1 /* 2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_imap.h" 25 #include "xfs_trans.h" 26 #include "xfs_trans_priv.h" 27 #include "xfs_sb.h" 28 #include "xfs_ag.h" 29 #include "xfs_dir.h" 30 #include "xfs_dir2.h" 31 #include "xfs_dmapi.h" 32 #include "xfs_mount.h" 33 #include "xfs_bmap_btree.h" 34 #include "xfs_alloc_btree.h" 35 #include "xfs_ialloc_btree.h" 36 #include "xfs_dir_sf.h" 37 #include "xfs_dir2_sf.h" 38 #include "xfs_attr_sf.h" 39 #include "xfs_dinode.h" 40 #include "xfs_inode.h" 41 #include "xfs_buf_item.h" 42 #include "xfs_inode_item.h" 43 #include "xfs_btree.h" 44 #include "xfs_alloc.h" 45 #include "xfs_ialloc.h" 46 #include "xfs_bmap.h" 47 #include "xfs_rw.h" 48 #include "xfs_error.h" 49 #include "xfs_utils.h" 50 #include "xfs_dir2_trace.h" 51 #include "xfs_quota.h" 52 #include "xfs_mac.h" 53 #include "xfs_acl.h" 54 55 56 kmem_zone_t *xfs_ifork_zone; 57 kmem_zone_t *xfs_inode_zone; 58 kmem_zone_t *xfs_chashlist_zone; 59 60 /* 61 * Used in xfs_itruncate(). This is the maximum number of extents 62 * freed from a file in a single transaction. 63 */ 64 #define XFS_ITRUNC_MAX_EXTENTS 2 65 66 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 67 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 68 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 69 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 70 71 72 #ifdef DEBUG 73 /* 74 * Make sure that the extents in the given memory buffer 75 * are valid. 76 */ 77 STATIC void 78 xfs_validate_extents( 79 xfs_bmbt_rec_t *ep, 80 int nrecs, 81 int disk, 82 xfs_exntfmt_t fmt) 83 { 84 xfs_bmbt_irec_t irec; 85 xfs_bmbt_rec_t rec; 86 int i; 87 88 for (i = 0; i < nrecs; i++) { 89 rec.l0 = get_unaligned((__uint64_t*)&ep->l0); 90 rec.l1 = get_unaligned((__uint64_t*)&ep->l1); 91 if (disk) 92 xfs_bmbt_disk_get_all(&rec, &irec); 93 else 94 xfs_bmbt_get_all(&rec, &irec); 95 if (fmt == XFS_EXTFMT_NOSTATE) 96 ASSERT(irec.br_state == XFS_EXT_NORM); 97 ep++; 98 } 99 } 100 #else /* DEBUG */ 101 #define xfs_validate_extents(ep, nrecs, disk, fmt) 102 #endif /* DEBUG */ 103 104 /* 105 * Check that none of the inode's in the buffer have a next 106 * unlinked field of 0. 107 */ 108 #if defined(DEBUG) 109 void 110 xfs_inobp_check( 111 xfs_mount_t *mp, 112 xfs_buf_t *bp) 113 { 114 int i; 115 int j; 116 xfs_dinode_t *dip; 117 118 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 119 120 for (i = 0; i < j; i++) { 121 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 122 i * mp->m_sb.sb_inodesize); 123 if (!dip->di_next_unlinked) { 124 xfs_fs_cmn_err(CE_ALERT, mp, 125 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", 126 bp); 127 ASSERT(dip->di_next_unlinked); 128 } 129 } 130 } 131 #endif 132 133 /* 134 * This routine is called to map an inode number within a file 135 * system to the buffer containing the on-disk version of the 136 * inode. It returns a pointer to the buffer containing the 137 * on-disk inode in the bpp parameter, and in the dip parameter 138 * it returns a pointer to the on-disk inode within that buffer. 139 * 140 * If a non-zero error is returned, then the contents of bpp and 141 * dipp are undefined. 142 * 143 * Use xfs_imap() to determine the size and location of the 144 * buffer to read from disk. 145 */ 146 STATIC int 147 xfs_inotobp( 148 xfs_mount_t *mp, 149 xfs_trans_t *tp, 150 xfs_ino_t ino, 151 xfs_dinode_t **dipp, 152 xfs_buf_t **bpp, 153 int *offset) 154 { 155 int di_ok; 156 xfs_imap_t imap; 157 xfs_buf_t *bp; 158 int error; 159 xfs_dinode_t *dip; 160 161 /* 162 * Call the space managment code to find the location of the 163 * inode on disk. 164 */ 165 imap.im_blkno = 0; 166 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP); 167 if (error != 0) { 168 cmn_err(CE_WARN, 169 "xfs_inotobp: xfs_imap() returned an " 170 "error %d on %s. Returning error.", error, mp->m_fsname); 171 return error; 172 } 173 174 /* 175 * If the inode number maps to a block outside the bounds of the 176 * file system then return NULL rather than calling read_buf 177 * and panicing when we get an error from the driver. 178 */ 179 if ((imap.im_blkno + imap.im_len) > 180 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 181 cmn_err(CE_WARN, 182 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds " 183 "of the file system %s. Returning EINVAL.", 184 (unsigned long long)imap.im_blkno, 185 imap.im_len, mp->m_fsname); 186 return XFS_ERROR(EINVAL); 187 } 188 189 /* 190 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will 191 * default to just a read_buf() call. 192 */ 193 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, 194 (int)imap.im_len, XFS_BUF_LOCK, &bp); 195 196 if (error) { 197 cmn_err(CE_WARN, 198 "xfs_inotobp: xfs_trans_read_buf() returned an " 199 "error %d on %s. Returning error.", error, mp->m_fsname); 200 return error; 201 } 202 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0); 203 di_ok = 204 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && 205 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); 206 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, 207 XFS_RANDOM_ITOBP_INOTOBP))) { 208 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip); 209 xfs_trans_brelse(tp, bp); 210 cmn_err(CE_WARN, 211 "xfs_inotobp: XFS_TEST_ERROR() returned an " 212 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname); 213 return XFS_ERROR(EFSCORRUPTED); 214 } 215 216 xfs_inobp_check(mp, bp); 217 218 /* 219 * Set *dipp to point to the on-disk inode in the buffer. 220 */ 221 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 222 *bpp = bp; 223 *offset = imap.im_boffset; 224 return 0; 225 } 226 227 228 /* 229 * This routine is called to map an inode to the buffer containing 230 * the on-disk version of the inode. It returns a pointer to the 231 * buffer containing the on-disk inode in the bpp parameter, and in 232 * the dip parameter it returns a pointer to the on-disk inode within 233 * that buffer. 234 * 235 * If a non-zero error is returned, then the contents of bpp and 236 * dipp are undefined. 237 * 238 * If the inode is new and has not yet been initialized, use xfs_imap() 239 * to determine the size and location of the buffer to read from disk. 240 * If the inode has already been mapped to its buffer and read in once, 241 * then use the mapping information stored in the inode rather than 242 * calling xfs_imap(). This allows us to avoid the overhead of looking 243 * at the inode btree for small block file systems (see xfs_dilocate()). 244 * We can tell whether the inode has been mapped in before by comparing 245 * its disk block address to 0. Only uninitialized inodes will have 246 * 0 for the disk block address. 247 */ 248 int 249 xfs_itobp( 250 xfs_mount_t *mp, 251 xfs_trans_t *tp, 252 xfs_inode_t *ip, 253 xfs_dinode_t **dipp, 254 xfs_buf_t **bpp, 255 xfs_daddr_t bno) 256 { 257 xfs_buf_t *bp; 258 int error; 259 xfs_imap_t imap; 260 #ifdef __KERNEL__ 261 int i; 262 int ni; 263 #endif 264 265 if (ip->i_blkno == (xfs_daddr_t)0) { 266 /* 267 * Call the space management code to find the location of the 268 * inode on disk. 269 */ 270 imap.im_blkno = bno; 271 error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP); 272 if (error != 0) { 273 return error; 274 } 275 276 /* 277 * If the inode number maps to a block outside the bounds 278 * of the file system then return NULL rather than calling 279 * read_buf and panicing when we get an error from the 280 * driver. 281 */ 282 if ((imap.im_blkno + imap.im_len) > 283 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 284 #ifdef DEBUG 285 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " 286 "(imap.im_blkno (0x%llx) " 287 "+ imap.im_len (0x%llx)) > " 288 " XFS_FSB_TO_BB(mp, " 289 "mp->m_sb.sb_dblocks) (0x%llx)", 290 (unsigned long long) imap.im_blkno, 291 (unsigned long long) imap.im_len, 292 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 293 #endif /* DEBUG */ 294 return XFS_ERROR(EINVAL); 295 } 296 297 /* 298 * Fill in the fields in the inode that will be used to 299 * map the inode to its buffer from now on. 300 */ 301 ip->i_blkno = imap.im_blkno; 302 ip->i_len = imap.im_len; 303 ip->i_boffset = imap.im_boffset; 304 } else { 305 /* 306 * We've already mapped the inode once, so just use the 307 * mapping that we saved the first time. 308 */ 309 imap.im_blkno = ip->i_blkno; 310 imap.im_len = ip->i_len; 311 imap.im_boffset = ip->i_boffset; 312 } 313 ASSERT(bno == 0 || bno == imap.im_blkno); 314 315 /* 316 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will 317 * default to just a read_buf() call. 318 */ 319 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, 320 (int)imap.im_len, XFS_BUF_LOCK, &bp); 321 322 if (error) { 323 #ifdef DEBUG 324 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " 325 "xfs_trans_read_buf() returned error %d, " 326 "imap.im_blkno 0x%llx, imap.im_len 0x%llx", 327 error, (unsigned long long) imap.im_blkno, 328 (unsigned long long) imap.im_len); 329 #endif /* DEBUG */ 330 return error; 331 } 332 #ifdef __KERNEL__ 333 /* 334 * Validate the magic number and version of every inode in the buffer 335 * (if DEBUG kernel) or the first inode in the buffer, otherwise. 336 */ 337 #ifdef DEBUG 338 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog; 339 #else 340 ni = 1; 341 #endif 342 for (i = 0; i < ni; i++) { 343 int di_ok; 344 xfs_dinode_t *dip; 345 346 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 347 (i << mp->m_sb.sb_inodelog)); 348 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && 349 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); 350 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, 351 XFS_RANDOM_ITOBP_INOTOBP))) { 352 #ifdef DEBUG 353 prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)", 354 mp->m_ddev_targp, 355 (unsigned long long)imap.im_blkno, i, 356 INT_GET(dip->di_core.di_magic, ARCH_CONVERT)); 357 #endif 358 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH, 359 mp, dip); 360 xfs_trans_brelse(tp, bp); 361 return XFS_ERROR(EFSCORRUPTED); 362 } 363 } 364 #endif /* __KERNEL__ */ 365 366 xfs_inobp_check(mp, bp); 367 368 /* 369 * Mark the buffer as an inode buffer now that it looks good 370 */ 371 XFS_BUF_SET_VTYPE(bp, B_FS_INO); 372 373 /* 374 * Set *dipp to point to the on-disk inode in the buffer. 375 */ 376 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 377 *bpp = bp; 378 return 0; 379 } 380 381 /* 382 * Move inode type and inode format specific information from the 383 * on-disk inode to the in-core inode. For fifos, devs, and sockets 384 * this means set if_rdev to the proper value. For files, directories, 385 * and symlinks this means to bring in the in-line data or extent 386 * pointers. For a file in B-tree format, only the root is immediately 387 * brought in-core. The rest will be in-lined in if_extents when it 388 * is first referenced (see xfs_iread_extents()). 389 */ 390 STATIC int 391 xfs_iformat( 392 xfs_inode_t *ip, 393 xfs_dinode_t *dip) 394 { 395 xfs_attr_shortform_t *atp; 396 int size; 397 int error; 398 xfs_fsize_t di_size; 399 ip->i_df.if_ext_max = 400 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 401 error = 0; 402 403 if (unlikely( 404 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) + 405 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) > 406 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) { 407 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 408 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", 409 (unsigned long long)ip->i_ino, 410 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) 411 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)), 412 (unsigned long long) 413 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT)); 414 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 415 ip->i_mount, dip); 416 return XFS_ERROR(EFSCORRUPTED); 417 } 418 419 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) { 420 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 421 "corrupt dinode %Lu, forkoff = 0x%x.", 422 (unsigned long long)ip->i_ino, 423 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT))); 424 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 425 ip->i_mount, dip); 426 return XFS_ERROR(EFSCORRUPTED); 427 } 428 429 switch (ip->i_d.di_mode & S_IFMT) { 430 case S_IFIFO: 431 case S_IFCHR: 432 case S_IFBLK: 433 case S_IFSOCK: 434 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) { 435 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 436 ip->i_mount, dip); 437 return XFS_ERROR(EFSCORRUPTED); 438 } 439 ip->i_d.di_size = 0; 440 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT); 441 break; 442 443 case S_IFREG: 444 case S_IFLNK: 445 case S_IFDIR: 446 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) { 447 case XFS_DINODE_FMT_LOCAL: 448 /* 449 * no local regular files yet 450 */ 451 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) { 452 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 453 "corrupt inode %Lu " 454 "(local format for regular file).", 455 (unsigned long long) ip->i_ino); 456 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 457 XFS_ERRLEVEL_LOW, 458 ip->i_mount, dip); 459 return XFS_ERROR(EFSCORRUPTED); 460 } 461 462 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT); 463 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 464 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 465 "corrupt inode %Lu " 466 "(bad size %Ld for local inode).", 467 (unsigned long long) ip->i_ino, 468 (long long) di_size); 469 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 470 XFS_ERRLEVEL_LOW, 471 ip->i_mount, dip); 472 return XFS_ERROR(EFSCORRUPTED); 473 } 474 475 size = (int)di_size; 476 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 477 break; 478 case XFS_DINODE_FMT_EXTENTS: 479 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 480 break; 481 case XFS_DINODE_FMT_BTREE: 482 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 483 break; 484 default: 485 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 486 ip->i_mount); 487 return XFS_ERROR(EFSCORRUPTED); 488 } 489 break; 490 491 default: 492 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 493 return XFS_ERROR(EFSCORRUPTED); 494 } 495 if (error) { 496 return error; 497 } 498 if (!XFS_DFORK_Q(dip)) 499 return 0; 500 ASSERT(ip->i_afp == NULL); 501 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); 502 ip->i_afp->if_ext_max = 503 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 504 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) { 505 case XFS_DINODE_FMT_LOCAL: 506 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 507 size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT); 508 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 509 break; 510 case XFS_DINODE_FMT_EXTENTS: 511 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 512 break; 513 case XFS_DINODE_FMT_BTREE: 514 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 515 break; 516 default: 517 error = XFS_ERROR(EFSCORRUPTED); 518 break; 519 } 520 if (error) { 521 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 522 ip->i_afp = NULL; 523 xfs_idestroy_fork(ip, XFS_DATA_FORK); 524 } 525 return error; 526 } 527 528 /* 529 * The file is in-lined in the on-disk inode. 530 * If it fits into if_inline_data, then copy 531 * it there, otherwise allocate a buffer for it 532 * and copy the data there. Either way, set 533 * if_data to point at the data. 534 * If we allocate a buffer for the data, make 535 * sure that its size is a multiple of 4 and 536 * record the real size in i_real_bytes. 537 */ 538 STATIC int 539 xfs_iformat_local( 540 xfs_inode_t *ip, 541 xfs_dinode_t *dip, 542 int whichfork, 543 int size) 544 { 545 xfs_ifork_t *ifp; 546 int real_size; 547 548 /* 549 * If the size is unreasonable, then something 550 * is wrong and we just bail out rather than crash in 551 * kmem_alloc() or memcpy() below. 552 */ 553 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 554 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 555 "corrupt inode %Lu " 556 "(bad size %d for local fork, size = %d).", 557 (unsigned long long) ip->i_ino, size, 558 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 559 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 560 ip->i_mount, dip); 561 return XFS_ERROR(EFSCORRUPTED); 562 } 563 ifp = XFS_IFORK_PTR(ip, whichfork); 564 real_size = 0; 565 if (size == 0) 566 ifp->if_u1.if_data = NULL; 567 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 568 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 569 else { 570 real_size = roundup(size, 4); 571 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 572 } 573 ifp->if_bytes = size; 574 ifp->if_real_bytes = real_size; 575 if (size) 576 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 577 ifp->if_flags &= ~XFS_IFEXTENTS; 578 ifp->if_flags |= XFS_IFINLINE; 579 return 0; 580 } 581 582 /* 583 * The file consists of a set of extents all 584 * of which fit into the on-disk inode. 585 * If there are few enough extents to fit into 586 * the if_inline_ext, then copy them there. 587 * Otherwise allocate a buffer for them and copy 588 * them into it. Either way, set if_extents 589 * to point at the extents. 590 */ 591 STATIC int 592 xfs_iformat_extents( 593 xfs_inode_t *ip, 594 xfs_dinode_t *dip, 595 int whichfork) 596 { 597 xfs_bmbt_rec_t *ep, *dp; 598 xfs_ifork_t *ifp; 599 int nex; 600 int real_size; 601 int size; 602 int i; 603 604 ifp = XFS_IFORK_PTR(ip, whichfork); 605 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 606 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 607 608 /* 609 * If the number of extents is unreasonable, then something 610 * is wrong and we just bail out rather than crash in 611 * kmem_alloc() or memcpy() below. 612 */ 613 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 614 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 615 "corrupt inode %Lu ((a)extents = %d).", 616 (unsigned long long) ip->i_ino, nex); 617 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 618 ip->i_mount, dip); 619 return XFS_ERROR(EFSCORRUPTED); 620 } 621 622 real_size = 0; 623 if (nex == 0) 624 ifp->if_u1.if_extents = NULL; 625 else if (nex <= XFS_INLINE_EXTS) 626 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 627 else { 628 ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); 629 ASSERT(ifp->if_u1.if_extents != NULL); 630 real_size = size; 631 } 632 ifp->if_bytes = size; 633 ifp->if_real_bytes = real_size; 634 if (size) { 635 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 636 xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip)); 637 ep = ifp->if_u1.if_extents; 638 for (i = 0; i < nex; i++, ep++, dp++) { 639 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0), 640 ARCH_CONVERT); 641 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1), 642 ARCH_CONVERT); 643 } 644 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex, 645 whichfork); 646 if (whichfork != XFS_DATA_FORK || 647 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 648 if (unlikely(xfs_check_nostate_extents( 649 ifp->if_u1.if_extents, nex))) { 650 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 651 XFS_ERRLEVEL_LOW, 652 ip->i_mount); 653 return XFS_ERROR(EFSCORRUPTED); 654 } 655 } 656 ifp->if_flags |= XFS_IFEXTENTS; 657 return 0; 658 } 659 660 /* 661 * The file has too many extents to fit into 662 * the inode, so they are in B-tree format. 663 * Allocate a buffer for the root of the B-tree 664 * and copy the root into it. The i_extents 665 * field will remain NULL until all of the 666 * extents are read in (when they are needed). 667 */ 668 STATIC int 669 xfs_iformat_btree( 670 xfs_inode_t *ip, 671 xfs_dinode_t *dip, 672 int whichfork) 673 { 674 xfs_bmdr_block_t *dfp; 675 xfs_ifork_t *ifp; 676 /* REFERENCED */ 677 int nrecs; 678 int size; 679 680 ifp = XFS_IFORK_PTR(ip, whichfork); 681 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 682 size = XFS_BMAP_BROOT_SPACE(dfp); 683 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp); 684 685 /* 686 * blow out if -- fork has less extents than can fit in 687 * fork (fork shouldn't be a btree format), root btree 688 * block has more records than can fit into the fork, 689 * or the number of extents is greater than the number of 690 * blocks. 691 */ 692 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max 693 || XFS_BMDR_SPACE_CALC(nrecs) > 694 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) 695 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 696 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 697 "corrupt inode %Lu (btree).", 698 (unsigned long long) ip->i_ino); 699 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 700 ip->i_mount); 701 return XFS_ERROR(EFSCORRUPTED); 702 } 703 704 ifp->if_broot_bytes = size; 705 ifp->if_broot = kmem_alloc(size, KM_SLEEP); 706 ASSERT(ifp->if_broot != NULL); 707 /* 708 * Copy and convert from the on-disk structure 709 * to the in-memory structure. 710 */ 711 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 712 ifp->if_broot, size); 713 ifp->if_flags &= ~XFS_IFEXTENTS; 714 ifp->if_flags |= XFS_IFBROOT; 715 716 return 0; 717 } 718 719 /* 720 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk 721 * and native format 722 * 723 * buf = on-disk representation 724 * dip = native representation 725 * dir = direction - +ve -> disk to native 726 * -ve -> native to disk 727 */ 728 void 729 xfs_xlate_dinode_core( 730 xfs_caddr_t buf, 731 xfs_dinode_core_t *dip, 732 int dir) 733 { 734 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf; 735 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip; 736 xfs_arch_t arch = ARCH_CONVERT; 737 738 ASSERT(dir); 739 740 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch); 741 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch); 742 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch); 743 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch); 744 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch); 745 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch); 746 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch); 747 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch); 748 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch); 749 750 if (dir > 0) { 751 memcpy(mem_core->di_pad, buf_core->di_pad, 752 sizeof(buf_core->di_pad)); 753 } else { 754 memcpy(buf_core->di_pad, mem_core->di_pad, 755 sizeof(buf_core->di_pad)); 756 } 757 758 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch); 759 760 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec, 761 dir, arch); 762 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec, 763 dir, arch); 764 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec, 765 dir, arch); 766 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec, 767 dir, arch); 768 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec, 769 dir, arch); 770 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec, 771 dir, arch); 772 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch); 773 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch); 774 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch); 775 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch); 776 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch); 777 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch); 778 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch); 779 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch); 780 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch); 781 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch); 782 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch); 783 } 784 785 STATIC uint 786 _xfs_dic2xflags( 787 xfs_dinode_core_t *dic, 788 __uint16_t di_flags) 789 { 790 uint flags = 0; 791 792 if (di_flags & XFS_DIFLAG_ANY) { 793 if (di_flags & XFS_DIFLAG_REALTIME) 794 flags |= XFS_XFLAG_REALTIME; 795 if (di_flags & XFS_DIFLAG_PREALLOC) 796 flags |= XFS_XFLAG_PREALLOC; 797 if (di_flags & XFS_DIFLAG_IMMUTABLE) 798 flags |= XFS_XFLAG_IMMUTABLE; 799 if (di_flags & XFS_DIFLAG_APPEND) 800 flags |= XFS_XFLAG_APPEND; 801 if (di_flags & XFS_DIFLAG_SYNC) 802 flags |= XFS_XFLAG_SYNC; 803 if (di_flags & XFS_DIFLAG_NOATIME) 804 flags |= XFS_XFLAG_NOATIME; 805 if (di_flags & XFS_DIFLAG_NODUMP) 806 flags |= XFS_XFLAG_NODUMP; 807 if (di_flags & XFS_DIFLAG_RTINHERIT) 808 flags |= XFS_XFLAG_RTINHERIT; 809 if (di_flags & XFS_DIFLAG_PROJINHERIT) 810 flags |= XFS_XFLAG_PROJINHERIT; 811 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 812 flags |= XFS_XFLAG_NOSYMLINKS; 813 if (di_flags & XFS_DIFLAG_EXTSIZE) 814 flags |= XFS_XFLAG_EXTSIZE; 815 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 816 flags |= XFS_XFLAG_EXTSZINHERIT; 817 } 818 819 return flags; 820 } 821 822 uint 823 xfs_ip2xflags( 824 xfs_inode_t *ip) 825 { 826 xfs_dinode_core_t *dic = &ip->i_d; 827 828 return _xfs_dic2xflags(dic, dic->di_flags) | 829 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0); 830 } 831 832 uint 833 xfs_dic2xflags( 834 xfs_dinode_core_t *dic) 835 { 836 return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) | 837 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0); 838 } 839 840 /* 841 * Given a mount structure and an inode number, return a pointer 842 * to a newly allocated in-core inode coresponding to the given 843 * inode number. 844 * 845 * Initialize the inode's attributes and extent pointers if it 846 * already has them (it will not if the inode has no links). 847 */ 848 int 849 xfs_iread( 850 xfs_mount_t *mp, 851 xfs_trans_t *tp, 852 xfs_ino_t ino, 853 xfs_inode_t **ipp, 854 xfs_daddr_t bno) 855 { 856 xfs_buf_t *bp; 857 xfs_dinode_t *dip; 858 xfs_inode_t *ip; 859 int error; 860 861 ASSERT(xfs_inode_zone != NULL); 862 863 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP); 864 ip->i_ino = ino; 865 ip->i_mount = mp; 866 867 /* 868 * Get pointer's to the on-disk inode and the buffer containing it. 869 * If the inode number refers to a block outside the file system 870 * then xfs_itobp() will return NULL. In this case we should 871 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will 872 * know that this is a new incore inode. 873 */ 874 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno); 875 876 if (error != 0) { 877 kmem_zone_free(xfs_inode_zone, ip); 878 return error; 879 } 880 881 /* 882 * Initialize inode's trace buffers. 883 * Do this before xfs_iformat in case it adds entries. 884 */ 885 #ifdef XFS_BMAP_TRACE 886 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP); 887 #endif 888 #ifdef XFS_BMBT_TRACE 889 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP); 890 #endif 891 #ifdef XFS_RW_TRACE 892 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP); 893 #endif 894 #ifdef XFS_ILOCK_TRACE 895 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP); 896 #endif 897 #ifdef XFS_DIR2_TRACE 898 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP); 899 #endif 900 901 /* 902 * If we got something that isn't an inode it means someone 903 * (nfs or dmi) has a stale handle. 904 */ 905 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) { 906 kmem_zone_free(xfs_inode_zone, ip); 907 xfs_trans_brelse(tp, bp); 908 #ifdef DEBUG 909 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 910 "dip->di_core.di_magic (0x%x) != " 911 "XFS_DINODE_MAGIC (0x%x)", 912 INT_GET(dip->di_core.di_magic, ARCH_CONVERT), 913 XFS_DINODE_MAGIC); 914 #endif /* DEBUG */ 915 return XFS_ERROR(EINVAL); 916 } 917 918 /* 919 * If the on-disk inode is already linked to a directory 920 * entry, copy all of the inode into the in-core inode. 921 * xfs_iformat() handles copying in the inode format 922 * specific information. 923 * Otherwise, just get the truly permanent information. 924 */ 925 if (dip->di_core.di_mode) { 926 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, 927 &(ip->i_d), 1); 928 error = xfs_iformat(ip, dip); 929 if (error) { 930 kmem_zone_free(xfs_inode_zone, ip); 931 xfs_trans_brelse(tp, bp); 932 #ifdef DEBUG 933 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 934 "xfs_iformat() returned error %d", 935 error); 936 #endif /* DEBUG */ 937 return error; 938 } 939 } else { 940 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT); 941 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT); 942 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT); 943 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT); 944 /* 945 * Make sure to pull in the mode here as well in 946 * case the inode is released without being used. 947 * This ensures that xfs_inactive() will see that 948 * the inode is already free and not try to mess 949 * with the uninitialized part of it. 950 */ 951 ip->i_d.di_mode = 0; 952 /* 953 * Initialize the per-fork minima and maxima for a new 954 * inode here. xfs_iformat will do it for old inodes. 955 */ 956 ip->i_df.if_ext_max = 957 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 958 } 959 960 INIT_LIST_HEAD(&ip->i_reclaim); 961 962 /* 963 * The inode format changed when we moved the link count and 964 * made it 32 bits long. If this is an old format inode, 965 * convert it in memory to look like a new one. If it gets 966 * flushed to disk we will convert back before flushing or 967 * logging it. We zero out the new projid field and the old link 968 * count field. We'll handle clearing the pad field (the remains 969 * of the old uuid field) when we actually convert the inode to 970 * the new format. We don't change the version number so that we 971 * can distinguish this from a real new format inode. 972 */ 973 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 974 ip->i_d.di_nlink = ip->i_d.di_onlink; 975 ip->i_d.di_onlink = 0; 976 ip->i_d.di_projid = 0; 977 } 978 979 ip->i_delayed_blks = 0; 980 981 /* 982 * Mark the buffer containing the inode as something to keep 983 * around for a while. This helps to keep recently accessed 984 * meta-data in-core longer. 985 */ 986 XFS_BUF_SET_REF(bp, XFS_INO_REF); 987 988 /* 989 * Use xfs_trans_brelse() to release the buffer containing the 990 * on-disk inode, because it was acquired with xfs_trans_read_buf() 991 * in xfs_itobp() above. If tp is NULL, this is just a normal 992 * brelse(). If we're within a transaction, then xfs_trans_brelse() 993 * will only release the buffer if it is not dirty within the 994 * transaction. It will be OK to release the buffer in this case, 995 * because inodes on disk are never destroyed and we will be 996 * locking the new in-core inode before putting it in the hash 997 * table where other processes can find it. Thus we don't have 998 * to worry about the inode being changed just because we released 999 * the buffer. 1000 */ 1001 xfs_trans_brelse(tp, bp); 1002 *ipp = ip; 1003 return 0; 1004 } 1005 1006 /* 1007 * Read in extents from a btree-format inode. 1008 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 1009 */ 1010 int 1011 xfs_iread_extents( 1012 xfs_trans_t *tp, 1013 xfs_inode_t *ip, 1014 int whichfork) 1015 { 1016 int error; 1017 xfs_ifork_t *ifp; 1018 size_t size; 1019 1020 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 1021 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 1022 ip->i_mount); 1023 return XFS_ERROR(EFSCORRUPTED); 1024 } 1025 size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t); 1026 ifp = XFS_IFORK_PTR(ip, whichfork); 1027 /* 1028 * We know that the size is valid (it's checked in iformat_btree) 1029 */ 1030 ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); 1031 ASSERT(ifp->if_u1.if_extents != NULL); 1032 ifp->if_lastex = NULLEXTNUM; 1033 ifp->if_bytes = ifp->if_real_bytes = (int)size; 1034 ifp->if_flags |= XFS_IFEXTENTS; 1035 error = xfs_bmap_read_extents(tp, ip, whichfork); 1036 if (error) { 1037 kmem_free(ifp->if_u1.if_extents, size); 1038 ifp->if_u1.if_extents = NULL; 1039 ifp->if_bytes = ifp->if_real_bytes = 0; 1040 ifp->if_flags &= ~XFS_IFEXTENTS; 1041 return error; 1042 } 1043 xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents, 1044 XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip)); 1045 return 0; 1046 } 1047 1048 /* 1049 * Allocate an inode on disk and return a copy of its in-core version. 1050 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 1051 * appropriately within the inode. The uid and gid for the inode are 1052 * set according to the contents of the given cred structure. 1053 * 1054 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 1055 * has a free inode available, call xfs_iget() 1056 * to obtain the in-core version of the allocated inode. Finally, 1057 * fill in the inode and log its initial contents. In this case, 1058 * ialloc_context would be set to NULL and call_again set to false. 1059 * 1060 * If xfs_dialloc() does not have an available inode, 1061 * it will replenish its supply by doing an allocation. Since we can 1062 * only do one allocation within a transaction without deadlocks, we 1063 * must commit the current transaction before returning the inode itself. 1064 * In this case, therefore, we will set call_again to true and return. 1065 * The caller should then commit the current transaction, start a new 1066 * transaction, and call xfs_ialloc() again to actually get the inode. 1067 * 1068 * To ensure that some other process does not grab the inode that 1069 * was allocated during the first call to xfs_ialloc(), this routine 1070 * also returns the [locked] bp pointing to the head of the freelist 1071 * as ialloc_context. The caller should hold this buffer across 1072 * the commit and pass it back into this routine on the second call. 1073 */ 1074 int 1075 xfs_ialloc( 1076 xfs_trans_t *tp, 1077 xfs_inode_t *pip, 1078 mode_t mode, 1079 xfs_nlink_t nlink, 1080 xfs_dev_t rdev, 1081 cred_t *cr, 1082 xfs_prid_t prid, 1083 int okalloc, 1084 xfs_buf_t **ialloc_context, 1085 boolean_t *call_again, 1086 xfs_inode_t **ipp) 1087 { 1088 xfs_ino_t ino; 1089 xfs_inode_t *ip; 1090 vnode_t *vp; 1091 uint flags; 1092 int error; 1093 1094 /* 1095 * Call the space management code to pick 1096 * the on-disk inode to be allocated. 1097 */ 1098 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc, 1099 ialloc_context, call_again, &ino); 1100 if (error != 0) { 1101 return error; 1102 } 1103 if (*call_again || ino == NULLFSINO) { 1104 *ipp = NULL; 1105 return 0; 1106 } 1107 ASSERT(*ialloc_context == NULL); 1108 1109 /* 1110 * Get the in-core inode with the lock held exclusively. 1111 * This is because we're setting fields here we need 1112 * to prevent others from looking at until we're done. 1113 */ 1114 error = xfs_trans_iget(tp->t_mountp, tp, ino, 1115 IGET_CREATE, XFS_ILOCK_EXCL, &ip); 1116 if (error != 0) { 1117 return error; 1118 } 1119 ASSERT(ip != NULL); 1120 1121 vp = XFS_ITOV(ip); 1122 ip->i_d.di_mode = (__uint16_t)mode; 1123 ip->i_d.di_onlink = 0; 1124 ip->i_d.di_nlink = nlink; 1125 ASSERT(ip->i_d.di_nlink == nlink); 1126 ip->i_d.di_uid = current_fsuid(cr); 1127 ip->i_d.di_gid = current_fsgid(cr); 1128 ip->i_d.di_projid = prid; 1129 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1130 1131 /* 1132 * If the superblock version is up to where we support new format 1133 * inodes and this is currently an old format inode, then change 1134 * the inode version number now. This way we only do the conversion 1135 * here rather than here and in the flush/logging code. 1136 */ 1137 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) && 1138 ip->i_d.di_version == XFS_DINODE_VERSION_1) { 1139 ip->i_d.di_version = XFS_DINODE_VERSION_2; 1140 /* 1141 * We've already zeroed the old link count, the projid field, 1142 * and the pad field. 1143 */ 1144 } 1145 1146 /* 1147 * Project ids won't be stored on disk if we are using a version 1 inode. 1148 */ 1149 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1)) 1150 xfs_bump_ino_vers2(tp, ip); 1151 1152 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) { 1153 ip->i_d.di_gid = pip->i_d.di_gid; 1154 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { 1155 ip->i_d.di_mode |= S_ISGID; 1156 } 1157 } 1158 1159 /* 1160 * If the group ID of the new file does not match the effective group 1161 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1162 * (and only if the irix_sgid_inherit compatibility variable is set). 1163 */ 1164 if ((irix_sgid_inherit) && 1165 (ip->i_d.di_mode & S_ISGID) && 1166 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1167 ip->i_d.di_mode &= ~S_ISGID; 1168 } 1169 1170 ip->i_d.di_size = 0; 1171 ip->i_d.di_nextents = 0; 1172 ASSERT(ip->i_d.di_nblocks == 0); 1173 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD); 1174 /* 1175 * di_gen will have been taken care of in xfs_iread. 1176 */ 1177 ip->i_d.di_extsize = 0; 1178 ip->i_d.di_dmevmask = 0; 1179 ip->i_d.di_dmstate = 0; 1180 ip->i_d.di_flags = 0; 1181 flags = XFS_ILOG_CORE; 1182 switch (mode & S_IFMT) { 1183 case S_IFIFO: 1184 case S_IFCHR: 1185 case S_IFBLK: 1186 case S_IFSOCK: 1187 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1188 ip->i_df.if_u2.if_rdev = rdev; 1189 ip->i_df.if_flags = 0; 1190 flags |= XFS_ILOG_DEV; 1191 break; 1192 case S_IFREG: 1193 case S_IFDIR: 1194 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1195 uint di_flags = 0; 1196 1197 if ((mode & S_IFMT) == S_IFDIR) { 1198 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1199 di_flags |= XFS_DIFLAG_RTINHERIT; 1200 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1201 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 1202 ip->i_d.di_extsize = pip->i_d.di_extsize; 1203 } 1204 } else if ((mode & S_IFMT) == S_IFREG) { 1205 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) { 1206 di_flags |= XFS_DIFLAG_REALTIME; 1207 ip->i_iocore.io_flags |= XFS_IOCORE_RT; 1208 } 1209 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1210 di_flags |= XFS_DIFLAG_EXTSIZE; 1211 ip->i_d.di_extsize = pip->i_d.di_extsize; 1212 } 1213 } 1214 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1215 xfs_inherit_noatime) 1216 di_flags |= XFS_DIFLAG_NOATIME; 1217 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1218 xfs_inherit_nodump) 1219 di_flags |= XFS_DIFLAG_NODUMP; 1220 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1221 xfs_inherit_sync) 1222 di_flags |= XFS_DIFLAG_SYNC; 1223 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1224 xfs_inherit_nosymlinks) 1225 di_flags |= XFS_DIFLAG_NOSYMLINKS; 1226 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1227 di_flags |= XFS_DIFLAG_PROJINHERIT; 1228 ip->i_d.di_flags |= di_flags; 1229 } 1230 /* FALLTHROUGH */ 1231 case S_IFLNK: 1232 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1233 ip->i_df.if_flags = XFS_IFEXTENTS; 1234 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1235 ip->i_df.if_u1.if_extents = NULL; 1236 break; 1237 default: 1238 ASSERT(0); 1239 } 1240 /* 1241 * Attribute fork settings for new inode. 1242 */ 1243 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1244 ip->i_d.di_anextents = 0; 1245 1246 /* 1247 * Log the new values stuffed into the inode. 1248 */ 1249 xfs_trans_log_inode(tp, ip, flags); 1250 1251 /* now that we have an i_mode we can set Linux inode ops (& unlock) */ 1252 VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1); 1253 1254 *ipp = ip; 1255 return 0; 1256 } 1257 1258 /* 1259 * Check to make sure that there are no blocks allocated to the 1260 * file beyond the size of the file. We don't check this for 1261 * files with fixed size extents or real time extents, but we 1262 * at least do it for regular files. 1263 */ 1264 #ifdef DEBUG 1265 void 1266 xfs_isize_check( 1267 xfs_mount_t *mp, 1268 xfs_inode_t *ip, 1269 xfs_fsize_t isize) 1270 { 1271 xfs_fileoff_t map_first; 1272 int nimaps; 1273 xfs_bmbt_irec_t imaps[2]; 1274 1275 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) 1276 return; 1277 1278 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE)) 1279 return; 1280 1281 nimaps = 2; 1282 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 1283 /* 1284 * The filesystem could be shutting down, so bmapi may return 1285 * an error. 1286 */ 1287 if (xfs_bmapi(NULL, ip, map_first, 1288 (XFS_B_TO_FSB(mp, 1289 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - 1290 map_first), 1291 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, 1292 NULL)) 1293 return; 1294 ASSERT(nimaps == 1); 1295 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); 1296 } 1297 #endif /* DEBUG */ 1298 1299 /* 1300 * Calculate the last possible buffered byte in a file. This must 1301 * include data that was buffered beyond the EOF by the write code. 1302 * This also needs to deal with overflowing the xfs_fsize_t type 1303 * which can happen for sizes near the limit. 1304 * 1305 * We also need to take into account any blocks beyond the EOF. It 1306 * may be the case that they were buffered by a write which failed. 1307 * In that case the pages will still be in memory, but the inode size 1308 * will never have been updated. 1309 */ 1310 xfs_fsize_t 1311 xfs_file_last_byte( 1312 xfs_inode_t *ip) 1313 { 1314 xfs_mount_t *mp; 1315 xfs_fsize_t last_byte; 1316 xfs_fileoff_t last_block; 1317 xfs_fileoff_t size_last_block; 1318 int error; 1319 1320 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS)); 1321 1322 mp = ip->i_mount; 1323 /* 1324 * Only check for blocks beyond the EOF if the extents have 1325 * been read in. This eliminates the need for the inode lock, 1326 * and it also saves us from looking when it really isn't 1327 * necessary. 1328 */ 1329 if (ip->i_df.if_flags & XFS_IFEXTENTS) { 1330 error = xfs_bmap_last_offset(NULL, ip, &last_block, 1331 XFS_DATA_FORK); 1332 if (error) { 1333 last_block = 0; 1334 } 1335 } else { 1336 last_block = 0; 1337 } 1338 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size); 1339 last_block = XFS_FILEOFF_MAX(last_block, size_last_block); 1340 1341 last_byte = XFS_FSB_TO_B(mp, last_block); 1342 if (last_byte < 0) { 1343 return XFS_MAXIOFFSET(mp); 1344 } 1345 last_byte += (1 << mp->m_writeio_log); 1346 if (last_byte < 0) { 1347 return XFS_MAXIOFFSET(mp); 1348 } 1349 return last_byte; 1350 } 1351 1352 #if defined(XFS_RW_TRACE) 1353 STATIC void 1354 xfs_itrunc_trace( 1355 int tag, 1356 xfs_inode_t *ip, 1357 int flag, 1358 xfs_fsize_t new_size, 1359 xfs_off_t toss_start, 1360 xfs_off_t toss_finish) 1361 { 1362 if (ip->i_rwtrace == NULL) { 1363 return; 1364 } 1365 1366 ktrace_enter(ip->i_rwtrace, 1367 (void*)((long)tag), 1368 (void*)ip, 1369 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), 1370 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), 1371 (void*)((long)flag), 1372 (void*)(unsigned long)((new_size >> 32) & 0xffffffff), 1373 (void*)(unsigned long)(new_size & 0xffffffff), 1374 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), 1375 (void*)(unsigned long)(toss_start & 0xffffffff), 1376 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), 1377 (void*)(unsigned long)(toss_finish & 0xffffffff), 1378 (void*)(unsigned long)current_cpu(), 1379 (void*)0, 1380 (void*)0, 1381 (void*)0, 1382 (void*)0); 1383 } 1384 #else 1385 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) 1386 #endif 1387 1388 /* 1389 * Start the truncation of the file to new_size. The new size 1390 * must be smaller than the current size. This routine will 1391 * clear the buffer and page caches of file data in the removed 1392 * range, and xfs_itruncate_finish() will remove the underlying 1393 * disk blocks. 1394 * 1395 * The inode must have its I/O lock locked EXCLUSIVELY, and it 1396 * must NOT have the inode lock held at all. This is because we're 1397 * calling into the buffer/page cache code and we can't hold the 1398 * inode lock when we do so. 1399 * 1400 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE 1401 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used 1402 * in the case that the caller is locking things out of order and 1403 * may not be able to call xfs_itruncate_finish() with the inode lock 1404 * held without dropping the I/O lock. If the caller must drop the 1405 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() 1406 * must be called again with all the same restrictions as the initial 1407 * call. 1408 */ 1409 void 1410 xfs_itruncate_start( 1411 xfs_inode_t *ip, 1412 uint flags, 1413 xfs_fsize_t new_size) 1414 { 1415 xfs_fsize_t last_byte; 1416 xfs_off_t toss_start; 1417 xfs_mount_t *mp; 1418 vnode_t *vp; 1419 1420 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); 1421 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); 1422 ASSERT((flags == XFS_ITRUNC_DEFINITE) || 1423 (flags == XFS_ITRUNC_MAYBE)); 1424 1425 mp = ip->i_mount; 1426 vp = XFS_ITOV(ip); 1427 /* 1428 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers 1429 * overlapping the region being removed. We have to use 1430 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the 1431 * caller may not be able to finish the truncate without 1432 * dropping the inode's I/O lock. Make sure 1433 * to catch any pages brought in by buffers overlapping 1434 * the EOF by searching out beyond the isize by our 1435 * block size. We round new_size up to a block boundary 1436 * so that we don't toss things on the same block as 1437 * new_size but before it. 1438 * 1439 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to 1440 * call remapf() over the same region if the file is mapped. 1441 * This frees up mapped file references to the pages in the 1442 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures 1443 * that we get the latest mapped changes flushed out. 1444 */ 1445 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1446 toss_start = XFS_FSB_TO_B(mp, toss_start); 1447 if (toss_start < 0) { 1448 /* 1449 * The place to start tossing is beyond our maximum 1450 * file size, so there is no way that the data extended 1451 * out there. 1452 */ 1453 return; 1454 } 1455 last_byte = xfs_file_last_byte(ip); 1456 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, 1457 last_byte); 1458 if (last_byte > toss_start) { 1459 if (flags & XFS_ITRUNC_DEFINITE) { 1460 VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); 1461 } else { 1462 VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); 1463 } 1464 } 1465 1466 #ifdef DEBUG 1467 if (new_size == 0) { 1468 ASSERT(VN_CACHED(vp) == 0); 1469 } 1470 #endif 1471 } 1472 1473 /* 1474 * Shrink the file to the given new_size. The new 1475 * size must be smaller than the current size. 1476 * This will free up the underlying blocks 1477 * in the removed range after a call to xfs_itruncate_start() 1478 * or xfs_atruncate_start(). 1479 * 1480 * The transaction passed to this routine must have made 1481 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES. 1482 * This routine may commit the given transaction and 1483 * start new ones, so make sure everything involved in 1484 * the transaction is tidy before calling here. 1485 * Some transaction will be returned to the caller to be 1486 * committed. The incoming transaction must already include 1487 * the inode, and both inode locks must be held exclusively. 1488 * The inode must also be "held" within the transaction. On 1489 * return the inode will be "held" within the returned transaction. 1490 * This routine does NOT require any disk space to be reserved 1491 * for it within the transaction. 1492 * 1493 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, 1494 * and it indicates the fork which is to be truncated. For the 1495 * attribute fork we only support truncation to size 0. 1496 * 1497 * We use the sync parameter to indicate whether or not the first 1498 * transaction we perform might have to be synchronous. For the attr fork, 1499 * it needs to be so if the unlink of the inode is not yet known to be 1500 * permanent in the log. This keeps us from freeing and reusing the 1501 * blocks of the attribute fork before the unlink of the inode becomes 1502 * permanent. 1503 * 1504 * For the data fork, we normally have to run synchronously if we're 1505 * being called out of the inactive path or we're being called 1506 * out of the create path where we're truncating an existing file. 1507 * Either way, the truncate needs to be sync so blocks don't reappear 1508 * in the file with altered data in case of a crash. wsync filesystems 1509 * can run the first case async because anything that shrinks the inode 1510 * has to run sync so by the time we're called here from inactive, the 1511 * inode size is permanently set to 0. 1512 * 1513 * Calls from the truncate path always need to be sync unless we're 1514 * in a wsync filesystem and the file has already been unlinked. 1515 * 1516 * The caller is responsible for correctly setting the sync parameter. 1517 * It gets too hard for us to guess here which path we're being called 1518 * out of just based on inode state. 1519 */ 1520 int 1521 xfs_itruncate_finish( 1522 xfs_trans_t **tp, 1523 xfs_inode_t *ip, 1524 xfs_fsize_t new_size, 1525 int fork, 1526 int sync) 1527 { 1528 xfs_fsblock_t first_block; 1529 xfs_fileoff_t first_unmap_block; 1530 xfs_fileoff_t last_block; 1531 xfs_filblks_t unmap_len=0; 1532 xfs_mount_t *mp; 1533 xfs_trans_t *ntp; 1534 int done; 1535 int committed; 1536 xfs_bmap_free_t free_list; 1537 int error; 1538 1539 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); 1540 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0); 1541 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); 1542 ASSERT(*tp != NULL); 1543 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 1544 ASSERT(ip->i_transp == *tp); 1545 ASSERT(ip->i_itemp != NULL); 1546 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); 1547 1548 1549 ntp = *tp; 1550 mp = (ntp)->t_mountp; 1551 ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); 1552 1553 /* 1554 * We only support truncating the entire attribute fork. 1555 */ 1556 if (fork == XFS_ATTR_FORK) { 1557 new_size = 0LL; 1558 } 1559 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1560 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); 1561 /* 1562 * The first thing we do is set the size to new_size permanently 1563 * on disk. This way we don't have to worry about anyone ever 1564 * being able to look at the data being freed even in the face 1565 * of a crash. What we're getting around here is the case where 1566 * we free a block, it is allocated to another file, it is written 1567 * to, and then we crash. If the new data gets written to the 1568 * file but the log buffers containing the free and reallocation 1569 * don't, then we'd end up with garbage in the blocks being freed. 1570 * As long as we make the new_size permanent before actually 1571 * freeing any blocks it doesn't matter if they get writtten to. 1572 * 1573 * The callers must signal into us whether or not the size 1574 * setting here must be synchronous. There are a few cases 1575 * where it doesn't have to be synchronous. Those cases 1576 * occur if the file is unlinked and we know the unlink is 1577 * permanent or if the blocks being truncated are guaranteed 1578 * to be beyond the inode eof (regardless of the link count) 1579 * and the eof value is permanent. Both of these cases occur 1580 * only on wsync-mounted filesystems. In those cases, we're 1581 * guaranteed that no user will ever see the data in the blocks 1582 * that are being truncated so the truncate can run async. 1583 * In the free beyond eof case, the file may wind up with 1584 * more blocks allocated to it than it needs if we crash 1585 * and that won't get fixed until the next time the file 1586 * is re-opened and closed but that's ok as that shouldn't 1587 * be too many blocks. 1588 * 1589 * However, we can't just make all wsync xactions run async 1590 * because there's one call out of the create path that needs 1591 * to run sync where it's truncating an existing file to size 1592 * 0 whose size is > 0. 1593 * 1594 * It's probably possible to come up with a test in this 1595 * routine that would correctly distinguish all the above 1596 * cases from the values of the function parameters and the 1597 * inode state but for sanity's sake, I've decided to let the 1598 * layers above just tell us. It's simpler to correctly figure 1599 * out in the layer above exactly under what conditions we 1600 * can run async and I think it's easier for others read and 1601 * follow the logic in case something has to be changed. 1602 * cscope is your friend -- rcc. 1603 * 1604 * The attribute fork is much simpler. 1605 * 1606 * For the attribute fork we allow the caller to tell us whether 1607 * the unlink of the inode that led to this call is yet permanent 1608 * in the on disk log. If it is not and we will be freeing extents 1609 * in this inode then we make the first transaction synchronous 1610 * to make sure that the unlink is permanent by the time we free 1611 * the blocks. 1612 */ 1613 if (fork == XFS_DATA_FORK) { 1614 if (ip->i_d.di_nextents > 0) { 1615 ip->i_d.di_size = new_size; 1616 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1617 } 1618 } else if (sync) { 1619 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); 1620 if (ip->i_d.di_anextents > 0) 1621 xfs_trans_set_sync(ntp); 1622 } 1623 ASSERT(fork == XFS_DATA_FORK || 1624 (fork == XFS_ATTR_FORK && 1625 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || 1626 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); 1627 1628 /* 1629 * Since it is possible for space to become allocated beyond 1630 * the end of the file (in a crash where the space is allocated 1631 * but the inode size is not yet updated), simply remove any 1632 * blocks which show up between the new EOF and the maximum 1633 * possible file size. If the first block to be removed is 1634 * beyond the maximum file size (ie it is the same as last_block), 1635 * then there is nothing to do. 1636 */ 1637 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); 1638 ASSERT(first_unmap_block <= last_block); 1639 done = 0; 1640 if (last_block == first_unmap_block) { 1641 done = 1; 1642 } else { 1643 unmap_len = last_block - first_unmap_block + 1; 1644 } 1645 while (!done) { 1646 /* 1647 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() 1648 * will tell us whether it freed the entire range or 1649 * not. If this is a synchronous mount (wsync), 1650 * then we can tell bunmapi to keep all the 1651 * transactions asynchronous since the unlink 1652 * transaction that made this inode inactive has 1653 * already hit the disk. There's no danger of 1654 * the freed blocks being reused, there being a 1655 * crash, and the reused blocks suddenly reappearing 1656 * in this file with garbage in them once recovery 1657 * runs. 1658 */ 1659 XFS_BMAP_INIT(&free_list, &first_block); 1660 error = xfs_bunmapi(ntp, ip, first_unmap_block, 1661 unmap_len, 1662 XFS_BMAPI_AFLAG(fork) | 1663 (sync ? 0 : XFS_BMAPI_ASYNC), 1664 XFS_ITRUNC_MAX_EXTENTS, 1665 &first_block, &free_list, &done); 1666 if (error) { 1667 /* 1668 * If the bunmapi call encounters an error, 1669 * return to the caller where the transaction 1670 * can be properly aborted. We just need to 1671 * make sure we're not holding any resources 1672 * that we were not when we came in. 1673 */ 1674 xfs_bmap_cancel(&free_list); 1675 return error; 1676 } 1677 1678 /* 1679 * Duplicate the transaction that has the permanent 1680 * reservation and commit the old transaction. 1681 */ 1682 error = xfs_bmap_finish(tp, &free_list, first_block, 1683 &committed); 1684 ntp = *tp; 1685 if (error) { 1686 /* 1687 * If the bmap finish call encounters an error, 1688 * return to the caller where the transaction 1689 * can be properly aborted. We just need to 1690 * make sure we're not holding any resources 1691 * that we were not when we came in. 1692 * 1693 * Aborting from this point might lose some 1694 * blocks in the file system, but oh well. 1695 */ 1696 xfs_bmap_cancel(&free_list); 1697 if (committed) { 1698 /* 1699 * If the passed in transaction committed 1700 * in xfs_bmap_finish(), then we want to 1701 * add the inode to this one before returning. 1702 * This keeps things simple for the higher 1703 * level code, because it always knows that 1704 * the inode is locked and held in the 1705 * transaction that returns to it whether 1706 * errors occur or not. We don't mark the 1707 * inode dirty so that this transaction can 1708 * be easily aborted if possible. 1709 */ 1710 xfs_trans_ijoin(ntp, ip, 1711 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1712 xfs_trans_ihold(ntp, ip); 1713 } 1714 return error; 1715 } 1716 1717 if (committed) { 1718 /* 1719 * The first xact was committed, 1720 * so add the inode to the new one. 1721 * Mark it dirty so it will be logged 1722 * and moved forward in the log as 1723 * part of every commit. 1724 */ 1725 xfs_trans_ijoin(ntp, ip, 1726 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1727 xfs_trans_ihold(ntp, ip); 1728 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1729 } 1730 ntp = xfs_trans_dup(ntp); 1731 (void) xfs_trans_commit(*tp, 0, NULL); 1732 *tp = ntp; 1733 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 1734 XFS_TRANS_PERM_LOG_RES, 1735 XFS_ITRUNCATE_LOG_COUNT); 1736 /* 1737 * Add the inode being truncated to the next chained 1738 * transaction. 1739 */ 1740 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1741 xfs_trans_ihold(ntp, ip); 1742 if (error) 1743 return (error); 1744 } 1745 /* 1746 * Only update the size in the case of the data fork, but 1747 * always re-log the inode so that our permanent transaction 1748 * can keep on rolling it forward in the log. 1749 */ 1750 if (fork == XFS_DATA_FORK) { 1751 xfs_isize_check(mp, ip, new_size); 1752 ip->i_d.di_size = new_size; 1753 } 1754 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1755 ASSERT((new_size != 0) || 1756 (fork == XFS_ATTR_FORK) || 1757 (ip->i_delayed_blks == 0)); 1758 ASSERT((new_size != 0) || 1759 (fork == XFS_ATTR_FORK) || 1760 (ip->i_d.di_nextents == 0)); 1761 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); 1762 return 0; 1763 } 1764 1765 1766 /* 1767 * xfs_igrow_start 1768 * 1769 * Do the first part of growing a file: zero any data in the last 1770 * block that is beyond the old EOF. We need to do this before 1771 * the inode is joined to the transaction to modify the i_size. 1772 * That way we can drop the inode lock and call into the buffer 1773 * cache to get the buffer mapping the EOF. 1774 */ 1775 int 1776 xfs_igrow_start( 1777 xfs_inode_t *ip, 1778 xfs_fsize_t new_size, 1779 cred_t *credp) 1780 { 1781 int error; 1782 1783 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); 1784 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); 1785 ASSERT(new_size > ip->i_d.di_size); 1786 1787 /* 1788 * Zero any pages that may have been created by 1789 * xfs_write_file() beyond the end of the file 1790 * and any blocks between the old and new file sizes. 1791 */ 1792 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, 1793 ip->i_d.di_size, new_size); 1794 return error; 1795 } 1796 1797 /* 1798 * xfs_igrow_finish 1799 * 1800 * This routine is called to extend the size of a file. 1801 * The inode must have both the iolock and the ilock locked 1802 * for update and it must be a part of the current transaction. 1803 * The xfs_igrow_start() function must have been called previously. 1804 * If the change_flag is not zero, the inode change timestamp will 1805 * be updated. 1806 */ 1807 void 1808 xfs_igrow_finish( 1809 xfs_trans_t *tp, 1810 xfs_inode_t *ip, 1811 xfs_fsize_t new_size, 1812 int change_flag) 1813 { 1814 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); 1815 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); 1816 ASSERT(ip->i_transp == tp); 1817 ASSERT(new_size > ip->i_d.di_size); 1818 1819 /* 1820 * Update the file size. Update the inode change timestamp 1821 * if change_flag set. 1822 */ 1823 ip->i_d.di_size = new_size; 1824 if (change_flag) 1825 xfs_ichgtime(ip, XFS_ICHGTIME_CHG); 1826 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1827 1828 } 1829 1830 1831 /* 1832 * This is called when the inode's link count goes to 0. 1833 * We place the on-disk inode on a list in the AGI. It 1834 * will be pulled from this list when the inode is freed. 1835 */ 1836 int 1837 xfs_iunlink( 1838 xfs_trans_t *tp, 1839 xfs_inode_t *ip) 1840 { 1841 xfs_mount_t *mp; 1842 xfs_agi_t *agi; 1843 xfs_dinode_t *dip; 1844 xfs_buf_t *agibp; 1845 xfs_buf_t *ibp; 1846 xfs_agnumber_t agno; 1847 xfs_daddr_t agdaddr; 1848 xfs_agino_t agino; 1849 short bucket_index; 1850 int offset; 1851 int error; 1852 int agi_ok; 1853 1854 ASSERT(ip->i_d.di_nlink == 0); 1855 ASSERT(ip->i_d.di_mode != 0); 1856 ASSERT(ip->i_transp == tp); 1857 1858 mp = tp->t_mountp; 1859 1860 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1861 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 1862 1863 /* 1864 * Get the agi buffer first. It ensures lock ordering 1865 * on the list. 1866 */ 1867 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, 1868 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 1869 if (error) { 1870 return error; 1871 } 1872 /* 1873 * Validate the magic number of the agi block. 1874 */ 1875 agi = XFS_BUF_TO_AGI(agibp); 1876 agi_ok = 1877 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && 1878 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); 1879 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK, 1880 XFS_RANDOM_IUNLINK))) { 1881 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi); 1882 xfs_trans_brelse(tp, agibp); 1883 return XFS_ERROR(EFSCORRUPTED); 1884 } 1885 /* 1886 * Get the index into the agi hash table for the 1887 * list this inode will go on. 1888 */ 1889 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1890 ASSERT(agino != 0); 1891 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1892 ASSERT(agi->agi_unlinked[bucket_index]); 1893 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1894 1895 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) { 1896 /* 1897 * There is already another inode in the bucket we need 1898 * to add ourselves to. Add us at the front of the list. 1899 * Here we put the head pointer into our next pointer, 1900 * and then we fall through to point the head at us. 1901 */ 1902 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); 1903 if (error) { 1904 return error; 1905 } 1906 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO); 1907 ASSERT(dip->di_next_unlinked); 1908 /* both on-disk, don't endian flip twice */ 1909 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1910 offset = ip->i_boffset + 1911 offsetof(xfs_dinode_t, di_next_unlinked); 1912 xfs_trans_inode_buf(tp, ibp); 1913 xfs_trans_log_buf(tp, ibp, offset, 1914 (offset + sizeof(xfs_agino_t) - 1)); 1915 xfs_inobp_check(mp, ibp); 1916 } 1917 1918 /* 1919 * Point the bucket head pointer at the inode being inserted. 1920 */ 1921 ASSERT(agino != 0); 1922 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1923 offset = offsetof(xfs_agi_t, agi_unlinked) + 1924 (sizeof(xfs_agino_t) * bucket_index); 1925 xfs_trans_log_buf(tp, agibp, offset, 1926 (offset + sizeof(xfs_agino_t) - 1)); 1927 return 0; 1928 } 1929 1930 /* 1931 * Pull the on-disk inode from the AGI unlinked list. 1932 */ 1933 STATIC int 1934 xfs_iunlink_remove( 1935 xfs_trans_t *tp, 1936 xfs_inode_t *ip) 1937 { 1938 xfs_ino_t next_ino; 1939 xfs_mount_t *mp; 1940 xfs_agi_t *agi; 1941 xfs_dinode_t *dip; 1942 xfs_buf_t *agibp; 1943 xfs_buf_t *ibp; 1944 xfs_agnumber_t agno; 1945 xfs_daddr_t agdaddr; 1946 xfs_agino_t agino; 1947 xfs_agino_t next_agino; 1948 xfs_buf_t *last_ibp; 1949 xfs_dinode_t *last_dip; 1950 short bucket_index; 1951 int offset, last_offset; 1952 int error; 1953 int agi_ok; 1954 1955 /* 1956 * First pull the on-disk inode from the AGI unlinked list. 1957 */ 1958 mp = tp->t_mountp; 1959 1960 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1961 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 1962 1963 /* 1964 * Get the agi buffer first. It ensures lock ordering 1965 * on the list. 1966 */ 1967 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, 1968 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 1969 if (error) { 1970 cmn_err(CE_WARN, 1971 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.", 1972 error, mp->m_fsname); 1973 return error; 1974 } 1975 /* 1976 * Validate the magic number of the agi block. 1977 */ 1978 agi = XFS_BUF_TO_AGI(agibp); 1979 agi_ok = 1980 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && 1981 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); 1982 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE, 1983 XFS_RANDOM_IUNLINK_REMOVE))) { 1984 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW, 1985 mp, agi); 1986 xfs_trans_brelse(tp, agibp); 1987 cmn_err(CE_WARN, 1988 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.", 1989 mp->m_fsname); 1990 return XFS_ERROR(EFSCORRUPTED); 1991 } 1992 /* 1993 * Get the index into the agi hash table for the 1994 * list this inode will go on. 1995 */ 1996 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1997 ASSERT(agino != 0); 1998 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1999 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO); 2000 ASSERT(agi->agi_unlinked[bucket_index]); 2001 2002 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2003 /* 2004 * We're at the head of the list. Get the inode's 2005 * on-disk buffer to see if there is anyone after us 2006 * on the list. Only modify our next pointer if it 2007 * is not already NULLAGINO. This saves us the overhead 2008 * of dealing with the buffer when there is no need to 2009 * change it. 2010 */ 2011 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); 2012 if (error) { 2013 cmn_err(CE_WARN, 2014 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 2015 error, mp->m_fsname); 2016 return error; 2017 } 2018 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); 2019 ASSERT(next_agino != 0); 2020 if (next_agino != NULLAGINO) { 2021 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); 2022 offset = ip->i_boffset + 2023 offsetof(xfs_dinode_t, di_next_unlinked); 2024 xfs_trans_inode_buf(tp, ibp); 2025 xfs_trans_log_buf(tp, ibp, offset, 2026 (offset + sizeof(xfs_agino_t) - 1)); 2027 xfs_inobp_check(mp, ibp); 2028 } else { 2029 xfs_trans_brelse(tp, ibp); 2030 } 2031 /* 2032 * Point the bucket head pointer at the next inode. 2033 */ 2034 ASSERT(next_agino != 0); 2035 ASSERT(next_agino != agino); 2036 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2037 offset = offsetof(xfs_agi_t, agi_unlinked) + 2038 (sizeof(xfs_agino_t) * bucket_index); 2039 xfs_trans_log_buf(tp, agibp, offset, 2040 (offset + sizeof(xfs_agino_t) - 1)); 2041 } else { 2042 /* 2043 * We need to search the list for the inode being freed. 2044 */ 2045 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2046 last_ibp = NULL; 2047 while (next_agino != agino) { 2048 /* 2049 * If the last inode wasn't the one pointing to 2050 * us, then release its buffer since we're not 2051 * going to do anything with it. 2052 */ 2053 if (last_ibp != NULL) { 2054 xfs_trans_brelse(tp, last_ibp); 2055 } 2056 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2057 error = xfs_inotobp(mp, tp, next_ino, &last_dip, 2058 &last_ibp, &last_offset); 2059 if (error) { 2060 cmn_err(CE_WARN, 2061 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", 2062 error, mp->m_fsname); 2063 return error; 2064 } 2065 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT); 2066 ASSERT(next_agino != NULLAGINO); 2067 ASSERT(next_agino != 0); 2068 } 2069 /* 2070 * Now last_ibp points to the buffer previous to us on 2071 * the unlinked list. Pull us from the list. 2072 */ 2073 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); 2074 if (error) { 2075 cmn_err(CE_WARN, 2076 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 2077 error, mp->m_fsname); 2078 return error; 2079 } 2080 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); 2081 ASSERT(next_agino != 0); 2082 ASSERT(next_agino != agino); 2083 if (next_agino != NULLAGINO) { 2084 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); 2085 offset = ip->i_boffset + 2086 offsetof(xfs_dinode_t, di_next_unlinked); 2087 xfs_trans_inode_buf(tp, ibp); 2088 xfs_trans_log_buf(tp, ibp, offset, 2089 (offset + sizeof(xfs_agino_t) - 1)); 2090 xfs_inobp_check(mp, ibp); 2091 } else { 2092 xfs_trans_brelse(tp, ibp); 2093 } 2094 /* 2095 * Point the previous inode on the list to the next inode. 2096 */ 2097 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino); 2098 ASSERT(next_agino != 0); 2099 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2100 xfs_trans_inode_buf(tp, last_ibp); 2101 xfs_trans_log_buf(tp, last_ibp, offset, 2102 (offset + sizeof(xfs_agino_t) - 1)); 2103 xfs_inobp_check(mp, last_ibp); 2104 } 2105 return 0; 2106 } 2107 2108 static __inline__ int xfs_inode_clean(xfs_inode_t *ip) 2109 { 2110 return (((ip->i_itemp == NULL) || 2111 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) && 2112 (ip->i_update_core == 0)); 2113 } 2114 2115 STATIC void 2116 xfs_ifree_cluster( 2117 xfs_inode_t *free_ip, 2118 xfs_trans_t *tp, 2119 xfs_ino_t inum) 2120 { 2121 xfs_mount_t *mp = free_ip->i_mount; 2122 int blks_per_cluster; 2123 int nbufs; 2124 int ninodes; 2125 int i, j, found, pre_flushed; 2126 xfs_daddr_t blkno; 2127 xfs_buf_t *bp; 2128 xfs_ihash_t *ih; 2129 xfs_inode_t *ip, **ip_found; 2130 xfs_inode_log_item_t *iip; 2131 xfs_log_item_t *lip; 2132 SPLDECL(s); 2133 2134 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 2135 blks_per_cluster = 1; 2136 ninodes = mp->m_sb.sb_inopblock; 2137 nbufs = XFS_IALLOC_BLOCKS(mp); 2138 } else { 2139 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 2140 mp->m_sb.sb_blocksize; 2141 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 2142 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 2143 } 2144 2145 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); 2146 2147 for (j = 0; j < nbufs; j++, inum += ninodes) { 2148 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2149 XFS_INO_TO_AGBNO(mp, inum)); 2150 2151 2152 /* 2153 * Look for each inode in memory and attempt to lock it, 2154 * we can be racing with flush and tail pushing here. 2155 * any inode we get the locks on, add to an array of 2156 * inode items to process later. 2157 * 2158 * The get the buffer lock, we could beat a flush 2159 * or tail pushing thread to the lock here, in which 2160 * case they will go looking for the inode buffer 2161 * and fail, we need some other form of interlock 2162 * here. 2163 */ 2164 found = 0; 2165 for (i = 0; i < ninodes; i++) { 2166 ih = XFS_IHASH(mp, inum + i); 2167 read_lock(&ih->ih_lock); 2168 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { 2169 if (ip->i_ino == inum + i) 2170 break; 2171 } 2172 2173 /* Inode not in memory or we found it already, 2174 * nothing to do 2175 */ 2176 if (!ip || (ip->i_flags & XFS_ISTALE)) { 2177 read_unlock(&ih->ih_lock); 2178 continue; 2179 } 2180 2181 if (xfs_inode_clean(ip)) { 2182 read_unlock(&ih->ih_lock); 2183 continue; 2184 } 2185 2186 /* If we can get the locks then add it to the 2187 * list, otherwise by the time we get the bp lock 2188 * below it will already be attached to the 2189 * inode buffer. 2190 */ 2191 2192 /* This inode will already be locked - by us, lets 2193 * keep it that way. 2194 */ 2195 2196 if (ip == free_ip) { 2197 if (xfs_iflock_nowait(ip)) { 2198 ip->i_flags |= XFS_ISTALE; 2199 2200 if (xfs_inode_clean(ip)) { 2201 xfs_ifunlock(ip); 2202 } else { 2203 ip_found[found++] = ip; 2204 } 2205 } 2206 read_unlock(&ih->ih_lock); 2207 continue; 2208 } 2209 2210 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2211 if (xfs_iflock_nowait(ip)) { 2212 ip->i_flags |= XFS_ISTALE; 2213 2214 if (xfs_inode_clean(ip)) { 2215 xfs_ifunlock(ip); 2216 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2217 } else { 2218 ip_found[found++] = ip; 2219 } 2220 } else { 2221 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2222 } 2223 } 2224 2225 read_unlock(&ih->ih_lock); 2226 } 2227 2228 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2229 mp->m_bsize * blks_per_cluster, 2230 XFS_BUF_LOCK); 2231 2232 pre_flushed = 0; 2233 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 2234 while (lip) { 2235 if (lip->li_type == XFS_LI_INODE) { 2236 iip = (xfs_inode_log_item_t *)lip; 2237 ASSERT(iip->ili_logged == 1); 2238 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; 2239 AIL_LOCK(mp,s); 2240 iip->ili_flush_lsn = iip->ili_item.li_lsn; 2241 AIL_UNLOCK(mp, s); 2242 iip->ili_inode->i_flags |= XFS_ISTALE; 2243 pre_flushed++; 2244 } 2245 lip = lip->li_bio_list; 2246 } 2247 2248 for (i = 0; i < found; i++) { 2249 ip = ip_found[i]; 2250 iip = ip->i_itemp; 2251 2252 if (!iip) { 2253 ip->i_update_core = 0; 2254 xfs_ifunlock(ip); 2255 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2256 continue; 2257 } 2258 2259 iip->ili_last_fields = iip->ili_format.ilf_fields; 2260 iip->ili_format.ilf_fields = 0; 2261 iip->ili_logged = 1; 2262 AIL_LOCK(mp,s); 2263 iip->ili_flush_lsn = iip->ili_item.li_lsn; 2264 AIL_UNLOCK(mp, s); 2265 2266 xfs_buf_attach_iodone(bp, 2267 (void(*)(xfs_buf_t*,xfs_log_item_t*)) 2268 xfs_istale_done, (xfs_log_item_t *)iip); 2269 if (ip != free_ip) { 2270 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2271 } 2272 } 2273 2274 if (found || pre_flushed) 2275 xfs_trans_stale_inode_buf(tp, bp); 2276 xfs_trans_binval(tp, bp); 2277 } 2278 2279 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *)); 2280 } 2281 2282 /* 2283 * This is called to return an inode to the inode free list. 2284 * The inode should already be truncated to 0 length and have 2285 * no pages associated with it. This routine also assumes that 2286 * the inode is already a part of the transaction. 2287 * 2288 * The on-disk copy of the inode will have been added to the list 2289 * of unlinked inodes in the AGI. We need to remove the inode from 2290 * that list atomically with respect to freeing it here. 2291 */ 2292 int 2293 xfs_ifree( 2294 xfs_trans_t *tp, 2295 xfs_inode_t *ip, 2296 xfs_bmap_free_t *flist) 2297 { 2298 int error; 2299 int delete; 2300 xfs_ino_t first_ino; 2301 2302 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); 2303 ASSERT(ip->i_transp == tp); 2304 ASSERT(ip->i_d.di_nlink == 0); 2305 ASSERT(ip->i_d.di_nextents == 0); 2306 ASSERT(ip->i_d.di_anextents == 0); 2307 ASSERT((ip->i_d.di_size == 0) || 2308 ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); 2309 ASSERT(ip->i_d.di_nblocks == 0); 2310 2311 /* 2312 * Pull the on-disk inode from the AGI unlinked list. 2313 */ 2314 error = xfs_iunlink_remove(tp, ip); 2315 if (error != 0) { 2316 return error; 2317 } 2318 2319 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2320 if (error != 0) { 2321 return error; 2322 } 2323 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2324 ip->i_d.di_flags = 0; 2325 ip->i_d.di_dmevmask = 0; 2326 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2327 ip->i_df.if_ext_max = 2328 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 2329 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2330 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2331 /* 2332 * Bump the generation count so no one will be confused 2333 * by reincarnations of this inode. 2334 */ 2335 ip->i_d.di_gen++; 2336 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2337 2338 if (delete) { 2339 xfs_ifree_cluster(ip, tp, first_ino); 2340 } 2341 2342 return 0; 2343 } 2344 2345 /* 2346 * Reallocate the space for if_broot based on the number of records 2347 * being added or deleted as indicated in rec_diff. Move the records 2348 * and pointers in if_broot to fit the new size. When shrinking this 2349 * will eliminate holes between the records and pointers created by 2350 * the caller. When growing this will create holes to be filled in 2351 * by the caller. 2352 * 2353 * The caller must not request to add more records than would fit in 2354 * the on-disk inode root. If the if_broot is currently NULL, then 2355 * if we adding records one will be allocated. The caller must also 2356 * not request that the number of records go below zero, although 2357 * it can go to zero. 2358 * 2359 * ip -- the inode whose if_broot area is changing 2360 * ext_diff -- the change in the number of records, positive or negative, 2361 * requested for the if_broot array. 2362 */ 2363 void 2364 xfs_iroot_realloc( 2365 xfs_inode_t *ip, 2366 int rec_diff, 2367 int whichfork) 2368 { 2369 int cur_max; 2370 xfs_ifork_t *ifp; 2371 xfs_bmbt_block_t *new_broot; 2372 int new_max; 2373 size_t new_size; 2374 char *np; 2375 char *op; 2376 2377 /* 2378 * Handle the degenerate case quietly. 2379 */ 2380 if (rec_diff == 0) { 2381 return; 2382 } 2383 2384 ifp = XFS_IFORK_PTR(ip, whichfork); 2385 if (rec_diff > 0) { 2386 /* 2387 * If there wasn't any memory allocated before, just 2388 * allocate it now and get out. 2389 */ 2390 if (ifp->if_broot_bytes == 0) { 2391 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); 2392 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size, 2393 KM_SLEEP); 2394 ifp->if_broot_bytes = (int)new_size; 2395 return; 2396 } 2397 2398 /* 2399 * If there is already an existing if_broot, then we need 2400 * to realloc() it and shift the pointers to their new 2401 * location. The records don't change location because 2402 * they are kept butted up against the btree block header. 2403 */ 2404 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); 2405 new_max = cur_max + rec_diff; 2406 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2407 ifp->if_broot = (xfs_bmbt_block_t *) 2408 kmem_realloc(ifp->if_broot, 2409 new_size, 2410 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ 2411 KM_SLEEP); 2412 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2413 ifp->if_broot_bytes); 2414 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2415 (int)new_size); 2416 ifp->if_broot_bytes = (int)new_size; 2417 ASSERT(ifp->if_broot_bytes <= 2418 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2419 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 2420 return; 2421 } 2422 2423 /* 2424 * rec_diff is less than 0. In this case, we are shrinking the 2425 * if_broot buffer. It must already exist. If we go to zero 2426 * records, just get rid of the root and clear the status bit. 2427 */ 2428 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 2429 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); 2430 new_max = cur_max + rec_diff; 2431 ASSERT(new_max >= 0); 2432 if (new_max > 0) 2433 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2434 else 2435 new_size = 0; 2436 if (new_size > 0) { 2437 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP); 2438 /* 2439 * First copy over the btree block header. 2440 */ 2441 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t)); 2442 } else { 2443 new_broot = NULL; 2444 ifp->if_flags &= ~XFS_IFBROOT; 2445 } 2446 2447 /* 2448 * Only copy the records and pointers if there are any. 2449 */ 2450 if (new_max > 0) { 2451 /* 2452 * First copy the records. 2453 */ 2454 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1, 2455 ifp->if_broot_bytes); 2456 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1, 2457 (int)new_size); 2458 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 2459 2460 /* 2461 * Then copy the pointers. 2462 */ 2463 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2464 ifp->if_broot_bytes); 2465 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1, 2466 (int)new_size); 2467 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 2468 } 2469 kmem_free(ifp->if_broot, ifp->if_broot_bytes); 2470 ifp->if_broot = new_broot; 2471 ifp->if_broot_bytes = (int)new_size; 2472 ASSERT(ifp->if_broot_bytes <= 2473 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2474 return; 2475 } 2476 2477 2478 /* 2479 * This is called when the amount of space needed for if_extents 2480 * is increased or decreased. The change in size is indicated by 2481 * the number of extents that need to be added or deleted in the 2482 * ext_diff parameter. 2483 * 2484 * If the amount of space needed has decreased below the size of the 2485 * inline buffer, then switch to using the inline buffer. Otherwise, 2486 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2487 * to what is needed. 2488 * 2489 * ip -- the inode whose if_extents area is changing 2490 * ext_diff -- the change in the number of extents, positive or negative, 2491 * requested for the if_extents array. 2492 */ 2493 void 2494 xfs_iext_realloc( 2495 xfs_inode_t *ip, 2496 int ext_diff, 2497 int whichfork) 2498 { 2499 int byte_diff; 2500 xfs_ifork_t *ifp; 2501 int new_size; 2502 uint rnew_size; 2503 2504 if (ext_diff == 0) { 2505 return; 2506 } 2507 2508 ifp = XFS_IFORK_PTR(ip, whichfork); 2509 byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t); 2510 new_size = (int)ifp->if_bytes + byte_diff; 2511 ASSERT(new_size >= 0); 2512 2513 if (new_size == 0) { 2514 if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { 2515 ASSERT(ifp->if_real_bytes != 0); 2516 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); 2517 } 2518 ifp->if_u1.if_extents = NULL; 2519 rnew_size = 0; 2520 } else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) { 2521 /* 2522 * If the valid extents can fit in if_inline_ext, 2523 * copy them from the malloc'd vector and free it. 2524 */ 2525 if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { 2526 /* 2527 * For now, empty files are format EXTENTS, 2528 * so the if_extents pointer is null. 2529 */ 2530 if (ifp->if_u1.if_extents) { 2531 memcpy(ifp->if_u2.if_inline_ext, 2532 ifp->if_u1.if_extents, new_size); 2533 kmem_free(ifp->if_u1.if_extents, 2534 ifp->if_real_bytes); 2535 } 2536 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 2537 } 2538 rnew_size = 0; 2539 } else { 2540 rnew_size = new_size; 2541 if ((rnew_size & (rnew_size - 1)) != 0) 2542 rnew_size = xfs_iroundup(rnew_size); 2543 /* 2544 * Stuck with malloc/realloc. 2545 */ 2546 if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) { 2547 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) 2548 kmem_alloc(rnew_size, KM_SLEEP); 2549 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 2550 sizeof(ifp->if_u2.if_inline_ext)); 2551 } else if (rnew_size != ifp->if_real_bytes) { 2552 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) 2553 kmem_realloc(ifp->if_u1.if_extents, 2554 rnew_size, 2555 ifp->if_real_bytes, 2556 KM_NOFS); 2557 } 2558 } 2559 ifp->if_real_bytes = rnew_size; 2560 ifp->if_bytes = new_size; 2561 } 2562 2563 2564 /* 2565 * This is called when the amount of space needed for if_data 2566 * is increased or decreased. The change in size is indicated by 2567 * the number of bytes that need to be added or deleted in the 2568 * byte_diff parameter. 2569 * 2570 * If the amount of space needed has decreased below the size of the 2571 * inline buffer, then switch to using the inline buffer. Otherwise, 2572 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2573 * to what is needed. 2574 * 2575 * ip -- the inode whose if_data area is changing 2576 * byte_diff -- the change in the number of bytes, positive or negative, 2577 * requested for the if_data array. 2578 */ 2579 void 2580 xfs_idata_realloc( 2581 xfs_inode_t *ip, 2582 int byte_diff, 2583 int whichfork) 2584 { 2585 xfs_ifork_t *ifp; 2586 int new_size; 2587 int real_size; 2588 2589 if (byte_diff == 0) { 2590 return; 2591 } 2592 2593 ifp = XFS_IFORK_PTR(ip, whichfork); 2594 new_size = (int)ifp->if_bytes + byte_diff; 2595 ASSERT(new_size >= 0); 2596 2597 if (new_size == 0) { 2598 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2599 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2600 } 2601 ifp->if_u1.if_data = NULL; 2602 real_size = 0; 2603 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 2604 /* 2605 * If the valid extents/data can fit in if_inline_ext/data, 2606 * copy them from the malloc'd vector and free it. 2607 */ 2608 if (ifp->if_u1.if_data == NULL) { 2609 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2610 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2611 ASSERT(ifp->if_real_bytes != 0); 2612 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 2613 new_size); 2614 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2615 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2616 } 2617 real_size = 0; 2618 } else { 2619 /* 2620 * Stuck with malloc/realloc. 2621 * For inline data, the underlying buffer must be 2622 * a multiple of 4 bytes in size so that it can be 2623 * logged and stay on word boundaries. We enforce 2624 * that here. 2625 */ 2626 real_size = roundup(new_size, 4); 2627 if (ifp->if_u1.if_data == NULL) { 2628 ASSERT(ifp->if_real_bytes == 0); 2629 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2630 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2631 /* 2632 * Only do the realloc if the underlying size 2633 * is really changing. 2634 */ 2635 if (ifp->if_real_bytes != real_size) { 2636 ifp->if_u1.if_data = 2637 kmem_realloc(ifp->if_u1.if_data, 2638 real_size, 2639 ifp->if_real_bytes, 2640 KM_SLEEP); 2641 } 2642 } else { 2643 ASSERT(ifp->if_real_bytes == 0); 2644 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2645 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 2646 ifp->if_bytes); 2647 } 2648 } 2649 ifp->if_real_bytes = real_size; 2650 ifp->if_bytes = new_size; 2651 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2652 } 2653 2654 2655 2656 2657 /* 2658 * Map inode to disk block and offset. 2659 * 2660 * mp -- the mount point structure for the current file system 2661 * tp -- the current transaction 2662 * ino -- the inode number of the inode to be located 2663 * imap -- this structure is filled in with the information necessary 2664 * to retrieve the given inode from disk 2665 * flags -- flags to pass to xfs_dilocate indicating whether or not 2666 * lookups in the inode btree were OK or not 2667 */ 2668 int 2669 xfs_imap( 2670 xfs_mount_t *mp, 2671 xfs_trans_t *tp, 2672 xfs_ino_t ino, 2673 xfs_imap_t *imap, 2674 uint flags) 2675 { 2676 xfs_fsblock_t fsbno; 2677 int len; 2678 int off; 2679 int error; 2680 2681 fsbno = imap->im_blkno ? 2682 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK; 2683 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags); 2684 if (error != 0) { 2685 return error; 2686 } 2687 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno); 2688 imap->im_len = XFS_FSB_TO_BB(mp, len); 2689 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno); 2690 imap->im_ioffset = (ushort)off; 2691 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog); 2692 return 0; 2693 } 2694 2695 void 2696 xfs_idestroy_fork( 2697 xfs_inode_t *ip, 2698 int whichfork) 2699 { 2700 xfs_ifork_t *ifp; 2701 2702 ifp = XFS_IFORK_PTR(ip, whichfork); 2703 if (ifp->if_broot != NULL) { 2704 kmem_free(ifp->if_broot, ifp->if_broot_bytes); 2705 ifp->if_broot = NULL; 2706 } 2707 2708 /* 2709 * If the format is local, then we can't have an extents 2710 * array so just look for an inline data array. If we're 2711 * not local then we may or may not have an extents list, 2712 * so check and free it up if we do. 2713 */ 2714 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2715 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2716 (ifp->if_u1.if_data != NULL)) { 2717 ASSERT(ifp->if_real_bytes != 0); 2718 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2719 ifp->if_u1.if_data = NULL; 2720 ifp->if_real_bytes = 0; 2721 } 2722 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2723 (ifp->if_u1.if_extents != NULL) && 2724 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) { 2725 ASSERT(ifp->if_real_bytes != 0); 2726 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); 2727 ifp->if_u1.if_extents = NULL; 2728 ifp->if_real_bytes = 0; 2729 } 2730 ASSERT(ifp->if_u1.if_extents == NULL || 2731 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2732 ASSERT(ifp->if_real_bytes == 0); 2733 if (whichfork == XFS_ATTR_FORK) { 2734 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2735 ip->i_afp = NULL; 2736 } 2737 } 2738 2739 /* 2740 * This is called free all the memory associated with an inode. 2741 * It must free the inode itself and any buffers allocated for 2742 * if_extents/if_data and if_broot. It must also free the lock 2743 * associated with the inode. 2744 */ 2745 void 2746 xfs_idestroy( 2747 xfs_inode_t *ip) 2748 { 2749 2750 switch (ip->i_d.di_mode & S_IFMT) { 2751 case S_IFREG: 2752 case S_IFDIR: 2753 case S_IFLNK: 2754 xfs_idestroy_fork(ip, XFS_DATA_FORK); 2755 break; 2756 } 2757 if (ip->i_afp) 2758 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 2759 mrfree(&ip->i_lock); 2760 mrfree(&ip->i_iolock); 2761 freesema(&ip->i_flock); 2762 #ifdef XFS_BMAP_TRACE 2763 ktrace_free(ip->i_xtrace); 2764 #endif 2765 #ifdef XFS_BMBT_TRACE 2766 ktrace_free(ip->i_btrace); 2767 #endif 2768 #ifdef XFS_RW_TRACE 2769 ktrace_free(ip->i_rwtrace); 2770 #endif 2771 #ifdef XFS_ILOCK_TRACE 2772 ktrace_free(ip->i_lock_trace); 2773 #endif 2774 #ifdef XFS_DIR2_TRACE 2775 ktrace_free(ip->i_dir_trace); 2776 #endif 2777 if (ip->i_itemp) { 2778 /* XXXdpd should be able to assert this but shutdown 2779 * is leaving the AIL behind. */ 2780 ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) || 2781 XFS_FORCED_SHUTDOWN(ip->i_mount)); 2782 xfs_inode_item_destroy(ip); 2783 } 2784 kmem_zone_free(xfs_inode_zone, ip); 2785 } 2786 2787 2788 /* 2789 * Increment the pin count of the given buffer. 2790 * This value is protected by ipinlock spinlock in the mount structure. 2791 */ 2792 void 2793 xfs_ipin( 2794 xfs_inode_t *ip) 2795 { 2796 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); 2797 2798 atomic_inc(&ip->i_pincount); 2799 } 2800 2801 /* 2802 * Decrement the pin count of the given inode, and wake up 2803 * anyone in xfs_iwait_unpin() if the count goes to 0. The 2804 * inode must have been previoulsy pinned with a call to xfs_ipin(). 2805 */ 2806 void 2807 xfs_iunpin( 2808 xfs_inode_t *ip) 2809 { 2810 ASSERT(atomic_read(&ip->i_pincount) > 0); 2811 2812 if (atomic_dec_and_test(&ip->i_pincount)) { 2813 vnode_t *vp = XFS_ITOV_NULL(ip); 2814 2815 /* make sync come back and flush this inode */ 2816 if (vp) { 2817 struct inode *inode = LINVFS_GET_IP(vp); 2818 2819 if (!(inode->i_state & I_NEW)) 2820 mark_inode_dirty_sync(inode); 2821 } 2822 2823 wake_up(&ip->i_ipin_wait); 2824 } 2825 } 2826 2827 /* 2828 * This is called to wait for the given inode to be unpinned. 2829 * It will sleep until this happens. The caller must have the 2830 * inode locked in at least shared mode so that the buffer cannot 2831 * be subsequently pinned once someone is waiting for it to be 2832 * unpinned. 2833 */ 2834 STATIC void 2835 xfs_iunpin_wait( 2836 xfs_inode_t *ip) 2837 { 2838 xfs_inode_log_item_t *iip; 2839 xfs_lsn_t lsn; 2840 2841 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS)); 2842 2843 if (atomic_read(&ip->i_pincount) == 0) { 2844 return; 2845 } 2846 2847 iip = ip->i_itemp; 2848 if (iip && iip->ili_last_lsn) { 2849 lsn = iip->ili_last_lsn; 2850 } else { 2851 lsn = (xfs_lsn_t)0; 2852 } 2853 2854 /* 2855 * Give the log a push so we don't wait here too long. 2856 */ 2857 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE); 2858 2859 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); 2860 } 2861 2862 2863 /* 2864 * xfs_iextents_copy() 2865 * 2866 * This is called to copy the REAL extents (as opposed to the delayed 2867 * allocation extents) from the inode into the given buffer. It 2868 * returns the number of bytes copied into the buffer. 2869 * 2870 * If there are no delayed allocation extents, then we can just 2871 * memcpy() the extents into the buffer. Otherwise, we need to 2872 * examine each extent in turn and skip those which are delayed. 2873 */ 2874 int 2875 xfs_iextents_copy( 2876 xfs_inode_t *ip, 2877 xfs_bmbt_rec_t *buffer, 2878 int whichfork) 2879 { 2880 int copied; 2881 xfs_bmbt_rec_t *dest_ep; 2882 xfs_bmbt_rec_t *ep; 2883 #ifdef XFS_BMAP_TRACE 2884 static char fname[] = "xfs_iextents_copy"; 2885 #endif 2886 int i; 2887 xfs_ifork_t *ifp; 2888 int nrecs; 2889 xfs_fsblock_t start_block; 2890 2891 ifp = XFS_IFORK_PTR(ip, whichfork); 2892 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 2893 ASSERT(ifp->if_bytes > 0); 2894 2895 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2896 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork); 2897 ASSERT(nrecs > 0); 2898 2899 /* 2900 * There are some delayed allocation extents in the 2901 * inode, so copy the extents one at a time and skip 2902 * the delayed ones. There must be at least one 2903 * non-delayed extent. 2904 */ 2905 ep = ifp->if_u1.if_extents; 2906 dest_ep = buffer; 2907 copied = 0; 2908 for (i = 0; i < nrecs; i++) { 2909 start_block = xfs_bmbt_get_startblock(ep); 2910 if (ISNULLSTARTBLOCK(start_block)) { 2911 /* 2912 * It's a delayed allocation extent, so skip it. 2913 */ 2914 ep++; 2915 continue; 2916 } 2917 2918 /* Translate to on disk format */ 2919 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT), 2920 (__uint64_t*)&dest_ep->l0); 2921 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT), 2922 (__uint64_t*)&dest_ep->l1); 2923 dest_ep++; 2924 ep++; 2925 copied++; 2926 } 2927 ASSERT(copied != 0); 2928 xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip)); 2929 2930 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2931 } 2932 2933 /* 2934 * Each of the following cases stores data into the same region 2935 * of the on-disk inode, so only one of them can be valid at 2936 * any given time. While it is possible to have conflicting formats 2937 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2938 * in EXTENTS format, this can only happen when the fork has 2939 * changed formats after being modified but before being flushed. 2940 * In these cases, the format always takes precedence, because the 2941 * format indicates the current state of the fork. 2942 */ 2943 /*ARGSUSED*/ 2944 STATIC int 2945 xfs_iflush_fork( 2946 xfs_inode_t *ip, 2947 xfs_dinode_t *dip, 2948 xfs_inode_log_item_t *iip, 2949 int whichfork, 2950 xfs_buf_t *bp) 2951 { 2952 char *cp; 2953 xfs_ifork_t *ifp; 2954 xfs_mount_t *mp; 2955 #ifdef XFS_TRANS_DEBUG 2956 int first; 2957 #endif 2958 static const short brootflag[2] = 2959 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 2960 static const short dataflag[2] = 2961 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 2962 static const short extflag[2] = 2963 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 2964 2965 if (iip == NULL) 2966 return 0; 2967 ifp = XFS_IFORK_PTR(ip, whichfork); 2968 /* 2969 * This can happen if we gave up in iformat in an error path, 2970 * for the attribute fork. 2971 */ 2972 if (ifp == NULL) { 2973 ASSERT(whichfork == XFS_ATTR_FORK); 2974 return 0; 2975 } 2976 cp = XFS_DFORK_PTR(dip, whichfork); 2977 mp = ip->i_mount; 2978 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 2979 case XFS_DINODE_FMT_LOCAL: 2980 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && 2981 (ifp->if_bytes > 0)) { 2982 ASSERT(ifp->if_u1.if_data != NULL); 2983 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2984 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 2985 } 2986 if (whichfork == XFS_DATA_FORK) { 2987 if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) { 2988 XFS_ERROR_REPORT("xfs_iflush_fork", 2989 XFS_ERRLEVEL_LOW, mp); 2990 return XFS_ERROR(EFSCORRUPTED); 2991 } 2992 } 2993 break; 2994 2995 case XFS_DINODE_FMT_EXTENTS: 2996 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 2997 !(iip->ili_format.ilf_fields & extflag[whichfork])); 2998 ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0)); 2999 ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0)); 3000 if ((iip->ili_format.ilf_fields & extflag[whichfork]) && 3001 (ifp->if_bytes > 0)) { 3002 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 3003 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 3004 whichfork); 3005 } 3006 break; 3007 3008 case XFS_DINODE_FMT_BTREE: 3009 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && 3010 (ifp->if_broot_bytes > 0)) { 3011 ASSERT(ifp->if_broot != NULL); 3012 ASSERT(ifp->if_broot_bytes <= 3013 (XFS_IFORK_SIZE(ip, whichfork) + 3014 XFS_BROOT_SIZE_ADJ)); 3015 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes, 3016 (xfs_bmdr_block_t *)cp, 3017 XFS_DFORK_SIZE(dip, mp, whichfork)); 3018 } 3019 break; 3020 3021 case XFS_DINODE_FMT_DEV: 3022 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 3023 ASSERT(whichfork == XFS_DATA_FORK); 3024 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev); 3025 } 3026 break; 3027 3028 case XFS_DINODE_FMT_UUID: 3029 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 3030 ASSERT(whichfork == XFS_DATA_FORK); 3031 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid, 3032 sizeof(uuid_t)); 3033 } 3034 break; 3035 3036 default: 3037 ASSERT(0); 3038 break; 3039 } 3040 3041 return 0; 3042 } 3043 3044 /* 3045 * xfs_iflush() will write a modified inode's changes out to the 3046 * inode's on disk home. The caller must have the inode lock held 3047 * in at least shared mode and the inode flush semaphore must be 3048 * held as well. The inode lock will still be held upon return from 3049 * the call and the caller is free to unlock it. 3050 * The inode flush lock will be unlocked when the inode reaches the disk. 3051 * The flags indicate how the inode's buffer should be written out. 3052 */ 3053 int 3054 xfs_iflush( 3055 xfs_inode_t *ip, 3056 uint flags) 3057 { 3058 xfs_inode_log_item_t *iip; 3059 xfs_buf_t *bp; 3060 xfs_dinode_t *dip; 3061 xfs_mount_t *mp; 3062 int error; 3063 /* REFERENCED */ 3064 xfs_chash_t *ch; 3065 xfs_inode_t *iq; 3066 int clcount; /* count of inodes clustered */ 3067 int bufwasdelwri; 3068 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; 3069 SPLDECL(s); 3070 3071 XFS_STATS_INC(xs_iflush_count); 3072 3073 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 3074 ASSERT(valusema(&ip->i_flock) <= 0); 3075 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3076 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3077 3078 iip = ip->i_itemp; 3079 mp = ip->i_mount; 3080 3081 /* 3082 * If the inode isn't dirty, then just release the inode 3083 * flush lock and do nothing. 3084 */ 3085 if ((ip->i_update_core == 0) && 3086 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3087 ASSERT((iip != NULL) ? 3088 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1); 3089 xfs_ifunlock(ip); 3090 return 0; 3091 } 3092 3093 /* 3094 * We can't flush the inode until it is unpinned, so 3095 * wait for it. We know noone new can pin it, because 3096 * we are holding the inode lock shared and you need 3097 * to hold it exclusively to pin the inode. 3098 */ 3099 xfs_iunpin_wait(ip); 3100 3101 /* 3102 * This may have been unpinned because the filesystem is shutting 3103 * down forcibly. If that's the case we must not write this inode 3104 * to disk, because the log record didn't make it to disk! 3105 */ 3106 if (XFS_FORCED_SHUTDOWN(mp)) { 3107 ip->i_update_core = 0; 3108 if (iip) 3109 iip->ili_format.ilf_fields = 0; 3110 xfs_ifunlock(ip); 3111 return XFS_ERROR(EIO); 3112 } 3113 3114 /* 3115 * Get the buffer containing the on-disk inode. 3116 */ 3117 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0); 3118 if (error != 0) { 3119 xfs_ifunlock(ip); 3120 return error; 3121 } 3122 3123 /* 3124 * Decide how buffer will be flushed out. This is done before 3125 * the call to xfs_iflush_int because this field is zeroed by it. 3126 */ 3127 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3128 /* 3129 * Flush out the inode buffer according to the directions 3130 * of the caller. In the cases where the caller has given 3131 * us a choice choose the non-delwri case. This is because 3132 * the inode is in the AIL and we need to get it out soon. 3133 */ 3134 switch (flags) { 3135 case XFS_IFLUSH_SYNC: 3136 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3137 flags = 0; 3138 break; 3139 case XFS_IFLUSH_ASYNC: 3140 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3141 flags = INT_ASYNC; 3142 break; 3143 case XFS_IFLUSH_DELWRI: 3144 flags = INT_DELWRI; 3145 break; 3146 default: 3147 ASSERT(0); 3148 flags = 0; 3149 break; 3150 } 3151 } else { 3152 switch (flags) { 3153 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3154 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3155 case XFS_IFLUSH_DELWRI: 3156 flags = INT_DELWRI; 3157 break; 3158 case XFS_IFLUSH_ASYNC: 3159 flags = INT_ASYNC; 3160 break; 3161 case XFS_IFLUSH_SYNC: 3162 flags = 0; 3163 break; 3164 default: 3165 ASSERT(0); 3166 flags = 0; 3167 break; 3168 } 3169 } 3170 3171 /* 3172 * First flush out the inode that xfs_iflush was called with. 3173 */ 3174 error = xfs_iflush_int(ip, bp); 3175 if (error) { 3176 goto corrupt_out; 3177 } 3178 3179 /* 3180 * inode clustering: 3181 * see if other inodes can be gathered into this write 3182 */ 3183 3184 ip->i_chash->chl_buf = bp; 3185 3186 ch = XFS_CHASH(mp, ip->i_blkno); 3187 s = mutex_spinlock(&ch->ch_lock); 3188 3189 clcount = 0; 3190 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) { 3191 /* 3192 * Do an un-protected check to see if the inode is dirty and 3193 * is a candidate for flushing. These checks will be repeated 3194 * later after the appropriate locks are acquired. 3195 */ 3196 iip = iq->i_itemp; 3197 if ((iq->i_update_core == 0) && 3198 ((iip == NULL) || 3199 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) && 3200 xfs_ipincount(iq) == 0) { 3201 continue; 3202 } 3203 3204 /* 3205 * Try to get locks. If any are unavailable, 3206 * then this inode cannot be flushed and is skipped. 3207 */ 3208 3209 /* get inode locks (just i_lock) */ 3210 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) { 3211 /* get inode flush lock */ 3212 if (xfs_iflock_nowait(iq)) { 3213 /* check if pinned */ 3214 if (xfs_ipincount(iq) == 0) { 3215 /* arriving here means that 3216 * this inode can be flushed. 3217 * first re-check that it's 3218 * dirty 3219 */ 3220 iip = iq->i_itemp; 3221 if ((iq->i_update_core != 0)|| 3222 ((iip != NULL) && 3223 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3224 clcount++; 3225 error = xfs_iflush_int(iq, bp); 3226 if (error) { 3227 xfs_iunlock(iq, 3228 XFS_ILOCK_SHARED); 3229 goto cluster_corrupt_out; 3230 } 3231 } else { 3232 xfs_ifunlock(iq); 3233 } 3234 } else { 3235 xfs_ifunlock(iq); 3236 } 3237 } 3238 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3239 } 3240 } 3241 mutex_spinunlock(&ch->ch_lock, s); 3242 3243 if (clcount) { 3244 XFS_STATS_INC(xs_icluster_flushcnt); 3245 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 3246 } 3247 3248 /* 3249 * If the buffer is pinned then push on the log so we won't 3250 * get stuck waiting in the write for too long. 3251 */ 3252 if (XFS_BUF_ISPINNED(bp)){ 3253 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); 3254 } 3255 3256 if (flags & INT_DELWRI) { 3257 xfs_bdwrite(mp, bp); 3258 } else if (flags & INT_ASYNC) { 3259 xfs_bawrite(mp, bp); 3260 } else { 3261 error = xfs_bwrite(mp, bp); 3262 } 3263 return error; 3264 3265 corrupt_out: 3266 xfs_buf_relse(bp); 3267 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); 3268 xfs_iflush_abort(ip); 3269 /* 3270 * Unlocks the flush lock 3271 */ 3272 return XFS_ERROR(EFSCORRUPTED); 3273 3274 cluster_corrupt_out: 3275 /* Corruption detected in the clustering loop. Invalidate the 3276 * inode buffer and shut down the filesystem. 3277 */ 3278 mutex_spinunlock(&ch->ch_lock, s); 3279 3280 /* 3281 * Clean up the buffer. If it was B_DELWRI, just release it -- 3282 * brelse can handle it with no problems. If not, shut down the 3283 * filesystem before releasing the buffer. 3284 */ 3285 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) { 3286 xfs_buf_relse(bp); 3287 } 3288 3289 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); 3290 3291 if(!bufwasdelwri) { 3292 /* 3293 * Just like incore_relse: if we have b_iodone functions, 3294 * mark the buffer as an error and call them. Otherwise 3295 * mark it as stale and brelse. 3296 */ 3297 if (XFS_BUF_IODONE_FUNC(bp)) { 3298 XFS_BUF_CLR_BDSTRAT_FUNC(bp); 3299 XFS_BUF_UNDONE(bp); 3300 XFS_BUF_STALE(bp); 3301 XFS_BUF_SHUT(bp); 3302 XFS_BUF_ERROR(bp,EIO); 3303 xfs_biodone(bp); 3304 } else { 3305 XFS_BUF_STALE(bp); 3306 xfs_buf_relse(bp); 3307 } 3308 } 3309 3310 xfs_iflush_abort(iq); 3311 /* 3312 * Unlocks the flush lock 3313 */ 3314 return XFS_ERROR(EFSCORRUPTED); 3315 } 3316 3317 3318 STATIC int 3319 xfs_iflush_int( 3320 xfs_inode_t *ip, 3321 xfs_buf_t *bp) 3322 { 3323 xfs_inode_log_item_t *iip; 3324 xfs_dinode_t *dip; 3325 xfs_mount_t *mp; 3326 #ifdef XFS_TRANS_DEBUG 3327 int first; 3328 #endif 3329 SPLDECL(s); 3330 3331 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 3332 ASSERT(valusema(&ip->i_flock) <= 0); 3333 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3334 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3335 3336 iip = ip->i_itemp; 3337 mp = ip->i_mount; 3338 3339 3340 /* 3341 * If the inode isn't dirty, then just release the inode 3342 * flush lock and do nothing. 3343 */ 3344 if ((ip->i_update_core == 0) && 3345 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3346 xfs_ifunlock(ip); 3347 return 0; 3348 } 3349 3350 /* set *dip = inode's place in the buffer */ 3351 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset); 3352 3353 /* 3354 * Clear i_update_core before copying out the data. 3355 * This is for coordination with our timestamp updates 3356 * that don't hold the inode lock. They will always 3357 * update the timestamps BEFORE setting i_update_core, 3358 * so if we clear i_update_core after they set it we 3359 * are guaranteed to see their updates to the timestamps. 3360 * I believe that this depends on strongly ordered memory 3361 * semantics, but we have that. We use the SYNCHRONIZE 3362 * macro to make sure that the compiler does not reorder 3363 * the i_update_core access below the data copy below. 3364 */ 3365 ip->i_update_core = 0; 3366 SYNCHRONIZE(); 3367 3368 /* 3369 * Make sure to get the latest atime from the Linux inode. 3370 */ 3371 xfs_synchronize_atime(ip); 3372 3373 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC, 3374 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3375 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3376 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3377 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip); 3378 goto corrupt_out; 3379 } 3380 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3381 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3382 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3383 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3384 ip->i_ino, ip, ip->i_d.di_magic); 3385 goto corrupt_out; 3386 } 3387 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { 3388 if (XFS_TEST_ERROR( 3389 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3390 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3391 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3392 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3393 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", 3394 ip->i_ino, ip); 3395 goto corrupt_out; 3396 } 3397 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { 3398 if (XFS_TEST_ERROR( 3399 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3400 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3401 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3402 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3403 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3404 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", 3405 ip->i_ino, ip); 3406 goto corrupt_out; 3407 } 3408 } 3409 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3410 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3411 XFS_RANDOM_IFLUSH_5)) { 3412 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3413 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", 3414 ip->i_ino, 3415 ip->i_d.di_nextents + ip->i_d.di_anextents, 3416 ip->i_d.di_nblocks, 3417 ip); 3418 goto corrupt_out; 3419 } 3420 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3421 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3422 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3423 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3424 ip->i_ino, ip->i_d.di_forkoff, ip); 3425 goto corrupt_out; 3426 } 3427 /* 3428 * bump the flush iteration count, used to detect flushes which 3429 * postdate a log record during recovery. 3430 */ 3431 3432 ip->i_d.di_flushiter++; 3433 3434 /* 3435 * Copy the dirty parts of the inode into the on-disk 3436 * inode. We always copy out the core of the inode, 3437 * because if the inode is dirty at all the core must 3438 * be. 3439 */ 3440 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1); 3441 3442 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3443 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3444 ip->i_d.di_flushiter = 0; 3445 3446 /* 3447 * If this is really an old format inode and the superblock version 3448 * has not been updated to support only new format inodes, then 3449 * convert back to the old inode format. If the superblock version 3450 * has been updated, then make the conversion permanent. 3451 */ 3452 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || 3453 XFS_SB_VERSION_HASNLINK(&mp->m_sb)); 3454 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 3455 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { 3456 /* 3457 * Convert it back. 3458 */ 3459 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 3460 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink); 3461 } else { 3462 /* 3463 * The superblock version has already been bumped, 3464 * so just make the conversion to the new inode 3465 * format permanent. 3466 */ 3467 ip->i_d.di_version = XFS_DINODE_VERSION_2; 3468 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2); 3469 ip->i_d.di_onlink = 0; 3470 dip->di_core.di_onlink = 0; 3471 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 3472 memset(&(dip->di_core.di_pad[0]), 0, 3473 sizeof(dip->di_core.di_pad)); 3474 ASSERT(ip->i_d.di_projid == 0); 3475 } 3476 } 3477 3478 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) { 3479 goto corrupt_out; 3480 } 3481 3482 if (XFS_IFORK_Q(ip)) { 3483 /* 3484 * The only error from xfs_iflush_fork is on the data fork. 3485 */ 3486 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 3487 } 3488 xfs_inobp_check(mp, bp); 3489 3490 /* 3491 * We've recorded everything logged in the inode, so we'd 3492 * like to clear the ilf_fields bits so we don't log and 3493 * flush things unnecessarily. However, we can't stop 3494 * logging all this information until the data we've copied 3495 * into the disk buffer is written to disk. If we did we might 3496 * overwrite the copy of the inode in the log with all the 3497 * data after re-logging only part of it, and in the face of 3498 * a crash we wouldn't have all the data we need to recover. 3499 * 3500 * What we do is move the bits to the ili_last_fields field. 3501 * When logging the inode, these bits are moved back to the 3502 * ilf_fields field. In the xfs_iflush_done() routine we 3503 * clear ili_last_fields, since we know that the information 3504 * those bits represent is permanently on disk. As long as 3505 * the flush completes before the inode is logged again, then 3506 * both ilf_fields and ili_last_fields will be cleared. 3507 * 3508 * We can play with the ilf_fields bits here, because the inode 3509 * lock must be held exclusively in order to set bits there 3510 * and the flush lock protects the ili_last_fields bits. 3511 * Set ili_logged so the flush done 3512 * routine can tell whether or not to look in the AIL. 3513 * Also, store the current LSN of the inode so that we can tell 3514 * whether the item has moved in the AIL from xfs_iflush_done(). 3515 * In order to read the lsn we need the AIL lock, because 3516 * it is a 64 bit value that cannot be read atomically. 3517 */ 3518 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3519 iip->ili_last_fields = iip->ili_format.ilf_fields; 3520 iip->ili_format.ilf_fields = 0; 3521 iip->ili_logged = 1; 3522 3523 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */ 3524 AIL_LOCK(mp,s); 3525 iip->ili_flush_lsn = iip->ili_item.li_lsn; 3526 AIL_UNLOCK(mp, s); 3527 3528 /* 3529 * Attach the function xfs_iflush_done to the inode's 3530 * buffer. This will remove the inode from the AIL 3531 * and unlock the inode's flush lock when the inode is 3532 * completely written to disk. 3533 */ 3534 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) 3535 xfs_iflush_done, (xfs_log_item_t *)iip); 3536 3537 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 3538 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); 3539 } else { 3540 /* 3541 * We're flushing an inode which is not in the AIL and has 3542 * not been logged but has i_update_core set. For this 3543 * case we can use a B_DELWRI flush and immediately drop 3544 * the inode flush lock because we can avoid the whole 3545 * AIL state thing. It's OK to drop the flush lock now, 3546 * because we've already locked the buffer and to do anything 3547 * you really need both. 3548 */ 3549 if (iip != NULL) { 3550 ASSERT(iip->ili_logged == 0); 3551 ASSERT(iip->ili_last_fields == 0); 3552 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); 3553 } 3554 xfs_ifunlock(ip); 3555 } 3556 3557 return 0; 3558 3559 corrupt_out: 3560 return XFS_ERROR(EFSCORRUPTED); 3561 } 3562 3563 3564 /* 3565 * Flush all inactive inodes in mp. 3566 */ 3567 void 3568 xfs_iflush_all( 3569 xfs_mount_t *mp) 3570 { 3571 xfs_inode_t *ip; 3572 vnode_t *vp; 3573 3574 again: 3575 XFS_MOUNT_ILOCK(mp); 3576 ip = mp->m_inodes; 3577 if (ip == NULL) 3578 goto out; 3579 3580 do { 3581 /* Make sure we skip markers inserted by sync */ 3582 if (ip->i_mount == NULL) { 3583 ip = ip->i_mnext; 3584 continue; 3585 } 3586 3587 vp = XFS_ITOV_NULL(ip); 3588 if (!vp) { 3589 XFS_MOUNT_IUNLOCK(mp); 3590 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC); 3591 goto again; 3592 } 3593 3594 ASSERT(vn_count(vp) == 0); 3595 3596 ip = ip->i_mnext; 3597 } while (ip != mp->m_inodes); 3598 out: 3599 XFS_MOUNT_IUNLOCK(mp); 3600 } 3601 3602 /* 3603 * xfs_iaccess: check accessibility of inode for mode. 3604 */ 3605 int 3606 xfs_iaccess( 3607 xfs_inode_t *ip, 3608 mode_t mode, 3609 cred_t *cr) 3610 { 3611 int error; 3612 mode_t orgmode = mode; 3613 struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip)); 3614 3615 if (mode & S_IWUSR) { 3616 umode_t imode = inode->i_mode; 3617 3618 if (IS_RDONLY(inode) && 3619 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode))) 3620 return XFS_ERROR(EROFS); 3621 3622 if (IS_IMMUTABLE(inode)) 3623 return XFS_ERROR(EACCES); 3624 } 3625 3626 /* 3627 * If there's an Access Control List it's used instead of 3628 * the mode bits. 3629 */ 3630 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1) 3631 return error ? XFS_ERROR(error) : 0; 3632 3633 if (current_fsuid(cr) != ip->i_d.di_uid) { 3634 mode >>= 3; 3635 if (!in_group_p((gid_t)ip->i_d.di_gid)) 3636 mode >>= 3; 3637 } 3638 3639 /* 3640 * If the DACs are ok we don't need any capability check. 3641 */ 3642 if ((ip->i_d.di_mode & mode) == mode) 3643 return 0; 3644 /* 3645 * Read/write DACs are always overridable. 3646 * Executable DACs are overridable if at least one exec bit is set. 3647 */ 3648 if (!(orgmode & S_IXUSR) || 3649 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) 3650 if (capable_cred(cr, CAP_DAC_OVERRIDE)) 3651 return 0; 3652 3653 if ((orgmode == S_IRUSR) || 3654 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) { 3655 if (capable_cred(cr, CAP_DAC_READ_SEARCH)) 3656 return 0; 3657 #ifdef NOISE 3658 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode); 3659 #endif /* NOISE */ 3660 return XFS_ERROR(EACCES); 3661 } 3662 return XFS_ERROR(EACCES); 3663 } 3664 3665 /* 3666 * xfs_iroundup: round up argument to next power of two 3667 */ 3668 uint 3669 xfs_iroundup( 3670 uint v) 3671 { 3672 int i; 3673 uint m; 3674 3675 if ((v & (v - 1)) == 0) 3676 return v; 3677 ASSERT((v & 0x80000000) == 0); 3678 if ((v & (v + 1)) == 0) 3679 return v + 1; 3680 for (i = 0, m = 1; i < 31; i++, m <<= 1) { 3681 if (v & m) 3682 continue; 3683 v |= m; 3684 if ((v & (v + 1)) == 0) 3685 return v + 1; 3686 } 3687 ASSERT(0); 3688 return( 0 ); 3689 } 3690 3691 #ifdef XFS_ILOCK_TRACE 3692 ktrace_t *xfs_ilock_trace_buf; 3693 3694 void 3695 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) 3696 { 3697 ktrace_enter(ip->i_lock_trace, 3698 (void *)ip, 3699 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ 3700 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ 3701 (void *)ra, /* caller of ilock */ 3702 (void *)(unsigned long)current_cpu(), 3703 (void *)(unsigned long)current_pid(), 3704 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); 3705 } 3706 #endif 3707