xref: /linux/fs/xfs/xfs_inode.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_imap.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_dir.h"
30 #include "xfs_dir2.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir_sf.h"
37 #include "xfs_dir2_sf.h"
38 #include "xfs_attr_sf.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_btree.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
52 #include "xfs_mac.h"
53 #include "xfs_acl.h"
54 
55 
56 kmem_zone_t *xfs_ifork_zone;
57 kmem_zone_t *xfs_inode_zone;
58 kmem_zone_t *xfs_chashlist_zone;
59 
60 /*
61  * Used in xfs_itruncate().  This is the maximum number of extents
62  * freed from a file in a single transaction.
63  */
64 #define	XFS_ITRUNC_MAX_EXTENTS	2
65 
66 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
67 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
68 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
69 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
70 
71 
72 #ifdef DEBUG
73 /*
74  * Make sure that the extents in the given memory buffer
75  * are valid.
76  */
77 STATIC void
78 xfs_validate_extents(
79 	xfs_bmbt_rec_t		*ep,
80 	int			nrecs,
81 	int			disk,
82 	xfs_exntfmt_t		fmt)
83 {
84 	xfs_bmbt_irec_t		irec;
85 	xfs_bmbt_rec_t		rec;
86 	int			i;
87 
88 	for (i = 0; i < nrecs; i++) {
89 		rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
90 		rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
91 		if (disk)
92 			xfs_bmbt_disk_get_all(&rec, &irec);
93 		else
94 			xfs_bmbt_get_all(&rec, &irec);
95 		if (fmt == XFS_EXTFMT_NOSTATE)
96 			ASSERT(irec.br_state == XFS_EXT_NORM);
97 		ep++;
98 	}
99 }
100 #else /* DEBUG */
101 #define xfs_validate_extents(ep, nrecs, disk, fmt)
102 #endif /* DEBUG */
103 
104 /*
105  * Check that none of the inode's in the buffer have a next
106  * unlinked field of 0.
107  */
108 #if defined(DEBUG)
109 void
110 xfs_inobp_check(
111 	xfs_mount_t	*mp,
112 	xfs_buf_t	*bp)
113 {
114 	int		i;
115 	int		j;
116 	xfs_dinode_t	*dip;
117 
118 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
119 
120 	for (i = 0; i < j; i++) {
121 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
122 					i * mp->m_sb.sb_inodesize);
123 		if (!dip->di_next_unlinked)  {
124 			xfs_fs_cmn_err(CE_ALERT, mp,
125 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
126 				bp);
127 			ASSERT(dip->di_next_unlinked);
128 		}
129 	}
130 }
131 #endif
132 
133 /*
134  * This routine is called to map an inode number within a file
135  * system to the buffer containing the on-disk version of the
136  * inode.  It returns a pointer to the buffer containing the
137  * on-disk inode in the bpp parameter, and in the dip parameter
138  * it returns a pointer to the on-disk inode within that buffer.
139  *
140  * If a non-zero error is returned, then the contents of bpp and
141  * dipp are undefined.
142  *
143  * Use xfs_imap() to determine the size and location of the
144  * buffer to read from disk.
145  */
146 STATIC int
147 xfs_inotobp(
148 	xfs_mount_t	*mp,
149 	xfs_trans_t	*tp,
150 	xfs_ino_t	ino,
151 	xfs_dinode_t	**dipp,
152 	xfs_buf_t	**bpp,
153 	int		*offset)
154 {
155 	int		di_ok;
156 	xfs_imap_t	imap;
157 	xfs_buf_t	*bp;
158 	int		error;
159 	xfs_dinode_t	*dip;
160 
161 	/*
162 	 * Call the space managment code to find the location of the
163 	 * inode on disk.
164 	 */
165 	imap.im_blkno = 0;
166 	error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
167 	if (error != 0) {
168 		cmn_err(CE_WARN,
169 	"xfs_inotobp: xfs_imap()  returned an "
170 	"error %d on %s.  Returning error.", error, mp->m_fsname);
171 		return error;
172 	}
173 
174 	/*
175 	 * If the inode number maps to a block outside the bounds of the
176 	 * file system then return NULL rather than calling read_buf
177 	 * and panicing when we get an error from the driver.
178 	 */
179 	if ((imap.im_blkno + imap.im_len) >
180 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
181 		cmn_err(CE_WARN,
182 	"xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
183 	"of the file system %s.  Returning EINVAL.",
184 			(unsigned long long)imap.im_blkno,
185 			imap.im_len, mp->m_fsname);
186 		return XFS_ERROR(EINVAL);
187 	}
188 
189 	/*
190 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
191 	 * default to just a read_buf() call.
192 	 */
193 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
194 				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
195 
196 	if (error) {
197 		cmn_err(CE_WARN,
198 	"xfs_inotobp: xfs_trans_read_buf()  returned an "
199 	"error %d on %s.  Returning error.", error, mp->m_fsname);
200 		return error;
201 	}
202 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
203 	di_ok =
204 		INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
205 		XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
206 	if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
207 			XFS_RANDOM_ITOBP_INOTOBP))) {
208 		XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
209 		xfs_trans_brelse(tp, bp);
210 		cmn_err(CE_WARN,
211 	"xfs_inotobp: XFS_TEST_ERROR()  returned an "
212 	"error on %s.  Returning EFSCORRUPTED.",  mp->m_fsname);
213 		return XFS_ERROR(EFSCORRUPTED);
214 	}
215 
216 	xfs_inobp_check(mp, bp);
217 
218 	/*
219 	 * Set *dipp to point to the on-disk inode in the buffer.
220 	 */
221 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
222 	*bpp = bp;
223 	*offset = imap.im_boffset;
224 	return 0;
225 }
226 
227 
228 /*
229  * This routine is called to map an inode to the buffer containing
230  * the on-disk version of the inode.  It returns a pointer to the
231  * buffer containing the on-disk inode in the bpp parameter, and in
232  * the dip parameter it returns a pointer to the on-disk inode within
233  * that buffer.
234  *
235  * If a non-zero error is returned, then the contents of bpp and
236  * dipp are undefined.
237  *
238  * If the inode is new and has not yet been initialized, use xfs_imap()
239  * to determine the size and location of the buffer to read from disk.
240  * If the inode has already been mapped to its buffer and read in once,
241  * then use the mapping information stored in the inode rather than
242  * calling xfs_imap().  This allows us to avoid the overhead of looking
243  * at the inode btree for small block file systems (see xfs_dilocate()).
244  * We can tell whether the inode has been mapped in before by comparing
245  * its disk block address to 0.  Only uninitialized inodes will have
246  * 0 for the disk block address.
247  */
248 int
249 xfs_itobp(
250 	xfs_mount_t	*mp,
251 	xfs_trans_t	*tp,
252 	xfs_inode_t	*ip,
253 	xfs_dinode_t	**dipp,
254 	xfs_buf_t	**bpp,
255 	xfs_daddr_t	bno)
256 {
257 	xfs_buf_t	*bp;
258 	int		error;
259 	xfs_imap_t	imap;
260 #ifdef __KERNEL__
261 	int		i;
262 	int		ni;
263 #endif
264 
265 	if (ip->i_blkno == (xfs_daddr_t)0) {
266 		/*
267 		 * Call the space management code to find the location of the
268 		 * inode on disk.
269 		 */
270 		imap.im_blkno = bno;
271 		error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP);
272 		if (error != 0) {
273 			return error;
274 		}
275 
276 		/*
277 		 * If the inode number maps to a block outside the bounds
278 		 * of the file system then return NULL rather than calling
279 		 * read_buf and panicing when we get an error from the
280 		 * driver.
281 		 */
282 		if ((imap.im_blkno + imap.im_len) >
283 		    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
284 #ifdef DEBUG
285 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
286 					"(imap.im_blkno (0x%llx) "
287 					"+ imap.im_len (0x%llx)) > "
288 					" XFS_FSB_TO_BB(mp, "
289 					"mp->m_sb.sb_dblocks) (0x%llx)",
290 					(unsigned long long) imap.im_blkno,
291 					(unsigned long long) imap.im_len,
292 					XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
293 #endif /* DEBUG */
294 			return XFS_ERROR(EINVAL);
295 		}
296 
297 		/*
298 		 * Fill in the fields in the inode that will be used to
299 		 * map the inode to its buffer from now on.
300 		 */
301 		ip->i_blkno = imap.im_blkno;
302 		ip->i_len = imap.im_len;
303 		ip->i_boffset = imap.im_boffset;
304 	} else {
305 		/*
306 		 * We've already mapped the inode once, so just use the
307 		 * mapping that we saved the first time.
308 		 */
309 		imap.im_blkno = ip->i_blkno;
310 		imap.im_len = ip->i_len;
311 		imap.im_boffset = ip->i_boffset;
312 	}
313 	ASSERT(bno == 0 || bno == imap.im_blkno);
314 
315 	/*
316 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
317 	 * default to just a read_buf() call.
318 	 */
319 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
320 				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
321 
322 	if (error) {
323 #ifdef DEBUG
324 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
325 				"xfs_trans_read_buf() returned error %d, "
326 				"imap.im_blkno 0x%llx, imap.im_len 0x%llx",
327 				error, (unsigned long long) imap.im_blkno,
328 				(unsigned long long) imap.im_len);
329 #endif /* DEBUG */
330 		return error;
331 	}
332 #ifdef __KERNEL__
333 	/*
334 	 * Validate the magic number and version of every inode in the buffer
335 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
336 	 */
337 #ifdef DEBUG
338 	ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
339 #else
340 	ni = 1;
341 #endif
342 	for (i = 0; i < ni; i++) {
343 		int		di_ok;
344 		xfs_dinode_t	*dip;
345 
346 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
347 					(i << mp->m_sb.sb_inodelog));
348 		di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
349 			    XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
350 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
351 				 XFS_RANDOM_ITOBP_INOTOBP))) {
352 #ifdef DEBUG
353 			prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
354 				mp->m_ddev_targp,
355 				(unsigned long long)imap.im_blkno, i,
356 				INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
357 #endif
358 			XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
359 					     mp, dip);
360 			xfs_trans_brelse(tp, bp);
361 			return XFS_ERROR(EFSCORRUPTED);
362 		}
363 	}
364 #endif	/* __KERNEL__ */
365 
366 	xfs_inobp_check(mp, bp);
367 
368 	/*
369 	 * Mark the buffer as an inode buffer now that it looks good
370 	 */
371 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
372 
373 	/*
374 	 * Set *dipp to point to the on-disk inode in the buffer.
375 	 */
376 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
377 	*bpp = bp;
378 	return 0;
379 }
380 
381 /*
382  * Move inode type and inode format specific information from the
383  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
384  * this means set if_rdev to the proper value.  For files, directories,
385  * and symlinks this means to bring in the in-line data or extent
386  * pointers.  For a file in B-tree format, only the root is immediately
387  * brought in-core.  The rest will be in-lined in if_extents when it
388  * is first referenced (see xfs_iread_extents()).
389  */
390 STATIC int
391 xfs_iformat(
392 	xfs_inode_t		*ip,
393 	xfs_dinode_t		*dip)
394 {
395 	xfs_attr_shortform_t	*atp;
396 	int			size;
397 	int			error;
398 	xfs_fsize_t             di_size;
399 	ip->i_df.if_ext_max =
400 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
401 	error = 0;
402 
403 	if (unlikely(
404 	    INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
405 		INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
406 	    INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
407 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
408 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
409 			(unsigned long long)ip->i_ino,
410 			(int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
411 			    + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
412 			(unsigned long long)
413 			INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
414 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
415 				     ip->i_mount, dip);
416 		return XFS_ERROR(EFSCORRUPTED);
417 	}
418 
419 	if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
420 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
421 			"corrupt dinode %Lu, forkoff = 0x%x.",
422 			(unsigned long long)ip->i_ino,
423 			(int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
424 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
425 				     ip->i_mount, dip);
426 		return XFS_ERROR(EFSCORRUPTED);
427 	}
428 
429 	switch (ip->i_d.di_mode & S_IFMT) {
430 	case S_IFIFO:
431 	case S_IFCHR:
432 	case S_IFBLK:
433 	case S_IFSOCK:
434 		if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
435 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
436 					      ip->i_mount, dip);
437 			return XFS_ERROR(EFSCORRUPTED);
438 		}
439 		ip->i_d.di_size = 0;
440 		ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
441 		break;
442 
443 	case S_IFREG:
444 	case S_IFLNK:
445 	case S_IFDIR:
446 		switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
447 		case XFS_DINODE_FMT_LOCAL:
448 			/*
449 			 * no local regular files yet
450 			 */
451 			if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
452 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
453 					"corrupt inode %Lu "
454 					"(local format for regular file).",
455 					(unsigned long long) ip->i_ino);
456 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
457 						     XFS_ERRLEVEL_LOW,
458 						     ip->i_mount, dip);
459 				return XFS_ERROR(EFSCORRUPTED);
460 			}
461 
462 			di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
463 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
464 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
465 					"corrupt inode %Lu "
466 					"(bad size %Ld for local inode).",
467 					(unsigned long long) ip->i_ino,
468 					(long long) di_size);
469 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
470 						     XFS_ERRLEVEL_LOW,
471 						     ip->i_mount, dip);
472 				return XFS_ERROR(EFSCORRUPTED);
473 			}
474 
475 			size = (int)di_size;
476 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
477 			break;
478 		case XFS_DINODE_FMT_EXTENTS:
479 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
480 			break;
481 		case XFS_DINODE_FMT_BTREE:
482 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
483 			break;
484 		default:
485 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
486 					 ip->i_mount);
487 			return XFS_ERROR(EFSCORRUPTED);
488 		}
489 		break;
490 
491 	default:
492 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
493 		return XFS_ERROR(EFSCORRUPTED);
494 	}
495 	if (error) {
496 		return error;
497 	}
498 	if (!XFS_DFORK_Q(dip))
499 		return 0;
500 	ASSERT(ip->i_afp == NULL);
501 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
502 	ip->i_afp->if_ext_max =
503 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
504 	switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
505 	case XFS_DINODE_FMT_LOCAL:
506 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
507 		size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT);
508 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
509 		break;
510 	case XFS_DINODE_FMT_EXTENTS:
511 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
512 		break;
513 	case XFS_DINODE_FMT_BTREE:
514 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
515 		break;
516 	default:
517 		error = XFS_ERROR(EFSCORRUPTED);
518 		break;
519 	}
520 	if (error) {
521 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
522 		ip->i_afp = NULL;
523 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
524 	}
525 	return error;
526 }
527 
528 /*
529  * The file is in-lined in the on-disk inode.
530  * If it fits into if_inline_data, then copy
531  * it there, otherwise allocate a buffer for it
532  * and copy the data there.  Either way, set
533  * if_data to point at the data.
534  * If we allocate a buffer for the data, make
535  * sure that its size is a multiple of 4 and
536  * record the real size in i_real_bytes.
537  */
538 STATIC int
539 xfs_iformat_local(
540 	xfs_inode_t	*ip,
541 	xfs_dinode_t	*dip,
542 	int		whichfork,
543 	int		size)
544 {
545 	xfs_ifork_t	*ifp;
546 	int		real_size;
547 
548 	/*
549 	 * If the size is unreasonable, then something
550 	 * is wrong and we just bail out rather than crash in
551 	 * kmem_alloc() or memcpy() below.
552 	 */
553 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 			"corrupt inode %Lu "
556 			"(bad size %d for local fork, size = %d).",
557 			(unsigned long long) ip->i_ino, size,
558 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
559 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
560 				     ip->i_mount, dip);
561 		return XFS_ERROR(EFSCORRUPTED);
562 	}
563 	ifp = XFS_IFORK_PTR(ip, whichfork);
564 	real_size = 0;
565 	if (size == 0)
566 		ifp->if_u1.if_data = NULL;
567 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
568 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
569 	else {
570 		real_size = roundup(size, 4);
571 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
572 	}
573 	ifp->if_bytes = size;
574 	ifp->if_real_bytes = real_size;
575 	if (size)
576 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
577 	ifp->if_flags &= ~XFS_IFEXTENTS;
578 	ifp->if_flags |= XFS_IFINLINE;
579 	return 0;
580 }
581 
582 /*
583  * The file consists of a set of extents all
584  * of which fit into the on-disk inode.
585  * If there are few enough extents to fit into
586  * the if_inline_ext, then copy them there.
587  * Otherwise allocate a buffer for them and copy
588  * them into it.  Either way, set if_extents
589  * to point at the extents.
590  */
591 STATIC int
592 xfs_iformat_extents(
593 	xfs_inode_t	*ip,
594 	xfs_dinode_t	*dip,
595 	int		whichfork)
596 {
597 	xfs_bmbt_rec_t	*ep, *dp;
598 	xfs_ifork_t	*ifp;
599 	int		nex;
600 	int		real_size;
601 	int		size;
602 	int		i;
603 
604 	ifp = XFS_IFORK_PTR(ip, whichfork);
605 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
606 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
607 
608 	/*
609 	 * If the number of extents is unreasonable, then something
610 	 * is wrong and we just bail out rather than crash in
611 	 * kmem_alloc() or memcpy() below.
612 	 */
613 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
614 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
615 			"corrupt inode %Lu ((a)extents = %d).",
616 			(unsigned long long) ip->i_ino, nex);
617 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
618 				     ip->i_mount, dip);
619 		return XFS_ERROR(EFSCORRUPTED);
620 	}
621 
622 	real_size = 0;
623 	if (nex == 0)
624 		ifp->if_u1.if_extents = NULL;
625 	else if (nex <= XFS_INLINE_EXTS)
626 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
627 	else {
628 		ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
629 		ASSERT(ifp->if_u1.if_extents != NULL);
630 		real_size = size;
631 	}
632 	ifp->if_bytes = size;
633 	ifp->if_real_bytes = real_size;
634 	if (size) {
635 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
636 		xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip));
637 		ep = ifp->if_u1.if_extents;
638 		for (i = 0; i < nex; i++, ep++, dp++) {
639 			ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
640 								ARCH_CONVERT);
641 			ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
642 								ARCH_CONVERT);
643 		}
644 		xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
645 			whichfork);
646 		if (whichfork != XFS_DATA_FORK ||
647 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
648 				if (unlikely(xfs_check_nostate_extents(
649 				    ifp->if_u1.if_extents, nex))) {
650 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
651 							 XFS_ERRLEVEL_LOW,
652 							 ip->i_mount);
653 					return XFS_ERROR(EFSCORRUPTED);
654 				}
655 	}
656 	ifp->if_flags |= XFS_IFEXTENTS;
657 	return 0;
658 }
659 
660 /*
661  * The file has too many extents to fit into
662  * the inode, so they are in B-tree format.
663  * Allocate a buffer for the root of the B-tree
664  * and copy the root into it.  The i_extents
665  * field will remain NULL until all of the
666  * extents are read in (when they are needed).
667  */
668 STATIC int
669 xfs_iformat_btree(
670 	xfs_inode_t		*ip,
671 	xfs_dinode_t		*dip,
672 	int			whichfork)
673 {
674 	xfs_bmdr_block_t	*dfp;
675 	xfs_ifork_t		*ifp;
676 	/* REFERENCED */
677 	int			nrecs;
678 	int			size;
679 
680 	ifp = XFS_IFORK_PTR(ip, whichfork);
681 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
682 	size = XFS_BMAP_BROOT_SPACE(dfp);
683 	nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
684 
685 	/*
686 	 * blow out if -- fork has less extents than can fit in
687 	 * fork (fork shouldn't be a btree format), root btree
688 	 * block has more records than can fit into the fork,
689 	 * or the number of extents is greater than the number of
690 	 * blocks.
691 	 */
692 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
693 	    || XFS_BMDR_SPACE_CALC(nrecs) >
694 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
695 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
696 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
697 			"corrupt inode %Lu (btree).",
698 			(unsigned long long) ip->i_ino);
699 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
700 				 ip->i_mount);
701 		return XFS_ERROR(EFSCORRUPTED);
702 	}
703 
704 	ifp->if_broot_bytes = size;
705 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
706 	ASSERT(ifp->if_broot != NULL);
707 	/*
708 	 * Copy and convert from the on-disk structure
709 	 * to the in-memory structure.
710 	 */
711 	xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
712 		ifp->if_broot, size);
713 	ifp->if_flags &= ~XFS_IFEXTENTS;
714 	ifp->if_flags |= XFS_IFBROOT;
715 
716 	return 0;
717 }
718 
719 /*
720  * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
721  * and native format
722  *
723  * buf  = on-disk representation
724  * dip  = native representation
725  * dir  = direction - +ve -> disk to native
726  *                    -ve -> native to disk
727  */
728 void
729 xfs_xlate_dinode_core(
730 	xfs_caddr_t		buf,
731 	xfs_dinode_core_t	*dip,
732 	int			dir)
733 {
734 	xfs_dinode_core_t	*buf_core = (xfs_dinode_core_t *)buf;
735 	xfs_dinode_core_t	*mem_core = (xfs_dinode_core_t *)dip;
736 	xfs_arch_t		arch = ARCH_CONVERT;
737 
738 	ASSERT(dir);
739 
740 	INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
741 	INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
742 	INT_XLATE(buf_core->di_version,	mem_core->di_version, dir, arch);
743 	INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
744 	INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
745 	INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
746 	INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
747 	INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
748 	INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
749 
750 	if (dir > 0) {
751 		memcpy(mem_core->di_pad, buf_core->di_pad,
752 			sizeof(buf_core->di_pad));
753 	} else {
754 		memcpy(buf_core->di_pad, mem_core->di_pad,
755 			sizeof(buf_core->di_pad));
756 	}
757 
758 	INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
759 
760 	INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
761 			dir, arch);
762 	INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
763 			dir, arch);
764 	INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
765 			dir, arch);
766 	INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
767 			dir, arch);
768 	INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
769 			dir, arch);
770 	INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
771 			dir, arch);
772 	INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
773 	INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
774 	INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
775 	INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
776 	INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
777 	INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
778 	INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
779 	INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
780 	INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
781 	INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
782 	INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
783 }
784 
785 STATIC uint
786 _xfs_dic2xflags(
787 	xfs_dinode_core_t	*dic,
788 	__uint16_t		di_flags)
789 {
790 	uint			flags = 0;
791 
792 	if (di_flags & XFS_DIFLAG_ANY) {
793 		if (di_flags & XFS_DIFLAG_REALTIME)
794 			flags |= XFS_XFLAG_REALTIME;
795 		if (di_flags & XFS_DIFLAG_PREALLOC)
796 			flags |= XFS_XFLAG_PREALLOC;
797 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
798 			flags |= XFS_XFLAG_IMMUTABLE;
799 		if (di_flags & XFS_DIFLAG_APPEND)
800 			flags |= XFS_XFLAG_APPEND;
801 		if (di_flags & XFS_DIFLAG_SYNC)
802 			flags |= XFS_XFLAG_SYNC;
803 		if (di_flags & XFS_DIFLAG_NOATIME)
804 			flags |= XFS_XFLAG_NOATIME;
805 		if (di_flags & XFS_DIFLAG_NODUMP)
806 			flags |= XFS_XFLAG_NODUMP;
807 		if (di_flags & XFS_DIFLAG_RTINHERIT)
808 			flags |= XFS_XFLAG_RTINHERIT;
809 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
810 			flags |= XFS_XFLAG_PROJINHERIT;
811 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
812 			flags |= XFS_XFLAG_NOSYMLINKS;
813 		if (di_flags & XFS_DIFLAG_EXTSIZE)
814 			flags |= XFS_XFLAG_EXTSIZE;
815 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
816 			flags |= XFS_XFLAG_EXTSZINHERIT;
817 	}
818 
819 	return flags;
820 }
821 
822 uint
823 xfs_ip2xflags(
824 	xfs_inode_t		*ip)
825 {
826 	xfs_dinode_core_t	*dic = &ip->i_d;
827 
828 	return _xfs_dic2xflags(dic, dic->di_flags) |
829 		(XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
830 }
831 
832 uint
833 xfs_dic2xflags(
834 	xfs_dinode_core_t	*dic)
835 {
836 	return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
837 		(XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
838 }
839 
840 /*
841  * Given a mount structure and an inode number, return a pointer
842  * to a newly allocated in-core inode coresponding to the given
843  * inode number.
844  *
845  * Initialize the inode's attributes and extent pointers if it
846  * already has them (it will not if the inode has no links).
847  */
848 int
849 xfs_iread(
850 	xfs_mount_t	*mp,
851 	xfs_trans_t	*tp,
852 	xfs_ino_t	ino,
853 	xfs_inode_t	**ipp,
854 	xfs_daddr_t	bno)
855 {
856 	xfs_buf_t	*bp;
857 	xfs_dinode_t	*dip;
858 	xfs_inode_t	*ip;
859 	int		error;
860 
861 	ASSERT(xfs_inode_zone != NULL);
862 
863 	ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
864 	ip->i_ino = ino;
865 	ip->i_mount = mp;
866 
867 	/*
868 	 * Get pointer's to the on-disk inode and the buffer containing it.
869 	 * If the inode number refers to a block outside the file system
870 	 * then xfs_itobp() will return NULL.  In this case we should
871 	 * return NULL as well.  Set i_blkno to 0 so that xfs_itobp() will
872 	 * know that this is a new incore inode.
873 	 */
874 	error = xfs_itobp(mp, tp, ip, &dip, &bp, bno);
875 
876 	if (error != 0) {
877 		kmem_zone_free(xfs_inode_zone, ip);
878 		return error;
879 	}
880 
881 	/*
882 	 * Initialize inode's trace buffers.
883 	 * Do this before xfs_iformat in case it adds entries.
884 	 */
885 #ifdef XFS_BMAP_TRACE
886 	ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
887 #endif
888 #ifdef XFS_BMBT_TRACE
889 	ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
890 #endif
891 #ifdef XFS_RW_TRACE
892 	ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
893 #endif
894 #ifdef XFS_ILOCK_TRACE
895 	ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
896 #endif
897 #ifdef XFS_DIR2_TRACE
898 	ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
899 #endif
900 
901 	/*
902 	 * If we got something that isn't an inode it means someone
903 	 * (nfs or dmi) has a stale handle.
904 	 */
905 	if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
906 		kmem_zone_free(xfs_inode_zone, ip);
907 		xfs_trans_brelse(tp, bp);
908 #ifdef DEBUG
909 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
910 				"dip->di_core.di_magic (0x%x) != "
911 				"XFS_DINODE_MAGIC (0x%x)",
912 				INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
913 				XFS_DINODE_MAGIC);
914 #endif /* DEBUG */
915 		return XFS_ERROR(EINVAL);
916 	}
917 
918 	/*
919 	 * If the on-disk inode is already linked to a directory
920 	 * entry, copy all of the inode into the in-core inode.
921 	 * xfs_iformat() handles copying in the inode format
922 	 * specific information.
923 	 * Otherwise, just get the truly permanent information.
924 	 */
925 	if (dip->di_core.di_mode) {
926 		xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
927 		     &(ip->i_d), 1);
928 		error = xfs_iformat(ip, dip);
929 		if (error)  {
930 			kmem_zone_free(xfs_inode_zone, ip);
931 			xfs_trans_brelse(tp, bp);
932 #ifdef DEBUG
933 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
934 					"xfs_iformat() returned error %d",
935 					error);
936 #endif /* DEBUG */
937 			return error;
938 		}
939 	} else {
940 		ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
941 		ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
942 		ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
943 		ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
944 		/*
945 		 * Make sure to pull in the mode here as well in
946 		 * case the inode is released without being used.
947 		 * This ensures that xfs_inactive() will see that
948 		 * the inode is already free and not try to mess
949 		 * with the uninitialized part of it.
950 		 */
951 		ip->i_d.di_mode = 0;
952 		/*
953 		 * Initialize the per-fork minima and maxima for a new
954 		 * inode here.  xfs_iformat will do it for old inodes.
955 		 */
956 		ip->i_df.if_ext_max =
957 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
958 	}
959 
960 	INIT_LIST_HEAD(&ip->i_reclaim);
961 
962 	/*
963 	 * The inode format changed when we moved the link count and
964 	 * made it 32 bits long.  If this is an old format inode,
965 	 * convert it in memory to look like a new one.  If it gets
966 	 * flushed to disk we will convert back before flushing or
967 	 * logging it.  We zero out the new projid field and the old link
968 	 * count field.  We'll handle clearing the pad field (the remains
969 	 * of the old uuid field) when we actually convert the inode to
970 	 * the new format. We don't change the version number so that we
971 	 * can distinguish this from a real new format inode.
972 	 */
973 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
974 		ip->i_d.di_nlink = ip->i_d.di_onlink;
975 		ip->i_d.di_onlink = 0;
976 		ip->i_d.di_projid = 0;
977 	}
978 
979 	ip->i_delayed_blks = 0;
980 
981 	/*
982 	 * Mark the buffer containing the inode as something to keep
983 	 * around for a while.  This helps to keep recently accessed
984 	 * meta-data in-core longer.
985 	 */
986 	 XFS_BUF_SET_REF(bp, XFS_INO_REF);
987 
988 	/*
989 	 * Use xfs_trans_brelse() to release the buffer containing the
990 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
991 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
992 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
993 	 * will only release the buffer if it is not dirty within the
994 	 * transaction.  It will be OK to release the buffer in this case,
995 	 * because inodes on disk are never destroyed and we will be
996 	 * locking the new in-core inode before putting it in the hash
997 	 * table where other processes can find it.  Thus we don't have
998 	 * to worry about the inode being changed just because we released
999 	 * the buffer.
1000 	 */
1001 	xfs_trans_brelse(tp, bp);
1002 	*ipp = ip;
1003 	return 0;
1004 }
1005 
1006 /*
1007  * Read in extents from a btree-format inode.
1008  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
1009  */
1010 int
1011 xfs_iread_extents(
1012 	xfs_trans_t	*tp,
1013 	xfs_inode_t	*ip,
1014 	int		whichfork)
1015 {
1016 	int		error;
1017 	xfs_ifork_t	*ifp;
1018 	size_t		size;
1019 
1020 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1021 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1022 				 ip->i_mount);
1023 		return XFS_ERROR(EFSCORRUPTED);
1024 	}
1025 	size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t);
1026 	ifp = XFS_IFORK_PTR(ip, whichfork);
1027 	/*
1028 	 * We know that the size is valid (it's checked in iformat_btree)
1029 	 */
1030 	ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
1031 	ASSERT(ifp->if_u1.if_extents != NULL);
1032 	ifp->if_lastex = NULLEXTNUM;
1033 	ifp->if_bytes = ifp->if_real_bytes = (int)size;
1034 	ifp->if_flags |= XFS_IFEXTENTS;
1035 	error = xfs_bmap_read_extents(tp, ip, whichfork);
1036 	if (error) {
1037 		kmem_free(ifp->if_u1.if_extents, size);
1038 		ifp->if_u1.if_extents = NULL;
1039 		ifp->if_bytes = ifp->if_real_bytes = 0;
1040 		ifp->if_flags &= ~XFS_IFEXTENTS;
1041 		return error;
1042 	}
1043 	xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents,
1044 		XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip));
1045 	return 0;
1046 }
1047 
1048 /*
1049  * Allocate an inode on disk and return a copy of its in-core version.
1050  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
1051  * appropriately within the inode.  The uid and gid for the inode are
1052  * set according to the contents of the given cred structure.
1053  *
1054  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1055  * has a free inode available, call xfs_iget()
1056  * to obtain the in-core version of the allocated inode.  Finally,
1057  * fill in the inode and log its initial contents.  In this case,
1058  * ialloc_context would be set to NULL and call_again set to false.
1059  *
1060  * If xfs_dialloc() does not have an available inode,
1061  * it will replenish its supply by doing an allocation. Since we can
1062  * only do one allocation within a transaction without deadlocks, we
1063  * must commit the current transaction before returning the inode itself.
1064  * In this case, therefore, we will set call_again to true and return.
1065  * The caller should then commit the current transaction, start a new
1066  * transaction, and call xfs_ialloc() again to actually get the inode.
1067  *
1068  * To ensure that some other process does not grab the inode that
1069  * was allocated during the first call to xfs_ialloc(), this routine
1070  * also returns the [locked] bp pointing to the head of the freelist
1071  * as ialloc_context.  The caller should hold this buffer across
1072  * the commit and pass it back into this routine on the second call.
1073  */
1074 int
1075 xfs_ialloc(
1076 	xfs_trans_t	*tp,
1077 	xfs_inode_t	*pip,
1078 	mode_t		mode,
1079 	xfs_nlink_t	nlink,
1080 	xfs_dev_t	rdev,
1081 	cred_t		*cr,
1082 	xfs_prid_t	prid,
1083 	int		okalloc,
1084 	xfs_buf_t	**ialloc_context,
1085 	boolean_t	*call_again,
1086 	xfs_inode_t	**ipp)
1087 {
1088 	xfs_ino_t	ino;
1089 	xfs_inode_t	*ip;
1090 	vnode_t		*vp;
1091 	uint		flags;
1092 	int		error;
1093 
1094 	/*
1095 	 * Call the space management code to pick
1096 	 * the on-disk inode to be allocated.
1097 	 */
1098 	error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1099 			    ialloc_context, call_again, &ino);
1100 	if (error != 0) {
1101 		return error;
1102 	}
1103 	if (*call_again || ino == NULLFSINO) {
1104 		*ipp = NULL;
1105 		return 0;
1106 	}
1107 	ASSERT(*ialloc_context == NULL);
1108 
1109 	/*
1110 	 * Get the in-core inode with the lock held exclusively.
1111 	 * This is because we're setting fields here we need
1112 	 * to prevent others from looking at until we're done.
1113 	 */
1114 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1115 			IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1116 	if (error != 0) {
1117 		return error;
1118 	}
1119 	ASSERT(ip != NULL);
1120 
1121 	vp = XFS_ITOV(ip);
1122 	ip->i_d.di_mode = (__uint16_t)mode;
1123 	ip->i_d.di_onlink = 0;
1124 	ip->i_d.di_nlink = nlink;
1125 	ASSERT(ip->i_d.di_nlink == nlink);
1126 	ip->i_d.di_uid = current_fsuid(cr);
1127 	ip->i_d.di_gid = current_fsgid(cr);
1128 	ip->i_d.di_projid = prid;
1129 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1130 
1131 	/*
1132 	 * If the superblock version is up to where we support new format
1133 	 * inodes and this is currently an old format inode, then change
1134 	 * the inode version number now.  This way we only do the conversion
1135 	 * here rather than here and in the flush/logging code.
1136 	 */
1137 	if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1138 	    ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1139 		ip->i_d.di_version = XFS_DINODE_VERSION_2;
1140 		/*
1141 		 * We've already zeroed the old link count, the projid field,
1142 		 * and the pad field.
1143 		 */
1144 	}
1145 
1146 	/*
1147 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1148 	 */
1149 	if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1150 		xfs_bump_ino_vers2(tp, ip);
1151 
1152 	if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1153 		ip->i_d.di_gid = pip->i_d.di_gid;
1154 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1155 			ip->i_d.di_mode |= S_ISGID;
1156 		}
1157 	}
1158 
1159 	/*
1160 	 * If the group ID of the new file does not match the effective group
1161 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1162 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1163 	 */
1164 	if ((irix_sgid_inherit) &&
1165 	    (ip->i_d.di_mode & S_ISGID) &&
1166 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1167 		ip->i_d.di_mode &= ~S_ISGID;
1168 	}
1169 
1170 	ip->i_d.di_size = 0;
1171 	ip->i_d.di_nextents = 0;
1172 	ASSERT(ip->i_d.di_nblocks == 0);
1173 	xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1174 	/*
1175 	 * di_gen will have been taken care of in xfs_iread.
1176 	 */
1177 	ip->i_d.di_extsize = 0;
1178 	ip->i_d.di_dmevmask = 0;
1179 	ip->i_d.di_dmstate = 0;
1180 	ip->i_d.di_flags = 0;
1181 	flags = XFS_ILOG_CORE;
1182 	switch (mode & S_IFMT) {
1183 	case S_IFIFO:
1184 	case S_IFCHR:
1185 	case S_IFBLK:
1186 	case S_IFSOCK:
1187 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1188 		ip->i_df.if_u2.if_rdev = rdev;
1189 		ip->i_df.if_flags = 0;
1190 		flags |= XFS_ILOG_DEV;
1191 		break;
1192 	case S_IFREG:
1193 	case S_IFDIR:
1194 		if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1195 			uint	di_flags = 0;
1196 
1197 			if ((mode & S_IFMT) == S_IFDIR) {
1198 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1199 					di_flags |= XFS_DIFLAG_RTINHERIT;
1200 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1201 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1202 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1203 				}
1204 			} else if ((mode & S_IFMT) == S_IFREG) {
1205 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1206 					di_flags |= XFS_DIFLAG_REALTIME;
1207 					ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1208 				}
1209 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1210 					di_flags |= XFS_DIFLAG_EXTSIZE;
1211 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1212 				}
1213 			}
1214 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1215 			    xfs_inherit_noatime)
1216 				di_flags |= XFS_DIFLAG_NOATIME;
1217 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1218 			    xfs_inherit_nodump)
1219 				di_flags |= XFS_DIFLAG_NODUMP;
1220 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1221 			    xfs_inherit_sync)
1222 				di_flags |= XFS_DIFLAG_SYNC;
1223 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1224 			    xfs_inherit_nosymlinks)
1225 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1226 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1227 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1228 			ip->i_d.di_flags |= di_flags;
1229 		}
1230 		/* FALLTHROUGH */
1231 	case S_IFLNK:
1232 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1233 		ip->i_df.if_flags = XFS_IFEXTENTS;
1234 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1235 		ip->i_df.if_u1.if_extents = NULL;
1236 		break;
1237 	default:
1238 		ASSERT(0);
1239 	}
1240 	/*
1241 	 * Attribute fork settings for new inode.
1242 	 */
1243 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1244 	ip->i_d.di_anextents = 0;
1245 
1246 	/*
1247 	 * Log the new values stuffed into the inode.
1248 	 */
1249 	xfs_trans_log_inode(tp, ip, flags);
1250 
1251 	/* now that we have an i_mode  we can set Linux inode ops (& unlock) */
1252 	VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1253 
1254 	*ipp = ip;
1255 	return 0;
1256 }
1257 
1258 /*
1259  * Check to make sure that there are no blocks allocated to the
1260  * file beyond the size of the file.  We don't check this for
1261  * files with fixed size extents or real time extents, but we
1262  * at least do it for regular files.
1263  */
1264 #ifdef DEBUG
1265 void
1266 xfs_isize_check(
1267 	xfs_mount_t	*mp,
1268 	xfs_inode_t	*ip,
1269 	xfs_fsize_t	isize)
1270 {
1271 	xfs_fileoff_t	map_first;
1272 	int		nimaps;
1273 	xfs_bmbt_irec_t	imaps[2];
1274 
1275 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1276 		return;
1277 
1278 	if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1279 		return;
1280 
1281 	nimaps = 2;
1282 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1283 	/*
1284 	 * The filesystem could be shutting down, so bmapi may return
1285 	 * an error.
1286 	 */
1287 	if (xfs_bmapi(NULL, ip, map_first,
1288 			 (XFS_B_TO_FSB(mp,
1289 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1290 			  map_first),
1291 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1292 			 NULL))
1293 	    return;
1294 	ASSERT(nimaps == 1);
1295 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1296 }
1297 #endif	/* DEBUG */
1298 
1299 /*
1300  * Calculate the last possible buffered byte in a file.  This must
1301  * include data that was buffered beyond the EOF by the write code.
1302  * This also needs to deal with overflowing the xfs_fsize_t type
1303  * which can happen for sizes near the limit.
1304  *
1305  * We also need to take into account any blocks beyond the EOF.  It
1306  * may be the case that they were buffered by a write which failed.
1307  * In that case the pages will still be in memory, but the inode size
1308  * will never have been updated.
1309  */
1310 xfs_fsize_t
1311 xfs_file_last_byte(
1312 	xfs_inode_t	*ip)
1313 {
1314 	xfs_mount_t	*mp;
1315 	xfs_fsize_t	last_byte;
1316 	xfs_fileoff_t	last_block;
1317 	xfs_fileoff_t	size_last_block;
1318 	int		error;
1319 
1320 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1321 
1322 	mp = ip->i_mount;
1323 	/*
1324 	 * Only check for blocks beyond the EOF if the extents have
1325 	 * been read in.  This eliminates the need for the inode lock,
1326 	 * and it also saves us from looking when it really isn't
1327 	 * necessary.
1328 	 */
1329 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1330 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1331 			XFS_DATA_FORK);
1332 		if (error) {
1333 			last_block = 0;
1334 		}
1335 	} else {
1336 		last_block = 0;
1337 	}
1338 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1339 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1340 
1341 	last_byte = XFS_FSB_TO_B(mp, last_block);
1342 	if (last_byte < 0) {
1343 		return XFS_MAXIOFFSET(mp);
1344 	}
1345 	last_byte += (1 << mp->m_writeio_log);
1346 	if (last_byte < 0) {
1347 		return XFS_MAXIOFFSET(mp);
1348 	}
1349 	return last_byte;
1350 }
1351 
1352 #if defined(XFS_RW_TRACE)
1353 STATIC void
1354 xfs_itrunc_trace(
1355 	int		tag,
1356 	xfs_inode_t	*ip,
1357 	int		flag,
1358 	xfs_fsize_t	new_size,
1359 	xfs_off_t	toss_start,
1360 	xfs_off_t	toss_finish)
1361 {
1362 	if (ip->i_rwtrace == NULL) {
1363 		return;
1364 	}
1365 
1366 	ktrace_enter(ip->i_rwtrace,
1367 		     (void*)((long)tag),
1368 		     (void*)ip,
1369 		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1370 		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1371 		     (void*)((long)flag),
1372 		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1373 		     (void*)(unsigned long)(new_size & 0xffffffff),
1374 		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1375 		     (void*)(unsigned long)(toss_start & 0xffffffff),
1376 		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1377 		     (void*)(unsigned long)(toss_finish & 0xffffffff),
1378 		     (void*)(unsigned long)current_cpu(),
1379 		     (void*)0,
1380 		     (void*)0,
1381 		     (void*)0,
1382 		     (void*)0);
1383 }
1384 #else
1385 #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1386 #endif
1387 
1388 /*
1389  * Start the truncation of the file to new_size.  The new size
1390  * must be smaller than the current size.  This routine will
1391  * clear the buffer and page caches of file data in the removed
1392  * range, and xfs_itruncate_finish() will remove the underlying
1393  * disk blocks.
1394  *
1395  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1396  * must NOT have the inode lock held at all.  This is because we're
1397  * calling into the buffer/page cache code and we can't hold the
1398  * inode lock when we do so.
1399  *
1400  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1401  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1402  * in the case that the caller is locking things out of order and
1403  * may not be able to call xfs_itruncate_finish() with the inode lock
1404  * held without dropping the I/O lock.  If the caller must drop the
1405  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1406  * must be called again with all the same restrictions as the initial
1407  * call.
1408  */
1409 void
1410 xfs_itruncate_start(
1411 	xfs_inode_t	*ip,
1412 	uint		flags,
1413 	xfs_fsize_t	new_size)
1414 {
1415 	xfs_fsize_t	last_byte;
1416 	xfs_off_t	toss_start;
1417 	xfs_mount_t	*mp;
1418 	vnode_t		*vp;
1419 
1420 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1421 	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1422 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1423 	       (flags == XFS_ITRUNC_MAYBE));
1424 
1425 	mp = ip->i_mount;
1426 	vp = XFS_ITOV(ip);
1427 	/*
1428 	 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1429 	 * overlapping the region being removed.  We have to use
1430 	 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1431 	 * caller may not be able to finish the truncate without
1432 	 * dropping the inode's I/O lock.  Make sure
1433 	 * to catch any pages brought in by buffers overlapping
1434 	 * the EOF by searching out beyond the isize by our
1435 	 * block size. We round new_size up to a block boundary
1436 	 * so that we don't toss things on the same block as
1437 	 * new_size but before it.
1438 	 *
1439 	 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1440 	 * call remapf() over the same region if the file is mapped.
1441 	 * This frees up mapped file references to the pages in the
1442 	 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1443 	 * that we get the latest mapped changes flushed out.
1444 	 */
1445 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1446 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1447 	if (toss_start < 0) {
1448 		/*
1449 		 * The place to start tossing is beyond our maximum
1450 		 * file size, so there is no way that the data extended
1451 		 * out there.
1452 		 */
1453 		return;
1454 	}
1455 	last_byte = xfs_file_last_byte(ip);
1456 	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1457 			 last_byte);
1458 	if (last_byte > toss_start) {
1459 		if (flags & XFS_ITRUNC_DEFINITE) {
1460 			VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1461 		} else {
1462 			VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1463 		}
1464 	}
1465 
1466 #ifdef DEBUG
1467 	if (new_size == 0) {
1468 		ASSERT(VN_CACHED(vp) == 0);
1469 	}
1470 #endif
1471 }
1472 
1473 /*
1474  * Shrink the file to the given new_size.  The new
1475  * size must be smaller than the current size.
1476  * This will free up the underlying blocks
1477  * in the removed range after a call to xfs_itruncate_start()
1478  * or xfs_atruncate_start().
1479  *
1480  * The transaction passed to this routine must have made
1481  * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1482  * This routine may commit the given transaction and
1483  * start new ones, so make sure everything involved in
1484  * the transaction is tidy before calling here.
1485  * Some transaction will be returned to the caller to be
1486  * committed.  The incoming transaction must already include
1487  * the inode, and both inode locks must be held exclusively.
1488  * The inode must also be "held" within the transaction.  On
1489  * return the inode will be "held" within the returned transaction.
1490  * This routine does NOT require any disk space to be reserved
1491  * for it within the transaction.
1492  *
1493  * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1494  * and it indicates the fork which is to be truncated.  For the
1495  * attribute fork we only support truncation to size 0.
1496  *
1497  * We use the sync parameter to indicate whether or not the first
1498  * transaction we perform might have to be synchronous.  For the attr fork,
1499  * it needs to be so if the unlink of the inode is not yet known to be
1500  * permanent in the log.  This keeps us from freeing and reusing the
1501  * blocks of the attribute fork before the unlink of the inode becomes
1502  * permanent.
1503  *
1504  * For the data fork, we normally have to run synchronously if we're
1505  * being called out of the inactive path or we're being called
1506  * out of the create path where we're truncating an existing file.
1507  * Either way, the truncate needs to be sync so blocks don't reappear
1508  * in the file with altered data in case of a crash.  wsync filesystems
1509  * can run the first case async because anything that shrinks the inode
1510  * has to run sync so by the time we're called here from inactive, the
1511  * inode size is permanently set to 0.
1512  *
1513  * Calls from the truncate path always need to be sync unless we're
1514  * in a wsync filesystem and the file has already been unlinked.
1515  *
1516  * The caller is responsible for correctly setting the sync parameter.
1517  * It gets too hard for us to guess here which path we're being called
1518  * out of just based on inode state.
1519  */
1520 int
1521 xfs_itruncate_finish(
1522 	xfs_trans_t	**tp,
1523 	xfs_inode_t	*ip,
1524 	xfs_fsize_t	new_size,
1525 	int		fork,
1526 	int		sync)
1527 {
1528 	xfs_fsblock_t	first_block;
1529 	xfs_fileoff_t	first_unmap_block;
1530 	xfs_fileoff_t	last_block;
1531 	xfs_filblks_t	unmap_len=0;
1532 	xfs_mount_t	*mp;
1533 	xfs_trans_t	*ntp;
1534 	int		done;
1535 	int		committed;
1536 	xfs_bmap_free_t	free_list;
1537 	int		error;
1538 
1539 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1540 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1541 	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1542 	ASSERT(*tp != NULL);
1543 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1544 	ASSERT(ip->i_transp == *tp);
1545 	ASSERT(ip->i_itemp != NULL);
1546 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1547 
1548 
1549 	ntp = *tp;
1550 	mp = (ntp)->t_mountp;
1551 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1552 
1553 	/*
1554 	 * We only support truncating the entire attribute fork.
1555 	 */
1556 	if (fork == XFS_ATTR_FORK) {
1557 		new_size = 0LL;
1558 	}
1559 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1560 	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1561 	/*
1562 	 * The first thing we do is set the size to new_size permanently
1563 	 * on disk.  This way we don't have to worry about anyone ever
1564 	 * being able to look at the data being freed even in the face
1565 	 * of a crash.  What we're getting around here is the case where
1566 	 * we free a block, it is allocated to another file, it is written
1567 	 * to, and then we crash.  If the new data gets written to the
1568 	 * file but the log buffers containing the free and reallocation
1569 	 * don't, then we'd end up with garbage in the blocks being freed.
1570 	 * As long as we make the new_size permanent before actually
1571 	 * freeing any blocks it doesn't matter if they get writtten to.
1572 	 *
1573 	 * The callers must signal into us whether or not the size
1574 	 * setting here must be synchronous.  There are a few cases
1575 	 * where it doesn't have to be synchronous.  Those cases
1576 	 * occur if the file is unlinked and we know the unlink is
1577 	 * permanent or if the blocks being truncated are guaranteed
1578 	 * to be beyond the inode eof (regardless of the link count)
1579 	 * and the eof value is permanent.  Both of these cases occur
1580 	 * only on wsync-mounted filesystems.  In those cases, we're
1581 	 * guaranteed that no user will ever see the data in the blocks
1582 	 * that are being truncated so the truncate can run async.
1583 	 * In the free beyond eof case, the file may wind up with
1584 	 * more blocks allocated to it than it needs if we crash
1585 	 * and that won't get fixed until the next time the file
1586 	 * is re-opened and closed but that's ok as that shouldn't
1587 	 * be too many blocks.
1588 	 *
1589 	 * However, we can't just make all wsync xactions run async
1590 	 * because there's one call out of the create path that needs
1591 	 * to run sync where it's truncating an existing file to size
1592 	 * 0 whose size is > 0.
1593 	 *
1594 	 * It's probably possible to come up with a test in this
1595 	 * routine that would correctly distinguish all the above
1596 	 * cases from the values of the function parameters and the
1597 	 * inode state but for sanity's sake, I've decided to let the
1598 	 * layers above just tell us.  It's simpler to correctly figure
1599 	 * out in the layer above exactly under what conditions we
1600 	 * can run async and I think it's easier for others read and
1601 	 * follow the logic in case something has to be changed.
1602 	 * cscope is your friend -- rcc.
1603 	 *
1604 	 * The attribute fork is much simpler.
1605 	 *
1606 	 * For the attribute fork we allow the caller to tell us whether
1607 	 * the unlink of the inode that led to this call is yet permanent
1608 	 * in the on disk log.  If it is not and we will be freeing extents
1609 	 * in this inode then we make the first transaction synchronous
1610 	 * to make sure that the unlink is permanent by the time we free
1611 	 * the blocks.
1612 	 */
1613 	if (fork == XFS_DATA_FORK) {
1614 		if (ip->i_d.di_nextents > 0) {
1615 			ip->i_d.di_size = new_size;
1616 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1617 		}
1618 	} else if (sync) {
1619 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1620 		if (ip->i_d.di_anextents > 0)
1621 			xfs_trans_set_sync(ntp);
1622 	}
1623 	ASSERT(fork == XFS_DATA_FORK ||
1624 		(fork == XFS_ATTR_FORK &&
1625 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1626 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1627 
1628 	/*
1629 	 * Since it is possible for space to become allocated beyond
1630 	 * the end of the file (in a crash where the space is allocated
1631 	 * but the inode size is not yet updated), simply remove any
1632 	 * blocks which show up between the new EOF and the maximum
1633 	 * possible file size.  If the first block to be removed is
1634 	 * beyond the maximum file size (ie it is the same as last_block),
1635 	 * then there is nothing to do.
1636 	 */
1637 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1638 	ASSERT(first_unmap_block <= last_block);
1639 	done = 0;
1640 	if (last_block == first_unmap_block) {
1641 		done = 1;
1642 	} else {
1643 		unmap_len = last_block - first_unmap_block + 1;
1644 	}
1645 	while (!done) {
1646 		/*
1647 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1648 		 * will tell us whether it freed the entire range or
1649 		 * not.  If this is a synchronous mount (wsync),
1650 		 * then we can tell bunmapi to keep all the
1651 		 * transactions asynchronous since the unlink
1652 		 * transaction that made this inode inactive has
1653 		 * already hit the disk.  There's no danger of
1654 		 * the freed blocks being reused, there being a
1655 		 * crash, and the reused blocks suddenly reappearing
1656 		 * in this file with garbage in them once recovery
1657 		 * runs.
1658 		 */
1659 		XFS_BMAP_INIT(&free_list, &first_block);
1660 		error = xfs_bunmapi(ntp, ip, first_unmap_block,
1661 				    unmap_len,
1662 				    XFS_BMAPI_AFLAG(fork) |
1663 				      (sync ? 0 : XFS_BMAPI_ASYNC),
1664 				    XFS_ITRUNC_MAX_EXTENTS,
1665 				    &first_block, &free_list, &done);
1666 		if (error) {
1667 			/*
1668 			 * If the bunmapi call encounters an error,
1669 			 * return to the caller where the transaction
1670 			 * can be properly aborted.  We just need to
1671 			 * make sure we're not holding any resources
1672 			 * that we were not when we came in.
1673 			 */
1674 			xfs_bmap_cancel(&free_list);
1675 			return error;
1676 		}
1677 
1678 		/*
1679 		 * Duplicate the transaction that has the permanent
1680 		 * reservation and commit the old transaction.
1681 		 */
1682 		error = xfs_bmap_finish(tp, &free_list, first_block,
1683 					&committed);
1684 		ntp = *tp;
1685 		if (error) {
1686 			/*
1687 			 * If the bmap finish call encounters an error,
1688 			 * return to the caller where the transaction
1689 			 * can be properly aborted.  We just need to
1690 			 * make sure we're not holding any resources
1691 			 * that we were not when we came in.
1692 			 *
1693 			 * Aborting from this point might lose some
1694 			 * blocks in the file system, but oh well.
1695 			 */
1696 			xfs_bmap_cancel(&free_list);
1697 			if (committed) {
1698 				/*
1699 				 * If the passed in transaction committed
1700 				 * in xfs_bmap_finish(), then we want to
1701 				 * add the inode to this one before returning.
1702 				 * This keeps things simple for the higher
1703 				 * level code, because it always knows that
1704 				 * the inode is locked and held in the
1705 				 * transaction that returns to it whether
1706 				 * errors occur or not.  We don't mark the
1707 				 * inode dirty so that this transaction can
1708 				 * be easily aborted if possible.
1709 				 */
1710 				xfs_trans_ijoin(ntp, ip,
1711 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1712 				xfs_trans_ihold(ntp, ip);
1713 			}
1714 			return error;
1715 		}
1716 
1717 		if (committed) {
1718 			/*
1719 			 * The first xact was committed,
1720 			 * so add the inode to the new one.
1721 			 * Mark it dirty so it will be logged
1722 			 * and moved forward in the log as
1723 			 * part of every commit.
1724 			 */
1725 			xfs_trans_ijoin(ntp, ip,
1726 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1727 			xfs_trans_ihold(ntp, ip);
1728 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1729 		}
1730 		ntp = xfs_trans_dup(ntp);
1731 		(void) xfs_trans_commit(*tp, 0, NULL);
1732 		*tp = ntp;
1733 		error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1734 					  XFS_TRANS_PERM_LOG_RES,
1735 					  XFS_ITRUNCATE_LOG_COUNT);
1736 		/*
1737 		 * Add the inode being truncated to the next chained
1738 		 * transaction.
1739 		 */
1740 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1741 		xfs_trans_ihold(ntp, ip);
1742 		if (error)
1743 			return (error);
1744 	}
1745 	/*
1746 	 * Only update the size in the case of the data fork, but
1747 	 * always re-log the inode so that our permanent transaction
1748 	 * can keep on rolling it forward in the log.
1749 	 */
1750 	if (fork == XFS_DATA_FORK) {
1751 		xfs_isize_check(mp, ip, new_size);
1752 		ip->i_d.di_size = new_size;
1753 	}
1754 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1755 	ASSERT((new_size != 0) ||
1756 	       (fork == XFS_ATTR_FORK) ||
1757 	       (ip->i_delayed_blks == 0));
1758 	ASSERT((new_size != 0) ||
1759 	       (fork == XFS_ATTR_FORK) ||
1760 	       (ip->i_d.di_nextents == 0));
1761 	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1762 	return 0;
1763 }
1764 
1765 
1766 /*
1767  * xfs_igrow_start
1768  *
1769  * Do the first part of growing a file: zero any data in the last
1770  * block that is beyond the old EOF.  We need to do this before
1771  * the inode is joined to the transaction to modify the i_size.
1772  * That way we can drop the inode lock and call into the buffer
1773  * cache to get the buffer mapping the EOF.
1774  */
1775 int
1776 xfs_igrow_start(
1777 	xfs_inode_t	*ip,
1778 	xfs_fsize_t	new_size,
1779 	cred_t		*credp)
1780 {
1781 	int		error;
1782 
1783 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1784 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1785 	ASSERT(new_size > ip->i_d.di_size);
1786 
1787 	/*
1788 	 * Zero any pages that may have been created by
1789 	 * xfs_write_file() beyond the end of the file
1790 	 * and any blocks between the old and new file sizes.
1791 	 */
1792 	error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1793 			     ip->i_d.di_size, new_size);
1794 	return error;
1795 }
1796 
1797 /*
1798  * xfs_igrow_finish
1799  *
1800  * This routine is called to extend the size of a file.
1801  * The inode must have both the iolock and the ilock locked
1802  * for update and it must be a part of the current transaction.
1803  * The xfs_igrow_start() function must have been called previously.
1804  * If the change_flag is not zero, the inode change timestamp will
1805  * be updated.
1806  */
1807 void
1808 xfs_igrow_finish(
1809 	xfs_trans_t	*tp,
1810 	xfs_inode_t	*ip,
1811 	xfs_fsize_t	new_size,
1812 	int		change_flag)
1813 {
1814 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1815 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1816 	ASSERT(ip->i_transp == tp);
1817 	ASSERT(new_size > ip->i_d.di_size);
1818 
1819 	/*
1820 	 * Update the file size.  Update the inode change timestamp
1821 	 * if change_flag set.
1822 	 */
1823 	ip->i_d.di_size = new_size;
1824 	if (change_flag)
1825 		xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1826 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1827 
1828 }
1829 
1830 
1831 /*
1832  * This is called when the inode's link count goes to 0.
1833  * We place the on-disk inode on a list in the AGI.  It
1834  * will be pulled from this list when the inode is freed.
1835  */
1836 int
1837 xfs_iunlink(
1838 	xfs_trans_t	*tp,
1839 	xfs_inode_t	*ip)
1840 {
1841 	xfs_mount_t	*mp;
1842 	xfs_agi_t	*agi;
1843 	xfs_dinode_t	*dip;
1844 	xfs_buf_t	*agibp;
1845 	xfs_buf_t	*ibp;
1846 	xfs_agnumber_t	agno;
1847 	xfs_daddr_t	agdaddr;
1848 	xfs_agino_t	agino;
1849 	short		bucket_index;
1850 	int		offset;
1851 	int		error;
1852 	int		agi_ok;
1853 
1854 	ASSERT(ip->i_d.di_nlink == 0);
1855 	ASSERT(ip->i_d.di_mode != 0);
1856 	ASSERT(ip->i_transp == tp);
1857 
1858 	mp = tp->t_mountp;
1859 
1860 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1861 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1862 
1863 	/*
1864 	 * Get the agi buffer first.  It ensures lock ordering
1865 	 * on the list.
1866 	 */
1867 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1868 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1869 	if (error) {
1870 		return error;
1871 	}
1872 	/*
1873 	 * Validate the magic number of the agi block.
1874 	 */
1875 	agi = XFS_BUF_TO_AGI(agibp);
1876 	agi_ok =
1877 		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1878 		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1879 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1880 			XFS_RANDOM_IUNLINK))) {
1881 		XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1882 		xfs_trans_brelse(tp, agibp);
1883 		return XFS_ERROR(EFSCORRUPTED);
1884 	}
1885 	/*
1886 	 * Get the index into the agi hash table for the
1887 	 * list this inode will go on.
1888 	 */
1889 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1890 	ASSERT(agino != 0);
1891 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1892 	ASSERT(agi->agi_unlinked[bucket_index]);
1893 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1894 
1895 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1896 		/*
1897 		 * There is already another inode in the bucket we need
1898 		 * to add ourselves to.  Add us at the front of the list.
1899 		 * Here we put the head pointer into our next pointer,
1900 		 * and then we fall through to point the head at us.
1901 		 */
1902 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1903 		if (error) {
1904 			return error;
1905 		}
1906 		ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1907 		ASSERT(dip->di_next_unlinked);
1908 		/* both on-disk, don't endian flip twice */
1909 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1910 		offset = ip->i_boffset +
1911 			offsetof(xfs_dinode_t, di_next_unlinked);
1912 		xfs_trans_inode_buf(tp, ibp);
1913 		xfs_trans_log_buf(tp, ibp, offset,
1914 				  (offset + sizeof(xfs_agino_t) - 1));
1915 		xfs_inobp_check(mp, ibp);
1916 	}
1917 
1918 	/*
1919 	 * Point the bucket head pointer at the inode being inserted.
1920 	 */
1921 	ASSERT(agino != 0);
1922 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1923 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1924 		(sizeof(xfs_agino_t) * bucket_index);
1925 	xfs_trans_log_buf(tp, agibp, offset,
1926 			  (offset + sizeof(xfs_agino_t) - 1));
1927 	return 0;
1928 }
1929 
1930 /*
1931  * Pull the on-disk inode from the AGI unlinked list.
1932  */
1933 STATIC int
1934 xfs_iunlink_remove(
1935 	xfs_trans_t	*tp,
1936 	xfs_inode_t	*ip)
1937 {
1938 	xfs_ino_t	next_ino;
1939 	xfs_mount_t	*mp;
1940 	xfs_agi_t	*agi;
1941 	xfs_dinode_t	*dip;
1942 	xfs_buf_t	*agibp;
1943 	xfs_buf_t	*ibp;
1944 	xfs_agnumber_t	agno;
1945 	xfs_daddr_t	agdaddr;
1946 	xfs_agino_t	agino;
1947 	xfs_agino_t	next_agino;
1948 	xfs_buf_t	*last_ibp;
1949 	xfs_dinode_t	*last_dip;
1950 	short		bucket_index;
1951 	int		offset, last_offset;
1952 	int		error;
1953 	int		agi_ok;
1954 
1955 	/*
1956 	 * First pull the on-disk inode from the AGI unlinked list.
1957 	 */
1958 	mp = tp->t_mountp;
1959 
1960 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1961 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1962 
1963 	/*
1964 	 * Get the agi buffer first.  It ensures lock ordering
1965 	 * on the list.
1966 	 */
1967 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1968 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1969 	if (error) {
1970 		cmn_err(CE_WARN,
1971 			"xfs_iunlink_remove: xfs_trans_read_buf()  returned an error %d on %s.  Returning error.",
1972 			error, mp->m_fsname);
1973 		return error;
1974 	}
1975 	/*
1976 	 * Validate the magic number of the agi block.
1977 	 */
1978 	agi = XFS_BUF_TO_AGI(agibp);
1979 	agi_ok =
1980 		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1981 		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1982 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1983 			XFS_RANDOM_IUNLINK_REMOVE))) {
1984 		XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1985 				     mp, agi);
1986 		xfs_trans_brelse(tp, agibp);
1987 		cmn_err(CE_WARN,
1988 			"xfs_iunlink_remove: XFS_TEST_ERROR()  returned an error on %s.  Returning EFSCORRUPTED.",
1989 			 mp->m_fsname);
1990 		return XFS_ERROR(EFSCORRUPTED);
1991 	}
1992 	/*
1993 	 * Get the index into the agi hash table for the
1994 	 * list this inode will go on.
1995 	 */
1996 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1997 	ASSERT(agino != 0);
1998 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1999 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2000 	ASSERT(agi->agi_unlinked[bucket_index]);
2001 
2002 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2003 		/*
2004 		 * We're at the head of the list.  Get the inode's
2005 		 * on-disk buffer to see if there is anyone after us
2006 		 * on the list.  Only modify our next pointer if it
2007 		 * is not already NULLAGINO.  This saves us the overhead
2008 		 * of dealing with the buffer when there is no need to
2009 		 * change it.
2010 		 */
2011 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2012 		if (error) {
2013 			cmn_err(CE_WARN,
2014 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2015 				error, mp->m_fsname);
2016 			return error;
2017 		}
2018 		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2019 		ASSERT(next_agino != 0);
2020 		if (next_agino != NULLAGINO) {
2021 			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2022 			offset = ip->i_boffset +
2023 				offsetof(xfs_dinode_t, di_next_unlinked);
2024 			xfs_trans_inode_buf(tp, ibp);
2025 			xfs_trans_log_buf(tp, ibp, offset,
2026 					  (offset + sizeof(xfs_agino_t) - 1));
2027 			xfs_inobp_check(mp, ibp);
2028 		} else {
2029 			xfs_trans_brelse(tp, ibp);
2030 		}
2031 		/*
2032 		 * Point the bucket head pointer at the next inode.
2033 		 */
2034 		ASSERT(next_agino != 0);
2035 		ASSERT(next_agino != agino);
2036 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2037 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2038 			(sizeof(xfs_agino_t) * bucket_index);
2039 		xfs_trans_log_buf(tp, agibp, offset,
2040 				  (offset + sizeof(xfs_agino_t) - 1));
2041 	} else {
2042 		/*
2043 		 * We need to search the list for the inode being freed.
2044 		 */
2045 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2046 		last_ibp = NULL;
2047 		while (next_agino != agino) {
2048 			/*
2049 			 * If the last inode wasn't the one pointing to
2050 			 * us, then release its buffer since we're not
2051 			 * going to do anything with it.
2052 			 */
2053 			if (last_ibp != NULL) {
2054 				xfs_trans_brelse(tp, last_ibp);
2055 			}
2056 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2057 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2058 					    &last_ibp, &last_offset);
2059 			if (error) {
2060 				cmn_err(CE_WARN,
2061 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
2062 					error, mp->m_fsname);
2063 				return error;
2064 			}
2065 			next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2066 			ASSERT(next_agino != NULLAGINO);
2067 			ASSERT(next_agino != 0);
2068 		}
2069 		/*
2070 		 * Now last_ibp points to the buffer previous to us on
2071 		 * the unlinked list.  Pull us from the list.
2072 		 */
2073 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2074 		if (error) {
2075 			cmn_err(CE_WARN,
2076 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2077 				error, mp->m_fsname);
2078 			return error;
2079 		}
2080 		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2081 		ASSERT(next_agino != 0);
2082 		ASSERT(next_agino != agino);
2083 		if (next_agino != NULLAGINO) {
2084 			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2085 			offset = ip->i_boffset +
2086 				offsetof(xfs_dinode_t, di_next_unlinked);
2087 			xfs_trans_inode_buf(tp, ibp);
2088 			xfs_trans_log_buf(tp, ibp, offset,
2089 					  (offset + sizeof(xfs_agino_t) - 1));
2090 			xfs_inobp_check(mp, ibp);
2091 		} else {
2092 			xfs_trans_brelse(tp, ibp);
2093 		}
2094 		/*
2095 		 * Point the previous inode on the list to the next inode.
2096 		 */
2097 		INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2098 		ASSERT(next_agino != 0);
2099 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2100 		xfs_trans_inode_buf(tp, last_ibp);
2101 		xfs_trans_log_buf(tp, last_ibp, offset,
2102 				  (offset + sizeof(xfs_agino_t) - 1));
2103 		xfs_inobp_check(mp, last_ibp);
2104 	}
2105 	return 0;
2106 }
2107 
2108 static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2109 {
2110 	return (((ip->i_itemp == NULL) ||
2111 		!(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2112 		(ip->i_update_core == 0));
2113 }
2114 
2115 STATIC void
2116 xfs_ifree_cluster(
2117 	xfs_inode_t	*free_ip,
2118 	xfs_trans_t	*tp,
2119 	xfs_ino_t	inum)
2120 {
2121 	xfs_mount_t		*mp = free_ip->i_mount;
2122 	int			blks_per_cluster;
2123 	int			nbufs;
2124 	int			ninodes;
2125 	int			i, j, found, pre_flushed;
2126 	xfs_daddr_t		blkno;
2127 	xfs_buf_t		*bp;
2128 	xfs_ihash_t		*ih;
2129 	xfs_inode_t		*ip, **ip_found;
2130 	xfs_inode_log_item_t	*iip;
2131 	xfs_log_item_t		*lip;
2132 	SPLDECL(s);
2133 
2134 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2135 		blks_per_cluster = 1;
2136 		ninodes = mp->m_sb.sb_inopblock;
2137 		nbufs = XFS_IALLOC_BLOCKS(mp);
2138 	} else {
2139 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2140 					mp->m_sb.sb_blocksize;
2141 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2142 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2143 	}
2144 
2145 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2146 
2147 	for (j = 0; j < nbufs; j++, inum += ninodes) {
2148 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2149 					 XFS_INO_TO_AGBNO(mp, inum));
2150 
2151 
2152 		/*
2153 		 * Look for each inode in memory and attempt to lock it,
2154 		 * we can be racing with flush and tail pushing here.
2155 		 * any inode we get the locks on, add to an array of
2156 		 * inode items to process later.
2157 		 *
2158 		 * The get the buffer lock, we could beat a flush
2159 		 * or tail pushing thread to the lock here, in which
2160 		 * case they will go looking for the inode buffer
2161 		 * and fail, we need some other form of interlock
2162 		 * here.
2163 		 */
2164 		found = 0;
2165 		for (i = 0; i < ninodes; i++) {
2166 			ih = XFS_IHASH(mp, inum + i);
2167 			read_lock(&ih->ih_lock);
2168 			for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2169 				if (ip->i_ino == inum + i)
2170 					break;
2171 			}
2172 
2173 			/* Inode not in memory or we found it already,
2174 			 * nothing to do
2175 			 */
2176 			if (!ip || (ip->i_flags & XFS_ISTALE)) {
2177 				read_unlock(&ih->ih_lock);
2178 				continue;
2179 			}
2180 
2181 			if (xfs_inode_clean(ip)) {
2182 				read_unlock(&ih->ih_lock);
2183 				continue;
2184 			}
2185 
2186 			/* If we can get the locks then add it to the
2187 			 * list, otherwise by the time we get the bp lock
2188 			 * below it will already be attached to the
2189 			 * inode buffer.
2190 			 */
2191 
2192 			/* This inode will already be locked - by us, lets
2193 			 * keep it that way.
2194 			 */
2195 
2196 			if (ip == free_ip) {
2197 				if (xfs_iflock_nowait(ip)) {
2198 					ip->i_flags |= XFS_ISTALE;
2199 
2200 					if (xfs_inode_clean(ip)) {
2201 						xfs_ifunlock(ip);
2202 					} else {
2203 						ip_found[found++] = ip;
2204 					}
2205 				}
2206 				read_unlock(&ih->ih_lock);
2207 				continue;
2208 			}
2209 
2210 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2211 				if (xfs_iflock_nowait(ip)) {
2212 					ip->i_flags |= XFS_ISTALE;
2213 
2214 					if (xfs_inode_clean(ip)) {
2215 						xfs_ifunlock(ip);
2216 						xfs_iunlock(ip, XFS_ILOCK_EXCL);
2217 					} else {
2218 						ip_found[found++] = ip;
2219 					}
2220 				} else {
2221 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2222 				}
2223 			}
2224 
2225 			read_unlock(&ih->ih_lock);
2226 		}
2227 
2228 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2229 					mp->m_bsize * blks_per_cluster,
2230 					XFS_BUF_LOCK);
2231 
2232 		pre_flushed = 0;
2233 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2234 		while (lip) {
2235 			if (lip->li_type == XFS_LI_INODE) {
2236 				iip = (xfs_inode_log_item_t *)lip;
2237 				ASSERT(iip->ili_logged == 1);
2238 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2239 				AIL_LOCK(mp,s);
2240 				iip->ili_flush_lsn = iip->ili_item.li_lsn;
2241 				AIL_UNLOCK(mp, s);
2242 				iip->ili_inode->i_flags |= XFS_ISTALE;
2243 				pre_flushed++;
2244 			}
2245 			lip = lip->li_bio_list;
2246 		}
2247 
2248 		for (i = 0; i < found; i++) {
2249 			ip = ip_found[i];
2250 			iip = ip->i_itemp;
2251 
2252 			if (!iip) {
2253 				ip->i_update_core = 0;
2254 				xfs_ifunlock(ip);
2255 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2256 				continue;
2257 			}
2258 
2259 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2260 			iip->ili_format.ilf_fields = 0;
2261 			iip->ili_logged = 1;
2262 			AIL_LOCK(mp,s);
2263 			iip->ili_flush_lsn = iip->ili_item.li_lsn;
2264 			AIL_UNLOCK(mp, s);
2265 
2266 			xfs_buf_attach_iodone(bp,
2267 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2268 				xfs_istale_done, (xfs_log_item_t *)iip);
2269 			if (ip != free_ip) {
2270 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2271 			}
2272 		}
2273 
2274 		if (found || pre_flushed)
2275 			xfs_trans_stale_inode_buf(tp, bp);
2276 		xfs_trans_binval(tp, bp);
2277 	}
2278 
2279 	kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2280 }
2281 
2282 /*
2283  * This is called to return an inode to the inode free list.
2284  * The inode should already be truncated to 0 length and have
2285  * no pages associated with it.  This routine also assumes that
2286  * the inode is already a part of the transaction.
2287  *
2288  * The on-disk copy of the inode will have been added to the list
2289  * of unlinked inodes in the AGI. We need to remove the inode from
2290  * that list atomically with respect to freeing it here.
2291  */
2292 int
2293 xfs_ifree(
2294 	xfs_trans_t	*tp,
2295 	xfs_inode_t	*ip,
2296 	xfs_bmap_free_t	*flist)
2297 {
2298 	int			error;
2299 	int			delete;
2300 	xfs_ino_t		first_ino;
2301 
2302 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2303 	ASSERT(ip->i_transp == tp);
2304 	ASSERT(ip->i_d.di_nlink == 0);
2305 	ASSERT(ip->i_d.di_nextents == 0);
2306 	ASSERT(ip->i_d.di_anextents == 0);
2307 	ASSERT((ip->i_d.di_size == 0) ||
2308 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2309 	ASSERT(ip->i_d.di_nblocks == 0);
2310 
2311 	/*
2312 	 * Pull the on-disk inode from the AGI unlinked list.
2313 	 */
2314 	error = xfs_iunlink_remove(tp, ip);
2315 	if (error != 0) {
2316 		return error;
2317 	}
2318 
2319 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2320 	if (error != 0) {
2321 		return error;
2322 	}
2323 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2324 	ip->i_d.di_flags = 0;
2325 	ip->i_d.di_dmevmask = 0;
2326 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2327 	ip->i_df.if_ext_max =
2328 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2329 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2330 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2331 	/*
2332 	 * Bump the generation count so no one will be confused
2333 	 * by reincarnations of this inode.
2334 	 */
2335 	ip->i_d.di_gen++;
2336 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2337 
2338 	if (delete) {
2339 		xfs_ifree_cluster(ip, tp, first_ino);
2340 	}
2341 
2342 	return 0;
2343 }
2344 
2345 /*
2346  * Reallocate the space for if_broot based on the number of records
2347  * being added or deleted as indicated in rec_diff.  Move the records
2348  * and pointers in if_broot to fit the new size.  When shrinking this
2349  * will eliminate holes between the records and pointers created by
2350  * the caller.  When growing this will create holes to be filled in
2351  * by the caller.
2352  *
2353  * The caller must not request to add more records than would fit in
2354  * the on-disk inode root.  If the if_broot is currently NULL, then
2355  * if we adding records one will be allocated.  The caller must also
2356  * not request that the number of records go below zero, although
2357  * it can go to zero.
2358  *
2359  * ip -- the inode whose if_broot area is changing
2360  * ext_diff -- the change in the number of records, positive or negative,
2361  *	 requested for the if_broot array.
2362  */
2363 void
2364 xfs_iroot_realloc(
2365 	xfs_inode_t		*ip,
2366 	int			rec_diff,
2367 	int			whichfork)
2368 {
2369 	int			cur_max;
2370 	xfs_ifork_t		*ifp;
2371 	xfs_bmbt_block_t	*new_broot;
2372 	int			new_max;
2373 	size_t			new_size;
2374 	char			*np;
2375 	char			*op;
2376 
2377 	/*
2378 	 * Handle the degenerate case quietly.
2379 	 */
2380 	if (rec_diff == 0) {
2381 		return;
2382 	}
2383 
2384 	ifp = XFS_IFORK_PTR(ip, whichfork);
2385 	if (rec_diff > 0) {
2386 		/*
2387 		 * If there wasn't any memory allocated before, just
2388 		 * allocate it now and get out.
2389 		 */
2390 		if (ifp->if_broot_bytes == 0) {
2391 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2392 			ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2393 								     KM_SLEEP);
2394 			ifp->if_broot_bytes = (int)new_size;
2395 			return;
2396 		}
2397 
2398 		/*
2399 		 * If there is already an existing if_broot, then we need
2400 		 * to realloc() it and shift the pointers to their new
2401 		 * location.  The records don't change location because
2402 		 * they are kept butted up against the btree block header.
2403 		 */
2404 		cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2405 		new_max = cur_max + rec_diff;
2406 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2407 		ifp->if_broot = (xfs_bmbt_block_t *)
2408 		  kmem_realloc(ifp->if_broot,
2409 				new_size,
2410 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2411 				KM_SLEEP);
2412 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2413 						      ifp->if_broot_bytes);
2414 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2415 						      (int)new_size);
2416 		ifp->if_broot_bytes = (int)new_size;
2417 		ASSERT(ifp->if_broot_bytes <=
2418 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2419 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2420 		return;
2421 	}
2422 
2423 	/*
2424 	 * rec_diff is less than 0.  In this case, we are shrinking the
2425 	 * if_broot buffer.  It must already exist.  If we go to zero
2426 	 * records, just get rid of the root and clear the status bit.
2427 	 */
2428 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2429 	cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2430 	new_max = cur_max + rec_diff;
2431 	ASSERT(new_max >= 0);
2432 	if (new_max > 0)
2433 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2434 	else
2435 		new_size = 0;
2436 	if (new_size > 0) {
2437 		new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2438 		/*
2439 		 * First copy over the btree block header.
2440 		 */
2441 		memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2442 	} else {
2443 		new_broot = NULL;
2444 		ifp->if_flags &= ~XFS_IFBROOT;
2445 	}
2446 
2447 	/*
2448 	 * Only copy the records and pointers if there are any.
2449 	 */
2450 	if (new_max > 0) {
2451 		/*
2452 		 * First copy the records.
2453 		 */
2454 		op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2455 						     ifp->if_broot_bytes);
2456 		np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2457 						     (int)new_size);
2458 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2459 
2460 		/*
2461 		 * Then copy the pointers.
2462 		 */
2463 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2464 						     ifp->if_broot_bytes);
2465 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2466 						     (int)new_size);
2467 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2468 	}
2469 	kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2470 	ifp->if_broot = new_broot;
2471 	ifp->if_broot_bytes = (int)new_size;
2472 	ASSERT(ifp->if_broot_bytes <=
2473 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2474 	return;
2475 }
2476 
2477 
2478 /*
2479  * This is called when the amount of space needed for if_extents
2480  * is increased or decreased.  The change in size is indicated by
2481  * the number of extents that need to be added or deleted in the
2482  * ext_diff parameter.
2483  *
2484  * If the amount of space needed has decreased below the size of the
2485  * inline buffer, then switch to using the inline buffer.  Otherwise,
2486  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2487  * to what is needed.
2488  *
2489  * ip -- the inode whose if_extents area is changing
2490  * ext_diff -- the change in the number of extents, positive or negative,
2491  *	 requested for the if_extents array.
2492  */
2493 void
2494 xfs_iext_realloc(
2495 	xfs_inode_t	*ip,
2496 	int		ext_diff,
2497 	int		whichfork)
2498 {
2499 	int		byte_diff;
2500 	xfs_ifork_t	*ifp;
2501 	int		new_size;
2502 	uint		rnew_size;
2503 
2504 	if (ext_diff == 0) {
2505 		return;
2506 	}
2507 
2508 	ifp = XFS_IFORK_PTR(ip, whichfork);
2509 	byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t);
2510 	new_size = (int)ifp->if_bytes + byte_diff;
2511 	ASSERT(new_size >= 0);
2512 
2513 	if (new_size == 0) {
2514 		if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2515 			ASSERT(ifp->if_real_bytes != 0);
2516 			kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2517 		}
2518 		ifp->if_u1.if_extents = NULL;
2519 		rnew_size = 0;
2520 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) {
2521 		/*
2522 		 * If the valid extents can fit in if_inline_ext,
2523 		 * copy them from the malloc'd vector and free it.
2524 		 */
2525 		if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2526 			/*
2527 			 * For now, empty files are format EXTENTS,
2528 			 * so the if_extents pointer is null.
2529 			 */
2530 			if (ifp->if_u1.if_extents) {
2531 				memcpy(ifp->if_u2.if_inline_ext,
2532 					ifp->if_u1.if_extents, new_size);
2533 				kmem_free(ifp->if_u1.if_extents,
2534 					  ifp->if_real_bytes);
2535 			}
2536 			ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2537 		}
2538 		rnew_size = 0;
2539 	} else {
2540 		rnew_size = new_size;
2541 		if ((rnew_size & (rnew_size - 1)) != 0)
2542 			rnew_size = xfs_iroundup(rnew_size);
2543 		/*
2544 		 * Stuck with malloc/realloc.
2545 		 */
2546 		if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) {
2547 			ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2548 				kmem_alloc(rnew_size, KM_SLEEP);
2549 			memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
2550 			      sizeof(ifp->if_u2.if_inline_ext));
2551 		} else if (rnew_size != ifp->if_real_bytes) {
2552 			ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2553 			  kmem_realloc(ifp->if_u1.if_extents,
2554 					rnew_size,
2555 					ifp->if_real_bytes,
2556 					KM_NOFS);
2557 		}
2558 	}
2559 	ifp->if_real_bytes = rnew_size;
2560 	ifp->if_bytes = new_size;
2561 }
2562 
2563 
2564 /*
2565  * This is called when the amount of space needed for if_data
2566  * is increased or decreased.  The change in size is indicated by
2567  * the number of bytes that need to be added or deleted in the
2568  * byte_diff parameter.
2569  *
2570  * If the amount of space needed has decreased below the size of the
2571  * inline buffer, then switch to using the inline buffer.  Otherwise,
2572  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2573  * to what is needed.
2574  *
2575  * ip -- the inode whose if_data area is changing
2576  * byte_diff -- the change in the number of bytes, positive or negative,
2577  *	 requested for the if_data array.
2578  */
2579 void
2580 xfs_idata_realloc(
2581 	xfs_inode_t	*ip,
2582 	int		byte_diff,
2583 	int		whichfork)
2584 {
2585 	xfs_ifork_t	*ifp;
2586 	int		new_size;
2587 	int		real_size;
2588 
2589 	if (byte_diff == 0) {
2590 		return;
2591 	}
2592 
2593 	ifp = XFS_IFORK_PTR(ip, whichfork);
2594 	new_size = (int)ifp->if_bytes + byte_diff;
2595 	ASSERT(new_size >= 0);
2596 
2597 	if (new_size == 0) {
2598 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2599 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2600 		}
2601 		ifp->if_u1.if_data = NULL;
2602 		real_size = 0;
2603 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2604 		/*
2605 		 * If the valid extents/data can fit in if_inline_ext/data,
2606 		 * copy them from the malloc'd vector and free it.
2607 		 */
2608 		if (ifp->if_u1.if_data == NULL) {
2609 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2610 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2611 			ASSERT(ifp->if_real_bytes != 0);
2612 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2613 			      new_size);
2614 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2615 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2616 		}
2617 		real_size = 0;
2618 	} else {
2619 		/*
2620 		 * Stuck with malloc/realloc.
2621 		 * For inline data, the underlying buffer must be
2622 		 * a multiple of 4 bytes in size so that it can be
2623 		 * logged and stay on word boundaries.  We enforce
2624 		 * that here.
2625 		 */
2626 		real_size = roundup(new_size, 4);
2627 		if (ifp->if_u1.if_data == NULL) {
2628 			ASSERT(ifp->if_real_bytes == 0);
2629 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2630 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2631 			/*
2632 			 * Only do the realloc if the underlying size
2633 			 * is really changing.
2634 			 */
2635 			if (ifp->if_real_bytes != real_size) {
2636 				ifp->if_u1.if_data =
2637 					kmem_realloc(ifp->if_u1.if_data,
2638 							real_size,
2639 							ifp->if_real_bytes,
2640 							KM_SLEEP);
2641 			}
2642 		} else {
2643 			ASSERT(ifp->if_real_bytes == 0);
2644 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2645 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2646 				ifp->if_bytes);
2647 		}
2648 	}
2649 	ifp->if_real_bytes = real_size;
2650 	ifp->if_bytes = new_size;
2651 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2652 }
2653 
2654 
2655 
2656 
2657 /*
2658  * Map inode to disk block and offset.
2659  *
2660  * mp -- the mount point structure for the current file system
2661  * tp -- the current transaction
2662  * ino -- the inode number of the inode to be located
2663  * imap -- this structure is filled in with the information necessary
2664  *	 to retrieve the given inode from disk
2665  * flags -- flags to pass to xfs_dilocate indicating whether or not
2666  *	 lookups in the inode btree were OK or not
2667  */
2668 int
2669 xfs_imap(
2670 	xfs_mount_t	*mp,
2671 	xfs_trans_t	*tp,
2672 	xfs_ino_t	ino,
2673 	xfs_imap_t	*imap,
2674 	uint		flags)
2675 {
2676 	xfs_fsblock_t	fsbno;
2677 	int		len;
2678 	int		off;
2679 	int		error;
2680 
2681 	fsbno = imap->im_blkno ?
2682 		XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2683 	error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2684 	if (error != 0) {
2685 		return error;
2686 	}
2687 	imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2688 	imap->im_len = XFS_FSB_TO_BB(mp, len);
2689 	imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2690 	imap->im_ioffset = (ushort)off;
2691 	imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2692 	return 0;
2693 }
2694 
2695 void
2696 xfs_idestroy_fork(
2697 	xfs_inode_t	*ip,
2698 	int		whichfork)
2699 {
2700 	xfs_ifork_t	*ifp;
2701 
2702 	ifp = XFS_IFORK_PTR(ip, whichfork);
2703 	if (ifp->if_broot != NULL) {
2704 		kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2705 		ifp->if_broot = NULL;
2706 	}
2707 
2708 	/*
2709 	 * If the format is local, then we can't have an extents
2710 	 * array so just look for an inline data array.  If we're
2711 	 * not local then we may or may not have an extents list,
2712 	 * so check and free it up if we do.
2713 	 */
2714 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2715 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2716 		    (ifp->if_u1.if_data != NULL)) {
2717 			ASSERT(ifp->if_real_bytes != 0);
2718 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2719 			ifp->if_u1.if_data = NULL;
2720 			ifp->if_real_bytes = 0;
2721 		}
2722 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2723 		   (ifp->if_u1.if_extents != NULL) &&
2724 		   (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) {
2725 		ASSERT(ifp->if_real_bytes != 0);
2726 		kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2727 		ifp->if_u1.if_extents = NULL;
2728 		ifp->if_real_bytes = 0;
2729 	}
2730 	ASSERT(ifp->if_u1.if_extents == NULL ||
2731 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2732 	ASSERT(ifp->if_real_bytes == 0);
2733 	if (whichfork == XFS_ATTR_FORK) {
2734 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2735 		ip->i_afp = NULL;
2736 	}
2737 }
2738 
2739 /*
2740  * This is called free all the memory associated with an inode.
2741  * It must free the inode itself and any buffers allocated for
2742  * if_extents/if_data and if_broot.  It must also free the lock
2743  * associated with the inode.
2744  */
2745 void
2746 xfs_idestroy(
2747 	xfs_inode_t	*ip)
2748 {
2749 
2750 	switch (ip->i_d.di_mode & S_IFMT) {
2751 	case S_IFREG:
2752 	case S_IFDIR:
2753 	case S_IFLNK:
2754 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
2755 		break;
2756 	}
2757 	if (ip->i_afp)
2758 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2759 	mrfree(&ip->i_lock);
2760 	mrfree(&ip->i_iolock);
2761 	freesema(&ip->i_flock);
2762 #ifdef XFS_BMAP_TRACE
2763 	ktrace_free(ip->i_xtrace);
2764 #endif
2765 #ifdef XFS_BMBT_TRACE
2766 	ktrace_free(ip->i_btrace);
2767 #endif
2768 #ifdef XFS_RW_TRACE
2769 	ktrace_free(ip->i_rwtrace);
2770 #endif
2771 #ifdef XFS_ILOCK_TRACE
2772 	ktrace_free(ip->i_lock_trace);
2773 #endif
2774 #ifdef XFS_DIR2_TRACE
2775 	ktrace_free(ip->i_dir_trace);
2776 #endif
2777 	if (ip->i_itemp) {
2778 		/* XXXdpd should be able to assert this but shutdown
2779 		 * is leaving the AIL behind. */
2780 		ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2781 		       XFS_FORCED_SHUTDOWN(ip->i_mount));
2782 		xfs_inode_item_destroy(ip);
2783 	}
2784 	kmem_zone_free(xfs_inode_zone, ip);
2785 }
2786 
2787 
2788 /*
2789  * Increment the pin count of the given buffer.
2790  * This value is protected by ipinlock spinlock in the mount structure.
2791  */
2792 void
2793 xfs_ipin(
2794 	xfs_inode_t	*ip)
2795 {
2796 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2797 
2798 	atomic_inc(&ip->i_pincount);
2799 }
2800 
2801 /*
2802  * Decrement the pin count of the given inode, and wake up
2803  * anyone in xfs_iwait_unpin() if the count goes to 0.  The
2804  * inode must have been previoulsy pinned with a call to xfs_ipin().
2805  */
2806 void
2807 xfs_iunpin(
2808 	xfs_inode_t	*ip)
2809 {
2810 	ASSERT(atomic_read(&ip->i_pincount) > 0);
2811 
2812 	if (atomic_dec_and_test(&ip->i_pincount)) {
2813 		vnode_t	*vp = XFS_ITOV_NULL(ip);
2814 
2815 		/* make sync come back and flush this inode */
2816 		if (vp) {
2817 			struct inode	*inode = LINVFS_GET_IP(vp);
2818 
2819 			if (!(inode->i_state & I_NEW))
2820 				mark_inode_dirty_sync(inode);
2821 		}
2822 
2823 		wake_up(&ip->i_ipin_wait);
2824 	}
2825 }
2826 
2827 /*
2828  * This is called to wait for the given inode to be unpinned.
2829  * It will sleep until this happens.  The caller must have the
2830  * inode locked in at least shared mode so that the buffer cannot
2831  * be subsequently pinned once someone is waiting for it to be
2832  * unpinned.
2833  */
2834 STATIC void
2835 xfs_iunpin_wait(
2836 	xfs_inode_t	*ip)
2837 {
2838 	xfs_inode_log_item_t	*iip;
2839 	xfs_lsn_t	lsn;
2840 
2841 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2842 
2843 	if (atomic_read(&ip->i_pincount) == 0) {
2844 		return;
2845 	}
2846 
2847 	iip = ip->i_itemp;
2848 	if (iip && iip->ili_last_lsn) {
2849 		lsn = iip->ili_last_lsn;
2850 	} else {
2851 		lsn = (xfs_lsn_t)0;
2852 	}
2853 
2854 	/*
2855 	 * Give the log a push so we don't wait here too long.
2856 	 */
2857 	xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2858 
2859 	wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2860 }
2861 
2862 
2863 /*
2864  * xfs_iextents_copy()
2865  *
2866  * This is called to copy the REAL extents (as opposed to the delayed
2867  * allocation extents) from the inode into the given buffer.  It
2868  * returns the number of bytes copied into the buffer.
2869  *
2870  * If there are no delayed allocation extents, then we can just
2871  * memcpy() the extents into the buffer.  Otherwise, we need to
2872  * examine each extent in turn and skip those which are delayed.
2873  */
2874 int
2875 xfs_iextents_copy(
2876 	xfs_inode_t		*ip,
2877 	xfs_bmbt_rec_t		*buffer,
2878 	int			whichfork)
2879 {
2880 	int			copied;
2881 	xfs_bmbt_rec_t		*dest_ep;
2882 	xfs_bmbt_rec_t		*ep;
2883 #ifdef XFS_BMAP_TRACE
2884 	static char		fname[] = "xfs_iextents_copy";
2885 #endif
2886 	int			i;
2887 	xfs_ifork_t		*ifp;
2888 	int			nrecs;
2889 	xfs_fsblock_t		start_block;
2890 
2891 	ifp = XFS_IFORK_PTR(ip, whichfork);
2892 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2893 	ASSERT(ifp->if_bytes > 0);
2894 
2895 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2896 	xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2897 	ASSERT(nrecs > 0);
2898 
2899 	/*
2900 	 * There are some delayed allocation extents in the
2901 	 * inode, so copy the extents one at a time and skip
2902 	 * the delayed ones.  There must be at least one
2903 	 * non-delayed extent.
2904 	 */
2905 	ep = ifp->if_u1.if_extents;
2906 	dest_ep = buffer;
2907 	copied = 0;
2908 	for (i = 0; i < nrecs; i++) {
2909 		start_block = xfs_bmbt_get_startblock(ep);
2910 		if (ISNULLSTARTBLOCK(start_block)) {
2911 			/*
2912 			 * It's a delayed allocation extent, so skip it.
2913 			 */
2914 			ep++;
2915 			continue;
2916 		}
2917 
2918 		/* Translate to on disk format */
2919 		put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2920 			      (__uint64_t*)&dest_ep->l0);
2921 		put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2922 			      (__uint64_t*)&dest_ep->l1);
2923 		dest_ep++;
2924 		ep++;
2925 		copied++;
2926 	}
2927 	ASSERT(copied != 0);
2928 	xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip));
2929 
2930 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2931 }
2932 
2933 /*
2934  * Each of the following cases stores data into the same region
2935  * of the on-disk inode, so only one of them can be valid at
2936  * any given time. While it is possible to have conflicting formats
2937  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2938  * in EXTENTS format, this can only happen when the fork has
2939  * changed formats after being modified but before being flushed.
2940  * In these cases, the format always takes precedence, because the
2941  * format indicates the current state of the fork.
2942  */
2943 /*ARGSUSED*/
2944 STATIC int
2945 xfs_iflush_fork(
2946 	xfs_inode_t		*ip,
2947 	xfs_dinode_t		*dip,
2948 	xfs_inode_log_item_t	*iip,
2949 	int			whichfork,
2950 	xfs_buf_t		*bp)
2951 {
2952 	char			*cp;
2953 	xfs_ifork_t		*ifp;
2954 	xfs_mount_t		*mp;
2955 #ifdef XFS_TRANS_DEBUG
2956 	int			first;
2957 #endif
2958 	static const short	brootflag[2] =
2959 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2960 	static const short	dataflag[2] =
2961 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2962 	static const short	extflag[2] =
2963 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2964 
2965 	if (iip == NULL)
2966 		return 0;
2967 	ifp = XFS_IFORK_PTR(ip, whichfork);
2968 	/*
2969 	 * This can happen if we gave up in iformat in an error path,
2970 	 * for the attribute fork.
2971 	 */
2972 	if (ifp == NULL) {
2973 		ASSERT(whichfork == XFS_ATTR_FORK);
2974 		return 0;
2975 	}
2976 	cp = XFS_DFORK_PTR(dip, whichfork);
2977 	mp = ip->i_mount;
2978 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2979 	case XFS_DINODE_FMT_LOCAL:
2980 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2981 		    (ifp->if_bytes > 0)) {
2982 			ASSERT(ifp->if_u1.if_data != NULL);
2983 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2984 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2985 		}
2986 		if (whichfork == XFS_DATA_FORK) {
2987 			if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
2988 				XFS_ERROR_REPORT("xfs_iflush_fork",
2989 						 XFS_ERRLEVEL_LOW, mp);
2990 				return XFS_ERROR(EFSCORRUPTED);
2991 			}
2992 		}
2993 		break;
2994 
2995 	case XFS_DINODE_FMT_EXTENTS:
2996 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2997 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2998 		ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0));
2999 		ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0));
3000 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
3001 		    (ifp->if_bytes > 0)) {
3002 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
3003 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3004 				whichfork);
3005 		}
3006 		break;
3007 
3008 	case XFS_DINODE_FMT_BTREE:
3009 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3010 		    (ifp->if_broot_bytes > 0)) {
3011 			ASSERT(ifp->if_broot != NULL);
3012 			ASSERT(ifp->if_broot_bytes <=
3013 			       (XFS_IFORK_SIZE(ip, whichfork) +
3014 				XFS_BROOT_SIZE_ADJ));
3015 			xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3016 				(xfs_bmdr_block_t *)cp,
3017 				XFS_DFORK_SIZE(dip, mp, whichfork));
3018 		}
3019 		break;
3020 
3021 	case XFS_DINODE_FMT_DEV:
3022 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3023 			ASSERT(whichfork == XFS_DATA_FORK);
3024 			INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3025 		}
3026 		break;
3027 
3028 	case XFS_DINODE_FMT_UUID:
3029 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3030 			ASSERT(whichfork == XFS_DATA_FORK);
3031 			memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3032 				sizeof(uuid_t));
3033 		}
3034 		break;
3035 
3036 	default:
3037 		ASSERT(0);
3038 		break;
3039 	}
3040 
3041 	return 0;
3042 }
3043 
3044 /*
3045  * xfs_iflush() will write a modified inode's changes out to the
3046  * inode's on disk home.  The caller must have the inode lock held
3047  * in at least shared mode and the inode flush semaphore must be
3048  * held as well.  The inode lock will still be held upon return from
3049  * the call and the caller is free to unlock it.
3050  * The inode flush lock will be unlocked when the inode reaches the disk.
3051  * The flags indicate how the inode's buffer should be written out.
3052  */
3053 int
3054 xfs_iflush(
3055 	xfs_inode_t		*ip,
3056 	uint			flags)
3057 {
3058 	xfs_inode_log_item_t	*iip;
3059 	xfs_buf_t		*bp;
3060 	xfs_dinode_t		*dip;
3061 	xfs_mount_t		*mp;
3062 	int			error;
3063 	/* REFERENCED */
3064 	xfs_chash_t		*ch;
3065 	xfs_inode_t		*iq;
3066 	int			clcount;	/* count of inodes clustered */
3067 	int			bufwasdelwri;
3068 	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3069 	SPLDECL(s);
3070 
3071 	XFS_STATS_INC(xs_iflush_count);
3072 
3073 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3074 	ASSERT(valusema(&ip->i_flock) <= 0);
3075 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3076 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3077 
3078 	iip = ip->i_itemp;
3079 	mp = ip->i_mount;
3080 
3081 	/*
3082 	 * If the inode isn't dirty, then just release the inode
3083 	 * flush lock and do nothing.
3084 	 */
3085 	if ((ip->i_update_core == 0) &&
3086 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3087 		ASSERT((iip != NULL) ?
3088 			 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3089 		xfs_ifunlock(ip);
3090 		return 0;
3091 	}
3092 
3093 	/*
3094 	 * We can't flush the inode until it is unpinned, so
3095 	 * wait for it.  We know noone new can pin it, because
3096 	 * we are holding the inode lock shared and you need
3097 	 * to hold it exclusively to pin the inode.
3098 	 */
3099 	xfs_iunpin_wait(ip);
3100 
3101 	/*
3102 	 * This may have been unpinned because the filesystem is shutting
3103 	 * down forcibly. If that's the case we must not write this inode
3104 	 * to disk, because the log record didn't make it to disk!
3105 	 */
3106 	if (XFS_FORCED_SHUTDOWN(mp)) {
3107 		ip->i_update_core = 0;
3108 		if (iip)
3109 			iip->ili_format.ilf_fields = 0;
3110 		xfs_ifunlock(ip);
3111 		return XFS_ERROR(EIO);
3112 	}
3113 
3114 	/*
3115 	 * Get the buffer containing the on-disk inode.
3116 	 */
3117 	error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0);
3118 	if (error != 0) {
3119 		xfs_ifunlock(ip);
3120 		return error;
3121 	}
3122 
3123 	/*
3124 	 * Decide how buffer will be flushed out.  This is done before
3125 	 * the call to xfs_iflush_int because this field is zeroed by it.
3126 	 */
3127 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3128 		/*
3129 		 * Flush out the inode buffer according to the directions
3130 		 * of the caller.  In the cases where the caller has given
3131 		 * us a choice choose the non-delwri case.  This is because
3132 		 * the inode is in the AIL and we need to get it out soon.
3133 		 */
3134 		switch (flags) {
3135 		case XFS_IFLUSH_SYNC:
3136 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3137 			flags = 0;
3138 			break;
3139 		case XFS_IFLUSH_ASYNC:
3140 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3141 			flags = INT_ASYNC;
3142 			break;
3143 		case XFS_IFLUSH_DELWRI:
3144 			flags = INT_DELWRI;
3145 			break;
3146 		default:
3147 			ASSERT(0);
3148 			flags = 0;
3149 			break;
3150 		}
3151 	} else {
3152 		switch (flags) {
3153 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3154 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3155 		case XFS_IFLUSH_DELWRI:
3156 			flags = INT_DELWRI;
3157 			break;
3158 		case XFS_IFLUSH_ASYNC:
3159 			flags = INT_ASYNC;
3160 			break;
3161 		case XFS_IFLUSH_SYNC:
3162 			flags = 0;
3163 			break;
3164 		default:
3165 			ASSERT(0);
3166 			flags = 0;
3167 			break;
3168 		}
3169 	}
3170 
3171 	/*
3172 	 * First flush out the inode that xfs_iflush was called with.
3173 	 */
3174 	error = xfs_iflush_int(ip, bp);
3175 	if (error) {
3176 		goto corrupt_out;
3177 	}
3178 
3179 	/*
3180 	 * inode clustering:
3181 	 * see if other inodes can be gathered into this write
3182 	 */
3183 
3184 	ip->i_chash->chl_buf = bp;
3185 
3186 	ch = XFS_CHASH(mp, ip->i_blkno);
3187 	s = mutex_spinlock(&ch->ch_lock);
3188 
3189 	clcount = 0;
3190 	for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3191 		/*
3192 		 * Do an un-protected check to see if the inode is dirty and
3193 		 * is a candidate for flushing.  These checks will be repeated
3194 		 * later after the appropriate locks are acquired.
3195 		 */
3196 		iip = iq->i_itemp;
3197 		if ((iq->i_update_core == 0) &&
3198 		    ((iip == NULL) ||
3199 		     !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3200 		      xfs_ipincount(iq) == 0) {
3201 			continue;
3202 		}
3203 
3204 		/*
3205 		 * Try to get locks.  If any are unavailable,
3206 		 * then this inode cannot be flushed and is skipped.
3207 		 */
3208 
3209 		/* get inode locks (just i_lock) */
3210 		if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3211 			/* get inode flush lock */
3212 			if (xfs_iflock_nowait(iq)) {
3213 				/* check if pinned */
3214 				if (xfs_ipincount(iq) == 0) {
3215 					/* arriving here means that
3216 					 * this inode can be flushed.
3217 					 * first re-check that it's
3218 					 * dirty
3219 					 */
3220 					iip = iq->i_itemp;
3221 					if ((iq->i_update_core != 0)||
3222 					    ((iip != NULL) &&
3223 					     (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3224 						clcount++;
3225 						error = xfs_iflush_int(iq, bp);
3226 						if (error) {
3227 							xfs_iunlock(iq,
3228 								    XFS_ILOCK_SHARED);
3229 							goto cluster_corrupt_out;
3230 						}
3231 					} else {
3232 						xfs_ifunlock(iq);
3233 					}
3234 				} else {
3235 					xfs_ifunlock(iq);
3236 				}
3237 			}
3238 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3239 		}
3240 	}
3241 	mutex_spinunlock(&ch->ch_lock, s);
3242 
3243 	if (clcount) {
3244 		XFS_STATS_INC(xs_icluster_flushcnt);
3245 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3246 	}
3247 
3248 	/*
3249 	 * If the buffer is pinned then push on the log so we won't
3250 	 * get stuck waiting in the write for too long.
3251 	 */
3252 	if (XFS_BUF_ISPINNED(bp)){
3253 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3254 	}
3255 
3256 	if (flags & INT_DELWRI) {
3257 		xfs_bdwrite(mp, bp);
3258 	} else if (flags & INT_ASYNC) {
3259 		xfs_bawrite(mp, bp);
3260 	} else {
3261 		error = xfs_bwrite(mp, bp);
3262 	}
3263 	return error;
3264 
3265 corrupt_out:
3266 	xfs_buf_relse(bp);
3267 	xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3268 	xfs_iflush_abort(ip);
3269 	/*
3270 	 * Unlocks the flush lock
3271 	 */
3272 	return XFS_ERROR(EFSCORRUPTED);
3273 
3274 cluster_corrupt_out:
3275 	/* Corruption detected in the clustering loop.  Invalidate the
3276 	 * inode buffer and shut down the filesystem.
3277 	 */
3278 	mutex_spinunlock(&ch->ch_lock, s);
3279 
3280 	/*
3281 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
3282 	 * brelse can handle it with no problems.  If not, shut down the
3283 	 * filesystem before releasing the buffer.
3284 	 */
3285 	if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3286 		xfs_buf_relse(bp);
3287 	}
3288 
3289 	xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3290 
3291 	if(!bufwasdelwri)  {
3292 		/*
3293 		 * Just like incore_relse: if we have b_iodone functions,
3294 		 * mark the buffer as an error and call them.  Otherwise
3295 		 * mark it as stale and brelse.
3296 		 */
3297 		if (XFS_BUF_IODONE_FUNC(bp)) {
3298 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3299 			XFS_BUF_UNDONE(bp);
3300 			XFS_BUF_STALE(bp);
3301 			XFS_BUF_SHUT(bp);
3302 			XFS_BUF_ERROR(bp,EIO);
3303 			xfs_biodone(bp);
3304 		} else {
3305 			XFS_BUF_STALE(bp);
3306 			xfs_buf_relse(bp);
3307 		}
3308 	}
3309 
3310 	xfs_iflush_abort(iq);
3311 	/*
3312 	 * Unlocks the flush lock
3313 	 */
3314 	return XFS_ERROR(EFSCORRUPTED);
3315 }
3316 
3317 
3318 STATIC int
3319 xfs_iflush_int(
3320 	xfs_inode_t		*ip,
3321 	xfs_buf_t		*bp)
3322 {
3323 	xfs_inode_log_item_t	*iip;
3324 	xfs_dinode_t		*dip;
3325 	xfs_mount_t		*mp;
3326 #ifdef XFS_TRANS_DEBUG
3327 	int			first;
3328 #endif
3329 	SPLDECL(s);
3330 
3331 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3332 	ASSERT(valusema(&ip->i_flock) <= 0);
3333 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3334 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3335 
3336 	iip = ip->i_itemp;
3337 	mp = ip->i_mount;
3338 
3339 
3340 	/*
3341 	 * If the inode isn't dirty, then just release the inode
3342 	 * flush lock and do nothing.
3343 	 */
3344 	if ((ip->i_update_core == 0) &&
3345 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3346 		xfs_ifunlock(ip);
3347 		return 0;
3348 	}
3349 
3350 	/* set *dip = inode's place in the buffer */
3351 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3352 
3353 	/*
3354 	 * Clear i_update_core before copying out the data.
3355 	 * This is for coordination with our timestamp updates
3356 	 * that don't hold the inode lock. They will always
3357 	 * update the timestamps BEFORE setting i_update_core,
3358 	 * so if we clear i_update_core after they set it we
3359 	 * are guaranteed to see their updates to the timestamps.
3360 	 * I believe that this depends on strongly ordered memory
3361 	 * semantics, but we have that.  We use the SYNCHRONIZE
3362 	 * macro to make sure that the compiler does not reorder
3363 	 * the i_update_core access below the data copy below.
3364 	 */
3365 	ip->i_update_core = 0;
3366 	SYNCHRONIZE();
3367 
3368 	/*
3369 	 * Make sure to get the latest atime from the Linux inode.
3370 	 */
3371 	xfs_synchronize_atime(ip);
3372 
3373 	if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3374 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3375 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3376 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3377 			ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3378 		goto corrupt_out;
3379 	}
3380 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3381 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3382 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3383 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3384 			ip->i_ino, ip, ip->i_d.di_magic);
3385 		goto corrupt_out;
3386 	}
3387 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3388 		if (XFS_TEST_ERROR(
3389 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3390 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3391 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3392 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3393 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3394 				ip->i_ino, ip);
3395 			goto corrupt_out;
3396 		}
3397 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3398 		if (XFS_TEST_ERROR(
3399 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3400 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3401 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3402 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3403 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3404 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3405 				ip->i_ino, ip);
3406 			goto corrupt_out;
3407 		}
3408 	}
3409 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3410 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3411 				XFS_RANDOM_IFLUSH_5)) {
3412 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3413 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3414 			ip->i_ino,
3415 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3416 			ip->i_d.di_nblocks,
3417 			ip);
3418 		goto corrupt_out;
3419 	}
3420 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3421 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3422 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3423 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3424 			ip->i_ino, ip->i_d.di_forkoff, ip);
3425 		goto corrupt_out;
3426 	}
3427 	/*
3428 	 * bump the flush iteration count, used to detect flushes which
3429 	 * postdate a log record during recovery.
3430 	 */
3431 
3432 	ip->i_d.di_flushiter++;
3433 
3434 	/*
3435 	 * Copy the dirty parts of the inode into the on-disk
3436 	 * inode.  We always copy out the core of the inode,
3437 	 * because if the inode is dirty at all the core must
3438 	 * be.
3439 	 */
3440 	xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3441 
3442 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3443 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3444 		ip->i_d.di_flushiter = 0;
3445 
3446 	/*
3447 	 * If this is really an old format inode and the superblock version
3448 	 * has not been updated to support only new format inodes, then
3449 	 * convert back to the old inode format.  If the superblock version
3450 	 * has been updated, then make the conversion permanent.
3451 	 */
3452 	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3453 	       XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3454 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3455 		if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3456 			/*
3457 			 * Convert it back.
3458 			 */
3459 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3460 			INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3461 		} else {
3462 			/*
3463 			 * The superblock version has already been bumped,
3464 			 * so just make the conversion to the new inode
3465 			 * format permanent.
3466 			 */
3467 			ip->i_d.di_version = XFS_DINODE_VERSION_2;
3468 			INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3469 			ip->i_d.di_onlink = 0;
3470 			dip->di_core.di_onlink = 0;
3471 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3472 			memset(&(dip->di_core.di_pad[0]), 0,
3473 			      sizeof(dip->di_core.di_pad));
3474 			ASSERT(ip->i_d.di_projid == 0);
3475 		}
3476 	}
3477 
3478 	if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3479 		goto corrupt_out;
3480 	}
3481 
3482 	if (XFS_IFORK_Q(ip)) {
3483 		/*
3484 		 * The only error from xfs_iflush_fork is on the data fork.
3485 		 */
3486 		(void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3487 	}
3488 	xfs_inobp_check(mp, bp);
3489 
3490 	/*
3491 	 * We've recorded everything logged in the inode, so we'd
3492 	 * like to clear the ilf_fields bits so we don't log and
3493 	 * flush things unnecessarily.  However, we can't stop
3494 	 * logging all this information until the data we've copied
3495 	 * into the disk buffer is written to disk.  If we did we might
3496 	 * overwrite the copy of the inode in the log with all the
3497 	 * data after re-logging only part of it, and in the face of
3498 	 * a crash we wouldn't have all the data we need to recover.
3499 	 *
3500 	 * What we do is move the bits to the ili_last_fields field.
3501 	 * When logging the inode, these bits are moved back to the
3502 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3503 	 * clear ili_last_fields, since we know that the information
3504 	 * those bits represent is permanently on disk.  As long as
3505 	 * the flush completes before the inode is logged again, then
3506 	 * both ilf_fields and ili_last_fields will be cleared.
3507 	 *
3508 	 * We can play with the ilf_fields bits here, because the inode
3509 	 * lock must be held exclusively in order to set bits there
3510 	 * and the flush lock protects the ili_last_fields bits.
3511 	 * Set ili_logged so the flush done
3512 	 * routine can tell whether or not to look in the AIL.
3513 	 * Also, store the current LSN of the inode so that we can tell
3514 	 * whether the item has moved in the AIL from xfs_iflush_done().
3515 	 * In order to read the lsn we need the AIL lock, because
3516 	 * it is a 64 bit value that cannot be read atomically.
3517 	 */
3518 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3519 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3520 		iip->ili_format.ilf_fields = 0;
3521 		iip->ili_logged = 1;
3522 
3523 		ASSERT(sizeof(xfs_lsn_t) == 8);	/* don't lock if it shrinks */
3524 		AIL_LOCK(mp,s);
3525 		iip->ili_flush_lsn = iip->ili_item.li_lsn;
3526 		AIL_UNLOCK(mp, s);
3527 
3528 		/*
3529 		 * Attach the function xfs_iflush_done to the inode's
3530 		 * buffer.  This will remove the inode from the AIL
3531 		 * and unlock the inode's flush lock when the inode is
3532 		 * completely written to disk.
3533 		 */
3534 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3535 				      xfs_iflush_done, (xfs_log_item_t *)iip);
3536 
3537 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3538 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3539 	} else {
3540 		/*
3541 		 * We're flushing an inode which is not in the AIL and has
3542 		 * not been logged but has i_update_core set.  For this
3543 		 * case we can use a B_DELWRI flush and immediately drop
3544 		 * the inode flush lock because we can avoid the whole
3545 		 * AIL state thing.  It's OK to drop the flush lock now,
3546 		 * because we've already locked the buffer and to do anything
3547 		 * you really need both.
3548 		 */
3549 		if (iip != NULL) {
3550 			ASSERT(iip->ili_logged == 0);
3551 			ASSERT(iip->ili_last_fields == 0);
3552 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3553 		}
3554 		xfs_ifunlock(ip);
3555 	}
3556 
3557 	return 0;
3558 
3559 corrupt_out:
3560 	return XFS_ERROR(EFSCORRUPTED);
3561 }
3562 
3563 
3564 /*
3565  * Flush all inactive inodes in mp.
3566  */
3567 void
3568 xfs_iflush_all(
3569 	xfs_mount_t	*mp)
3570 {
3571 	xfs_inode_t	*ip;
3572 	vnode_t		*vp;
3573 
3574  again:
3575 	XFS_MOUNT_ILOCK(mp);
3576 	ip = mp->m_inodes;
3577 	if (ip == NULL)
3578 		goto out;
3579 
3580 	do {
3581 		/* Make sure we skip markers inserted by sync */
3582 		if (ip->i_mount == NULL) {
3583 			ip = ip->i_mnext;
3584 			continue;
3585 		}
3586 
3587 		vp = XFS_ITOV_NULL(ip);
3588 		if (!vp) {
3589 			XFS_MOUNT_IUNLOCK(mp);
3590 			xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3591 			goto again;
3592 		}
3593 
3594 		ASSERT(vn_count(vp) == 0);
3595 
3596 		ip = ip->i_mnext;
3597 	} while (ip != mp->m_inodes);
3598  out:
3599 	XFS_MOUNT_IUNLOCK(mp);
3600 }
3601 
3602 /*
3603  * xfs_iaccess: check accessibility of inode for mode.
3604  */
3605 int
3606 xfs_iaccess(
3607 	xfs_inode_t	*ip,
3608 	mode_t		mode,
3609 	cred_t		*cr)
3610 {
3611 	int		error;
3612 	mode_t		orgmode = mode;
3613 	struct inode	*inode = LINVFS_GET_IP(XFS_ITOV(ip));
3614 
3615 	if (mode & S_IWUSR) {
3616 		umode_t		imode = inode->i_mode;
3617 
3618 		if (IS_RDONLY(inode) &&
3619 		    (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3620 			return XFS_ERROR(EROFS);
3621 
3622 		if (IS_IMMUTABLE(inode))
3623 			return XFS_ERROR(EACCES);
3624 	}
3625 
3626 	/*
3627 	 * If there's an Access Control List it's used instead of
3628 	 * the mode bits.
3629 	 */
3630 	if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3631 		return error ? XFS_ERROR(error) : 0;
3632 
3633 	if (current_fsuid(cr) != ip->i_d.di_uid) {
3634 		mode >>= 3;
3635 		if (!in_group_p((gid_t)ip->i_d.di_gid))
3636 			mode >>= 3;
3637 	}
3638 
3639 	/*
3640 	 * If the DACs are ok we don't need any capability check.
3641 	 */
3642 	if ((ip->i_d.di_mode & mode) == mode)
3643 		return 0;
3644 	/*
3645 	 * Read/write DACs are always overridable.
3646 	 * Executable DACs are overridable if at least one exec bit is set.
3647 	 */
3648 	if (!(orgmode & S_IXUSR) ||
3649 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3650 		if (capable_cred(cr, CAP_DAC_OVERRIDE))
3651 			return 0;
3652 
3653 	if ((orgmode == S_IRUSR) ||
3654 	    (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3655 		if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3656 			return 0;
3657 #ifdef	NOISE
3658 		cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3659 #endif	/* NOISE */
3660 		return XFS_ERROR(EACCES);
3661 	}
3662 	return XFS_ERROR(EACCES);
3663 }
3664 
3665 /*
3666  * xfs_iroundup: round up argument to next power of two
3667  */
3668 uint
3669 xfs_iroundup(
3670 	uint	v)
3671 {
3672 	int i;
3673 	uint m;
3674 
3675 	if ((v & (v - 1)) == 0)
3676 		return v;
3677 	ASSERT((v & 0x80000000) == 0);
3678 	if ((v & (v + 1)) == 0)
3679 		return v + 1;
3680 	for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3681 		if (v & m)
3682 			continue;
3683 		v |= m;
3684 		if ((v & (v + 1)) == 0)
3685 			return v + 1;
3686 	}
3687 	ASSERT(0);
3688 	return( 0 );
3689 }
3690 
3691 #ifdef XFS_ILOCK_TRACE
3692 ktrace_t	*xfs_ilock_trace_buf;
3693 
3694 void
3695 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3696 {
3697 	ktrace_enter(ip->i_lock_trace,
3698 		     (void *)ip,
3699 		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3700 		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3701 		     (void *)ra,		/* caller of ilock */
3702 		     (void *)(unsigned long)current_cpu(),
3703 		     (void *)(unsigned long)current_pid(),
3704 		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3705 }
3706 #endif
3707