xref: /linux/fs/xfs/xfs_inode.c (revision d85fe250f2eb61e19029e9e0d30095c5f646e2f2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_bit.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iunlink_item.h"
25 #include "xfs_ialloc.h"
26 #include "xfs_bmap.h"
27 #include "xfs_bmap_util.h"
28 #include "xfs_errortag.h"
29 #include "xfs_error.h"
30 #include "xfs_quota.h"
31 #include "xfs_filestream.h"
32 #include "xfs_trace.h"
33 #include "xfs_icache.h"
34 #include "xfs_symlink.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_log.h"
37 #include "xfs_bmap_btree.h"
38 #include "xfs_reflink.h"
39 #include "xfs_ag.h"
40 #include "xfs_log_priv.h"
41 #include "xfs_health.h"
42 #include "xfs_pnfs.h"
43 
44 struct kmem_cache *xfs_inode_cache;
45 
46 /*
47  * helper function to extract extent size hint from inode
48  */
49 xfs_extlen_t
50 xfs_get_extsz_hint(
51 	struct xfs_inode	*ip)
52 {
53 	/*
54 	 * No point in aligning allocations if we need to COW to actually
55 	 * write to them.
56 	 */
57 	if (xfs_is_always_cow_inode(ip))
58 		return 0;
59 	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
60 		return ip->i_extsize;
61 	if (XFS_IS_REALTIME_INODE(ip))
62 		return ip->i_mount->m_sb.sb_rextsize;
63 	return 0;
64 }
65 
66 /*
67  * Helper function to extract CoW extent size hint from inode.
68  * Between the extent size hint and the CoW extent size hint, we
69  * return the greater of the two.  If the value is zero (automatic),
70  * use the default size.
71  */
72 xfs_extlen_t
73 xfs_get_cowextsz_hint(
74 	struct xfs_inode	*ip)
75 {
76 	xfs_extlen_t		a, b;
77 
78 	a = 0;
79 	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
80 		a = ip->i_cowextsize;
81 	b = xfs_get_extsz_hint(ip);
82 
83 	a = max(a, b);
84 	if (a == 0)
85 		return XFS_DEFAULT_COWEXTSZ_HINT;
86 	return a;
87 }
88 
89 /*
90  * These two are wrapper routines around the xfs_ilock() routine used to
91  * centralize some grungy code.  They are used in places that wish to lock the
92  * inode solely for reading the extents.  The reason these places can't just
93  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
94  * bringing in of the extents from disk for a file in b-tree format.  If the
95  * inode is in b-tree format, then we need to lock the inode exclusively until
96  * the extents are read in.  Locking it exclusively all the time would limit
97  * our parallelism unnecessarily, though.  What we do instead is check to see
98  * if the extents have been read in yet, and only lock the inode exclusively
99  * if they have not.
100  *
101  * The functions return a value which should be given to the corresponding
102  * xfs_iunlock() call.
103  */
104 uint
105 xfs_ilock_data_map_shared(
106 	struct xfs_inode	*ip)
107 {
108 	uint			lock_mode = XFS_ILOCK_SHARED;
109 
110 	if (xfs_need_iread_extents(&ip->i_df))
111 		lock_mode = XFS_ILOCK_EXCL;
112 	xfs_ilock(ip, lock_mode);
113 	return lock_mode;
114 }
115 
116 uint
117 xfs_ilock_attr_map_shared(
118 	struct xfs_inode	*ip)
119 {
120 	uint			lock_mode = XFS_ILOCK_SHARED;
121 
122 	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
123 		lock_mode = XFS_ILOCK_EXCL;
124 	xfs_ilock(ip, lock_mode);
125 	return lock_mode;
126 }
127 
128 /*
129  * You can't set both SHARED and EXCL for the same lock,
130  * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
131  * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
132  * to set in lock_flags.
133  */
134 static inline void
135 xfs_lock_flags_assert(
136 	uint		lock_flags)
137 {
138 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
139 		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
140 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
141 		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
142 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
143 		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
144 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
145 	ASSERT(lock_flags != 0);
146 }
147 
148 /*
149  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
150  * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
151  * various combinations of the locks to be obtained.
152  *
153  * The 3 locks should always be ordered so that the IO lock is obtained first,
154  * the mmap lock second and the ilock last in order to prevent deadlock.
155  *
156  * Basic locking order:
157  *
158  * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
159  *
160  * mmap_lock locking order:
161  *
162  * i_rwsem -> page lock -> mmap_lock
163  * mmap_lock -> invalidate_lock -> page_lock
164  *
165  * The difference in mmap_lock locking order mean that we cannot hold the
166  * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
167  * can fault in pages during copy in/out (for buffered IO) or require the
168  * mmap_lock in get_user_pages() to map the user pages into the kernel address
169  * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
170  * fault because page faults already hold the mmap_lock.
171  *
172  * Hence to serialise fully against both syscall and mmap based IO, we need to
173  * take both the i_rwsem and the invalidate_lock. These locks should *only* be
174  * both taken in places where we need to invalidate the page cache in a race
175  * free manner (e.g. truncate, hole punch and other extent manipulation
176  * functions).
177  */
178 void
179 xfs_ilock(
180 	xfs_inode_t		*ip,
181 	uint			lock_flags)
182 {
183 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
184 
185 	xfs_lock_flags_assert(lock_flags);
186 
187 	if (lock_flags & XFS_IOLOCK_EXCL) {
188 		down_write_nested(&VFS_I(ip)->i_rwsem,
189 				  XFS_IOLOCK_DEP(lock_flags));
190 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
191 		down_read_nested(&VFS_I(ip)->i_rwsem,
192 				 XFS_IOLOCK_DEP(lock_flags));
193 	}
194 
195 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
196 		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
197 				  XFS_MMAPLOCK_DEP(lock_flags));
198 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
199 		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
200 				 XFS_MMAPLOCK_DEP(lock_flags));
201 	}
202 
203 	if (lock_flags & XFS_ILOCK_EXCL)
204 		down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
205 	else if (lock_flags & XFS_ILOCK_SHARED)
206 		down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
207 }
208 
209 /*
210  * This is just like xfs_ilock(), except that the caller
211  * is guaranteed not to sleep.  It returns 1 if it gets
212  * the requested locks and 0 otherwise.  If the IO lock is
213  * obtained but the inode lock cannot be, then the IO lock
214  * is dropped before returning.
215  *
216  * ip -- the inode being locked
217  * lock_flags -- this parameter indicates the inode's locks to be
218  *       to be locked.  See the comment for xfs_ilock() for a list
219  *	 of valid values.
220  */
221 int
222 xfs_ilock_nowait(
223 	xfs_inode_t		*ip,
224 	uint			lock_flags)
225 {
226 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
227 
228 	xfs_lock_flags_assert(lock_flags);
229 
230 	if (lock_flags & XFS_IOLOCK_EXCL) {
231 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
232 			goto out;
233 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
234 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
235 			goto out;
236 	}
237 
238 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
239 		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
240 			goto out_undo_iolock;
241 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
242 		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
243 			goto out_undo_iolock;
244 	}
245 
246 	if (lock_flags & XFS_ILOCK_EXCL) {
247 		if (!down_write_trylock(&ip->i_lock))
248 			goto out_undo_mmaplock;
249 	} else if (lock_flags & XFS_ILOCK_SHARED) {
250 		if (!down_read_trylock(&ip->i_lock))
251 			goto out_undo_mmaplock;
252 	}
253 	return 1;
254 
255 out_undo_mmaplock:
256 	if (lock_flags & XFS_MMAPLOCK_EXCL)
257 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
258 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
259 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
260 out_undo_iolock:
261 	if (lock_flags & XFS_IOLOCK_EXCL)
262 		up_write(&VFS_I(ip)->i_rwsem);
263 	else if (lock_flags & XFS_IOLOCK_SHARED)
264 		up_read(&VFS_I(ip)->i_rwsem);
265 out:
266 	return 0;
267 }
268 
269 /*
270  * xfs_iunlock() is used to drop the inode locks acquired with
271  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
272  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
273  * that we know which locks to drop.
274  *
275  * ip -- the inode being unlocked
276  * lock_flags -- this parameter indicates the inode's locks to be
277  *       to be unlocked.  See the comment for xfs_ilock() for a list
278  *	 of valid values for this parameter.
279  *
280  */
281 void
282 xfs_iunlock(
283 	xfs_inode_t		*ip,
284 	uint			lock_flags)
285 {
286 	xfs_lock_flags_assert(lock_flags);
287 
288 	if (lock_flags & XFS_IOLOCK_EXCL)
289 		up_write(&VFS_I(ip)->i_rwsem);
290 	else if (lock_flags & XFS_IOLOCK_SHARED)
291 		up_read(&VFS_I(ip)->i_rwsem);
292 
293 	if (lock_flags & XFS_MMAPLOCK_EXCL)
294 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
295 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
296 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
297 
298 	if (lock_flags & XFS_ILOCK_EXCL)
299 		up_write(&ip->i_lock);
300 	else if (lock_flags & XFS_ILOCK_SHARED)
301 		up_read(&ip->i_lock);
302 
303 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
304 }
305 
306 /*
307  * give up write locks.  the i/o lock cannot be held nested
308  * if it is being demoted.
309  */
310 void
311 xfs_ilock_demote(
312 	xfs_inode_t		*ip,
313 	uint			lock_flags)
314 {
315 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
316 	ASSERT((lock_flags &
317 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
318 
319 	if (lock_flags & XFS_ILOCK_EXCL)
320 		downgrade_write(&ip->i_lock);
321 	if (lock_flags & XFS_MMAPLOCK_EXCL)
322 		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
323 	if (lock_flags & XFS_IOLOCK_EXCL)
324 		downgrade_write(&VFS_I(ip)->i_rwsem);
325 
326 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
327 }
328 
329 void
330 xfs_assert_ilocked(
331 	struct xfs_inode	*ip,
332 	uint			lock_flags)
333 {
334 	/*
335 	 * Sometimes we assert the ILOCK is held exclusively, but we're in
336 	 * a workqueue, so lockdep doesn't know we're the owner.
337 	 */
338 	if (lock_flags & XFS_ILOCK_SHARED)
339 		rwsem_assert_held(&ip->i_lock);
340 	else if (lock_flags & XFS_ILOCK_EXCL)
341 		rwsem_assert_held_write_nolockdep(&ip->i_lock);
342 
343 	if (lock_flags & XFS_MMAPLOCK_SHARED)
344 		rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
345 	else if (lock_flags & XFS_MMAPLOCK_EXCL)
346 		rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
347 
348 	if (lock_flags & XFS_IOLOCK_SHARED)
349 		rwsem_assert_held(&VFS_I(ip)->i_rwsem);
350 	else if (lock_flags & XFS_IOLOCK_EXCL)
351 		rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
352 }
353 
354 /*
355  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
356  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
357  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
358  * errors and warnings.
359  */
360 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
361 static bool
362 xfs_lockdep_subclass_ok(
363 	int subclass)
364 {
365 	return subclass < MAX_LOCKDEP_SUBCLASSES;
366 }
367 #else
368 #define xfs_lockdep_subclass_ok(subclass)	(true)
369 #endif
370 
371 /*
372  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
373  * value. This can be called for any type of inode lock combination, including
374  * parent locking. Care must be taken to ensure we don't overrun the subclass
375  * storage fields in the class mask we build.
376  */
377 static inline uint
378 xfs_lock_inumorder(
379 	uint	lock_mode,
380 	uint	subclass)
381 {
382 	uint	class = 0;
383 
384 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
385 			      XFS_ILOCK_RTSUM)));
386 	ASSERT(xfs_lockdep_subclass_ok(subclass));
387 
388 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
389 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
390 		class += subclass << XFS_IOLOCK_SHIFT;
391 	}
392 
393 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
394 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
395 		class += subclass << XFS_MMAPLOCK_SHIFT;
396 	}
397 
398 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
399 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
400 		class += subclass << XFS_ILOCK_SHIFT;
401 	}
402 
403 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
404 }
405 
406 /*
407  * The following routine will lock n inodes in exclusive mode.  We assume the
408  * caller calls us with the inodes in i_ino order.
409  *
410  * We need to detect deadlock where an inode that we lock is in the AIL and we
411  * start waiting for another inode that is locked by a thread in a long running
412  * transaction (such as truncate). This can result in deadlock since the long
413  * running trans might need to wait for the inode we just locked in order to
414  * push the tail and free space in the log.
415  *
416  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
417  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
418  * lock more than one at a time, lockdep will report false positives saying we
419  * have violated locking orders.
420  */
421 static void
422 xfs_lock_inodes(
423 	struct xfs_inode	**ips,
424 	int			inodes,
425 	uint			lock_mode)
426 {
427 	int			attempts = 0;
428 	uint			i;
429 	int			j;
430 	bool			try_lock;
431 	struct xfs_log_item	*lp;
432 
433 	/*
434 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
435 	 * support an arbitrary depth of locking here, but absolute limits on
436 	 * inodes depend on the type of locking and the limits placed by
437 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
438 	 * the asserts.
439 	 */
440 	ASSERT(ips && inodes >= 2 && inodes <= 5);
441 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
442 			    XFS_ILOCK_EXCL));
443 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
444 			      XFS_ILOCK_SHARED)));
445 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
446 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
447 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
448 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
449 
450 	if (lock_mode & XFS_IOLOCK_EXCL) {
451 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
452 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
453 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
454 
455 again:
456 	try_lock = false;
457 	i = 0;
458 	for (; i < inodes; i++) {
459 		ASSERT(ips[i]);
460 
461 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
462 			continue;
463 
464 		/*
465 		 * If try_lock is not set yet, make sure all locked inodes are
466 		 * not in the AIL.  If any are, set try_lock to be used later.
467 		 */
468 		if (!try_lock) {
469 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
470 				lp = &ips[j]->i_itemp->ili_item;
471 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
472 					try_lock = true;
473 			}
474 		}
475 
476 		/*
477 		 * If any of the previous locks we have locked is in the AIL,
478 		 * we must TRY to get the second and subsequent locks. If
479 		 * we can't get any, we must release all we have
480 		 * and try again.
481 		 */
482 		if (!try_lock) {
483 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
484 			continue;
485 		}
486 
487 		/* try_lock means we have an inode locked that is in the AIL. */
488 		ASSERT(i != 0);
489 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
490 			continue;
491 
492 		/*
493 		 * Unlock all previous guys and try again.  xfs_iunlock will try
494 		 * to push the tail if the inode is in the AIL.
495 		 */
496 		attempts++;
497 		for (j = i - 1; j >= 0; j--) {
498 			/*
499 			 * Check to see if we've already unlocked this one.  Not
500 			 * the first one going back, and the inode ptr is the
501 			 * same.
502 			 */
503 			if (j != (i - 1) && ips[j] == ips[j + 1])
504 				continue;
505 
506 			xfs_iunlock(ips[j], lock_mode);
507 		}
508 
509 		if ((attempts % 5) == 0) {
510 			delay(1); /* Don't just spin the CPU */
511 		}
512 		goto again;
513 	}
514 }
515 
516 /*
517  * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
518  * mmaplock must be double-locked separately since we use i_rwsem and
519  * invalidate_lock for that. We now support taking one lock EXCL and the
520  * other SHARED.
521  */
522 void
523 xfs_lock_two_inodes(
524 	struct xfs_inode	*ip0,
525 	uint			ip0_mode,
526 	struct xfs_inode	*ip1,
527 	uint			ip1_mode)
528 {
529 	int			attempts = 0;
530 	struct xfs_log_item	*lp;
531 
532 	ASSERT(hweight32(ip0_mode) == 1);
533 	ASSERT(hweight32(ip1_mode) == 1);
534 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
535 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
536 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
537 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
538 	ASSERT(ip0->i_ino != ip1->i_ino);
539 
540 	if (ip0->i_ino > ip1->i_ino) {
541 		swap(ip0, ip1);
542 		swap(ip0_mode, ip1_mode);
543 	}
544 
545  again:
546 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
547 
548 	/*
549 	 * If the first lock we have locked is in the AIL, we must TRY to get
550 	 * the second lock. If we can't get it, we must release the first one
551 	 * and try again.
552 	 */
553 	lp = &ip0->i_itemp->ili_item;
554 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
555 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
556 			xfs_iunlock(ip0, ip0_mode);
557 			if ((++attempts % 5) == 0)
558 				delay(1); /* Don't just spin the CPU */
559 			goto again;
560 		}
561 	} else {
562 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
563 	}
564 }
565 
566 uint
567 xfs_ip2xflags(
568 	struct xfs_inode	*ip)
569 {
570 	uint			flags = 0;
571 
572 	if (ip->i_diflags & XFS_DIFLAG_ANY) {
573 		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
574 			flags |= FS_XFLAG_REALTIME;
575 		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
576 			flags |= FS_XFLAG_PREALLOC;
577 		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
578 			flags |= FS_XFLAG_IMMUTABLE;
579 		if (ip->i_diflags & XFS_DIFLAG_APPEND)
580 			flags |= FS_XFLAG_APPEND;
581 		if (ip->i_diflags & XFS_DIFLAG_SYNC)
582 			flags |= FS_XFLAG_SYNC;
583 		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
584 			flags |= FS_XFLAG_NOATIME;
585 		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
586 			flags |= FS_XFLAG_NODUMP;
587 		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
588 			flags |= FS_XFLAG_RTINHERIT;
589 		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
590 			flags |= FS_XFLAG_PROJINHERIT;
591 		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
592 			flags |= FS_XFLAG_NOSYMLINKS;
593 		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
594 			flags |= FS_XFLAG_EXTSIZE;
595 		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
596 			flags |= FS_XFLAG_EXTSZINHERIT;
597 		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
598 			flags |= FS_XFLAG_NODEFRAG;
599 		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
600 			flags |= FS_XFLAG_FILESTREAM;
601 	}
602 
603 	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
604 		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
605 			flags |= FS_XFLAG_DAX;
606 		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
607 			flags |= FS_XFLAG_COWEXTSIZE;
608 	}
609 
610 	if (xfs_inode_has_attr_fork(ip))
611 		flags |= FS_XFLAG_HASATTR;
612 	return flags;
613 }
614 
615 /*
616  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
617  * is allowed, otherwise it has to be an exact match. If a CI match is found,
618  * ci_name->name will point to a the actual name (caller must free) or
619  * will be set to NULL if an exact match is found.
620  */
621 int
622 xfs_lookup(
623 	struct xfs_inode	*dp,
624 	const struct xfs_name	*name,
625 	struct xfs_inode	**ipp,
626 	struct xfs_name		*ci_name)
627 {
628 	xfs_ino_t		inum;
629 	int			error;
630 
631 	trace_xfs_lookup(dp, name);
632 
633 	if (xfs_is_shutdown(dp->i_mount))
634 		return -EIO;
635 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
636 		return -EIO;
637 
638 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
639 	if (error)
640 		goto out_unlock;
641 
642 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
643 	if (error)
644 		goto out_free_name;
645 
646 	return 0;
647 
648 out_free_name:
649 	if (ci_name)
650 		kfree(ci_name->name);
651 out_unlock:
652 	*ipp = NULL;
653 	return error;
654 }
655 
656 /* Propagate di_flags from a parent inode to a child inode. */
657 static void
658 xfs_inode_inherit_flags(
659 	struct xfs_inode	*ip,
660 	const struct xfs_inode	*pip)
661 {
662 	unsigned int		di_flags = 0;
663 	xfs_failaddr_t		failaddr;
664 	umode_t			mode = VFS_I(ip)->i_mode;
665 
666 	if (S_ISDIR(mode)) {
667 		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
668 			di_flags |= XFS_DIFLAG_RTINHERIT;
669 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
670 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
671 			ip->i_extsize = pip->i_extsize;
672 		}
673 		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
674 			di_flags |= XFS_DIFLAG_PROJINHERIT;
675 	} else if (S_ISREG(mode)) {
676 		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
677 		    xfs_has_realtime(ip->i_mount))
678 			di_flags |= XFS_DIFLAG_REALTIME;
679 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
680 			di_flags |= XFS_DIFLAG_EXTSIZE;
681 			ip->i_extsize = pip->i_extsize;
682 		}
683 	}
684 	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
685 	    xfs_inherit_noatime)
686 		di_flags |= XFS_DIFLAG_NOATIME;
687 	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
688 	    xfs_inherit_nodump)
689 		di_flags |= XFS_DIFLAG_NODUMP;
690 	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
691 	    xfs_inherit_sync)
692 		di_flags |= XFS_DIFLAG_SYNC;
693 	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
694 	    xfs_inherit_nosymlinks)
695 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
696 	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
697 	    xfs_inherit_nodefrag)
698 		di_flags |= XFS_DIFLAG_NODEFRAG;
699 	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
700 		di_flags |= XFS_DIFLAG_FILESTREAM;
701 
702 	ip->i_diflags |= di_flags;
703 
704 	/*
705 	 * Inode verifiers on older kernels only check that the extent size
706 	 * hint is an integer multiple of the rt extent size on realtime files.
707 	 * They did not check the hint alignment on a directory with both
708 	 * rtinherit and extszinherit flags set.  If the misaligned hint is
709 	 * propagated from a directory into a new realtime file, new file
710 	 * allocations will fail due to math errors in the rt allocator and/or
711 	 * trip the verifiers.  Validate the hint settings in the new file so
712 	 * that we don't let broken hints propagate.
713 	 */
714 	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
715 			VFS_I(ip)->i_mode, ip->i_diflags);
716 	if (failaddr) {
717 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
718 				   XFS_DIFLAG_EXTSZINHERIT);
719 		ip->i_extsize = 0;
720 	}
721 }
722 
723 /* Propagate di_flags2 from a parent inode to a child inode. */
724 static void
725 xfs_inode_inherit_flags2(
726 	struct xfs_inode	*ip,
727 	const struct xfs_inode	*pip)
728 {
729 	xfs_failaddr_t		failaddr;
730 
731 	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
732 		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
733 		ip->i_cowextsize = pip->i_cowextsize;
734 	}
735 	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
736 		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
737 
738 	/* Don't let invalid cowextsize hints propagate. */
739 	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
740 			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
741 	if (failaddr) {
742 		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
743 		ip->i_cowextsize = 0;
744 	}
745 }
746 
747 /*
748  * Initialise a newly allocated inode and return the in-core inode to the
749  * caller locked exclusively.
750  */
751 int
752 xfs_init_new_inode(
753 	struct mnt_idmap	*idmap,
754 	struct xfs_trans	*tp,
755 	struct xfs_inode	*pip,
756 	xfs_ino_t		ino,
757 	umode_t			mode,
758 	xfs_nlink_t		nlink,
759 	dev_t			rdev,
760 	prid_t			prid,
761 	bool			init_xattrs,
762 	struct xfs_inode	**ipp)
763 {
764 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
765 	struct xfs_mount	*mp = tp->t_mountp;
766 	struct xfs_inode	*ip;
767 	unsigned int		flags;
768 	int			error;
769 	struct timespec64	tv;
770 	struct inode		*inode;
771 
772 	/*
773 	 * Protect against obviously corrupt allocation btree records. Later
774 	 * xfs_iget checks will catch re-allocation of other active in-memory
775 	 * and on-disk inodes. If we don't catch reallocating the parent inode
776 	 * here we will deadlock in xfs_iget() so we have to do these checks
777 	 * first.
778 	 */
779 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
780 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
781 		xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino),
782 				XFS_SICK_AG_INOBT);
783 		return -EFSCORRUPTED;
784 	}
785 
786 	/*
787 	 * Get the in-core inode with the lock held exclusively to prevent
788 	 * others from looking at until we're done.
789 	 */
790 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
791 	if (error)
792 		return error;
793 
794 	ASSERT(ip != NULL);
795 	inode = VFS_I(ip);
796 	set_nlink(inode, nlink);
797 	inode->i_rdev = rdev;
798 	ip->i_projid = prid;
799 
800 	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
801 		inode_fsuid_set(inode, idmap);
802 		inode->i_gid = dir->i_gid;
803 		inode->i_mode = mode;
804 	} else {
805 		inode_init_owner(idmap, inode, dir, mode);
806 	}
807 
808 	/*
809 	 * If the group ID of the new file does not match the effective group
810 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
811 	 * (and only if the irix_sgid_inherit compatibility variable is set).
812 	 */
813 	if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
814 	    !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode)))
815 		inode->i_mode &= ~S_ISGID;
816 
817 	ip->i_disk_size = 0;
818 	ip->i_df.if_nextents = 0;
819 	ASSERT(ip->i_nblocks == 0);
820 
821 	tv = inode_set_ctime_current(inode);
822 	inode_set_mtime_to_ts(inode, tv);
823 	inode_set_atime_to_ts(inode, tv);
824 
825 	ip->i_extsize = 0;
826 	ip->i_diflags = 0;
827 
828 	if (xfs_has_v3inodes(mp)) {
829 		inode_set_iversion(inode, 1);
830 		ip->i_cowextsize = 0;
831 		ip->i_crtime = tv;
832 	}
833 
834 	flags = XFS_ILOG_CORE;
835 	switch (mode & S_IFMT) {
836 	case S_IFIFO:
837 	case S_IFCHR:
838 	case S_IFBLK:
839 	case S_IFSOCK:
840 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
841 		flags |= XFS_ILOG_DEV;
842 		break;
843 	case S_IFREG:
844 	case S_IFDIR:
845 		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
846 			xfs_inode_inherit_flags(ip, pip);
847 		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
848 			xfs_inode_inherit_flags2(ip, pip);
849 		fallthrough;
850 	case S_IFLNK:
851 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
852 		ip->i_df.if_bytes = 0;
853 		ip->i_df.if_data = NULL;
854 		break;
855 	default:
856 		ASSERT(0);
857 	}
858 
859 	/*
860 	 * If we need to create attributes immediately after allocating the
861 	 * inode, initialise an empty attribute fork right now. We use the
862 	 * default fork offset for attributes here as we don't know exactly what
863 	 * size or how many attributes we might be adding. We can do this
864 	 * safely here because we know the data fork is completely empty and
865 	 * this saves us from needing to run a separate transaction to set the
866 	 * fork offset in the immediate future.
867 	 */
868 	if (init_xattrs && xfs_has_attr(mp)) {
869 		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
870 		xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
871 	}
872 
873 	/*
874 	 * Log the new values stuffed into the inode.
875 	 */
876 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
877 	xfs_trans_log_inode(tp, ip, flags);
878 
879 	/* now that we have an i_mode we can setup the inode structure */
880 	xfs_setup_inode(ip);
881 
882 	*ipp = ip;
883 	return 0;
884 }
885 
886 /*
887  * Decrement the link count on an inode & log the change.  If this causes the
888  * link count to go to zero, move the inode to AGI unlinked list so that it can
889  * be freed when the last active reference goes away via xfs_inactive().
890  */
891 static int			/* error */
892 xfs_droplink(
893 	struct xfs_trans	*tp,
894 	struct xfs_inode	*ip)
895 {
896 	struct inode		*inode = VFS_I(ip);
897 
898 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
899 
900 	if (inode->i_nlink == 0) {
901 		xfs_info_ratelimited(tp->t_mountp,
902  "Inode 0x%llx link count dropped below zero.  Pinning link count.",
903 				ip->i_ino);
904 		set_nlink(inode, XFS_NLINK_PINNED);
905 	}
906 	if (inode->i_nlink != XFS_NLINK_PINNED)
907 		drop_nlink(inode);
908 
909 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
910 
911 	if (inode->i_nlink)
912 		return 0;
913 
914 	return xfs_iunlink(tp, ip);
915 }
916 
917 /*
918  * Increment the link count on an inode & log the change.
919  */
920 void
921 xfs_bumplink(
922 	struct xfs_trans	*tp,
923 	struct xfs_inode	*ip)
924 {
925 	struct inode		*inode = VFS_I(ip);
926 
927 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
928 
929 	if (inode->i_nlink == XFS_NLINK_PINNED - 1)
930 		xfs_info_ratelimited(tp->t_mountp,
931  "Inode 0x%llx link count exceeded maximum.  Pinning link count.",
932 				ip->i_ino);
933 	if (inode->i_nlink != XFS_NLINK_PINNED)
934 		inc_nlink(inode);
935 
936 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
937 }
938 
939 #ifdef CONFIG_XFS_LIVE_HOOKS
940 /*
941  * Use a static key here to reduce the overhead of directory live update hooks.
942  * If the compiler supports jump labels, the static branch will be replaced by
943  * a nop sled when there are no hook users.  Online fsck is currently the only
944  * caller, so this is a reasonable tradeoff.
945  *
946  * Note: Patching the kernel code requires taking the cpu hotplug lock.  Other
947  * parts of the kernel allocate memory with that lock held, which means that
948  * XFS callers cannot hold any locks that might be used by memory reclaim or
949  * writeback when calling the static_branch_{inc,dec} functions.
950  */
951 DEFINE_STATIC_XFS_HOOK_SWITCH(xfs_dir_hooks_switch);
952 
953 void
954 xfs_dir_hook_disable(void)
955 {
956 	xfs_hooks_switch_off(&xfs_dir_hooks_switch);
957 }
958 
959 void
960 xfs_dir_hook_enable(void)
961 {
962 	xfs_hooks_switch_on(&xfs_dir_hooks_switch);
963 }
964 
965 /* Call hooks for a directory update relating to a child dirent update. */
966 inline void
967 xfs_dir_update_hook(
968 	struct xfs_inode		*dp,
969 	struct xfs_inode		*ip,
970 	int				delta,
971 	const struct xfs_name		*name)
972 {
973 	if (xfs_hooks_switched_on(&xfs_dir_hooks_switch)) {
974 		struct xfs_dir_update_params	p = {
975 			.dp		= dp,
976 			.ip		= ip,
977 			.delta		= delta,
978 			.name		= name,
979 		};
980 		struct xfs_mount	*mp = ip->i_mount;
981 
982 		xfs_hooks_call(&mp->m_dir_update_hooks, 0, &p);
983 	}
984 }
985 
986 /* Call the specified function during a directory update. */
987 int
988 xfs_dir_hook_add(
989 	struct xfs_mount	*mp,
990 	struct xfs_dir_hook	*hook)
991 {
992 	return xfs_hooks_add(&mp->m_dir_update_hooks, &hook->dirent_hook);
993 }
994 
995 /* Stop calling the specified function during a directory update. */
996 void
997 xfs_dir_hook_del(
998 	struct xfs_mount	*mp,
999 	struct xfs_dir_hook	*hook)
1000 {
1001 	xfs_hooks_del(&mp->m_dir_update_hooks, &hook->dirent_hook);
1002 }
1003 
1004 /* Configure directory update hook functions. */
1005 void
1006 xfs_dir_hook_setup(
1007 	struct xfs_dir_hook	*hook,
1008 	notifier_fn_t		mod_fn)
1009 {
1010 	xfs_hook_setup(&hook->dirent_hook, mod_fn);
1011 }
1012 #endif /* CONFIG_XFS_LIVE_HOOKS */
1013 
1014 int
1015 xfs_create(
1016 	struct mnt_idmap	*idmap,
1017 	xfs_inode_t		*dp,
1018 	struct xfs_name		*name,
1019 	umode_t			mode,
1020 	dev_t			rdev,
1021 	bool			init_xattrs,
1022 	xfs_inode_t		**ipp)
1023 {
1024 	int			is_dir = S_ISDIR(mode);
1025 	struct xfs_mount	*mp = dp->i_mount;
1026 	struct xfs_inode	*ip = NULL;
1027 	struct xfs_trans	*tp = NULL;
1028 	int			error;
1029 	bool                    unlock_dp_on_error = false;
1030 	prid_t			prid;
1031 	struct xfs_dquot	*udqp = NULL;
1032 	struct xfs_dquot	*gdqp = NULL;
1033 	struct xfs_dquot	*pdqp = NULL;
1034 	struct xfs_trans_res	*tres;
1035 	uint			resblks;
1036 	xfs_ino_t		ino;
1037 
1038 	trace_xfs_create(dp, name);
1039 
1040 	if (xfs_is_shutdown(mp))
1041 		return -EIO;
1042 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1043 		return -EIO;
1044 
1045 	prid = xfs_get_initial_prid(dp);
1046 
1047 	/*
1048 	 * Make sure that we have allocated dquot(s) on disk.
1049 	 */
1050 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1051 			mapped_fsgid(idmap, &init_user_ns), prid,
1052 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1053 			&udqp, &gdqp, &pdqp);
1054 	if (error)
1055 		return error;
1056 
1057 	if (is_dir) {
1058 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1059 		tres = &M_RES(mp)->tr_mkdir;
1060 	} else {
1061 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1062 		tres = &M_RES(mp)->tr_create;
1063 	}
1064 
1065 	/*
1066 	 * Initially assume that the file does not exist and
1067 	 * reserve the resources for that case.  If that is not
1068 	 * the case we'll drop the one we have and get a more
1069 	 * appropriate transaction later.
1070 	 */
1071 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1072 			&tp);
1073 	if (error == -ENOSPC) {
1074 		/* flush outstanding delalloc blocks and retry */
1075 		xfs_flush_inodes(mp);
1076 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1077 				resblks, &tp);
1078 	}
1079 	if (error)
1080 		goto out_release_dquots;
1081 
1082 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1083 	unlock_dp_on_error = true;
1084 
1085 	/*
1086 	 * A newly created regular or special file just has one directory
1087 	 * entry pointing to them, but a directory also the "." entry
1088 	 * pointing to itself.
1089 	 */
1090 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1091 	if (!error)
1092 		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1093 				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1094 	if (error)
1095 		goto out_trans_cancel;
1096 
1097 	/*
1098 	 * Now we join the directory inode to the transaction.  We do not do it
1099 	 * earlier because xfs_dialloc might commit the previous transaction
1100 	 * (and release all the locks).  An error from here on will result in
1101 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1102 	 * error path.
1103 	 */
1104 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1105 	unlock_dp_on_error = false;
1106 
1107 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1108 					resblks - XFS_IALLOC_SPACE_RES(mp));
1109 	if (error) {
1110 		ASSERT(error != -ENOSPC);
1111 		goto out_trans_cancel;
1112 	}
1113 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1114 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1115 
1116 	if (is_dir) {
1117 		error = xfs_dir_init(tp, ip, dp);
1118 		if (error)
1119 			goto out_trans_cancel;
1120 
1121 		xfs_bumplink(tp, dp);
1122 	}
1123 
1124 	/*
1125 	 * Create ip with a reference from dp, and add '.' and '..' references
1126 	 * if it's a directory.
1127 	 */
1128 	xfs_dir_update_hook(dp, ip, 1, name);
1129 
1130 	/*
1131 	 * If this is a synchronous mount, make sure that the
1132 	 * create transaction goes to disk before returning to
1133 	 * the user.
1134 	 */
1135 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1136 		xfs_trans_set_sync(tp);
1137 
1138 	/*
1139 	 * Attach the dquot(s) to the inodes and modify them incore.
1140 	 * These ids of the inode couldn't have changed since the new
1141 	 * inode has been locked ever since it was created.
1142 	 */
1143 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1144 
1145 	error = xfs_trans_commit(tp);
1146 	if (error)
1147 		goto out_release_inode;
1148 
1149 	xfs_qm_dqrele(udqp);
1150 	xfs_qm_dqrele(gdqp);
1151 	xfs_qm_dqrele(pdqp);
1152 
1153 	*ipp = ip;
1154 	return 0;
1155 
1156  out_trans_cancel:
1157 	xfs_trans_cancel(tp);
1158  out_release_inode:
1159 	/*
1160 	 * Wait until after the current transaction is aborted to finish the
1161 	 * setup of the inode and release the inode.  This prevents recursive
1162 	 * transactions and deadlocks from xfs_inactive.
1163 	 */
1164 	if (ip) {
1165 		xfs_finish_inode_setup(ip);
1166 		xfs_irele(ip);
1167 	}
1168  out_release_dquots:
1169 	xfs_qm_dqrele(udqp);
1170 	xfs_qm_dqrele(gdqp);
1171 	xfs_qm_dqrele(pdqp);
1172 
1173 	if (unlock_dp_on_error)
1174 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1175 	return error;
1176 }
1177 
1178 int
1179 xfs_create_tmpfile(
1180 	struct mnt_idmap	*idmap,
1181 	struct xfs_inode	*dp,
1182 	umode_t			mode,
1183 	struct xfs_inode	**ipp)
1184 {
1185 	struct xfs_mount	*mp = dp->i_mount;
1186 	struct xfs_inode	*ip = NULL;
1187 	struct xfs_trans	*tp = NULL;
1188 	int			error;
1189 	prid_t                  prid;
1190 	struct xfs_dquot	*udqp = NULL;
1191 	struct xfs_dquot	*gdqp = NULL;
1192 	struct xfs_dquot	*pdqp = NULL;
1193 	struct xfs_trans_res	*tres;
1194 	uint			resblks;
1195 	xfs_ino_t		ino;
1196 
1197 	if (xfs_is_shutdown(mp))
1198 		return -EIO;
1199 
1200 	prid = xfs_get_initial_prid(dp);
1201 
1202 	/*
1203 	 * Make sure that we have allocated dquot(s) on disk.
1204 	 */
1205 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1206 			mapped_fsgid(idmap, &init_user_ns), prid,
1207 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1208 			&udqp, &gdqp, &pdqp);
1209 	if (error)
1210 		return error;
1211 
1212 	resblks = XFS_IALLOC_SPACE_RES(mp);
1213 	tres = &M_RES(mp)->tr_create_tmpfile;
1214 
1215 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1216 			&tp);
1217 	if (error)
1218 		goto out_release_dquots;
1219 
1220 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1221 	if (!error)
1222 		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1223 				0, 0, prid, false, &ip);
1224 	if (error)
1225 		goto out_trans_cancel;
1226 
1227 	if (xfs_has_wsync(mp))
1228 		xfs_trans_set_sync(tp);
1229 
1230 	/*
1231 	 * Attach the dquot(s) to the inodes and modify them incore.
1232 	 * These ids of the inode couldn't have changed since the new
1233 	 * inode has been locked ever since it was created.
1234 	 */
1235 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1236 
1237 	error = xfs_iunlink(tp, ip);
1238 	if (error)
1239 		goto out_trans_cancel;
1240 
1241 	error = xfs_trans_commit(tp);
1242 	if (error)
1243 		goto out_release_inode;
1244 
1245 	xfs_qm_dqrele(udqp);
1246 	xfs_qm_dqrele(gdqp);
1247 	xfs_qm_dqrele(pdqp);
1248 
1249 	*ipp = ip;
1250 	return 0;
1251 
1252  out_trans_cancel:
1253 	xfs_trans_cancel(tp);
1254  out_release_inode:
1255 	/*
1256 	 * Wait until after the current transaction is aborted to finish the
1257 	 * setup of the inode and release the inode.  This prevents recursive
1258 	 * transactions and deadlocks from xfs_inactive.
1259 	 */
1260 	if (ip) {
1261 		xfs_finish_inode_setup(ip);
1262 		xfs_irele(ip);
1263 	}
1264  out_release_dquots:
1265 	xfs_qm_dqrele(udqp);
1266 	xfs_qm_dqrele(gdqp);
1267 	xfs_qm_dqrele(pdqp);
1268 
1269 	return error;
1270 }
1271 
1272 int
1273 xfs_link(
1274 	xfs_inode_t		*tdp,
1275 	xfs_inode_t		*sip,
1276 	struct xfs_name		*target_name)
1277 {
1278 	xfs_mount_t		*mp = tdp->i_mount;
1279 	xfs_trans_t		*tp;
1280 	int			error, nospace_error = 0;
1281 	int			resblks;
1282 
1283 	trace_xfs_link(tdp, target_name);
1284 
1285 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1286 
1287 	if (xfs_is_shutdown(mp))
1288 		return -EIO;
1289 	if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
1290 		return -EIO;
1291 
1292 	error = xfs_qm_dqattach(sip);
1293 	if (error)
1294 		goto std_return;
1295 
1296 	error = xfs_qm_dqattach(tdp);
1297 	if (error)
1298 		goto std_return;
1299 
1300 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1301 	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1302 			&tp, &nospace_error);
1303 	if (error)
1304 		goto std_return;
1305 
1306 	/*
1307 	 * If we are using project inheritance, we only allow hard link
1308 	 * creation in our tree when the project IDs are the same; else
1309 	 * the tree quota mechanism could be circumvented.
1310 	 */
1311 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1312 		     tdp->i_projid != sip->i_projid)) {
1313 		/*
1314 		 * Project quota setup skips special files which can
1315 		 * leave inodes in a PROJINHERIT directory without a
1316 		 * project ID set. We need to allow links to be made
1317 		 * to these "project-less" inodes because userspace
1318 		 * expects them to succeed after project ID setup,
1319 		 * but everything else should be rejected.
1320 		 */
1321 		if (!special_file(VFS_I(sip)->i_mode) ||
1322 		    sip->i_projid != 0) {
1323 			error = -EXDEV;
1324 			goto error_return;
1325 		}
1326 	}
1327 
1328 	if (!resblks) {
1329 		error = xfs_dir_canenter(tp, tdp, target_name);
1330 		if (error)
1331 			goto error_return;
1332 	}
1333 
1334 	/*
1335 	 * Handle initial link state of O_TMPFILE inode
1336 	 */
1337 	if (VFS_I(sip)->i_nlink == 0) {
1338 		struct xfs_perag	*pag;
1339 
1340 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1341 		error = xfs_iunlink_remove(tp, pag, sip);
1342 		xfs_perag_put(pag);
1343 		if (error)
1344 			goto error_return;
1345 	}
1346 
1347 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1348 				   resblks);
1349 	if (error)
1350 		goto error_return;
1351 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1352 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1353 
1354 	xfs_bumplink(tp, sip);
1355 	xfs_dir_update_hook(tdp, sip, 1, target_name);
1356 
1357 	/*
1358 	 * If this is a synchronous mount, make sure that the
1359 	 * link transaction goes to disk before returning to
1360 	 * the user.
1361 	 */
1362 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1363 		xfs_trans_set_sync(tp);
1364 
1365 	return xfs_trans_commit(tp);
1366 
1367  error_return:
1368 	xfs_trans_cancel(tp);
1369  std_return:
1370 	if (error == -ENOSPC && nospace_error)
1371 		error = nospace_error;
1372 	return error;
1373 }
1374 
1375 /* Clear the reflink flag and the cowblocks tag if possible. */
1376 static void
1377 xfs_itruncate_clear_reflink_flags(
1378 	struct xfs_inode	*ip)
1379 {
1380 	struct xfs_ifork	*dfork;
1381 	struct xfs_ifork	*cfork;
1382 
1383 	if (!xfs_is_reflink_inode(ip))
1384 		return;
1385 	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1386 	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1387 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1388 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1389 	if (cfork->if_bytes == 0)
1390 		xfs_inode_clear_cowblocks_tag(ip);
1391 }
1392 
1393 /*
1394  * Free up the underlying blocks past new_size.  The new size must be smaller
1395  * than the current size.  This routine can be used both for the attribute and
1396  * data fork, and does not modify the inode size, which is left to the caller.
1397  *
1398  * The transaction passed to this routine must have made a permanent log
1399  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1400  * given transaction and start new ones, so make sure everything involved in
1401  * the transaction is tidy before calling here.  Some transaction will be
1402  * returned to the caller to be committed.  The incoming transaction must
1403  * already include the inode, and both inode locks must be held exclusively.
1404  * The inode must also be "held" within the transaction.  On return the inode
1405  * will be "held" within the returned transaction.  This routine does NOT
1406  * require any disk space to be reserved for it within the transaction.
1407  *
1408  * If we get an error, we must return with the inode locked and linked into the
1409  * current transaction. This keeps things simple for the higher level code,
1410  * because it always knows that the inode is locked and held in the transaction
1411  * that returns to it whether errors occur or not.  We don't mark the inode
1412  * dirty on error so that transactions can be easily aborted if possible.
1413  */
1414 int
1415 xfs_itruncate_extents_flags(
1416 	struct xfs_trans	**tpp,
1417 	struct xfs_inode	*ip,
1418 	int			whichfork,
1419 	xfs_fsize_t		new_size,
1420 	int			flags)
1421 {
1422 	struct xfs_mount	*mp = ip->i_mount;
1423 	struct xfs_trans	*tp = *tpp;
1424 	xfs_fileoff_t		first_unmap_block;
1425 	int			error = 0;
1426 
1427 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1428 	if (atomic_read(&VFS_I(ip)->i_count))
1429 		xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1430 	ASSERT(new_size <= XFS_ISIZE(ip));
1431 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1432 	ASSERT(ip->i_itemp != NULL);
1433 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1434 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1435 
1436 	trace_xfs_itruncate_extents_start(ip, new_size);
1437 
1438 	flags |= xfs_bmapi_aflag(whichfork);
1439 
1440 	/*
1441 	 * Since it is possible for space to become allocated beyond
1442 	 * the end of the file (in a crash where the space is allocated
1443 	 * but the inode size is not yet updated), simply remove any
1444 	 * blocks which show up between the new EOF and the maximum
1445 	 * possible file size.
1446 	 *
1447 	 * We have to free all the blocks to the bmbt maximum offset, even if
1448 	 * the page cache can't scale that far.
1449 	 */
1450 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1451 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1452 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1453 		return 0;
1454 	}
1455 
1456 	error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1457 			XFS_MAX_FILEOFF);
1458 	if (error)
1459 		goto out;
1460 
1461 	if (whichfork == XFS_DATA_FORK) {
1462 		/* Remove all pending CoW reservations. */
1463 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1464 				first_unmap_block, XFS_MAX_FILEOFF, true);
1465 		if (error)
1466 			goto out;
1467 
1468 		xfs_itruncate_clear_reflink_flags(ip);
1469 	}
1470 
1471 	/*
1472 	 * Always re-log the inode so that our permanent transaction can keep
1473 	 * on rolling it forward in the log.
1474 	 */
1475 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1476 
1477 	trace_xfs_itruncate_extents_end(ip, new_size);
1478 
1479 out:
1480 	*tpp = tp;
1481 	return error;
1482 }
1483 
1484 int
1485 xfs_release(
1486 	xfs_inode_t	*ip)
1487 {
1488 	xfs_mount_t	*mp = ip->i_mount;
1489 	int		error = 0;
1490 
1491 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1492 		return 0;
1493 
1494 	/* If this is a read-only mount, don't do this (would generate I/O) */
1495 	if (xfs_is_readonly(mp))
1496 		return 0;
1497 
1498 	if (!xfs_is_shutdown(mp)) {
1499 		int truncated;
1500 
1501 		/*
1502 		 * If we previously truncated this file and removed old data
1503 		 * in the process, we want to initiate "early" writeout on
1504 		 * the last close.  This is an attempt to combat the notorious
1505 		 * NULL files problem which is particularly noticeable from a
1506 		 * truncate down, buffered (re-)write (delalloc), followed by
1507 		 * a crash.  What we are effectively doing here is
1508 		 * significantly reducing the time window where we'd otherwise
1509 		 * be exposed to that problem.
1510 		 */
1511 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1512 		if (truncated) {
1513 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1514 			if (ip->i_delayed_blks > 0) {
1515 				error = filemap_flush(VFS_I(ip)->i_mapping);
1516 				if (error)
1517 					return error;
1518 			}
1519 		}
1520 	}
1521 
1522 	if (VFS_I(ip)->i_nlink == 0)
1523 		return 0;
1524 
1525 	/*
1526 	 * If we can't get the iolock just skip truncating the blocks past EOF
1527 	 * because we could deadlock with the mmap_lock otherwise. We'll get
1528 	 * another chance to drop them once the last reference to the inode is
1529 	 * dropped, so we'll never leak blocks permanently.
1530 	 */
1531 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1532 		return 0;
1533 
1534 	if (xfs_can_free_eofblocks(ip, false)) {
1535 		/*
1536 		 * Check if the inode is being opened, written and closed
1537 		 * frequently and we have delayed allocation blocks outstanding
1538 		 * (e.g. streaming writes from the NFS server), truncating the
1539 		 * blocks past EOF will cause fragmentation to occur.
1540 		 *
1541 		 * In this case don't do the truncation, but we have to be
1542 		 * careful how we detect this case. Blocks beyond EOF show up as
1543 		 * i_delayed_blks even when the inode is clean, so we need to
1544 		 * truncate them away first before checking for a dirty release.
1545 		 * Hence on the first dirty close we will still remove the
1546 		 * speculative allocation, but after that we will leave it in
1547 		 * place.
1548 		 */
1549 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1550 			goto out_unlock;
1551 
1552 		error = xfs_free_eofblocks(ip);
1553 		if (error)
1554 			goto out_unlock;
1555 
1556 		/* delalloc blocks after truncation means it really is dirty */
1557 		if (ip->i_delayed_blks)
1558 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1559 	}
1560 
1561 out_unlock:
1562 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1563 	return error;
1564 }
1565 
1566 /*
1567  * Mark all the buffers attached to this directory stale.  In theory we should
1568  * never be freeing a directory with any blocks at all, but this covers the
1569  * case where we've recovered a directory swap with a "temporary" directory
1570  * created by online repair and now need to dump it.
1571  */
1572 STATIC void
1573 xfs_inactive_dir(
1574 	struct xfs_inode	*dp)
1575 {
1576 	struct xfs_iext_cursor	icur;
1577 	struct xfs_bmbt_irec	got;
1578 	struct xfs_mount	*mp = dp->i_mount;
1579 	struct xfs_da_geometry	*geo = mp->m_dir_geo;
1580 	struct xfs_ifork	*ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK);
1581 	xfs_fileoff_t		off;
1582 
1583 	/*
1584 	 * Invalidate each directory block.  All directory blocks are of
1585 	 * fsbcount length and alignment, so we only need to walk those same
1586 	 * offsets.  We hold the only reference to this inode, so we must wait
1587 	 * for the buffer locks.
1588 	 */
1589 	for_each_xfs_iext(ifp, &icur, &got) {
1590 		for (off = round_up(got.br_startoff, geo->fsbcount);
1591 		     off < got.br_startoff + got.br_blockcount;
1592 		     off += geo->fsbcount) {
1593 			struct xfs_buf	*bp = NULL;
1594 			xfs_fsblock_t	fsbno;
1595 			int		error;
1596 
1597 			fsbno = (off - got.br_startoff) + got.br_startblock;
1598 			error = xfs_buf_incore(mp->m_ddev_targp,
1599 					XFS_FSB_TO_DADDR(mp, fsbno),
1600 					XFS_FSB_TO_BB(mp, geo->fsbcount),
1601 					XBF_LIVESCAN, &bp);
1602 			if (error)
1603 				continue;
1604 
1605 			xfs_buf_stale(bp);
1606 			xfs_buf_relse(bp);
1607 		}
1608 	}
1609 }
1610 
1611 /*
1612  * xfs_inactive_truncate
1613  *
1614  * Called to perform a truncate when an inode becomes unlinked.
1615  */
1616 STATIC int
1617 xfs_inactive_truncate(
1618 	struct xfs_inode *ip)
1619 {
1620 	struct xfs_mount	*mp = ip->i_mount;
1621 	struct xfs_trans	*tp;
1622 	int			error;
1623 
1624 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1625 	if (error) {
1626 		ASSERT(xfs_is_shutdown(mp));
1627 		return error;
1628 	}
1629 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1630 	xfs_trans_ijoin(tp, ip, 0);
1631 
1632 	/*
1633 	 * Log the inode size first to prevent stale data exposure in the event
1634 	 * of a system crash before the truncate completes. See the related
1635 	 * comment in xfs_vn_setattr_size() for details.
1636 	 */
1637 	ip->i_disk_size = 0;
1638 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1639 
1640 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1641 	if (error)
1642 		goto error_trans_cancel;
1643 
1644 	ASSERT(ip->i_df.if_nextents == 0);
1645 
1646 	error = xfs_trans_commit(tp);
1647 	if (error)
1648 		goto error_unlock;
1649 
1650 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1651 	return 0;
1652 
1653 error_trans_cancel:
1654 	xfs_trans_cancel(tp);
1655 error_unlock:
1656 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1657 	return error;
1658 }
1659 
1660 /*
1661  * xfs_inactive_ifree()
1662  *
1663  * Perform the inode free when an inode is unlinked.
1664  */
1665 STATIC int
1666 xfs_inactive_ifree(
1667 	struct xfs_inode *ip)
1668 {
1669 	struct xfs_mount	*mp = ip->i_mount;
1670 	struct xfs_trans	*tp;
1671 	int			error;
1672 
1673 	/*
1674 	 * We try to use a per-AG reservation for any block needed by the finobt
1675 	 * tree, but as the finobt feature predates the per-AG reservation
1676 	 * support a degraded file system might not have enough space for the
1677 	 * reservation at mount time.  In that case try to dip into the reserved
1678 	 * pool and pray.
1679 	 *
1680 	 * Send a warning if the reservation does happen to fail, as the inode
1681 	 * now remains allocated and sits on the unlinked list until the fs is
1682 	 * repaired.
1683 	 */
1684 	if (unlikely(mp->m_finobt_nores)) {
1685 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1686 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1687 				&tp);
1688 	} else {
1689 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1690 	}
1691 	if (error) {
1692 		if (error == -ENOSPC) {
1693 			xfs_warn_ratelimited(mp,
1694 			"Failed to remove inode(s) from unlinked list. "
1695 			"Please free space, unmount and run xfs_repair.");
1696 		} else {
1697 			ASSERT(xfs_is_shutdown(mp));
1698 		}
1699 		return error;
1700 	}
1701 
1702 	/*
1703 	 * We do not hold the inode locked across the entire rolling transaction
1704 	 * here. We only need to hold it for the first transaction that
1705 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1706 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1707 	 * here breaks the relationship between cluster buffer invalidation and
1708 	 * stale inode invalidation on cluster buffer item journal commit
1709 	 * completion, and can result in leaving dirty stale inodes hanging
1710 	 * around in memory.
1711 	 *
1712 	 * We have no need for serialising this inode operation against other
1713 	 * operations - we freed the inode and hence reallocation is required
1714 	 * and that will serialise on reallocating the space the deferops need
1715 	 * to free. Hence we can unlock the inode on the first commit of
1716 	 * the transaction rather than roll it right through the deferops. This
1717 	 * avoids relogging the XFS_ISTALE inode.
1718 	 *
1719 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1720 	 * by asserting that the inode is still locked when it returns.
1721 	 */
1722 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1723 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1724 
1725 	error = xfs_ifree(tp, ip);
1726 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1727 	if (error) {
1728 		/*
1729 		 * If we fail to free the inode, shut down.  The cancel
1730 		 * might do that, we need to make sure.  Otherwise the
1731 		 * inode might be lost for a long time or forever.
1732 		 */
1733 		if (!xfs_is_shutdown(mp)) {
1734 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1735 				__func__, error);
1736 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1737 		}
1738 		xfs_trans_cancel(tp);
1739 		return error;
1740 	}
1741 
1742 	/*
1743 	 * Credit the quota account(s). The inode is gone.
1744 	 */
1745 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1746 
1747 	return xfs_trans_commit(tp);
1748 }
1749 
1750 /*
1751  * Returns true if we need to update the on-disk metadata before we can free
1752  * the memory used by this inode.  Updates include freeing post-eof
1753  * preallocations; freeing COW staging extents; and marking the inode free in
1754  * the inobt if it is on the unlinked list.
1755  */
1756 bool
1757 xfs_inode_needs_inactive(
1758 	struct xfs_inode	*ip)
1759 {
1760 	struct xfs_mount	*mp = ip->i_mount;
1761 	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1762 
1763 	/*
1764 	 * If the inode is already free, then there can be nothing
1765 	 * to clean up here.
1766 	 */
1767 	if (VFS_I(ip)->i_mode == 0)
1768 		return false;
1769 
1770 	/*
1771 	 * If this is a read-only mount, don't do this (would generate I/O)
1772 	 * unless we're in log recovery and cleaning the iunlinked list.
1773 	 */
1774 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1775 		return false;
1776 
1777 	/* If the log isn't running, push inodes straight to reclaim. */
1778 	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1779 		return false;
1780 
1781 	/* Metadata inodes require explicit resource cleanup. */
1782 	if (xfs_is_metadata_inode(ip))
1783 		return false;
1784 
1785 	/* Want to clean out the cow blocks if there are any. */
1786 	if (cow_ifp && cow_ifp->if_bytes > 0)
1787 		return true;
1788 
1789 	/* Unlinked files must be freed. */
1790 	if (VFS_I(ip)->i_nlink == 0)
1791 		return true;
1792 
1793 	/*
1794 	 * This file isn't being freed, so check if there are post-eof blocks
1795 	 * to free.  @force is true because we are evicting an inode from the
1796 	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1797 	 * free space accounting.
1798 	 *
1799 	 * Note: don't bother with iolock here since lockdep complains about
1800 	 * acquiring it in reclaim context. We have the only reference to the
1801 	 * inode at this point anyways.
1802 	 */
1803 	return xfs_can_free_eofblocks(ip, true);
1804 }
1805 
1806 /*
1807  * Save health status somewhere, if we're dumping an inode with uncorrected
1808  * errors and online repair isn't running.
1809  */
1810 static inline void
1811 xfs_inactive_health(
1812 	struct xfs_inode	*ip)
1813 {
1814 	struct xfs_mount	*mp = ip->i_mount;
1815 	struct xfs_perag	*pag;
1816 	unsigned int		sick;
1817 	unsigned int		checked;
1818 
1819 	xfs_inode_measure_sickness(ip, &sick, &checked);
1820 	if (!sick)
1821 		return;
1822 
1823 	trace_xfs_inode_unfixed_corruption(ip, sick);
1824 
1825 	if (sick & XFS_SICK_INO_FORGET)
1826 		return;
1827 
1828 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1829 	if (!pag) {
1830 		/* There had better still be a perag structure! */
1831 		ASSERT(0);
1832 		return;
1833 	}
1834 
1835 	xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
1836 	xfs_perag_put(pag);
1837 }
1838 
1839 /*
1840  * xfs_inactive
1841  *
1842  * This is called when the vnode reference count for the vnode
1843  * goes to zero.  If the file has been unlinked, then it must
1844  * now be truncated.  Also, we clear all of the read-ahead state
1845  * kept for the inode here since the file is now closed.
1846  */
1847 int
1848 xfs_inactive(
1849 	xfs_inode_t	*ip)
1850 {
1851 	struct xfs_mount	*mp;
1852 	int			error = 0;
1853 	int			truncate = 0;
1854 
1855 	/*
1856 	 * If the inode is already free, then there can be nothing
1857 	 * to clean up here.
1858 	 */
1859 	if (VFS_I(ip)->i_mode == 0) {
1860 		ASSERT(ip->i_df.if_broot_bytes == 0);
1861 		goto out;
1862 	}
1863 
1864 	mp = ip->i_mount;
1865 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1866 
1867 	xfs_inactive_health(ip);
1868 
1869 	/*
1870 	 * If this is a read-only mount, don't do this (would generate I/O)
1871 	 * unless we're in log recovery and cleaning the iunlinked list.
1872 	 */
1873 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1874 		goto out;
1875 
1876 	/* Metadata inodes require explicit resource cleanup. */
1877 	if (xfs_is_metadata_inode(ip))
1878 		goto out;
1879 
1880 	/* Try to clean out the cow blocks if there are any. */
1881 	if (xfs_inode_has_cow_data(ip))
1882 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1883 
1884 	if (VFS_I(ip)->i_nlink != 0) {
1885 		/*
1886 		 * force is true because we are evicting an inode from the
1887 		 * cache. Post-eof blocks must be freed, lest we end up with
1888 		 * broken free space accounting.
1889 		 *
1890 		 * Note: don't bother with iolock here since lockdep complains
1891 		 * about acquiring it in reclaim context. We have the only
1892 		 * reference to the inode at this point anyways.
1893 		 */
1894 		if (xfs_can_free_eofblocks(ip, true))
1895 			error = xfs_free_eofblocks(ip);
1896 
1897 		goto out;
1898 	}
1899 
1900 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1901 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1902 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1903 		truncate = 1;
1904 
1905 	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1906 		/*
1907 		 * If this inode is being inactivated during a quotacheck and
1908 		 * has not yet been scanned by quotacheck, we /must/ remove
1909 		 * the dquots from the inode before inactivation changes the
1910 		 * block and inode counts.  Most probably this is a result of
1911 		 * reloading the incore iunlinked list to purge unrecovered
1912 		 * unlinked inodes.
1913 		 */
1914 		xfs_qm_dqdetach(ip);
1915 	} else {
1916 		error = xfs_qm_dqattach(ip);
1917 		if (error)
1918 			goto out;
1919 	}
1920 
1921 	if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) {
1922 		xfs_inactive_dir(ip);
1923 		truncate = 1;
1924 	}
1925 
1926 	if (S_ISLNK(VFS_I(ip)->i_mode))
1927 		error = xfs_inactive_symlink(ip);
1928 	else if (truncate)
1929 		error = xfs_inactive_truncate(ip);
1930 	if (error)
1931 		goto out;
1932 
1933 	/*
1934 	 * If there are attributes associated with the file then blow them away
1935 	 * now.  The code calls a routine that recursively deconstructs the
1936 	 * attribute fork. If also blows away the in-core attribute fork.
1937 	 */
1938 	if (xfs_inode_has_attr_fork(ip)) {
1939 		error = xfs_attr_inactive(ip);
1940 		if (error)
1941 			goto out;
1942 	}
1943 
1944 	ASSERT(ip->i_forkoff == 0);
1945 
1946 	/*
1947 	 * Free the inode.
1948 	 */
1949 	error = xfs_inactive_ifree(ip);
1950 
1951 out:
1952 	/*
1953 	 * We're done making metadata updates for this inode, so we can release
1954 	 * the attached dquots.
1955 	 */
1956 	xfs_qm_dqdetach(ip);
1957 	return error;
1958 }
1959 
1960 /*
1961  * In-Core Unlinked List Lookups
1962  * =============================
1963  *
1964  * Every inode is supposed to be reachable from some other piece of metadata
1965  * with the exception of the root directory.  Inodes with a connection to a
1966  * file descriptor but not linked from anywhere in the on-disk directory tree
1967  * are collectively known as unlinked inodes, though the filesystem itself
1968  * maintains links to these inodes so that on-disk metadata are consistent.
1969  *
1970  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1971  * header contains a number of buckets that point to an inode, and each inode
1972  * record has a pointer to the next inode in the hash chain.  This
1973  * singly-linked list causes scaling problems in the iunlink remove function
1974  * because we must walk that list to find the inode that points to the inode
1975  * being removed from the unlinked hash bucket list.
1976  *
1977  * Hence we keep an in-memory double linked list to link each inode on an
1978  * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1979  * based lists would require having 64 list heads in the perag, one for each
1980  * list. This is expensive in terms of memory (think millions of AGs) and cache
1981  * misses on lookups. Instead, use the fact that inodes on the unlinked list
1982  * must be referenced at the VFS level to keep them on the list and hence we
1983  * have an existence guarantee for inodes on the unlinked list.
1984  *
1985  * Given we have an existence guarantee, we can use lockless inode cache lookups
1986  * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1987  * for the double linked unlinked list, and we don't need any extra locking to
1988  * keep the list safe as all manipulations are done under the AGI buffer lock.
1989  * Keeping the list up to date does not require memory allocation, just finding
1990  * the XFS inode and updating the next/prev unlinked list aginos.
1991  */
1992 
1993 /*
1994  * Find an inode on the unlinked list. This does not take references to the
1995  * inode as we have existence guarantees by holding the AGI buffer lock and that
1996  * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1997  * don't find the inode in cache, then let the caller handle the situation.
1998  */
1999 struct xfs_inode *
2000 xfs_iunlink_lookup(
2001 	struct xfs_perag	*pag,
2002 	xfs_agino_t		agino)
2003 {
2004 	struct xfs_inode	*ip;
2005 
2006 	rcu_read_lock();
2007 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
2008 	if (!ip) {
2009 		/* Caller can handle inode not being in memory. */
2010 		rcu_read_unlock();
2011 		return NULL;
2012 	}
2013 
2014 	/*
2015 	 * Inode in RCU freeing limbo should not happen.  Warn about this and
2016 	 * let the caller handle the failure.
2017 	 */
2018 	if (WARN_ON_ONCE(!ip->i_ino)) {
2019 		rcu_read_unlock();
2020 		return NULL;
2021 	}
2022 	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
2023 	rcu_read_unlock();
2024 	return ip;
2025 }
2026 
2027 /*
2028  * Update the prev pointer of the next agino.  Returns -ENOLINK if the inode
2029  * is not in cache.
2030  */
2031 static int
2032 xfs_iunlink_update_backref(
2033 	struct xfs_perag	*pag,
2034 	xfs_agino_t		prev_agino,
2035 	xfs_agino_t		next_agino)
2036 {
2037 	struct xfs_inode	*ip;
2038 
2039 	/* No update necessary if we are at the end of the list. */
2040 	if (next_agino == NULLAGINO)
2041 		return 0;
2042 
2043 	ip = xfs_iunlink_lookup(pag, next_agino);
2044 	if (!ip)
2045 		return -ENOLINK;
2046 
2047 	ip->i_prev_unlinked = prev_agino;
2048 	return 0;
2049 }
2050 
2051 /*
2052  * Point the AGI unlinked bucket at an inode and log the results.  The caller
2053  * is responsible for validating the old value.
2054  */
2055 STATIC int
2056 xfs_iunlink_update_bucket(
2057 	struct xfs_trans	*tp,
2058 	struct xfs_perag	*pag,
2059 	struct xfs_buf		*agibp,
2060 	unsigned int		bucket_index,
2061 	xfs_agino_t		new_agino)
2062 {
2063 	struct xfs_agi		*agi = agibp->b_addr;
2064 	xfs_agino_t		old_value;
2065 	int			offset;
2066 
2067 	ASSERT(xfs_verify_agino_or_null(pag, new_agino));
2068 
2069 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2070 	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
2071 			old_value, new_agino);
2072 
2073 	/*
2074 	 * We should never find the head of the list already set to the value
2075 	 * passed in because either we're adding or removing ourselves from the
2076 	 * head of the list.
2077 	 */
2078 	if (old_value == new_agino) {
2079 		xfs_buf_mark_corrupt(agibp);
2080 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2081 		return -EFSCORRUPTED;
2082 	}
2083 
2084 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2085 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2086 			(sizeof(xfs_agino_t) * bucket_index);
2087 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2088 	return 0;
2089 }
2090 
2091 /*
2092  * Load the inode @next_agino into the cache and set its prev_unlinked pointer
2093  * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
2094  * to the unlinked list.
2095  */
2096 STATIC int
2097 xfs_iunlink_reload_next(
2098 	struct xfs_trans	*tp,
2099 	struct xfs_buf		*agibp,
2100 	xfs_agino_t		prev_agino,
2101 	xfs_agino_t		next_agino)
2102 {
2103 	struct xfs_perag	*pag = agibp->b_pag;
2104 	struct xfs_mount	*mp = pag->pag_mount;
2105 	struct xfs_inode	*next_ip = NULL;
2106 	xfs_ino_t		ino;
2107 	int			error;
2108 
2109 	ASSERT(next_agino != NULLAGINO);
2110 
2111 #ifdef DEBUG
2112 	rcu_read_lock();
2113 	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
2114 	ASSERT(next_ip == NULL);
2115 	rcu_read_unlock();
2116 #endif
2117 
2118 	xfs_info_ratelimited(mp,
2119  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
2120 			next_agino, pag->pag_agno);
2121 
2122 	/*
2123 	 * Use an untrusted lookup just to be cautious in case the AGI has been
2124 	 * corrupted and now points at a free inode.  That shouldn't happen,
2125 	 * but we'd rather shut down now since we're already running in a weird
2126 	 * situation.
2127 	 */
2128 	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino);
2129 	error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip);
2130 	if (error) {
2131 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2132 		return error;
2133 	}
2134 
2135 	/* If this is not an unlinked inode, something is very wrong. */
2136 	if (VFS_I(next_ip)->i_nlink != 0) {
2137 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2138 		error = -EFSCORRUPTED;
2139 		goto rele;
2140 	}
2141 
2142 	next_ip->i_prev_unlinked = prev_agino;
2143 	trace_xfs_iunlink_reload_next(next_ip);
2144 rele:
2145 	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
2146 	if (xfs_is_quotacheck_running(mp) && next_ip)
2147 		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
2148 	xfs_irele(next_ip);
2149 	return error;
2150 }
2151 
2152 static int
2153 xfs_iunlink_insert_inode(
2154 	struct xfs_trans	*tp,
2155 	struct xfs_perag	*pag,
2156 	struct xfs_buf		*agibp,
2157 	struct xfs_inode	*ip)
2158 {
2159 	struct xfs_mount	*mp = tp->t_mountp;
2160 	struct xfs_agi		*agi = agibp->b_addr;
2161 	xfs_agino_t		next_agino;
2162 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2163 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2164 	int			error;
2165 
2166 	/*
2167 	 * Get the index into the agi hash table for the list this inode will
2168 	 * go on.  Make sure the pointer isn't garbage and that this inode
2169 	 * isn't already on the list.
2170 	 */
2171 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2172 	if (next_agino == agino ||
2173 	    !xfs_verify_agino_or_null(pag, next_agino)) {
2174 		xfs_buf_mark_corrupt(agibp);
2175 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2176 		return -EFSCORRUPTED;
2177 	}
2178 
2179 	/*
2180 	 * Update the prev pointer in the next inode to point back to this
2181 	 * inode.
2182 	 */
2183 	error = xfs_iunlink_update_backref(pag, agino, next_agino);
2184 	if (error == -ENOLINK)
2185 		error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino);
2186 	if (error)
2187 		return error;
2188 
2189 	if (next_agino != NULLAGINO) {
2190 		/*
2191 		 * There is already another inode in the bucket, so point this
2192 		 * inode to the current head of the list.
2193 		 */
2194 		error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
2195 		if (error)
2196 			return error;
2197 		ip->i_next_unlinked = next_agino;
2198 	}
2199 
2200 	/* Point the head of the list to point to this inode. */
2201 	ip->i_prev_unlinked = NULLAGINO;
2202 	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2203 }
2204 
2205 /*
2206  * This is called when the inode's link count has gone to 0 or we are creating
2207  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2208  *
2209  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2210  * list when the inode is freed.
2211  */
2212 int
2213 xfs_iunlink(
2214 	struct xfs_trans	*tp,
2215 	struct xfs_inode	*ip)
2216 {
2217 	struct xfs_mount	*mp = tp->t_mountp;
2218 	struct xfs_perag	*pag;
2219 	struct xfs_buf		*agibp;
2220 	int			error;
2221 
2222 	ASSERT(VFS_I(ip)->i_nlink == 0);
2223 	ASSERT(VFS_I(ip)->i_mode != 0);
2224 	trace_xfs_iunlink(ip);
2225 
2226 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2227 
2228 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2229 	error = xfs_read_agi(pag, tp, 0, &agibp);
2230 	if (error)
2231 		goto out;
2232 
2233 	error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
2234 out:
2235 	xfs_perag_put(pag);
2236 	return error;
2237 }
2238 
2239 static int
2240 xfs_iunlink_remove_inode(
2241 	struct xfs_trans	*tp,
2242 	struct xfs_perag	*pag,
2243 	struct xfs_buf		*agibp,
2244 	struct xfs_inode	*ip)
2245 {
2246 	struct xfs_mount	*mp = tp->t_mountp;
2247 	struct xfs_agi		*agi = agibp->b_addr;
2248 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2249 	xfs_agino_t		head_agino;
2250 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2251 	int			error;
2252 
2253 	trace_xfs_iunlink_remove(ip);
2254 
2255 	/*
2256 	 * Get the index into the agi hash table for the list this inode will
2257 	 * go on.  Make sure the head pointer isn't garbage.
2258 	 */
2259 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2260 	if (!xfs_verify_agino(pag, head_agino)) {
2261 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2262 				agi, sizeof(*agi));
2263 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2264 		return -EFSCORRUPTED;
2265 	}
2266 
2267 	/*
2268 	 * Set our inode's next_unlinked pointer to NULL and then return
2269 	 * the old pointer value so that we can update whatever was previous
2270 	 * to us in the list to point to whatever was next in the list.
2271 	 */
2272 	error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2273 	if (error)
2274 		return error;
2275 
2276 	/*
2277 	 * Update the prev pointer in the next inode to point back to previous
2278 	 * inode in the chain.
2279 	 */
2280 	error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2281 			ip->i_next_unlinked);
2282 	if (error == -ENOLINK)
2283 		error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked,
2284 				ip->i_next_unlinked);
2285 	if (error)
2286 		return error;
2287 
2288 	if (head_agino != agino) {
2289 		struct xfs_inode	*prev_ip;
2290 
2291 		prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2292 		if (!prev_ip) {
2293 			xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
2294 			return -EFSCORRUPTED;
2295 		}
2296 
2297 		error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2298 				ip->i_next_unlinked);
2299 		prev_ip->i_next_unlinked = ip->i_next_unlinked;
2300 	} else {
2301 		/* Point the head of the list to the next unlinked inode. */
2302 		error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2303 				ip->i_next_unlinked);
2304 	}
2305 
2306 	ip->i_next_unlinked = NULLAGINO;
2307 	ip->i_prev_unlinked = 0;
2308 	return error;
2309 }
2310 
2311 /*
2312  * Pull the on-disk inode from the AGI unlinked list.
2313  */
2314 int
2315 xfs_iunlink_remove(
2316 	struct xfs_trans	*tp,
2317 	struct xfs_perag	*pag,
2318 	struct xfs_inode	*ip)
2319 {
2320 	struct xfs_buf		*agibp;
2321 	int			error;
2322 
2323 	trace_xfs_iunlink_remove(ip);
2324 
2325 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2326 	error = xfs_read_agi(pag, tp, 0, &agibp);
2327 	if (error)
2328 		return error;
2329 
2330 	return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2331 }
2332 
2333 /*
2334  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2335  * mark it stale. We should only find clean inodes in this lookup that aren't
2336  * already stale.
2337  */
2338 static void
2339 xfs_ifree_mark_inode_stale(
2340 	struct xfs_perag	*pag,
2341 	struct xfs_inode	*free_ip,
2342 	xfs_ino_t		inum)
2343 {
2344 	struct xfs_mount	*mp = pag->pag_mount;
2345 	struct xfs_inode_log_item *iip;
2346 	struct xfs_inode	*ip;
2347 
2348 retry:
2349 	rcu_read_lock();
2350 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2351 
2352 	/* Inode not in memory, nothing to do */
2353 	if (!ip) {
2354 		rcu_read_unlock();
2355 		return;
2356 	}
2357 
2358 	/*
2359 	 * because this is an RCU protected lookup, we could find a recently
2360 	 * freed or even reallocated inode during the lookup. We need to check
2361 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2362 	 * valid, the wrong inode or stale.
2363 	 */
2364 	spin_lock(&ip->i_flags_lock);
2365 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2366 		goto out_iflags_unlock;
2367 
2368 	/*
2369 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2370 	 * other inodes that we did not find in the list attached to the buffer
2371 	 * and are not already marked stale. If we can't lock it, back off and
2372 	 * retry.
2373 	 */
2374 	if (ip != free_ip) {
2375 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2376 			spin_unlock(&ip->i_flags_lock);
2377 			rcu_read_unlock();
2378 			delay(1);
2379 			goto retry;
2380 		}
2381 	}
2382 	ip->i_flags |= XFS_ISTALE;
2383 
2384 	/*
2385 	 * If the inode is flushing, it is already attached to the buffer.  All
2386 	 * we needed to do here is mark the inode stale so buffer IO completion
2387 	 * will remove it from the AIL.
2388 	 */
2389 	iip = ip->i_itemp;
2390 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2391 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2392 		ASSERT(iip->ili_last_fields);
2393 		goto out_iunlock;
2394 	}
2395 
2396 	/*
2397 	 * Inodes not attached to the buffer can be released immediately.
2398 	 * Everything else has to go through xfs_iflush_abort() on journal
2399 	 * commit as the flock synchronises removal of the inode from the
2400 	 * cluster buffer against inode reclaim.
2401 	 */
2402 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2403 		goto out_iunlock;
2404 
2405 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2406 	spin_unlock(&ip->i_flags_lock);
2407 	rcu_read_unlock();
2408 
2409 	/* we have a dirty inode in memory that has not yet been flushed. */
2410 	spin_lock(&iip->ili_lock);
2411 	iip->ili_last_fields = iip->ili_fields;
2412 	iip->ili_fields = 0;
2413 	iip->ili_fsync_fields = 0;
2414 	spin_unlock(&iip->ili_lock);
2415 	ASSERT(iip->ili_last_fields);
2416 
2417 	if (ip != free_ip)
2418 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2419 	return;
2420 
2421 out_iunlock:
2422 	if (ip != free_ip)
2423 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2424 out_iflags_unlock:
2425 	spin_unlock(&ip->i_flags_lock);
2426 	rcu_read_unlock();
2427 }
2428 
2429 /*
2430  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2431  * inodes that are in memory - they all must be marked stale and attached to
2432  * the cluster buffer.
2433  */
2434 static int
2435 xfs_ifree_cluster(
2436 	struct xfs_trans	*tp,
2437 	struct xfs_perag	*pag,
2438 	struct xfs_inode	*free_ip,
2439 	struct xfs_icluster	*xic)
2440 {
2441 	struct xfs_mount	*mp = free_ip->i_mount;
2442 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2443 	struct xfs_buf		*bp;
2444 	xfs_daddr_t		blkno;
2445 	xfs_ino_t		inum = xic->first_ino;
2446 	int			nbufs;
2447 	int			i, j;
2448 	int			ioffset;
2449 	int			error;
2450 
2451 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2452 
2453 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2454 		/*
2455 		 * The allocation bitmap tells us which inodes of the chunk were
2456 		 * physically allocated. Skip the cluster if an inode falls into
2457 		 * a sparse region.
2458 		 */
2459 		ioffset = inum - xic->first_ino;
2460 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2461 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2462 			continue;
2463 		}
2464 
2465 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2466 					 XFS_INO_TO_AGBNO(mp, inum));
2467 
2468 		/*
2469 		 * We obtain and lock the backing buffer first in the process
2470 		 * here to ensure dirty inodes attached to the buffer remain in
2471 		 * the flushing state while we mark them stale.
2472 		 *
2473 		 * If we scan the in-memory inodes first, then buffer IO can
2474 		 * complete before we get a lock on it, and hence we may fail
2475 		 * to mark all the active inodes on the buffer stale.
2476 		 */
2477 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2478 				mp->m_bsize * igeo->blocks_per_cluster,
2479 				XBF_UNMAPPED, &bp);
2480 		if (error)
2481 			return error;
2482 
2483 		/*
2484 		 * This buffer may not have been correctly initialised as we
2485 		 * didn't read it from disk. That's not important because we are
2486 		 * only using to mark the buffer as stale in the log, and to
2487 		 * attach stale cached inodes on it. That means it will never be
2488 		 * dispatched for IO. If it is, we want to know about it, and we
2489 		 * want it to fail. We can acheive this by adding a write
2490 		 * verifier to the buffer.
2491 		 */
2492 		bp->b_ops = &xfs_inode_buf_ops;
2493 
2494 		/*
2495 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2496 		 * too. This requires lookups, and will skip inodes that we've
2497 		 * already marked XFS_ISTALE.
2498 		 */
2499 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2500 			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2501 
2502 		xfs_trans_stale_inode_buf(tp, bp);
2503 		xfs_trans_binval(tp, bp);
2504 	}
2505 	return 0;
2506 }
2507 
2508 /*
2509  * This is called to return an inode to the inode free list.  The inode should
2510  * already be truncated to 0 length and have no pages associated with it.  This
2511  * routine also assumes that the inode is already a part of the transaction.
2512  *
2513  * The on-disk copy of the inode will have been added to the list of unlinked
2514  * inodes in the AGI. We need to remove the inode from that list atomically with
2515  * respect to freeing it here.
2516  */
2517 int
2518 xfs_ifree(
2519 	struct xfs_trans	*tp,
2520 	struct xfs_inode	*ip)
2521 {
2522 	struct xfs_mount	*mp = ip->i_mount;
2523 	struct xfs_perag	*pag;
2524 	struct xfs_icluster	xic = { 0 };
2525 	struct xfs_inode_log_item *iip = ip->i_itemp;
2526 	int			error;
2527 
2528 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
2529 	ASSERT(VFS_I(ip)->i_nlink == 0);
2530 	ASSERT(ip->i_df.if_nextents == 0);
2531 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2532 	ASSERT(ip->i_nblocks == 0);
2533 
2534 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2535 
2536 	/*
2537 	 * Free the inode first so that we guarantee that the AGI lock is going
2538 	 * to be taken before we remove the inode from the unlinked list. This
2539 	 * makes the AGI lock -> unlinked list modification order the same as
2540 	 * used in O_TMPFILE creation.
2541 	 */
2542 	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2543 	if (error)
2544 		goto out;
2545 
2546 	error = xfs_iunlink_remove(tp, pag, ip);
2547 	if (error)
2548 		goto out;
2549 
2550 	/*
2551 	 * Free any local-format data sitting around before we reset the
2552 	 * data fork to extents format.  Note that the attr fork data has
2553 	 * already been freed by xfs_attr_inactive.
2554 	 */
2555 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2556 		kfree(ip->i_df.if_data);
2557 		ip->i_df.if_data = NULL;
2558 		ip->i_df.if_bytes = 0;
2559 	}
2560 
2561 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2562 	ip->i_diflags = 0;
2563 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2564 	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2565 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2566 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2567 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2568 
2569 	/* Don't attempt to replay owner changes for a deleted inode */
2570 	spin_lock(&iip->ili_lock);
2571 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2572 	spin_unlock(&iip->ili_lock);
2573 
2574 	/*
2575 	 * Bump the generation count so no one will be confused
2576 	 * by reincarnations of this inode.
2577 	 */
2578 	VFS_I(ip)->i_generation++;
2579 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2580 
2581 	if (xic.deleted)
2582 		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2583 out:
2584 	xfs_perag_put(pag);
2585 	return error;
2586 }
2587 
2588 /*
2589  * This is called to unpin an inode.  The caller must have the inode locked
2590  * in at least shared mode so that the buffer cannot be subsequently pinned
2591  * once someone is waiting for it to be unpinned.
2592  */
2593 static void
2594 xfs_iunpin(
2595 	struct xfs_inode	*ip)
2596 {
2597 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2598 
2599 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2600 
2601 	/* Give the log a push to start the unpinning I/O */
2602 	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2603 
2604 }
2605 
2606 static void
2607 __xfs_iunpin_wait(
2608 	struct xfs_inode	*ip)
2609 {
2610 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2611 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2612 
2613 	xfs_iunpin(ip);
2614 
2615 	do {
2616 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2617 		if (xfs_ipincount(ip))
2618 			io_schedule();
2619 	} while (xfs_ipincount(ip));
2620 	finish_wait(wq, &wait.wq_entry);
2621 }
2622 
2623 void
2624 xfs_iunpin_wait(
2625 	struct xfs_inode	*ip)
2626 {
2627 	if (xfs_ipincount(ip))
2628 		__xfs_iunpin_wait(ip);
2629 }
2630 
2631 /*
2632  * Removing an inode from the namespace involves removing the directory entry
2633  * and dropping the link count on the inode. Removing the directory entry can
2634  * result in locking an AGF (directory blocks were freed) and removing a link
2635  * count can result in placing the inode on an unlinked list which results in
2636  * locking an AGI.
2637  *
2638  * The big problem here is that we have an ordering constraint on AGF and AGI
2639  * locking - inode allocation locks the AGI, then can allocate a new extent for
2640  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2641  * removes the inode from the unlinked list, requiring that we lock the AGI
2642  * first, and then freeing the inode can result in an inode chunk being freed
2643  * and hence freeing disk space requiring that we lock an AGF.
2644  *
2645  * Hence the ordering that is imposed by other parts of the code is AGI before
2646  * AGF. This means we cannot remove the directory entry before we drop the inode
2647  * reference count and put it on the unlinked list as this results in a lock
2648  * order of AGF then AGI, and this can deadlock against inode allocation and
2649  * freeing. Therefore we must drop the link counts before we remove the
2650  * directory entry.
2651  *
2652  * This is still safe from a transactional point of view - it is not until we
2653  * get to xfs_defer_finish() that we have the possibility of multiple
2654  * transactions in this operation. Hence as long as we remove the directory
2655  * entry and drop the link count in the first transaction of the remove
2656  * operation, there are no transactional constraints on the ordering here.
2657  */
2658 int
2659 xfs_remove(
2660 	xfs_inode_t             *dp,
2661 	struct xfs_name		*name,
2662 	xfs_inode_t		*ip)
2663 {
2664 	xfs_mount_t		*mp = dp->i_mount;
2665 	xfs_trans_t             *tp = NULL;
2666 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2667 	int			dontcare;
2668 	int                     error = 0;
2669 	uint			resblks;
2670 
2671 	trace_xfs_remove(dp, name);
2672 
2673 	if (xfs_is_shutdown(mp))
2674 		return -EIO;
2675 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
2676 		return -EIO;
2677 
2678 	error = xfs_qm_dqattach(dp);
2679 	if (error)
2680 		goto std_return;
2681 
2682 	error = xfs_qm_dqattach(ip);
2683 	if (error)
2684 		goto std_return;
2685 
2686 	/*
2687 	 * We try to get the real space reservation first, allowing for
2688 	 * directory btree deletion(s) implying possible bmap insert(s).  If we
2689 	 * can't get the space reservation then we use 0 instead, and avoid the
2690 	 * bmap btree insert(s) in the directory code by, if the bmap insert
2691 	 * tries to happen, instead trimming the LAST block from the directory.
2692 	 *
2693 	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2694 	 * the directory code can handle a reservationless update and we don't
2695 	 * want to prevent a user from trying to free space by deleting things.
2696 	 */
2697 	resblks = XFS_REMOVE_SPACE_RES(mp);
2698 	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2699 			&tp, &dontcare);
2700 	if (error) {
2701 		ASSERT(error != -ENOSPC);
2702 		goto std_return;
2703 	}
2704 
2705 	/*
2706 	 * If we're removing a directory perform some additional validation.
2707 	 */
2708 	if (is_dir) {
2709 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2710 		if (VFS_I(ip)->i_nlink != 2) {
2711 			error = -ENOTEMPTY;
2712 			goto out_trans_cancel;
2713 		}
2714 		if (!xfs_dir_isempty(ip)) {
2715 			error = -ENOTEMPTY;
2716 			goto out_trans_cancel;
2717 		}
2718 
2719 		/* Drop the link from ip's "..".  */
2720 		error = xfs_droplink(tp, dp);
2721 		if (error)
2722 			goto out_trans_cancel;
2723 
2724 		/* Drop the "." link from ip to self.  */
2725 		error = xfs_droplink(tp, ip);
2726 		if (error)
2727 			goto out_trans_cancel;
2728 
2729 		/*
2730 		 * Point the unlinked child directory's ".." entry to the root
2731 		 * directory to eliminate back-references to inodes that may
2732 		 * get freed before the child directory is closed.  If the fs
2733 		 * gets shrunk, this can lead to dirent inode validation errors.
2734 		 */
2735 		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2736 			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2737 					tp->t_mountp->m_sb.sb_rootino, 0);
2738 			if (error)
2739 				goto out_trans_cancel;
2740 		}
2741 	} else {
2742 		/*
2743 		 * When removing a non-directory we need to log the parent
2744 		 * inode here.  For a directory this is done implicitly
2745 		 * by the xfs_droplink call for the ".." entry.
2746 		 */
2747 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2748 	}
2749 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2750 
2751 	/* Drop the link from dp to ip. */
2752 	error = xfs_droplink(tp, ip);
2753 	if (error)
2754 		goto out_trans_cancel;
2755 
2756 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2757 	if (error) {
2758 		ASSERT(error != -ENOENT);
2759 		goto out_trans_cancel;
2760 	}
2761 
2762 	/*
2763 	 * Drop the link from dp to ip, and if ip was a directory, remove the
2764 	 * '.' and '..' references since we freed the directory.
2765 	 */
2766 	xfs_dir_update_hook(dp, ip, -1, name);
2767 
2768 	/*
2769 	 * If this is a synchronous mount, make sure that the
2770 	 * remove transaction goes to disk before returning to
2771 	 * the user.
2772 	 */
2773 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2774 		xfs_trans_set_sync(tp);
2775 
2776 	error = xfs_trans_commit(tp);
2777 	if (error)
2778 		goto std_return;
2779 
2780 	if (is_dir && xfs_inode_is_filestream(ip))
2781 		xfs_filestream_deassociate(ip);
2782 
2783 	return 0;
2784 
2785  out_trans_cancel:
2786 	xfs_trans_cancel(tp);
2787  std_return:
2788 	return error;
2789 }
2790 
2791 /*
2792  * Enter all inodes for a rename transaction into a sorted array.
2793  */
2794 #define __XFS_SORT_INODES	5
2795 STATIC void
2796 xfs_sort_for_rename(
2797 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2798 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2799 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2800 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2801 	struct xfs_inode	*wip,	/* in: whiteout inode */
2802 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2803 	int			*num_inodes)  /* in/out: inodes in array */
2804 {
2805 	int			i, j;
2806 
2807 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2808 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2809 
2810 	/*
2811 	 * i_tab contains a list of pointers to inodes.  We initialize
2812 	 * the table here & we'll sort it.  We will then use it to
2813 	 * order the acquisition of the inode locks.
2814 	 *
2815 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2816 	 */
2817 	i = 0;
2818 	i_tab[i++] = dp1;
2819 	i_tab[i++] = dp2;
2820 	i_tab[i++] = ip1;
2821 	if (ip2)
2822 		i_tab[i++] = ip2;
2823 	if (wip)
2824 		i_tab[i++] = wip;
2825 	*num_inodes = i;
2826 
2827 	/*
2828 	 * Sort the elements via bubble sort.  (Remember, there are at
2829 	 * most 5 elements to sort, so this is adequate.)
2830 	 */
2831 	for (i = 0; i < *num_inodes; i++) {
2832 		for (j = 1; j < *num_inodes; j++) {
2833 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2834 				struct xfs_inode *temp = i_tab[j];
2835 				i_tab[j] = i_tab[j-1];
2836 				i_tab[j-1] = temp;
2837 			}
2838 		}
2839 	}
2840 }
2841 
2842 static int
2843 xfs_finish_rename(
2844 	struct xfs_trans	*tp)
2845 {
2846 	/*
2847 	 * If this is a synchronous mount, make sure that the rename transaction
2848 	 * goes to disk before returning to the user.
2849 	 */
2850 	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2851 		xfs_trans_set_sync(tp);
2852 
2853 	return xfs_trans_commit(tp);
2854 }
2855 
2856 /*
2857  * xfs_cross_rename()
2858  *
2859  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2860  */
2861 STATIC int
2862 xfs_cross_rename(
2863 	struct xfs_trans	*tp,
2864 	struct xfs_inode	*dp1,
2865 	struct xfs_name		*name1,
2866 	struct xfs_inode	*ip1,
2867 	struct xfs_inode	*dp2,
2868 	struct xfs_name		*name2,
2869 	struct xfs_inode	*ip2,
2870 	int			spaceres)
2871 {
2872 	int		error = 0;
2873 	int		ip1_flags = 0;
2874 	int		ip2_flags = 0;
2875 	int		dp2_flags = 0;
2876 
2877 	/* Swap inode number for dirent in first parent */
2878 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2879 	if (error)
2880 		goto out_trans_abort;
2881 
2882 	/* Swap inode number for dirent in second parent */
2883 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2884 	if (error)
2885 		goto out_trans_abort;
2886 
2887 	/*
2888 	 * If we're renaming one or more directories across different parents,
2889 	 * update the respective ".." entries (and link counts) to match the new
2890 	 * parents.
2891 	 */
2892 	if (dp1 != dp2) {
2893 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2894 
2895 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2896 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2897 						dp1->i_ino, spaceres);
2898 			if (error)
2899 				goto out_trans_abort;
2900 
2901 			/* transfer ip2 ".." reference to dp1 */
2902 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2903 				error = xfs_droplink(tp, dp2);
2904 				if (error)
2905 					goto out_trans_abort;
2906 				xfs_bumplink(tp, dp1);
2907 			}
2908 
2909 			/*
2910 			 * Although ip1 isn't changed here, userspace needs
2911 			 * to be warned about the change, so that applications
2912 			 * relying on it (like backup ones), will properly
2913 			 * notify the change
2914 			 */
2915 			ip1_flags |= XFS_ICHGTIME_CHG;
2916 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2917 		}
2918 
2919 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2920 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2921 						dp2->i_ino, spaceres);
2922 			if (error)
2923 				goto out_trans_abort;
2924 
2925 			/* transfer ip1 ".." reference to dp2 */
2926 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2927 				error = xfs_droplink(tp, dp1);
2928 				if (error)
2929 					goto out_trans_abort;
2930 				xfs_bumplink(tp, dp2);
2931 			}
2932 
2933 			/*
2934 			 * Although ip2 isn't changed here, userspace needs
2935 			 * to be warned about the change, so that applications
2936 			 * relying on it (like backup ones), will properly
2937 			 * notify the change
2938 			 */
2939 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2940 			ip2_flags |= XFS_ICHGTIME_CHG;
2941 		}
2942 	}
2943 
2944 	if (ip1_flags) {
2945 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2946 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2947 	}
2948 	if (ip2_flags) {
2949 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2950 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2951 	}
2952 	if (dp2_flags) {
2953 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2954 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2955 	}
2956 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2957 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2958 
2959 	/*
2960 	 * Inform our hook clients that we've finished an exchange operation as
2961 	 * follows: removed the source and target files from their directories;
2962 	 * added the target to the source directory; and added the source to
2963 	 * the target directory.  All inodes are locked, so it's ok to model a
2964 	 * rename this way so long as we say we deleted entries before we add
2965 	 * new ones.
2966 	 */
2967 	xfs_dir_update_hook(dp1, ip1, -1, name1);
2968 	xfs_dir_update_hook(dp2, ip2, -1, name2);
2969 	xfs_dir_update_hook(dp1, ip2, 1, name1);
2970 	xfs_dir_update_hook(dp2, ip1, 1, name2);
2971 
2972 	return xfs_finish_rename(tp);
2973 
2974 out_trans_abort:
2975 	xfs_trans_cancel(tp);
2976 	return error;
2977 }
2978 
2979 /*
2980  * xfs_rename_alloc_whiteout()
2981  *
2982  * Return a referenced, unlinked, unlocked inode that can be used as a
2983  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2984  * crash between allocating the inode and linking it into the rename transaction
2985  * recovery will free the inode and we won't leak it.
2986  */
2987 static int
2988 xfs_rename_alloc_whiteout(
2989 	struct mnt_idmap	*idmap,
2990 	struct xfs_name		*src_name,
2991 	struct xfs_inode	*dp,
2992 	struct xfs_inode	**wip)
2993 {
2994 	struct xfs_inode	*tmpfile;
2995 	struct qstr		name;
2996 	int			error;
2997 
2998 	error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE,
2999 				   &tmpfile);
3000 	if (error)
3001 		return error;
3002 
3003 	name.name = src_name->name;
3004 	name.len = src_name->len;
3005 	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
3006 	if (error) {
3007 		xfs_finish_inode_setup(tmpfile);
3008 		xfs_irele(tmpfile);
3009 		return error;
3010 	}
3011 
3012 	/*
3013 	 * Prepare the tmpfile inode as if it were created through the VFS.
3014 	 * Complete the inode setup and flag it as linkable.  nlink is already
3015 	 * zero, so we can skip the drop_nlink.
3016 	 */
3017 	xfs_setup_iops(tmpfile);
3018 	xfs_finish_inode_setup(tmpfile);
3019 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3020 
3021 	*wip = tmpfile;
3022 	return 0;
3023 }
3024 
3025 /*
3026  * xfs_rename
3027  */
3028 int
3029 xfs_rename(
3030 	struct mnt_idmap	*idmap,
3031 	struct xfs_inode	*src_dp,
3032 	struct xfs_name		*src_name,
3033 	struct xfs_inode	*src_ip,
3034 	struct xfs_inode	*target_dp,
3035 	struct xfs_name		*target_name,
3036 	struct xfs_inode	*target_ip,
3037 	unsigned int		flags)
3038 {
3039 	struct xfs_mount	*mp = src_dp->i_mount;
3040 	struct xfs_trans	*tp;
3041 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3042 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3043 	int			i;
3044 	int			num_inodes = __XFS_SORT_INODES;
3045 	bool			new_parent = (src_dp != target_dp);
3046 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3047 	int			spaceres;
3048 	bool			retried = false;
3049 	int			error, nospace_error = 0;
3050 
3051 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3052 
3053 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3054 		return -EINVAL;
3055 
3056 	/*
3057 	 * If we are doing a whiteout operation, allocate the whiteout inode
3058 	 * we will be placing at the target and ensure the type is set
3059 	 * appropriately.
3060 	 */
3061 	if (flags & RENAME_WHITEOUT) {
3062 		error = xfs_rename_alloc_whiteout(idmap, src_name,
3063 						  target_dp, &wip);
3064 		if (error)
3065 			return error;
3066 
3067 		/* setup target dirent info as whiteout */
3068 		src_name->type = XFS_DIR3_FT_CHRDEV;
3069 	}
3070 
3071 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3072 				inodes, &num_inodes);
3073 
3074 retry:
3075 	nospace_error = 0;
3076 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3077 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3078 	if (error == -ENOSPC) {
3079 		nospace_error = error;
3080 		spaceres = 0;
3081 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3082 				&tp);
3083 	}
3084 	if (error)
3085 		goto out_release_wip;
3086 
3087 	/*
3088 	 * Attach the dquots to the inodes
3089 	 */
3090 	error = xfs_qm_vop_rename_dqattach(inodes);
3091 	if (error)
3092 		goto out_trans_cancel;
3093 
3094 	/*
3095 	 * Lock all the participating inodes. Depending upon whether
3096 	 * the target_name exists in the target directory, and
3097 	 * whether the target directory is the same as the source
3098 	 * directory, we can lock from 2 to 5 inodes.
3099 	 */
3100 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3101 
3102 	/*
3103 	 * Join all the inodes to the transaction. From this point on,
3104 	 * we can rely on either trans_commit or trans_cancel to unlock
3105 	 * them.
3106 	 */
3107 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3108 	if (new_parent)
3109 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3110 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3111 	if (target_ip)
3112 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3113 	if (wip)
3114 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3115 
3116 	/*
3117 	 * If we are using project inheritance, we only allow renames
3118 	 * into our tree when the project IDs are the same; else the
3119 	 * tree quota mechanism would be circumvented.
3120 	 */
3121 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3122 		     target_dp->i_projid != src_ip->i_projid)) {
3123 		error = -EXDEV;
3124 		goto out_trans_cancel;
3125 	}
3126 
3127 	/* RENAME_EXCHANGE is unique from here on. */
3128 	if (flags & RENAME_EXCHANGE)
3129 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3130 					target_dp, target_name, target_ip,
3131 					spaceres);
3132 
3133 	/*
3134 	 * Try to reserve quota to handle an expansion of the target directory.
3135 	 * We'll allow the rename to continue in reservationless mode if we hit
3136 	 * a space usage constraint.  If we trigger reservationless mode, save
3137 	 * the errno if there isn't any free space in the target directory.
3138 	 */
3139 	if (spaceres != 0) {
3140 		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
3141 				0, false);
3142 		if (error == -EDQUOT || error == -ENOSPC) {
3143 			if (!retried) {
3144 				xfs_trans_cancel(tp);
3145 				xfs_blockgc_free_quota(target_dp, 0);
3146 				retried = true;
3147 				goto retry;
3148 			}
3149 
3150 			nospace_error = error;
3151 			spaceres = 0;
3152 			error = 0;
3153 		}
3154 		if (error)
3155 			goto out_trans_cancel;
3156 	}
3157 
3158 	/*
3159 	 * Check for expected errors before we dirty the transaction
3160 	 * so we can return an error without a transaction abort.
3161 	 */
3162 	if (target_ip == NULL) {
3163 		/*
3164 		 * If there's no space reservation, check the entry will
3165 		 * fit before actually inserting it.
3166 		 */
3167 		if (!spaceres) {
3168 			error = xfs_dir_canenter(tp, target_dp, target_name);
3169 			if (error)
3170 				goto out_trans_cancel;
3171 		}
3172 	} else {
3173 		/*
3174 		 * If target exists and it's a directory, check that whether
3175 		 * it can be destroyed.
3176 		 */
3177 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3178 		    (!xfs_dir_isempty(target_ip) ||
3179 		     (VFS_I(target_ip)->i_nlink > 2))) {
3180 			error = -EEXIST;
3181 			goto out_trans_cancel;
3182 		}
3183 	}
3184 
3185 	/*
3186 	 * Lock the AGI buffers we need to handle bumping the nlink of the
3187 	 * whiteout inode off the unlinked list and to handle dropping the
3188 	 * nlink of the target inode.  Per locking order rules, do this in
3189 	 * increasing AG order and before directory block allocation tries to
3190 	 * grab AGFs because we grab AGIs before AGFs.
3191 	 *
3192 	 * The (vfs) caller must ensure that if src is a directory then
3193 	 * target_ip is either null or an empty directory.
3194 	 */
3195 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3196 		if (inodes[i] == wip ||
3197 		    (inodes[i] == target_ip &&
3198 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3199 			struct xfs_perag	*pag;
3200 			struct xfs_buf		*bp;
3201 
3202 			pag = xfs_perag_get(mp,
3203 					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
3204 			error = xfs_read_agi(pag, tp, 0, &bp);
3205 			xfs_perag_put(pag);
3206 			if (error)
3207 				goto out_trans_cancel;
3208 		}
3209 	}
3210 
3211 	/*
3212 	 * Directory entry creation below may acquire the AGF. Remove
3213 	 * the whiteout from the unlinked list first to preserve correct
3214 	 * AGI/AGF locking order. This dirties the transaction so failures
3215 	 * after this point will abort and log recovery will clean up the
3216 	 * mess.
3217 	 *
3218 	 * For whiteouts, we need to bump the link count on the whiteout
3219 	 * inode. After this point, we have a real link, clear the tmpfile
3220 	 * state flag from the inode so it doesn't accidentally get misused
3221 	 * in future.
3222 	 */
3223 	if (wip) {
3224 		struct xfs_perag	*pag;
3225 
3226 		ASSERT(VFS_I(wip)->i_nlink == 0);
3227 
3228 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3229 		error = xfs_iunlink_remove(tp, pag, wip);
3230 		xfs_perag_put(pag);
3231 		if (error)
3232 			goto out_trans_cancel;
3233 
3234 		xfs_bumplink(tp, wip);
3235 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3236 	}
3237 
3238 	/*
3239 	 * Set up the target.
3240 	 */
3241 	if (target_ip == NULL) {
3242 		/*
3243 		 * If target does not exist and the rename crosses
3244 		 * directories, adjust the target directory link count
3245 		 * to account for the ".." reference from the new entry.
3246 		 */
3247 		error = xfs_dir_createname(tp, target_dp, target_name,
3248 					   src_ip->i_ino, spaceres);
3249 		if (error)
3250 			goto out_trans_cancel;
3251 
3252 		xfs_trans_ichgtime(tp, target_dp,
3253 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3254 
3255 		if (new_parent && src_is_directory) {
3256 			xfs_bumplink(tp, target_dp);
3257 		}
3258 	} else { /* target_ip != NULL */
3259 		/*
3260 		 * Link the source inode under the target name.
3261 		 * If the source inode is a directory and we are moving
3262 		 * it across directories, its ".." entry will be
3263 		 * inconsistent until we replace that down below.
3264 		 *
3265 		 * In case there is already an entry with the same
3266 		 * name at the destination directory, remove it first.
3267 		 */
3268 		error = xfs_dir_replace(tp, target_dp, target_name,
3269 					src_ip->i_ino, spaceres);
3270 		if (error)
3271 			goto out_trans_cancel;
3272 
3273 		xfs_trans_ichgtime(tp, target_dp,
3274 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3275 
3276 		/*
3277 		 * Decrement the link count on the target since the target
3278 		 * dir no longer points to it.
3279 		 */
3280 		error = xfs_droplink(tp, target_ip);
3281 		if (error)
3282 			goto out_trans_cancel;
3283 
3284 		if (src_is_directory) {
3285 			/*
3286 			 * Drop the link from the old "." entry.
3287 			 */
3288 			error = xfs_droplink(tp, target_ip);
3289 			if (error)
3290 				goto out_trans_cancel;
3291 		}
3292 	} /* target_ip != NULL */
3293 
3294 	/*
3295 	 * Remove the source.
3296 	 */
3297 	if (new_parent && src_is_directory) {
3298 		/*
3299 		 * Rewrite the ".." entry to point to the new
3300 		 * directory.
3301 		 */
3302 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3303 					target_dp->i_ino, spaceres);
3304 		ASSERT(error != -EEXIST);
3305 		if (error)
3306 			goto out_trans_cancel;
3307 	}
3308 
3309 	/*
3310 	 * We always want to hit the ctime on the source inode.
3311 	 *
3312 	 * This isn't strictly required by the standards since the source
3313 	 * inode isn't really being changed, but old unix file systems did
3314 	 * it and some incremental backup programs won't work without it.
3315 	 */
3316 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3317 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3318 
3319 	/*
3320 	 * Adjust the link count on src_dp.  This is necessary when
3321 	 * renaming a directory, either within one parent when
3322 	 * the target existed, or across two parent directories.
3323 	 */
3324 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3325 
3326 		/*
3327 		 * Decrement link count on src_directory since the
3328 		 * entry that's moved no longer points to it.
3329 		 */
3330 		error = xfs_droplink(tp, src_dp);
3331 		if (error)
3332 			goto out_trans_cancel;
3333 	}
3334 
3335 	/*
3336 	 * For whiteouts, we only need to update the source dirent with the
3337 	 * inode number of the whiteout inode rather than removing it
3338 	 * altogether.
3339 	 */
3340 	if (wip)
3341 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3342 					spaceres);
3343 	else
3344 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3345 					   spaceres);
3346 
3347 	if (error)
3348 		goto out_trans_cancel;
3349 
3350 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3351 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3352 	if (new_parent)
3353 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3354 
3355 	/*
3356 	 * Inform our hook clients that we've finished a rename operation as
3357 	 * follows: removed the source and target files from their directories;
3358 	 * that we've added the source to the target directory; and finally
3359 	 * that we've added the whiteout, if there was one.  All inodes are
3360 	 * locked, so it's ok to model a rename this way so long as we say we
3361 	 * deleted entries before we add new ones.
3362 	 */
3363 	if (target_ip)
3364 		xfs_dir_update_hook(target_dp, target_ip, -1, target_name);
3365 	xfs_dir_update_hook(src_dp, src_ip, -1, src_name);
3366 	xfs_dir_update_hook(target_dp, src_ip, 1, target_name);
3367 	if (wip)
3368 		xfs_dir_update_hook(src_dp, wip, 1, src_name);
3369 
3370 	error = xfs_finish_rename(tp);
3371 	if (wip)
3372 		xfs_irele(wip);
3373 	return error;
3374 
3375 out_trans_cancel:
3376 	xfs_trans_cancel(tp);
3377 out_release_wip:
3378 	if (wip)
3379 		xfs_irele(wip);
3380 	if (error == -ENOSPC && nospace_error)
3381 		error = nospace_error;
3382 	return error;
3383 }
3384 
3385 static int
3386 xfs_iflush(
3387 	struct xfs_inode	*ip,
3388 	struct xfs_buf		*bp)
3389 {
3390 	struct xfs_inode_log_item *iip = ip->i_itemp;
3391 	struct xfs_dinode	*dip;
3392 	struct xfs_mount	*mp = ip->i_mount;
3393 	int			error;
3394 
3395 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
3396 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3397 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3398 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3399 	ASSERT(iip->ili_item.li_buf == bp);
3400 
3401 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3402 
3403 	/*
3404 	 * We don't flush the inode if any of the following checks fail, but we
3405 	 * do still update the log item and attach to the backing buffer as if
3406 	 * the flush happened. This is a formality to facilitate predictable
3407 	 * error handling as the caller will shutdown and fail the buffer.
3408 	 */
3409 	error = -EFSCORRUPTED;
3410 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3411 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3412 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3413 			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
3414 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3415 		goto flush_out;
3416 	}
3417 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3418 		if (XFS_TEST_ERROR(
3419 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3420 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3421 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3422 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3423 				"%s: Bad regular inode %llu, ptr "PTR_FMT,
3424 				__func__, ip->i_ino, ip);
3425 			goto flush_out;
3426 		}
3427 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3428 		if (XFS_TEST_ERROR(
3429 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3430 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3431 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3432 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3433 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3434 				"%s: Bad directory inode %llu, ptr "PTR_FMT,
3435 				__func__, ip->i_ino, ip);
3436 			goto flush_out;
3437 		}
3438 	}
3439 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3440 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3441 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3442 			"%s: detected corrupt incore inode %llu, "
3443 			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3444 			__func__, ip->i_ino,
3445 			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3446 			ip->i_nblocks, ip);
3447 		goto flush_out;
3448 	}
3449 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3450 				mp, XFS_ERRTAG_IFLUSH_6)) {
3451 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3452 			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
3453 			__func__, ip->i_ino, ip->i_forkoff, ip);
3454 		goto flush_out;
3455 	}
3456 
3457 	/*
3458 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3459 	 * count for correct sequencing.  We bump the flush iteration count so
3460 	 * we can detect flushes which postdate a log record during recovery.
3461 	 * This is redundant as we now log every change and hence this can't
3462 	 * happen but we need to still do it to ensure backwards compatibility
3463 	 * with old kernels that predate logging all inode changes.
3464 	 */
3465 	if (!xfs_has_v3inodes(mp))
3466 		ip->i_flushiter++;
3467 
3468 	/*
3469 	 * If there are inline format data / attr forks attached to this inode,
3470 	 * make sure they are not corrupt.
3471 	 */
3472 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3473 	    xfs_ifork_verify_local_data(ip))
3474 		goto flush_out;
3475 	if (xfs_inode_has_attr_fork(ip) &&
3476 	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3477 	    xfs_ifork_verify_local_attr(ip))
3478 		goto flush_out;
3479 
3480 	/*
3481 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3482 	 * copy out the core of the inode, because if the inode is dirty at all
3483 	 * the core must be.
3484 	 */
3485 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3486 
3487 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3488 	if (!xfs_has_v3inodes(mp)) {
3489 		if (ip->i_flushiter == DI_MAX_FLUSH)
3490 			ip->i_flushiter = 0;
3491 	}
3492 
3493 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3494 	if (xfs_inode_has_attr_fork(ip))
3495 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3496 
3497 	/*
3498 	 * We've recorded everything logged in the inode, so we'd like to clear
3499 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3500 	 * However, we can't stop logging all this information until the data
3501 	 * we've copied into the disk buffer is written to disk.  If we did we
3502 	 * might overwrite the copy of the inode in the log with all the data
3503 	 * after re-logging only part of it, and in the face of a crash we
3504 	 * wouldn't have all the data we need to recover.
3505 	 *
3506 	 * What we do is move the bits to the ili_last_fields field.  When
3507 	 * logging the inode, these bits are moved back to the ili_fields field.
3508 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3509 	 * we know that the information those bits represent is permanently on
3510 	 * disk.  As long as the flush completes before the inode is logged
3511 	 * again, then both ili_fields and ili_last_fields will be cleared.
3512 	 */
3513 	error = 0;
3514 flush_out:
3515 	spin_lock(&iip->ili_lock);
3516 	iip->ili_last_fields = iip->ili_fields;
3517 	iip->ili_fields = 0;
3518 	iip->ili_fsync_fields = 0;
3519 	spin_unlock(&iip->ili_lock);
3520 
3521 	/*
3522 	 * Store the current LSN of the inode so that we can tell whether the
3523 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3524 	 */
3525 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3526 				&iip->ili_item.li_lsn);
3527 
3528 	/* generate the checksum. */
3529 	xfs_dinode_calc_crc(mp, dip);
3530 	if (error)
3531 		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
3532 	return error;
3533 }
3534 
3535 /*
3536  * Non-blocking flush of dirty inode metadata into the backing buffer.
3537  *
3538  * The caller must have a reference to the inode and hold the cluster buffer
3539  * locked. The function will walk across all the inodes on the cluster buffer it
3540  * can find and lock without blocking, and flush them to the cluster buffer.
3541  *
3542  * On successful flushing of at least one inode, the caller must write out the
3543  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3544  * the caller needs to release the buffer. On failure, the filesystem will be
3545  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3546  * will be returned.
3547  */
3548 int
3549 xfs_iflush_cluster(
3550 	struct xfs_buf		*bp)
3551 {
3552 	struct xfs_mount	*mp = bp->b_mount;
3553 	struct xfs_log_item	*lip, *n;
3554 	struct xfs_inode	*ip;
3555 	struct xfs_inode_log_item *iip;
3556 	int			clcount = 0;
3557 	int			error = 0;
3558 
3559 	/*
3560 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3561 	 * will remove itself from the list.
3562 	 */
3563 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3564 		iip = (struct xfs_inode_log_item *)lip;
3565 		ip = iip->ili_inode;
3566 
3567 		/*
3568 		 * Quick and dirty check to avoid locks if possible.
3569 		 */
3570 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3571 			continue;
3572 		if (xfs_ipincount(ip))
3573 			continue;
3574 
3575 		/*
3576 		 * The inode is still attached to the buffer, which means it is
3577 		 * dirty but reclaim might try to grab it. Check carefully for
3578 		 * that, and grab the ilock while still holding the i_flags_lock
3579 		 * to guarantee reclaim will not be able to reclaim this inode
3580 		 * once we drop the i_flags_lock.
3581 		 */
3582 		spin_lock(&ip->i_flags_lock);
3583 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3584 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3585 			spin_unlock(&ip->i_flags_lock);
3586 			continue;
3587 		}
3588 
3589 		/*
3590 		 * ILOCK will pin the inode against reclaim and prevent
3591 		 * concurrent transactions modifying the inode while we are
3592 		 * flushing the inode. If we get the lock, set the flushing
3593 		 * state before we drop the i_flags_lock.
3594 		 */
3595 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3596 			spin_unlock(&ip->i_flags_lock);
3597 			continue;
3598 		}
3599 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3600 		spin_unlock(&ip->i_flags_lock);
3601 
3602 		/*
3603 		 * Abort flushing this inode if we are shut down because the
3604 		 * inode may not currently be in the AIL. This can occur when
3605 		 * log I/O failure unpins the inode without inserting into the
3606 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3607 		 * that otherwise looks like it should be flushed.
3608 		 */
3609 		if (xlog_is_shutdown(mp->m_log)) {
3610 			xfs_iunpin_wait(ip);
3611 			xfs_iflush_abort(ip);
3612 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3613 			error = -EIO;
3614 			continue;
3615 		}
3616 
3617 		/* don't block waiting on a log force to unpin dirty inodes */
3618 		if (xfs_ipincount(ip)) {
3619 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3620 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3621 			continue;
3622 		}
3623 
3624 		if (!xfs_inode_clean(ip))
3625 			error = xfs_iflush(ip, bp);
3626 		else
3627 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3628 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3629 		if (error)
3630 			break;
3631 		clcount++;
3632 	}
3633 
3634 	if (error) {
3635 		/*
3636 		 * Shutdown first so we kill the log before we release this
3637 		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3638 		 * of the log, failing it before the _log_ is shut down can
3639 		 * result in the log tail being moved forward in the journal
3640 		 * on disk because log writes can still be taking place. Hence
3641 		 * unpinning the tail will allow the ICREATE intent to be
3642 		 * removed from the log an recovery will fail with uninitialised
3643 		 * inode cluster buffers.
3644 		 */
3645 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3646 		bp->b_flags |= XBF_ASYNC;
3647 		xfs_buf_ioend_fail(bp);
3648 		return error;
3649 	}
3650 
3651 	if (!clcount)
3652 		return -EAGAIN;
3653 
3654 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3655 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3656 	return 0;
3657 
3658 }
3659 
3660 /* Release an inode. */
3661 void
3662 xfs_irele(
3663 	struct xfs_inode	*ip)
3664 {
3665 	trace_xfs_irele(ip, _RET_IP_);
3666 	iput(VFS_I(ip));
3667 }
3668 
3669 /*
3670  * Ensure all commited transactions touching the inode are written to the log.
3671  */
3672 int
3673 xfs_log_force_inode(
3674 	struct xfs_inode	*ip)
3675 {
3676 	xfs_csn_t		seq = 0;
3677 
3678 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3679 	if (xfs_ipincount(ip))
3680 		seq = ip->i_itemp->ili_commit_seq;
3681 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3682 
3683 	if (!seq)
3684 		return 0;
3685 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3686 }
3687 
3688 /*
3689  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3690  * abide vfs locking order (lowest pointer value goes first) and breaking the
3691  * layout leases before proceeding.  The loop is needed because we cannot call
3692  * the blocking break_layout() with the iolocks held, and therefore have to
3693  * back out both locks.
3694  */
3695 static int
3696 xfs_iolock_two_inodes_and_break_layout(
3697 	struct inode		*src,
3698 	struct inode		*dest)
3699 {
3700 	int			error;
3701 
3702 	if (src > dest)
3703 		swap(src, dest);
3704 
3705 retry:
3706 	/* Wait to break both inodes' layouts before we start locking. */
3707 	error = break_layout(src, true);
3708 	if (error)
3709 		return error;
3710 	if (src != dest) {
3711 		error = break_layout(dest, true);
3712 		if (error)
3713 			return error;
3714 	}
3715 
3716 	/* Lock one inode and make sure nobody got in and leased it. */
3717 	inode_lock(src);
3718 	error = break_layout(src, false);
3719 	if (error) {
3720 		inode_unlock(src);
3721 		if (error == -EWOULDBLOCK)
3722 			goto retry;
3723 		return error;
3724 	}
3725 
3726 	if (src == dest)
3727 		return 0;
3728 
3729 	/* Lock the other inode and make sure nobody got in and leased it. */
3730 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3731 	error = break_layout(dest, false);
3732 	if (error) {
3733 		inode_unlock(src);
3734 		inode_unlock(dest);
3735 		if (error == -EWOULDBLOCK)
3736 			goto retry;
3737 		return error;
3738 	}
3739 
3740 	return 0;
3741 }
3742 
3743 static int
3744 xfs_mmaplock_two_inodes_and_break_dax_layout(
3745 	struct xfs_inode	*ip1,
3746 	struct xfs_inode	*ip2)
3747 {
3748 	int			error;
3749 	bool			retry;
3750 	struct page		*page;
3751 
3752 	if (ip1->i_ino > ip2->i_ino)
3753 		swap(ip1, ip2);
3754 
3755 again:
3756 	retry = false;
3757 	/* Lock the first inode */
3758 	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3759 	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3760 	if (error || retry) {
3761 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3762 		if (error == 0 && retry)
3763 			goto again;
3764 		return error;
3765 	}
3766 
3767 	if (ip1 == ip2)
3768 		return 0;
3769 
3770 	/* Nested lock the second inode */
3771 	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3772 	/*
3773 	 * We cannot use xfs_break_dax_layouts() directly here because it may
3774 	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3775 	 * for this nested lock case.
3776 	 */
3777 	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3778 	if (page && page_ref_count(page) != 1) {
3779 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3780 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3781 		goto again;
3782 	}
3783 
3784 	return 0;
3785 }
3786 
3787 /*
3788  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3789  * mmap activity.
3790  */
3791 int
3792 xfs_ilock2_io_mmap(
3793 	struct xfs_inode	*ip1,
3794 	struct xfs_inode	*ip2)
3795 {
3796 	int			ret;
3797 
3798 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3799 	if (ret)
3800 		return ret;
3801 
3802 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3803 		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3804 		if (ret) {
3805 			inode_unlock(VFS_I(ip2));
3806 			if (ip1 != ip2)
3807 				inode_unlock(VFS_I(ip1));
3808 			return ret;
3809 		}
3810 	} else
3811 		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3812 					    VFS_I(ip2)->i_mapping);
3813 
3814 	return 0;
3815 }
3816 
3817 /* Unlock both inodes to allow IO and mmap activity. */
3818 void
3819 xfs_iunlock2_io_mmap(
3820 	struct xfs_inode	*ip1,
3821 	struct xfs_inode	*ip2)
3822 {
3823 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3824 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3825 		if (ip1 != ip2)
3826 			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3827 	} else
3828 		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3829 					      VFS_I(ip2)->i_mapping);
3830 
3831 	inode_unlock(VFS_I(ip2));
3832 	if (ip1 != ip2)
3833 		inode_unlock(VFS_I(ip1));
3834 }
3835 
3836 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
3837 void
3838 xfs_iunlock2_remapping(
3839 	struct xfs_inode	*ip1,
3840 	struct xfs_inode	*ip2)
3841 {
3842 	xfs_iflags_clear(ip1, XFS_IREMAPPING);
3843 
3844 	if (ip1 != ip2)
3845 		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
3846 	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3847 
3848 	if (ip1 != ip2)
3849 		inode_unlock_shared(VFS_I(ip1));
3850 	inode_unlock(VFS_I(ip2));
3851 }
3852 
3853 /*
3854  * Reload the incore inode list for this inode.  Caller should ensure that
3855  * the link count cannot change, either by taking ILOCK_SHARED or otherwise
3856  * preventing other threads from executing.
3857  */
3858 int
3859 xfs_inode_reload_unlinked_bucket(
3860 	struct xfs_trans	*tp,
3861 	struct xfs_inode	*ip)
3862 {
3863 	struct xfs_mount	*mp = tp->t_mountp;
3864 	struct xfs_buf		*agibp;
3865 	struct xfs_agi		*agi;
3866 	struct xfs_perag	*pag;
3867 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
3868 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
3869 	xfs_agino_t		prev_agino, next_agino;
3870 	unsigned int		bucket;
3871 	bool			foundit = false;
3872 	int			error;
3873 
3874 	/* Grab the first inode in the list */
3875 	pag = xfs_perag_get(mp, agno);
3876 	error = xfs_ialloc_read_agi(pag, tp, 0, &agibp);
3877 	xfs_perag_put(pag);
3878 	if (error)
3879 		return error;
3880 
3881 	/*
3882 	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
3883 	 * incore unlinked list pointers for this inode.  Check once more to
3884 	 * see if we raced with anyone else to reload the unlinked list.
3885 	 */
3886 	if (!xfs_inode_unlinked_incomplete(ip)) {
3887 		foundit = true;
3888 		goto out_agibp;
3889 	}
3890 
3891 	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
3892 	agi = agibp->b_addr;
3893 
3894 	trace_xfs_inode_reload_unlinked_bucket(ip);
3895 
3896 	xfs_info_ratelimited(mp,
3897  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
3898 			agino, agno);
3899 
3900 	prev_agino = NULLAGINO;
3901 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3902 	while (next_agino != NULLAGINO) {
3903 		struct xfs_inode	*next_ip = NULL;
3904 
3905 		/* Found this caller's inode, set its backlink. */
3906 		if (next_agino == agino) {
3907 			next_ip = ip;
3908 			next_ip->i_prev_unlinked = prev_agino;
3909 			foundit = true;
3910 			goto next_inode;
3911 		}
3912 
3913 		/* Try in-memory lookup first. */
3914 		next_ip = xfs_iunlink_lookup(pag, next_agino);
3915 		if (next_ip)
3916 			goto next_inode;
3917 
3918 		/* Inode not in memory, try reloading it. */
3919 		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
3920 				next_agino);
3921 		if (error)
3922 			break;
3923 
3924 		/* Grab the reloaded inode. */
3925 		next_ip = xfs_iunlink_lookup(pag, next_agino);
3926 		if (!next_ip) {
3927 			/* No incore inode at all?  We reloaded it... */
3928 			ASSERT(next_ip != NULL);
3929 			error = -EFSCORRUPTED;
3930 			break;
3931 		}
3932 
3933 next_inode:
3934 		prev_agino = next_agino;
3935 		next_agino = next_ip->i_next_unlinked;
3936 	}
3937 
3938 out_agibp:
3939 	xfs_trans_brelse(tp, agibp);
3940 	/* Should have found this inode somewhere in the iunlinked bucket. */
3941 	if (!error && !foundit)
3942 		error = -EFSCORRUPTED;
3943 	return error;
3944 }
3945 
3946 /* Decide if this inode is missing its unlinked list and reload it. */
3947 int
3948 xfs_inode_reload_unlinked(
3949 	struct xfs_inode	*ip)
3950 {
3951 	struct xfs_trans	*tp;
3952 	int			error;
3953 
3954 	error = xfs_trans_alloc_empty(ip->i_mount, &tp);
3955 	if (error)
3956 		return error;
3957 
3958 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3959 	if (xfs_inode_unlinked_incomplete(ip))
3960 		error = xfs_inode_reload_unlinked_bucket(tp, ip);
3961 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3962 	xfs_trans_cancel(tp);
3963 
3964 	return error;
3965 }
3966 
3967 /* Has this inode fork been zapped by repair? */
3968 bool
3969 xfs_ifork_zapped(
3970 	const struct xfs_inode	*ip,
3971 	int			whichfork)
3972 {
3973 	unsigned int		datamask = 0;
3974 
3975 	switch (whichfork) {
3976 	case XFS_DATA_FORK:
3977 		switch (ip->i_vnode.i_mode & S_IFMT) {
3978 		case S_IFDIR:
3979 			datamask = XFS_SICK_INO_DIR_ZAPPED;
3980 			break;
3981 		case S_IFLNK:
3982 			datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
3983 			break;
3984 		}
3985 		return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
3986 	case XFS_ATTR_FORK:
3987 		return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
3988 	default:
3989 		return false;
3990 	}
3991 }
3992 
3993 /* Compute the number of data and realtime blocks used by a file. */
3994 void
3995 xfs_inode_count_blocks(
3996 	struct xfs_trans	*tp,
3997 	struct xfs_inode	*ip,
3998 	xfs_filblks_t		*dblocks,
3999 	xfs_filblks_t		*rblocks)
4000 {
4001 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
4002 
4003 	*rblocks = 0;
4004 	if (XFS_IS_REALTIME_INODE(ip))
4005 		xfs_bmap_count_leaves(ifp, rblocks);
4006 	*dblocks = ip->i_nblocks - *rblocks;
4007 }
4008 
4009 static void
4010 xfs_wait_dax_page(
4011 	struct inode		*inode)
4012 {
4013 	struct xfs_inode        *ip = XFS_I(inode);
4014 
4015 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
4016 	schedule();
4017 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
4018 }
4019 
4020 int
4021 xfs_break_dax_layouts(
4022 	struct inode		*inode,
4023 	bool			*retry)
4024 {
4025 	struct page		*page;
4026 
4027 	xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);
4028 
4029 	page = dax_layout_busy_page(inode->i_mapping);
4030 	if (!page)
4031 		return 0;
4032 
4033 	*retry = true;
4034 	return ___wait_var_event(&page->_refcount,
4035 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
4036 			0, 0, xfs_wait_dax_page(inode));
4037 }
4038 
4039 int
4040 xfs_break_layouts(
4041 	struct inode		*inode,
4042 	uint			*iolock,
4043 	enum layout_break_reason reason)
4044 {
4045 	bool			retry;
4046 	int			error;
4047 
4048 	xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);
4049 
4050 	do {
4051 		retry = false;
4052 		switch (reason) {
4053 		case BREAK_UNMAP:
4054 			error = xfs_break_dax_layouts(inode, &retry);
4055 			if (error || retry)
4056 				break;
4057 			fallthrough;
4058 		case BREAK_WRITE:
4059 			error = xfs_break_leased_layouts(inode, iolock, &retry);
4060 			break;
4061 		default:
4062 			WARN_ON_ONCE(1);
4063 			error = -EINVAL;
4064 		}
4065 	} while (error == 0 && retry);
4066 
4067 	return error;
4068 }
4069 
4070 /* Returns the size of fundamental allocation unit for a file, in bytes. */
4071 unsigned int
4072 xfs_inode_alloc_unitsize(
4073 	struct xfs_inode	*ip)
4074 {
4075 	unsigned int		blocks = 1;
4076 
4077 	if (XFS_IS_REALTIME_INODE(ip))
4078 		blocks = ip->i_mount->m_sb.sb_rextsize;
4079 
4080 	return XFS_FSB_TO_B(ip->i_mount, blocks);
4081 }
4082