 2098 2099 /* Make sure the old pointer isn't garbage. */ 2100 old_value = be32_to_cpu(dip->di_next_unlinked); 2101 if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) { 2102 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 2103 sizeof(*dip), __this_address); 2104 error = -EFSCORRUPTED; 2105 goto out; 2106 } 2107 2108 /* 2109 * Since we're updating a linked list, we should never find that the 2110 * current pointer is the same as the new value, unless we're 2111 * terminating the list. 2112 */ 2113 *old_next_agino = old_value; 2114 if (old_value == next_agino) { 2115 if (next_agino != NULLAGINO) { 2116 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 2117 dip, sizeof(*dip), __this_address); 2118 error = -EFSCORRUPTED; 2119 } 2120 goto out; 2121 } 2122 2123 /* Ok, update the new pointer. */ 2124 xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 2125 ibp, dip, &ip->i_imap, next_agino); 2126 return 0; 2127 out: 2128 xfs_trans_brelse(tp, ibp); 2129 return error; 2130 } 2131 2132 /* 2133 * This is called when the inode's link count has gone to 0 or we are creating 2134 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2135 * 2136 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2137 * list when the inode is freed. 2138 */ 2139 STATIC int 2140 xfs_iunlink( 2141 struct xfs_trans *tp, 2142 struct xfs_inode *ip) 2143 { 2144 struct xfs_mount *mp = tp->t_mountp; 2145 struct xfs_perag *pag; 2146 struct xfs_agi *agi; 2147 struct xfs_buf *agibp; 2148 xfs_agino_t next_agino; 2149 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2150 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2151 int error; 2152 2153 ASSERT(VFS_I(ip)->i_nlink == 0); 2154 ASSERT(VFS_I(ip)->i_mode != 0); 2155 trace_xfs_iunlink(ip); 2156 2157 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2158 2159 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2160 error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp); 2161 if (error) 2162 goto out; 2163 agi = agibp->b_addr; 2164 2165 /* 2166 * Get the index into the agi hash table for the list this inode will 2167 * go on. Make sure the pointer isn't garbage and that this inode 2168 * isn't already on the list. 2169 */ 2170 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2171 if (next_agino == agino || 2172 !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) { 2173 xfs_buf_mark_corrupt(agibp); 2174 error = -EFSCORRUPTED; 2175 goto out; 2176 } 2177 2178 if (next_agino != NULLAGINO) { 2179 xfs_agino_t old_agino; 2180 2181 /* 2182 * There is already another inode in the bucket, so point this 2183 * inode to the current head of the list. 2184 */ 2185 error = xfs_iunlink_update_inode(tp, ip, pag, next_agino, 2186 &old_agino); 2187 if (error) 2188 goto out; 2189 ASSERT(old_agino == NULLAGINO); 2190 2191 /* 2192 * agino has been unlinked, add a backref from the next inode 2193 * back to agino. 2194 */ 2195 error = xfs_iunlink_add_backref(pag, agino, next_agino); 2196 if (error) 2197 goto out; 2198 } 2199 2200 /* Point the head of the list to point to this inode. */ 2201 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino); 2202 out: 2203 xfs_perag_put(pag); 2204 return error; 2205 } 2206 2207 /* Return the imap, dinode pointer, and buffer for an inode. */ 2208 STATIC int 2209 xfs_iunlink_map_ino( 2210 struct xfs_trans *tp, 2211 xfs_agnumber_t agno, 2212 xfs_agino_t agino, 2213 struct xfs_imap *imap, 2214 struct xfs_dinode **dipp, 2215 struct xfs_buf **bpp) 2216 { 2217 struct xfs_mount *mp = tp->t_mountp; 2218 int error; 2219 2220 imap->im_blkno = 0; 2221 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); 2222 if (error) { 2223 xfs_warn(mp, "%s: xfs_imap returned error %d.", 2224 __func__, error); 2225 return error; 2226 } 2227 2228 error = xfs_imap_to_bp(mp, tp, imap, bpp); 2229 if (error) { 2230 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2231 __func__, error); 2232 return error; 2233 } 2234 2235 *dipp = xfs_buf_offset(*bpp, imap->im_boffset); 2236 return 0; 2237 } 2238 2239 /* 2240 * Walk the unlinked chain from @head_agino until we find the inode that 2241 * points to @target_agino. Return the inode number, map, dinode pointer, 2242 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. 2243 * 2244 * @tp, @pag, @head_agino, and @target_agino are input parameters. 2245 * @agino, @imap, @dipp, and @bpp are all output parameters. 2246 * 2247 * Do not call this function if @target_agino is the head of the list. 2248 */ 2249 STATIC int 2250 xfs_iunlink_map_prev( 2251 struct xfs_trans *tp, 2252 struct xfs_perag *pag, 2253 xfs_agino_t head_agino, 2254 xfs_agino_t target_agino, 2255 xfs_agino_t *agino, 2256 struct xfs_imap *imap, 2257 struct xfs_dinode **dipp, 2258 struct xfs_buf **bpp) 2259 { 2260 struct xfs_mount *mp = tp->t_mountp; 2261 xfs_agino_t next_agino; 2262 int error; 2263 2264 ASSERT(head_agino != target_agino); 2265 *bpp = NULL; 2266 2267 /* See if our backref cache can find it faster. */ 2268 *agino = xfs_iunlink_lookup_backref(pag, target_agino); 2269 if (*agino != NULLAGINO) { 2270 error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap, 2271 dipp, bpp); 2272 if (error) 2273 return error; 2274 2275 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) 2276 return 0; 2277 2278 /* 2279 * If we get here the cache contents were corrupt, so drop the 2280 * buffer and fall back to walking the bucket list. 2281 */ 2282 xfs_trans_brelse(tp, *bpp); 2283 *bpp = NULL; 2284 WARN_ON_ONCE(1); 2285 } 2286 2287 trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno); 2288 2289 /* Otherwise, walk the entire bucket until we find it. */ 2290 next_agino = head_agino; 2291 while (next_agino != target_agino) { 2292 xfs_agino_t unlinked_agino; 2293 2294 if (*bpp) 2295 xfs_trans_brelse(tp, *bpp); 2296 2297 *agino = next_agino; 2298 error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap, 2299 dipp, bpp); 2300 if (error) 2301 return error; 2302 2303 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); 2304 /* 2305 * Make sure this pointer is valid and isn't an obvious 2306 * infinite loop. 2307 */ 2308 if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) || 2309 next_agino == unlinked_agino) { 2310 XFS_CORRUPTION_ERROR(__func__, 2311 XFS_ERRLEVEL_LOW, mp, 2312 *dipp, sizeof(**dipp)); 2313 error = -EFSCORRUPTED; 2314 return error; 2315 } 2316 next_agino = unlinked_agino; 2317 } 2318 2319 return 0; 2320 } 2321 2322 /* 2323 * Pull the on-disk inode from the AGI unlinked list. 2324 */ 2325 STATIC int 2326 xfs_iunlink_remove( 2327 struct xfs_trans *tp, 2328 struct xfs_perag *pag, 2329 struct xfs_inode *ip) 2330 { 2331 struct xfs_mount *mp = tp->t_mountp; 2332 struct xfs_agi *agi; 2333 struct xfs_buf *agibp; 2334 struct xfs_buf *last_ibp; 2335 struct xfs_dinode *last_dip = NULL; 2336 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2337 xfs_agino_t next_agino; 2338 xfs_agino_t head_agino; 2339 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2340 int error; 2341 2342 trace_xfs_iunlink_remove(ip); 2343 2344 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2345 error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp); 2346 if (error) 2347 return error; 2348 agi = agibp->b_addr; 2349 2350 /* 2351 * Get the index into the agi hash table for the list this inode will 2352 * go on. Make sure the head pointer isn't garbage. 2353 */ 2354 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2355 if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) { 2356 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2357 agi, sizeof(*agi)); 2358 return -EFSCORRUPTED; 2359 } 2360 2361 /* 2362 * Set our inode's next_unlinked pointer to NULL and then return 2363 * the old pointer value so that we can update whatever was previous 2364 * to us in the list to point to whatever was next in the list. 2365 */ 2366 error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino); 2367 if (error) 2368 return error; 2369 2370 /* 2371 * If there was a backref pointing from the next inode back to this 2372 * one, remove it because we've removed this inode from the list. 2373 * 2374 * Later, if this inode was in the middle of the list we'll update 2375 * this inode's backref to point from the next inode. 2376 */ 2377 if (next_agino != NULLAGINO) { 2378 error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO); 2379 if (error) 2380 return error; 2381 } 2382 2383 if (head_agino != agino) { 2384 struct xfs_imap imap; 2385 xfs_agino_t prev_agino; 2386 2387 /* We need to search the list for the inode being freed. */ 2388 error = xfs_iunlink_map_prev(tp, pag, head_agino, agino, 2389 &prev_agino, &imap, &last_dip, &last_ibp); 2390 if (error) 2391 return error; 2392 2393 /* Point the previous inode on the list to the next inode. */ 2394 xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp, 2395 last_dip, &imap, next_agino); 2396 2397 /* 2398 * Now we deal with the backref for this inode. If this inode 2399 * pointed at a real inode, change the backref that pointed to 2400 * us to point to our old next. If this inode was the end of 2401 * the list, delete the backref that pointed to us. Note that 2402 * change_backref takes care of deleting the backref if 2403 * next_agino is NULLAGINO. 2404 */ 2405 return xfs_iunlink_change_backref(agibp->b_pag, agino, 2406 next_agino); 2407 } 2408 2409 /* Point the head of the list to the next unlinked inode. */ 2410 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, 2411 next_agino); 2412 } 2413 2414 /* 2415 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2416 * mark it stale. We should only find clean inodes in this lookup that aren't 2417 * already stale. 2418 */ 2419 static void 2420 xfs_ifree_mark_inode_stale( 2421 struct xfs_perag *pag, 2422 struct xfs_inode *free_ip, 2423 xfs_ino_t inum) 2424 { 2425 struct xfs_mount *mp = pag->pag_mount; 2426 struct xfs_inode_log_item *iip; 2427 struct xfs_inode *ip; 2428 2429 retry: 2430 rcu_read_lock(); 2431 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2432 2433 /* Inode not in memory, nothing to do */ 2434 if (!ip) { 2435 rcu_read_unlock(); 2436 return; 2437 } 2438 2439 /* 2440 * because this is an RCU protected lookup, we could find a recently 2441 * freed or even reallocated inode during the lookup. We need to check 2442 * under the i_flags_lock for a valid inode here. Skip it if it is not 2443 * valid, the wrong inode or stale. 2444 */ 2445 spin_lock(&ip->i_flags_lock); 2446 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 2447 goto out_iflags_unlock; 2448 2449 /* 2450 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2451 * other inodes that we did not find in the list attached to the buffer 2452 * and are not already marked stale. If we can't lock it, back off and 2453 * retry. 2454 */ 2455 if (ip != free_ip) { 2456 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2457 spin_unlock(&ip->i_flags_lock); 2458 rcu_read_unlock(); 2459 delay(1); 2460 goto retry; 2461 } 2462 } 2463 ip->i_flags |= XFS_ISTALE; 2464 2465 /* 2466 * If the inode is flushing, it is already attached to the buffer. All 2467 * we needed to do here is mark the inode stale so buffer IO completion 2468 * will remove it from the AIL. 2469 */ 2470 iip = ip->i_itemp; 2471 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 2472 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2473 ASSERT(iip->ili_last_fields); 2474 goto out_iunlock; 2475 } 2476 2477 /* 2478 * Inodes not attached to the buffer can be released immediately. 2479 * Everything else has to go through xfs_iflush_abort() on journal 2480 * commit as the flock synchronises removal of the inode from the 2481 * cluster buffer against inode reclaim. 2482 */ 2483 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 2484 goto out_iunlock; 2485 2486 __xfs_iflags_set(ip, XFS_IFLUSHING); 2487 spin_unlock(&ip->i_flags_lock); 2488 rcu_read_unlock(); 2489 2490 /* we have a dirty inode in memory that has not yet been flushed. */ 2491 spin_lock(&iip->ili_lock); 2492 iip->ili_last_fields = iip->ili_fields; 2493 iip->ili_fields = 0; 2494 iip->ili_fsync_fields = 0; 2495 spin_unlock(&iip->ili_lock); 2496 ASSERT(iip->ili_last_fields); 2497 2498 if (ip != free_ip) 2499 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2500 return; 2501 2502 out_iunlock: 2503 if (ip != free_ip) 2504 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2505 out_iflags_unlock: 2506 spin_unlock(&ip->i_flags_lock); 2507 rcu_read_unlock(); 2508 } 2509 2510 /* 2511 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2512 * inodes that are in memory - they all must be marked stale and attached to 2513 * the cluster buffer. 2514 */ 2515 static int 2516 xfs_ifree_cluster( 2517 struct xfs_trans *tp, 2518 struct xfs_perag *pag, 2519 struct xfs_inode *free_ip, 2520 struct xfs_icluster *xic) 2521 { 2522 struct xfs_mount *mp = free_ip->i_mount; 2523 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2524 struct xfs_buf *bp; 2525 xfs_daddr_t blkno; 2526 xfs_ino_t inum = xic->first_ino; 2527 int nbufs; 2528 int i, j; 2529 int ioffset; 2530 int error; 2531 2532 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2533 2534 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2535 /* 2536 * The allocation bitmap tells us which inodes of the chunk were 2537 * physically allocated. Skip the cluster if an inode falls into 2538 * a sparse region. 2539 */ 2540 ioffset = inum - xic->first_ino; 2541 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2542 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2543 continue; 2544 } 2545 2546 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2547 XFS_INO_TO_AGBNO(mp, inum)); 2548 2549 /* 2550 * We obtain and lock the backing buffer first in the process 2551 * here to ensure dirty inodes attached to the buffer remain in 2552 * the flushing state while we mark them stale. 2553 * 2554 * If we scan the in-memory inodes first, then buffer IO can 2555 * complete before we get a lock on it, and hence we may fail 2556 * to mark all the active inodes on the buffer stale. 2557 */ 2558 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2559 mp->m_bsize * igeo->blocks_per_cluster, 2560 XBF_UNMAPPED, &bp); 2561 if (error) 2562 return error; 2563 2564 /* 2565 * This buffer may not have been correctly initialised as we 2566 * didn't read it from disk. That's not important because we are 2567 * only using to mark the buffer as stale in the log, and to 2568 * attach stale cached inodes on it. That means it will never be 2569 * dispatched for IO. If it is, we want to know about it, and we 2570 * want it to fail. We can acheive this by adding a write 2571 * verifier to the buffer. 2572 */ 2573 bp->b_ops = &xfs_inode_buf_ops; 2574 2575 /* 2576 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2577 * too. This requires lookups, and will skip inodes that we've 2578 * already marked XFS_ISTALE. 2579 */ 2580 for (i = 0; i < igeo->inodes_per_cluster; i++) 2581 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); 2582 2583 xfs_trans_stale_inode_buf(tp, bp); 2584 xfs_trans_binval(tp, bp); 2585 } 2586 return 0; 2587 } 2588 2589 /* 2590 * This is called to return an inode to the inode free list. The inode should 2591 * already be truncated to 0 length and have no pages associated with it. This 2592 * routine also assumes that the inode is already a part of the transaction. 2593 * 2594 * The on-disk copy of the inode will have been added to the list of unlinked 2595 * inodes in the AGI. We need to remove the inode from that list atomically with 2596 * respect to freeing it here. 2597 */ 2598 int 2599 xfs_ifree( 2600 struct xfs_trans *tp, 2601 struct xfs_inode *ip) 2602 { 2603 struct xfs_mount *mp = ip->i_mount; 2604 struct xfs_perag *pag; 2605 struct xfs_icluster xic = { 0 }; 2606 struct xfs_inode_log_item *iip = ip->i_itemp; 2607 int error; 2608 2609 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2610 ASSERT(VFS_I(ip)->i_nlink == 0); 2611 ASSERT(ip->i_df.if_nextents == 0); 2612 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2613 ASSERT(ip->i_nblocks == 0); 2614 2615 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2616 2617 /* 2618 * Free the inode first so that we guarantee that the AGI lock is going 2619 * to be taken before we remove the inode from the unlinked list. This 2620 * makes the AGI lock -> unlinked list modification order the same as 2621 * used in O_TMPFILE creation. 2622 */ 2623 error = xfs_difree(tp, pag, ip->i_ino, &xic); 2624 if (error) 2625 goto out; 2626 2627 error = xfs_iunlink_remove(tp, pag, ip); 2628 if (error) 2629 goto out; 2630 2631 /* 2632 * Free any local-format data sitting around before we reset the 2633 * data fork to extents format. Note that the attr fork data has 2634 * already been freed by xfs_attr_inactive. 2635 */ 2636 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2637 kmem_free(ip->i_df.if_u1.if_data); 2638 ip->i_df.if_u1.if_data = NULL; 2639 ip->i_df.if_bytes = 0; 2640 } 2641 2642 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2643 ip->i_diflags = 0; 2644 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 2645 ip->i_forkoff = 0; /* mark the attr fork not in use */ 2646 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2647 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) 2648 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); 2649 2650 /* Don't attempt to replay owner changes for a deleted inode */ 2651 spin_lock(&iip->ili_lock); 2652 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2653 spin_unlock(&iip->ili_lock); 2654 2655 /* 2656 * Bump the generation count so no one will be confused 2657 * by reincarnations of this inode. 2658 */ 2659 VFS_I(ip)->i_generation++; 2660 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2661 2662 if (xic.deleted) 2663 error = xfs_ifree_cluster(tp, pag, ip, &xic); 2664 out: 2665 xfs_perag_put(pag); 2666 return error; 2667 } 2668 2669 /* 2670 * This is called to unpin an inode. The caller must have the inode locked 2671 * in at least shared mode so that the buffer cannot be subsequently pinned 2672 * once someone is waiting for it to be unpinned. 2673 */ 2674 static void 2675 xfs_iunpin( 2676 struct xfs_inode *ip) 2677 { 2678 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2679 2680 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2681 2682 /* Give the log a push to start the unpinning I/O */ 2683 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); 2684 2685 } 2686 2687 static void 2688 __xfs_iunpin_wait( 2689 struct xfs_inode *ip) 2690 { 2691 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2692 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2693 2694 xfs_iunpin(ip); 2695 2696 do { 2697 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2698 if (xfs_ipincount(ip)) 2699 io_schedule(); 2700 } while (xfs_ipincount(ip)); 2701 finish_wait(wq, &wait.wq_entry); 2702 } 2703 2704 void 2705 xfs_iunpin_wait( 2706 struct xfs_inode *ip) 2707 { 2708 if (xfs_ipincount(ip)) 2709 __xfs_iunpin_wait(ip); 2710 } 2711 2712 /* 2713 * Removing an inode from the namespace involves removing the directory entry 2714 * and dropping the link count on the inode. Removing the directory entry can 2715 * result in locking an AGF (directory blocks were freed) and removing a link 2716 * count can result in placing the inode on an unlinked list which results in 2717 * locking an AGI. 2718 * 2719 * The big problem here is that we have an ordering constraint on AGF and AGI 2720 * locking - inode allocation locks the AGI, then can allocate a new extent for 2721 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2722 * removes the inode from the unlinked list, requiring that we lock the AGI 2723 * first, and then freeing the inode can result in an inode chunk being freed 2724 * and hence freeing disk space requiring that we lock an AGF. 2725 * 2726 * Hence the ordering that is imposed by other parts of the code is AGI before 2727 * AGF. This means we cannot remove the directory entry before we drop the inode 2728 * reference count and put it on the unlinked list as this results in a lock 2729 * order of AGF then AGI, and this can deadlock against inode allocation and 2730 * freeing. Therefore we must drop the link counts before we remove the 2731 * directory entry. 2732 * 2733 * This is still safe from a transactional point of view - it is not until we 2734 * get to xfs_defer_finish() that we have the possibility of multiple 2735 * transactions in this operation. Hence as long as we remove the directory 2736 * entry and drop the link count in the first transaction of the remove 2737 * operation, there are no transactional constraints on the ordering here. 2738 */ 2739 int 2740 xfs_remove( 2741 xfs_inode_t *dp, 2742 struct xfs_name *name, 2743 xfs_inode_t *ip) 2744 { 2745 xfs_mount_t *mp = dp->i_mount; 2746 xfs_trans_t *tp = NULL; 2747 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2748 int dontcare; 2749 int error = 0; 2750 uint resblks; 2751 2752 trace_xfs_remove(dp, name); 2753 2754 if (xfs_is_shutdown(mp)) 2755 return -EIO; 2756 2757 error = xfs_qm_dqattach(dp); 2758 if (error) 2759 goto std_return; 2760 2761 error = xfs_qm_dqattach(ip); 2762 if (error) 2763 goto std_return; 2764 2765 /* 2766 * We try to get the real space reservation first, allowing for 2767 * directory btree deletion(s) implying possible bmap insert(s). If we 2768 * can't get the space reservation then we use 0 instead, and avoid the 2769 * bmap btree insert(s) in the directory code by, if the bmap insert 2770 * tries to happen, instead trimming the LAST block from the directory. 2771 * 2772 * Ignore EDQUOT and ENOSPC being returned via nospace_error because 2773 * the directory code can handle a reservationless update and we don't 2774 * want to prevent a user from trying to free space by deleting things. 2775 */ 2776 resblks = XFS_REMOVE_SPACE_RES(mp); 2777 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks, 2778 &tp, &dontcare); 2779 if (error) { 2780 ASSERT(error != -ENOSPC); 2781 goto std_return; 2782 } 2783 2784 /* 2785 * If we're removing a directory perform some additional validation. 2786 */ 2787 if (is_dir) { 2788 ASSERT(VFS_I(ip)->i_nlink >= 2); 2789 if (VFS_I(ip)->i_nlink != 2) { 2790 error = -ENOTEMPTY; 2791 goto out_trans_cancel; 2792 } 2793 if (!xfs_dir_isempty(ip)) { 2794 error = -ENOTEMPTY; 2795 goto out_trans_cancel; 2796 } 2797 2798 /* Drop the link from ip's "..". */ 2799 error = xfs_droplink(tp, dp); 2800 if (error) 2801 goto out_trans_cancel; 2802 2803 /* Drop the "." link from ip to self. */ 2804 error = xfs_droplink(tp, ip); 2805 if (error) 2806 goto out_trans_cancel; 2807 2808 /* 2809 * Point the unlinked child directory's ".." entry to the root 2810 * directory to eliminate back-references to inodes that may 2811 * get freed before the child directory is closed. If the fs 2812 * gets shrunk, this can lead to dirent inode validation errors. 2813 */ 2814 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) { 2815 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot, 2816 tp->t_mountp->m_sb.sb_rootino, 0); 2817 if (error) 2818 return error; 2819 } 2820 } else { 2821 /* 2822 * When removing a non-directory we need to log the parent 2823 * inode here. For a directory this is done implicitly 2824 * by the xfs_droplink call for the ".." entry. 2825 */ 2826 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2827 } 2828 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2829 2830 /* Drop the link from dp to ip. */ 2831 error = xfs_droplink(tp, ip); 2832 if (error) 2833 goto out_trans_cancel; 2834 2835 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2836 if (error) { 2837 ASSERT(error != -ENOENT); 2838 goto out_trans_cancel; 2839 } 2840 2841 /* 2842 * If this is a synchronous mount, make sure that the 2843 * remove transaction goes to disk before returning to 2844 * the user. 2845 */ 2846 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 2847 xfs_trans_set_sync(tp); 2848 2849 error = xfs_trans_commit(tp); 2850 if (error) 2851 goto std_return; 2852 2853 if (is_dir && xfs_inode_is_filestream(ip)) 2854 xfs_filestream_deassociate(ip); 2855 2856 return 0; 2857 2858 out_trans_cancel: 2859 xfs_trans_cancel(tp); 2860 std_return: 2861 return error; 2862 } 2863 2864 /* 2865 * Enter all inodes for a rename transaction into a sorted array. 2866 */ 2867 #define __XFS_SORT_INODES 5 2868 STATIC void 2869 xfs_sort_for_rename( 2870 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2871 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2872 struct xfs_inode *ip1, /* in: inode of old entry */ 2873 struct xfs_inode *ip2, /* in: inode of new entry */ 2874 struct xfs_inode *wip, /* in: whiteout inode */ 2875 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2876 int *num_inodes) /* in/out: inodes in array */ 2877 { 2878 int i, j; 2879 2880 ASSERT(*num_inodes == __XFS_SORT_INODES); 2881 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2882 2883 /* 2884 * i_tab contains a list of pointers to inodes. We initialize 2885 * the table here & we'll sort it. We will then use it to 2886 * order the acquisition of the inode locks. 2887 * 2888 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2889 */ 2890 i = 0; 2891 i_tab[i++] = dp1; 2892 i_tab[i++] = dp2; 2893 i_tab[i++] = ip1; 2894 if (ip2) 2895 i_tab[i++] = ip2; 2896 if (wip) 2897 i_tab[i++] = wip; 2898 *num_inodes = i; 2899 2900 /* 2901 * Sort the elements via bubble sort. (Remember, there are at 2902 * most 5 elements to sort, so this is adequate.) 2903 */ 2904 for (i = 0; i < *num_inodes; i++) { 2905 for (j = 1; j < *num_inodes; j++) { 2906 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2907 struct xfs_inode *temp = i_tab[j]; 2908 i_tab[j] = i_tab[j-1]; 2909 i_tab[j-1] = temp; 2910 } 2911 } 2912 } 2913 } 2914 2915 static int 2916 xfs_finish_rename( 2917 struct xfs_trans *tp) 2918 { 2919 /* 2920 * If this is a synchronous mount, make sure that the rename transaction 2921 * goes to disk before returning to the user. 2922 */ 2923 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) 2924 xfs_trans_set_sync(tp); 2925 2926 return xfs_trans_commit(tp); 2927 } 2928 2929 /* 2930 * xfs_cross_rename() 2931 * 2932 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall 2933 */ 2934 STATIC int 2935 xfs_cross_rename( 2936 struct xfs_trans *tp, 2937 struct xfs_inode *dp1, 2938 struct xfs_name *name1, 2939 struct xfs_inode *ip1, 2940 struct xfs_inode *dp2, 2941 struct xfs_name *name2, 2942 struct xfs_inode *ip2, 2943 int spaceres) 2944 { 2945 int error = 0; 2946 int ip1_flags = 0; 2947 int ip2_flags = 0; 2948 int dp2_flags = 0; 2949 2950 /* Swap inode number for dirent in first parent */ 2951 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 2952 if (error) 2953 goto out_trans_abort; 2954 2955 /* Swap inode number for dirent in second parent */ 2956 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 2957 if (error) 2958 goto out_trans_abort; 2959 2960 /* 2961 * If we're renaming one or more directories across different parents, 2962 * update the respective ".." entries (and link counts) to match the new 2963 * parents. 2964 */ 2965 if (dp1 != dp2) { 2966 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2967 2968 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2969 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2970 dp1->i_ino, spaceres); 2971 if (error) 2972 goto out_trans_abort; 2973 2974 /* transfer ip2 ".." reference to dp1 */ 2975 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2976 error = xfs_droplink(tp, dp2); 2977 if (error) 2978 goto out_trans_abort; 2979 xfs_bumplink(tp, dp1); 2980 } 2981 2982 /* 2983 * Although ip1 isn't changed here, userspace needs 2984 * to be warned about the change, so that applications 2985 * relying on it (like backup ones), will properly 2986 * notify the change 2987 */ 2988 ip1_flags |= XFS_ICHGTIME_CHG; 2989 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2990 } 2991 2992 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2993 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2994 dp2->i_ino, spaceres); 2995 if (error) 2996 goto out_trans_abort; 2997 2998 /* transfer ip1 ".." reference to dp2 */ 2999 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 3000 error = xfs_droplink(tp, dp1); 3001 if (error) 3002 goto out_trans_abort; 3003 xfs_bumplink(tp, dp2); 3004 } 3005 3006 /* 3007 * Although ip2 isn't changed here, userspace needs 3008 * to be warned about the change, so that applications 3009 * relying on it (like backup ones), will properly 3010 * notify the change 3011 */ 3012 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3013 ip2_flags |= XFS_ICHGTIME_CHG; 3014 } 3015 } 3016 3017 if (ip1_flags) { 3018 xfs_trans_ichgtime(tp, ip1, ip1_flags); 3019 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 3020 } 3021 if (ip2_flags) { 3022 xfs_trans_ichgtime(tp, ip2, ip2_flags); 3023 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 3024 } 3025 if (dp2_flags) { 3026 xfs_trans_ichgtime(tp, dp2, dp2_flags); 3027 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 3028 } 3029 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3030 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 3031 return xfs_finish_rename(tp); 3032 3033 out_trans_abort: 3034 xfs_trans_cancel(tp); 3035 return error; 3036 } 3037 3038 /* 3039 * xfs_rename_alloc_whiteout() 3040 * 3041 * Return a referenced, unlinked, unlocked inode that can be used as a 3042 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 3043 * crash between allocating the inode and linking it into the rename transaction 3044 * recovery will free the inode and we won't leak it. 3045 */ 3046 static int 3047 xfs_rename_alloc_whiteout( 3048 struct user_namespace *mnt_userns, 3049 struct xfs_inode *dp, 3050 struct xfs_inode **wip) 3051 { 3052 struct xfs_inode *tmpfile; 3053 int error; 3054 3055 error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE, 3056 &tmpfile); 3057 if (error) 3058 return error; 3059 3060 /* 3061 * Prepare the tmpfile inode as if it were created through the VFS. 3062 * Complete the inode setup and flag it as linkable. nlink is already 3063 * zero, so we can skip the drop_nlink. 3064 */ 3065 xfs_setup_iops(tmpfile); 3066 xfs_finish_inode_setup(tmpfile); 3067 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3068 3069 *wip = tmpfile; 3070 return 0; 3071 } 3072 3073 /* 3074 * xfs_rename 3075 */ 3076 int 3077 xfs_rename( 3078 struct user_namespace *mnt_userns, 3079 struct xfs_inode *src_dp, 3080 struct xfs_name *src_name, 3081 struct xfs_inode *src_ip, 3082 struct xfs_inode *target_dp, 3083 struct xfs_name *target_name, 3084 struct xfs_inode *target_ip, 3085 unsigned int flags) 3086 { 3087 struct xfs_mount *mp = src_dp->i_mount; 3088 struct xfs_trans *tp; 3089 struct xfs_inode *wip = NULL; /* whiteout inode */ 3090 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3091 int i; 3092 int num_inodes = __XFS_SORT_INODES; 3093 bool new_parent = (src_dp != target_dp); 3094 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3095 int spaceres; 3096 bool retried = false; 3097 int error, nospace_error = 0; 3098 3099 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3100 3101 if ((flags & RENAME_EXCHANGE) && !target_ip) 3102 return -EINVAL; 3103 3104 /* 3105 * If we are doing a whiteout operation, allocate the whiteout inode 3106 * we will be placing at the target and ensure the type is set 3107 * appropriately. 3108 */ 3109 if (flags & RENAME_WHITEOUT) { 3110 error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip); 3111 if (error) 3112 return error; 3113 3114 /* setup target dirent info as whiteout */ 3115 src_name->type = XFS_DIR3_FT_CHRDEV; 3116 } 3117 3118 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3119 inodes, &num_inodes); 3120 3121 retry: 3122 nospace_error = 0; 3123 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3124 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3125 if (error == -ENOSPC) { 3126 nospace_error = error; 3127 spaceres = 0; 3128 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3129 &tp); 3130 } 3131 if (error) 3132 goto out_release_wip; 3133 3134 /* 3135 * Attach the dquots to the inodes 3136 */ 3137 error = xfs_qm_vop_rename_dqattach(inodes); 3138 if (error) 3139 goto out_trans_cancel; 3140 3141 /* 3142 * Lock all the participating inodes. Depending upon whether 3143 * the target_name exists in the target directory, and 3144 * whether the target directory is the same as the source 3145 * directory, we can lock from 2 to 4 inodes. 3146 */ 3147 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3148 3149 /* 3150 * Join all the inodes to the transaction. From this point on, 3151 * we can rely on either trans_commit or trans_cancel to unlock 3152 * them. 3153 */ 3154 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3155 if (new_parent) 3156 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3157 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3158 if (target_ip) 3159 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3160 if (wip) 3161 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3162 3163 /* 3164 * If we are using project inheritance, we only allow renames 3165 * into our tree when the project IDs are the same; else the 3166 * tree quota mechanism would be circumvented. 3167 */ 3168 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 3169 target_dp->i_projid != src_ip->i_projid)) { 3170 error = -EXDEV; 3171 goto out_trans_cancel; 3172 } 3173 3174 /* RENAME_EXCHANGE is unique from here on. */ 3175 if (flags & RENAME_EXCHANGE) 3176 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3177 target_dp, target_name, target_ip, 3178 spaceres); 3179 3180 /* 3181 * Try to reserve quota to handle an expansion of the target directory. 3182 * We'll allow the rename to continue in reservationless mode if we hit 3183 * a space usage constraint. If we trigger reservationless mode, save 3184 * the errno if there isn't any free space in the target directory. 3185 */ 3186 if (spaceres != 0) { 3187 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres, 3188 0, false); 3189 if (error == -EDQUOT || error == -ENOSPC) { 3190 if (!retried) { 3191 xfs_trans_cancel(tp); 3192 xfs_blockgc_free_quota(target_dp, 0); 3193 retried = true; 3194 goto retry; 3195 } 3196 3197 nospace_error = error; 3198 spaceres = 0; 3199 error = 0; 3200 } 3201 if (error) 3202 goto out_trans_cancel; 3203 } 3204 3205 /* 3206 * Check for expected errors before we dirty the transaction 3207 * so we can return an error without a transaction abort. 3208 */ 3209 if (target_ip == NULL) { 3210 /* 3211 * If there's no space reservation, check the entry will 3212 * fit before actually inserting it. 3213 */ 3214 if (!spaceres) { 3215 error = xfs_dir_canenter(tp, target_dp, target_name); 3216 if (error) 3217 goto out_trans_cancel; 3218 } 3219 } else { 3220 /* 3221 * If target exists and it's a directory, check that whether 3222 * it can be destroyed. 3223 */ 3224 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3225 (!xfs_dir_isempty(target_ip) || 3226 (VFS_I(target_ip)->i_nlink > 2))) { 3227 error = -EEXIST; 3228 goto out_trans_cancel; 3229 } 3230 } 3231 3232 /* 3233 * Lock the AGI buffers we need to handle bumping the nlink of the 3234 * whiteout inode off the unlinked list and to handle dropping the 3235 * nlink of the target inode. Per locking order rules, do this in 3236 * increasing AG order and before directory block allocation tries to 3237 * grab AGFs because we grab AGIs before AGFs. 3238 * 3239 * The (vfs) caller must ensure that if src is a directory then 3240 * target_ip is either null or an empty directory. 3241 */ 3242 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 3243 if (inodes[i] == wip || 3244 (inodes[i] == target_ip && 3245 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 3246 struct xfs_buf *bp; 3247 xfs_agnumber_t agno; 3248 3249 agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino); 3250 error = xfs_read_agi(mp, tp, agno, &bp); 3251 if (error) 3252 goto out_trans_cancel; 3253 } 3254 } 3255 3256 /* 3257 * Directory entry creation below may acquire the AGF. Remove 3258 * the whiteout from the unlinked list first to preserve correct 3259 * AGI/AGF locking order. This dirties the transaction so failures 3260 * after this point will abort and log recovery will clean up the 3261 * mess. 3262 * 3263 * For whiteouts, we need to bump the link count on the whiteout 3264 * inode. After this point, we have a real link, clear the tmpfile 3265 * state flag from the inode so it doesn't accidentally get misused 3266 * in future. 3267 */ 3268 if (wip) { 3269 struct xfs_perag *pag; 3270 3271 ASSERT(VFS_I(wip)->i_nlink == 0); 3272 3273 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino)); 3274 error = xfs_iunlink_remove(tp, pag, wip); 3275 xfs_perag_put(pag); 3276 if (error) 3277 goto out_trans_cancel; 3278 3279 xfs_bumplink(tp, wip); 3280 VFS_I(wip)->i_state &= ~I_LINKABLE; 3281 } 3282 3283 /* 3284 * Set up the target. 3285 */ 3286 if (target_ip == NULL) { 3287 /* 3288 * If target does not exist and the rename crosses 3289 * directories, adjust the target directory link count 3290 * to account for the ".." reference from the new entry. 3291 */ 3292 error = xfs_dir_createname(tp, target_dp, target_name, 3293 src_ip->i_ino, spaceres); 3294 if (error) 3295 goto out_trans_cancel; 3296 3297 xfs_trans_ichgtime(tp, target_dp, 3298 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3299 3300 if (new_parent && src_is_directory) { 3301 xfs_bumplink(tp, target_dp); 3302 } 3303 } else { /* target_ip != NULL */ 3304 /* 3305 * Link the source inode under the target name. 3306 * If the source inode is a directory and we are moving 3307 * it across directories, its ".." entry will be 3308 * inconsistent until we replace that down below. 3309 * 3310 * In case there is already an entry with the same 3311 * name at the destination directory, remove it first. 3312 */ 3313 error = xfs_dir_replace(tp, target_dp, target_name, 3314 src_ip->i_ino, spaceres); 3315 if (error) 3316 goto out_trans_cancel; 3317 3318 xfs_trans_ichgtime(tp, target_dp, 3319 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3320 3321 /* 3322 * Decrement the link count on the target since the target 3323 * dir no longer points to it. 3324 */ 3325 error = xfs_droplink(tp, target_ip); 3326 if (error) 3327 goto out_trans_cancel; 3328 3329 if (src_is_directory) { 3330 /* 3331 * Drop the link from the old "." entry. 3332 */ 3333 error = xfs_droplink(tp, target_ip); 3334 if (error) 3335 goto out_trans_cancel; 3336 } 3337 } /* target_ip != NULL */ 3338 3339 /* 3340 * Remove the source. 3341 */ 3342 if (new_parent && src_is_directory) { 3343 /* 3344 * Rewrite the ".." entry to point to the new 3345 * directory. 3346 */ 3347 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3348 target_dp->i_ino, spaceres); 3349 ASSERT(error != -EEXIST); 3350 if (error) 3351 goto out_trans_cancel; 3352 } 3353 3354 /* 3355 * We always want to hit the ctime on the source inode. 3356 * 3357 * This isn't strictly required by the standards since the source 3358 * inode isn't really being changed, but old unix file systems did 3359 * it and some incremental backup programs won't work without it. 3360 */ 3361 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3362 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3363 3364 /* 3365 * Adjust the link count on src_dp. This is necessary when 3366 * renaming a directory, either within one parent when 3367 * the target existed, or across two parent directories. 3368 */ 3369 if (src_is_directory && (new_parent || target_ip != NULL)) { 3370 3371 /* 3372 * Decrement link count on src_directory since the 3373 * entry that's moved no longer points to it. 3374 */ 3375 error = xfs_droplink(tp, src_dp); 3376 if (error) 3377 goto out_trans_cancel; 3378 } 3379 3380 /* 3381 * For whiteouts, we only need to update the source dirent with the 3382 * inode number of the whiteout inode rather than removing it 3383 * altogether. 3384 */ 3385 if (wip) 3386 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3387 spaceres); 3388 else 3389 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3390 spaceres); 3391 3392 if (error) 3393 goto out_trans_cancel; 3394 3395 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3396 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3397 if (new_parent) 3398 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3399 3400 error = xfs_finish_rename(tp); 3401 if (wip) 3402 xfs_irele(wip); 3403 return error; 3404 3405 out_trans_cancel: 3406 xfs_trans_cancel(tp); 3407 out_release_wip: 3408 if (wip) 3409 xfs_irele(wip); 3410 if (error == -ENOSPC && nospace_error) 3411 error = nospace_error; 3412 return error; 3413 } 3414 3415 static int 3416 xfs_iflush( 3417 struct xfs_inode *ip, 3418 struct xfs_buf *bp) 3419 { 3420 struct xfs_inode_log_item *iip = ip->i_itemp; 3421 struct xfs_dinode *dip; 3422 struct xfs_mount *mp = ip->i_mount; 3423 int error; 3424 3425 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3426 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 3427 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3428 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3429 ASSERT(iip->ili_item.li_buf == bp); 3430 3431 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3432 3433 /* 3434 * We don't flush the inode if any of the following checks fail, but we 3435 * do still update the log item and attach to the backing buffer as if 3436 * the flush happened. This is a formality to facilitate predictable 3437 * error handling as the caller will shutdown and fail the buffer. 3438 */ 3439 error = -EFSCORRUPTED; 3440 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3441 mp, XFS_ERRTAG_IFLUSH_1)) { 3442 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3443 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3444 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3445 goto flush_out; 3446 } 3447 if (S_ISREG(VFS_I(ip)->i_mode)) { 3448 if (XFS_TEST_ERROR( 3449 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3450 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3451 mp, XFS_ERRTAG_IFLUSH_3)) { 3452 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3453 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3454 __func__, ip->i_ino, ip); 3455 goto flush_out; 3456 } 3457 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3458 if (XFS_TEST_ERROR( 3459 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3460 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3461 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3462 mp, XFS_ERRTAG_IFLUSH_4)) { 3463 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3464 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3465 __func__, ip->i_ino, ip); 3466 goto flush_out; 3467 } 3468 } 3469 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) > 3470 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3471 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3472 "%s: detected corrupt incore inode %llu, " 3473 "total extents = %llu nblocks = %lld, ptr "PTR_FMT, 3474 __func__, ip->i_ino, 3475 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp), 3476 ip->i_nblocks, ip); 3477 goto flush_out; 3478 } 3479 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, 3480 mp, XFS_ERRTAG_IFLUSH_6)) { 3481 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3482 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3483 __func__, ip->i_ino, ip->i_forkoff, ip); 3484 goto flush_out; 3485 } 3486 3487 /* 3488 * Inode item log recovery for v2 inodes are dependent on the flushiter 3489 * count for correct sequencing. We bump the flush iteration count so 3490 * we can detect flushes which postdate a log record during recovery. 3491 * This is redundant as we now log every change and hence this can't 3492 * happen but we need to still do it to ensure backwards compatibility 3493 * with old kernels that predate logging all inode changes. 3494 */ 3495 if (!xfs_has_v3inodes(mp)) 3496 ip->i_flushiter++; 3497 3498 /* 3499 * If there are inline format data / attr forks attached to this inode, 3500 * make sure they are not corrupt. 3501 */ 3502 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3503 xfs_ifork_verify_local_data(ip)) 3504 goto flush_out; 3505 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL && 3506 xfs_ifork_verify_local_attr(ip)) 3507 goto flush_out; 3508 3509 /* 3510 * Copy the dirty parts of the inode into the on-disk inode. We always 3511 * copy out the core of the inode, because if the inode is dirty at all 3512 * the core must be. 3513 */ 3514 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3515 3516 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3517 if (!xfs_has_v3inodes(mp)) { 3518 if (ip->i_flushiter == DI_MAX_FLUSH) 3519 ip->i_flushiter = 0; 3520 } 3521 3522 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3523 if (XFS_IFORK_Q(ip)) 3524 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3525 3526 /* 3527 * We've recorded everything logged in the inode, so we'd like to clear 3528 * the ili_fields bits so we don't log and flush things unnecessarily. 3529 * However, we can't stop logging all this information until the data 3530 * we've copied into the disk buffer is written to disk. If we did we 3531 * might overwrite the copy of the inode in the log with all the data 3532 * after re-logging only part of it, and in the face of a crash we 3533 * wouldn't have all the data we need to recover. 3534 * 3535 * What we do is move the bits to the ili_last_fields field. When 3536 * logging the inode, these bits are moved back to the ili_fields field. 3537 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 3538 * we know that the information those bits represent is permanently on 3539 * disk. As long as the flush completes before the inode is logged 3540 * again, then both ili_fields and ili_last_fields will be cleared. 3541 */ 3542 error = 0; 3543 flush_out: 3544 spin_lock(&iip->ili_lock); 3545 iip->ili_last_fields = iip->ili_fields; 3546 iip->ili_fields = 0; 3547 iip->ili_fsync_fields = 0; 3548 spin_unlock(&iip->ili_lock); 3549 3550 /* 3551 * Store the current LSN of the inode so that we can tell whether the 3552 * item has moved in the AIL from xfs_buf_inode_iodone(). 3553 */ 3554 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3555 &iip->ili_item.li_lsn); 3556 3557 /* generate the checksum. */ 3558 xfs_dinode_calc_crc(mp, dip); 3559 return error; 3560 } 3561 3562 /* 3563 * Non-blocking flush of dirty inode metadata into the backing buffer. 3564 * 3565 * The caller must have a reference to the inode and hold the cluster buffer 3566 * locked. The function will walk across all the inodes on the cluster buffer it 3567 * can find and lock without blocking, and flush them to the cluster buffer. 3568 * 3569 * On successful flushing of at least one inode, the caller must write out the 3570 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3571 * the caller needs to release the buffer. On failure, the filesystem will be 3572 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3573 * will be returned. 3574 */ 3575 int 3576 xfs_iflush_cluster( 3577 struct xfs_buf *bp) 3578 { 3579 struct xfs_mount *mp = bp->b_mount; 3580 struct xfs_log_item *lip, *n; 3581 struct xfs_inode *ip; 3582 struct xfs_inode_log_item *iip; 3583 int clcount = 0; 3584 int error = 0; 3585 3586 /* 3587 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3588 * will remove itself from the list. 3589 */ 3590 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3591 iip = (struct xfs_inode_log_item *)lip; 3592 ip = iip->ili_inode; 3593 3594 /* 3595 * Quick and dirty check to avoid locks if possible. 3596 */ 3597 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 3598 continue; 3599 if (xfs_ipincount(ip)) 3600 continue; 3601 3602 /* 3603 * The inode is still attached to the buffer, which means it is 3604 * dirty but reclaim might try to grab it. Check carefully for 3605 * that, and grab the ilock while still holding the i_flags_lock 3606 * to guarantee reclaim will not be able to reclaim this inode 3607 * once we drop the i_flags_lock. 3608 */ 3609 spin_lock(&ip->i_flags_lock); 3610 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3611 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 3612 spin_unlock(&ip->i_flags_lock); 3613 continue; 3614 } 3615 3616 /* 3617 * ILOCK will pin the inode against reclaim and prevent 3618 * concurrent transactions modifying the inode while we are 3619 * flushing the inode. If we get the lock, set the flushing 3620 * state before we drop the i_flags_lock. 3621 */ 3622 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3623 spin_unlock(&ip->i_flags_lock); 3624 continue; 3625 } 3626 __xfs_iflags_set(ip, XFS_IFLUSHING); 3627 spin_unlock(&ip->i_flags_lock); 3628 3629 /* 3630 * Abort flushing this inode if we are shut down because the 3631 * inode may not currently be in the AIL. This can occur when 3632 * log I/O failure unpins the inode without inserting into the 3633 * AIL, leaving a dirty/unpinned inode attached to the buffer 3634 * that otherwise looks like it should be flushed. 3635 */ 3636 if (xlog_is_shutdown(mp->m_log)) { 3637 xfs_iunpin_wait(ip); 3638 xfs_iflush_abort(ip); 3639 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3640 error = -EIO; 3641 continue; 3642 } 3643 3644 /* don't block waiting on a log force to unpin dirty inodes */ 3645 if (xfs_ipincount(ip)) { 3646 xfs_iflags_clear(ip, XFS_IFLUSHING); 3647 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3648 continue; 3649 } 3650 3651 if (!xfs_inode_clean(ip)) 3652 error = xfs_iflush(ip, bp); 3653 else 3654 xfs_iflags_clear(ip, XFS_IFLUSHING); 3655 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3656 if (error) 3657 break; 3658 clcount++; 3659 } 3660 3661 if (error) { 3662 /* 3663 * Shutdown first so we kill the log before we release this 3664 * buffer. If it is an INODE_ALLOC buffer and pins the tail 3665 * of the log, failing it before the _log_ is shut down can 3666 * result in the log tail being moved forward in the journal 3667 * on disk because log writes can still be taking place. Hence 3668 * unpinning the tail will allow the ICREATE intent to be 3669 * removed from the log an recovery will fail with uninitialised 3670 * inode cluster buffers. 3671 */ 3672 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3673 bp->b_flags |= XBF_ASYNC; 3674 xfs_buf_ioend_fail(bp); 3675 return error; 3676 } 3677 3678 if (!clcount) 3679 return -EAGAIN; 3680 3681 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3682 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3683 return 0; 3684 3685 } 3686 3687 /* Release an inode. */ 3688 void 3689 xfs_irele( 3690 struct xfs_inode *ip) 3691 { 3692 trace_xfs_irele(ip, _RET_IP_); 3693 iput(VFS_I(ip)); 3694 } 3695 3696 /* 3697 * Ensure all commited transactions touching the inode are written to the log. 3698 */ 3699 int 3700 xfs_log_force_inode( 3701 struct xfs_inode *ip) 3702 { 3703 xfs_csn_t seq = 0; 3704 3705 xfs_ilock(ip, XFS_ILOCK_SHARED); 3706 if (xfs_ipincount(ip)) 3707 seq = ip->i_itemp->ili_commit_seq; 3708 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3709 3710 if (!seq) 3711 return 0; 3712 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); 3713 } 3714 3715 /* 3716 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3717 * abide vfs locking order (lowest pointer value goes first) and breaking the 3718 * layout leases before proceeding. The loop is needed because we cannot call 3719 * the blocking break_layout() with the iolocks held, and therefore have to 3720 * back out both locks. 3721 */ 3722 static int 3723 xfs_iolock_two_inodes_and_break_layout( 3724 struct inode *src, 3725 struct inode *dest) 3726 { 3727 int error; 3728 3729 if (src > dest) 3730 swap(src, dest); 3731 3732 retry: 3733 /* Wait to break both inodes' layouts before we start locking. */ 3734 error = break_layout(src, true); 3735 if (error) 3736 return error; 3737 if (src != dest) { 3738 error = break_layout(dest, true); 3739 if (error) 3740 return error; 3741 } 3742 3743 /* Lock one inode and make sure nobody got in and leased it. */ 3744 inode_lock(src); 3745 error = break_layout(src, false); 3746 if (error) { 3747 inode_unlock(src); 3748 if (error == -EWOULDBLOCK) 3749 goto retry; 3750 return error; 3751 } 3752 3753 if (src == dest) 3754 return 0; 3755 3756 /* Lock the other inode and make sure nobody got in and leased it. */ 3757 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3758 error = break_layout(dest, false); 3759 if (error) { 3760 inode_unlock(src); 3761 inode_unlock(dest); 3762 if (error == -EWOULDBLOCK) 3763 goto retry; 3764 return error; 3765 } 3766 3767 return 0; 3768 } 3769 3770 /* 3771 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 3772 * mmap activity. 3773 */ 3774 int 3775 xfs_ilock2_io_mmap( 3776 struct xfs_inode *ip1, 3777 struct xfs_inode *ip2) 3778 { 3779 int ret; 3780 3781 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 3782 if (ret) 3783 return ret; 3784 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, 3785 VFS_I(ip2)->i_mapping); 3786 return 0; 3787 } 3788 3789 /* Unlock both inodes to allow IO and mmap activity. */ 3790 void 3791 xfs_iunlock2_io_mmap( 3792 struct xfs_inode *ip1, 3793 struct xfs_inode *ip2) 3794 { 3795 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, 3796 VFS_I(ip2)->i_mapping); 3797 inode_unlock(VFS_I(ip2)); 3798 if (ip1 != ip2) 3799 inode_unlock(VFS_I(ip1)); 3800 } 3801