1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_imap.h" 25 #include "xfs_trans.h" 26 #include "xfs_trans_priv.h" 27 #include "xfs_sb.h" 28 #include "xfs_ag.h" 29 #include "xfs_dir2.h" 30 #include "xfs_dmapi.h" 31 #include "xfs_mount.h" 32 #include "xfs_bmap_btree.h" 33 #include "xfs_alloc_btree.h" 34 #include "xfs_ialloc_btree.h" 35 #include "xfs_dir2_sf.h" 36 #include "xfs_attr_sf.h" 37 #include "xfs_dinode.h" 38 #include "xfs_inode.h" 39 #include "xfs_buf_item.h" 40 #include "xfs_inode_item.h" 41 #include "xfs_btree.h" 42 #include "xfs_alloc.h" 43 #include "xfs_ialloc.h" 44 #include "xfs_bmap.h" 45 #include "xfs_rw.h" 46 #include "xfs_error.h" 47 #include "xfs_utils.h" 48 #include "xfs_dir2_trace.h" 49 #include "xfs_quota.h" 50 #include "xfs_acl.h" 51 52 53 kmem_zone_t *xfs_ifork_zone; 54 kmem_zone_t *xfs_inode_zone; 55 kmem_zone_t *xfs_chashlist_zone; 56 57 /* 58 * Used in xfs_itruncate(). This is the maximum number of extents 59 * freed from a file in a single transaction. 60 */ 61 #define XFS_ITRUNC_MAX_EXTENTS 2 62 63 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 64 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 65 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 66 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 67 68 69 #ifdef DEBUG 70 /* 71 * Make sure that the extents in the given memory buffer 72 * are valid. 73 */ 74 STATIC void 75 xfs_validate_extents( 76 xfs_ifork_t *ifp, 77 int nrecs, 78 int disk, 79 xfs_exntfmt_t fmt) 80 { 81 xfs_bmbt_rec_t *ep; 82 xfs_bmbt_irec_t irec; 83 xfs_bmbt_rec_t rec; 84 int i; 85 86 for (i = 0; i < nrecs; i++) { 87 ep = xfs_iext_get_ext(ifp, i); 88 rec.l0 = get_unaligned((__uint64_t*)&ep->l0); 89 rec.l1 = get_unaligned((__uint64_t*)&ep->l1); 90 if (disk) 91 xfs_bmbt_disk_get_all(&rec, &irec); 92 else 93 xfs_bmbt_get_all(&rec, &irec); 94 if (fmt == XFS_EXTFMT_NOSTATE) 95 ASSERT(irec.br_state == XFS_EXT_NORM); 96 } 97 } 98 #else /* DEBUG */ 99 #define xfs_validate_extents(ifp, nrecs, disk, fmt) 100 #endif /* DEBUG */ 101 102 /* 103 * Check that none of the inode's in the buffer have a next 104 * unlinked field of 0. 105 */ 106 #if defined(DEBUG) 107 void 108 xfs_inobp_check( 109 xfs_mount_t *mp, 110 xfs_buf_t *bp) 111 { 112 int i; 113 int j; 114 xfs_dinode_t *dip; 115 116 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 117 118 for (i = 0; i < j; i++) { 119 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 120 i * mp->m_sb.sb_inodesize); 121 if (!dip->di_next_unlinked) { 122 xfs_fs_cmn_err(CE_ALERT, mp, 123 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", 124 bp); 125 ASSERT(dip->di_next_unlinked); 126 } 127 } 128 } 129 #endif 130 131 /* 132 * This routine is called to map an inode number within a file 133 * system to the buffer containing the on-disk version of the 134 * inode. It returns a pointer to the buffer containing the 135 * on-disk inode in the bpp parameter, and in the dip parameter 136 * it returns a pointer to the on-disk inode within that buffer. 137 * 138 * If a non-zero error is returned, then the contents of bpp and 139 * dipp are undefined. 140 * 141 * Use xfs_imap() to determine the size and location of the 142 * buffer to read from disk. 143 */ 144 STATIC int 145 xfs_inotobp( 146 xfs_mount_t *mp, 147 xfs_trans_t *tp, 148 xfs_ino_t ino, 149 xfs_dinode_t **dipp, 150 xfs_buf_t **bpp, 151 int *offset) 152 { 153 int di_ok; 154 xfs_imap_t imap; 155 xfs_buf_t *bp; 156 int error; 157 xfs_dinode_t *dip; 158 159 /* 160 * Call the space management code to find the location of the 161 * inode on disk. 162 */ 163 imap.im_blkno = 0; 164 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP); 165 if (error != 0) { 166 cmn_err(CE_WARN, 167 "xfs_inotobp: xfs_imap() returned an " 168 "error %d on %s. Returning error.", error, mp->m_fsname); 169 return error; 170 } 171 172 /* 173 * If the inode number maps to a block outside the bounds of the 174 * file system then return NULL rather than calling read_buf 175 * and panicing when we get an error from the driver. 176 */ 177 if ((imap.im_blkno + imap.im_len) > 178 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 179 cmn_err(CE_WARN, 180 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds " 181 "of the file system %s. Returning EINVAL.", 182 (unsigned long long)imap.im_blkno, 183 imap.im_len, mp->m_fsname); 184 return XFS_ERROR(EINVAL); 185 } 186 187 /* 188 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will 189 * default to just a read_buf() call. 190 */ 191 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, 192 (int)imap.im_len, XFS_BUF_LOCK, &bp); 193 194 if (error) { 195 cmn_err(CE_WARN, 196 "xfs_inotobp: xfs_trans_read_buf() returned an " 197 "error %d on %s. Returning error.", error, mp->m_fsname); 198 return error; 199 } 200 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0); 201 di_ok = 202 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && 203 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); 204 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, 205 XFS_RANDOM_ITOBP_INOTOBP))) { 206 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip); 207 xfs_trans_brelse(tp, bp); 208 cmn_err(CE_WARN, 209 "xfs_inotobp: XFS_TEST_ERROR() returned an " 210 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname); 211 return XFS_ERROR(EFSCORRUPTED); 212 } 213 214 xfs_inobp_check(mp, bp); 215 216 /* 217 * Set *dipp to point to the on-disk inode in the buffer. 218 */ 219 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 220 *bpp = bp; 221 *offset = imap.im_boffset; 222 return 0; 223 } 224 225 226 /* 227 * This routine is called to map an inode to the buffer containing 228 * the on-disk version of the inode. It returns a pointer to the 229 * buffer containing the on-disk inode in the bpp parameter, and in 230 * the dip parameter it returns a pointer to the on-disk inode within 231 * that buffer. 232 * 233 * If a non-zero error is returned, then the contents of bpp and 234 * dipp are undefined. 235 * 236 * If the inode is new and has not yet been initialized, use xfs_imap() 237 * to determine the size and location of the buffer to read from disk. 238 * If the inode has already been mapped to its buffer and read in once, 239 * then use the mapping information stored in the inode rather than 240 * calling xfs_imap(). This allows us to avoid the overhead of looking 241 * at the inode btree for small block file systems (see xfs_dilocate()). 242 * We can tell whether the inode has been mapped in before by comparing 243 * its disk block address to 0. Only uninitialized inodes will have 244 * 0 for the disk block address. 245 */ 246 int 247 xfs_itobp( 248 xfs_mount_t *mp, 249 xfs_trans_t *tp, 250 xfs_inode_t *ip, 251 xfs_dinode_t **dipp, 252 xfs_buf_t **bpp, 253 xfs_daddr_t bno, 254 uint imap_flags) 255 { 256 xfs_imap_t imap; 257 xfs_buf_t *bp; 258 int error; 259 int i; 260 int ni; 261 262 if (ip->i_blkno == (xfs_daddr_t)0) { 263 /* 264 * Call the space management code to find the location of the 265 * inode on disk. 266 */ 267 imap.im_blkno = bno; 268 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap, 269 XFS_IMAP_LOOKUP | imap_flags))) 270 return error; 271 272 /* 273 * If the inode number maps to a block outside the bounds 274 * of the file system then return NULL rather than calling 275 * read_buf and panicing when we get an error from the 276 * driver. 277 */ 278 if ((imap.im_blkno + imap.im_len) > 279 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 280 #ifdef DEBUG 281 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " 282 "(imap.im_blkno (0x%llx) " 283 "+ imap.im_len (0x%llx)) > " 284 " XFS_FSB_TO_BB(mp, " 285 "mp->m_sb.sb_dblocks) (0x%llx)", 286 (unsigned long long) imap.im_blkno, 287 (unsigned long long) imap.im_len, 288 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 289 #endif /* DEBUG */ 290 return XFS_ERROR(EINVAL); 291 } 292 293 /* 294 * Fill in the fields in the inode that will be used to 295 * map the inode to its buffer from now on. 296 */ 297 ip->i_blkno = imap.im_blkno; 298 ip->i_len = imap.im_len; 299 ip->i_boffset = imap.im_boffset; 300 } else { 301 /* 302 * We've already mapped the inode once, so just use the 303 * mapping that we saved the first time. 304 */ 305 imap.im_blkno = ip->i_blkno; 306 imap.im_len = ip->i_len; 307 imap.im_boffset = ip->i_boffset; 308 } 309 ASSERT(bno == 0 || bno == imap.im_blkno); 310 311 /* 312 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will 313 * default to just a read_buf() call. 314 */ 315 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, 316 (int)imap.im_len, XFS_BUF_LOCK, &bp); 317 if (error) { 318 #ifdef DEBUG 319 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " 320 "xfs_trans_read_buf() returned error %d, " 321 "imap.im_blkno 0x%llx, imap.im_len 0x%llx", 322 error, (unsigned long long) imap.im_blkno, 323 (unsigned long long) imap.im_len); 324 #endif /* DEBUG */ 325 return error; 326 } 327 328 /* 329 * Validate the magic number and version of every inode in the buffer 330 * (if DEBUG kernel) or the first inode in the buffer, otherwise. 331 * No validation is done here in userspace (xfs_repair). 332 */ 333 #if !defined(__KERNEL__) 334 ni = 0; 335 #elif defined(DEBUG) 336 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog; 337 #else /* usual case */ 338 ni = 1; 339 #endif 340 341 for (i = 0; i < ni; i++) { 342 int di_ok; 343 xfs_dinode_t *dip; 344 345 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 346 (i << mp->m_sb.sb_inodelog)); 347 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && 348 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); 349 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, 350 XFS_ERRTAG_ITOBP_INOTOBP, 351 XFS_RANDOM_ITOBP_INOTOBP))) { 352 if (imap_flags & XFS_IMAP_BULKSTAT) { 353 xfs_trans_brelse(tp, bp); 354 return XFS_ERROR(EINVAL); 355 } 356 #ifdef DEBUG 357 cmn_err(CE_ALERT, 358 "Device %s - bad inode magic/vsn " 359 "daddr %lld #%d (magic=%x)", 360 XFS_BUFTARG_NAME(mp->m_ddev_targp), 361 (unsigned long long)imap.im_blkno, i, 362 INT_GET(dip->di_core.di_magic, ARCH_CONVERT)); 363 #endif 364 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH, 365 mp, dip); 366 xfs_trans_brelse(tp, bp); 367 return XFS_ERROR(EFSCORRUPTED); 368 } 369 } 370 371 xfs_inobp_check(mp, bp); 372 373 /* 374 * Mark the buffer as an inode buffer now that it looks good 375 */ 376 XFS_BUF_SET_VTYPE(bp, B_FS_INO); 377 378 /* 379 * Set *dipp to point to the on-disk inode in the buffer. 380 */ 381 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 382 *bpp = bp; 383 return 0; 384 } 385 386 /* 387 * Move inode type and inode format specific information from the 388 * on-disk inode to the in-core inode. For fifos, devs, and sockets 389 * this means set if_rdev to the proper value. For files, directories, 390 * and symlinks this means to bring in the in-line data or extent 391 * pointers. For a file in B-tree format, only the root is immediately 392 * brought in-core. The rest will be in-lined in if_extents when it 393 * is first referenced (see xfs_iread_extents()). 394 */ 395 STATIC int 396 xfs_iformat( 397 xfs_inode_t *ip, 398 xfs_dinode_t *dip) 399 { 400 xfs_attr_shortform_t *atp; 401 int size; 402 int error; 403 xfs_fsize_t di_size; 404 ip->i_df.if_ext_max = 405 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 406 error = 0; 407 408 if (unlikely( 409 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) + 410 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) > 411 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) { 412 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 413 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", 414 (unsigned long long)ip->i_ino, 415 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) 416 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)), 417 (unsigned long long) 418 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT)); 419 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 420 ip->i_mount, dip); 421 return XFS_ERROR(EFSCORRUPTED); 422 } 423 424 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) { 425 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 426 "corrupt dinode %Lu, forkoff = 0x%x.", 427 (unsigned long long)ip->i_ino, 428 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT))); 429 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 430 ip->i_mount, dip); 431 return XFS_ERROR(EFSCORRUPTED); 432 } 433 434 switch (ip->i_d.di_mode & S_IFMT) { 435 case S_IFIFO: 436 case S_IFCHR: 437 case S_IFBLK: 438 case S_IFSOCK: 439 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) { 440 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 441 ip->i_mount, dip); 442 return XFS_ERROR(EFSCORRUPTED); 443 } 444 ip->i_d.di_size = 0; 445 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT); 446 break; 447 448 case S_IFREG: 449 case S_IFLNK: 450 case S_IFDIR: 451 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) { 452 case XFS_DINODE_FMT_LOCAL: 453 /* 454 * no local regular files yet 455 */ 456 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) { 457 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 458 "corrupt inode %Lu " 459 "(local format for regular file).", 460 (unsigned long long) ip->i_ino); 461 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 462 XFS_ERRLEVEL_LOW, 463 ip->i_mount, dip); 464 return XFS_ERROR(EFSCORRUPTED); 465 } 466 467 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT); 468 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 469 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 470 "corrupt inode %Lu " 471 "(bad size %Ld for local inode).", 472 (unsigned long long) ip->i_ino, 473 (long long) di_size); 474 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 475 XFS_ERRLEVEL_LOW, 476 ip->i_mount, dip); 477 return XFS_ERROR(EFSCORRUPTED); 478 } 479 480 size = (int)di_size; 481 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 482 break; 483 case XFS_DINODE_FMT_EXTENTS: 484 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 485 break; 486 case XFS_DINODE_FMT_BTREE: 487 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 488 break; 489 default: 490 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 491 ip->i_mount); 492 return XFS_ERROR(EFSCORRUPTED); 493 } 494 break; 495 496 default: 497 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 498 return XFS_ERROR(EFSCORRUPTED); 499 } 500 if (error) { 501 return error; 502 } 503 if (!XFS_DFORK_Q(dip)) 504 return 0; 505 ASSERT(ip->i_afp == NULL); 506 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); 507 ip->i_afp->if_ext_max = 508 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 509 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) { 510 case XFS_DINODE_FMT_LOCAL: 511 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 512 size = be16_to_cpu(atp->hdr.totsize); 513 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 514 break; 515 case XFS_DINODE_FMT_EXTENTS: 516 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 517 break; 518 case XFS_DINODE_FMT_BTREE: 519 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 520 break; 521 default: 522 error = XFS_ERROR(EFSCORRUPTED); 523 break; 524 } 525 if (error) { 526 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 527 ip->i_afp = NULL; 528 xfs_idestroy_fork(ip, XFS_DATA_FORK); 529 } 530 return error; 531 } 532 533 /* 534 * The file is in-lined in the on-disk inode. 535 * If it fits into if_inline_data, then copy 536 * it there, otherwise allocate a buffer for it 537 * and copy the data there. Either way, set 538 * if_data to point at the data. 539 * If we allocate a buffer for the data, make 540 * sure that its size is a multiple of 4 and 541 * record the real size in i_real_bytes. 542 */ 543 STATIC int 544 xfs_iformat_local( 545 xfs_inode_t *ip, 546 xfs_dinode_t *dip, 547 int whichfork, 548 int size) 549 { 550 xfs_ifork_t *ifp; 551 int real_size; 552 553 /* 554 * If the size is unreasonable, then something 555 * is wrong and we just bail out rather than crash in 556 * kmem_alloc() or memcpy() below. 557 */ 558 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 559 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 560 "corrupt inode %Lu " 561 "(bad size %d for local fork, size = %d).", 562 (unsigned long long) ip->i_ino, size, 563 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 564 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 565 ip->i_mount, dip); 566 return XFS_ERROR(EFSCORRUPTED); 567 } 568 ifp = XFS_IFORK_PTR(ip, whichfork); 569 real_size = 0; 570 if (size == 0) 571 ifp->if_u1.if_data = NULL; 572 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 573 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 574 else { 575 real_size = roundup(size, 4); 576 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 577 } 578 ifp->if_bytes = size; 579 ifp->if_real_bytes = real_size; 580 if (size) 581 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 582 ifp->if_flags &= ~XFS_IFEXTENTS; 583 ifp->if_flags |= XFS_IFINLINE; 584 return 0; 585 } 586 587 /* 588 * The file consists of a set of extents all 589 * of which fit into the on-disk inode. 590 * If there are few enough extents to fit into 591 * the if_inline_ext, then copy them there. 592 * Otherwise allocate a buffer for them and copy 593 * them into it. Either way, set if_extents 594 * to point at the extents. 595 */ 596 STATIC int 597 xfs_iformat_extents( 598 xfs_inode_t *ip, 599 xfs_dinode_t *dip, 600 int whichfork) 601 { 602 xfs_bmbt_rec_t *ep, *dp; 603 xfs_ifork_t *ifp; 604 int nex; 605 int size; 606 int i; 607 608 ifp = XFS_IFORK_PTR(ip, whichfork); 609 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 610 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 611 612 /* 613 * If the number of extents is unreasonable, then something 614 * is wrong and we just bail out rather than crash in 615 * kmem_alloc() or memcpy() below. 616 */ 617 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 618 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 619 "corrupt inode %Lu ((a)extents = %d).", 620 (unsigned long long) ip->i_ino, nex); 621 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 622 ip->i_mount, dip); 623 return XFS_ERROR(EFSCORRUPTED); 624 } 625 626 ifp->if_real_bytes = 0; 627 if (nex == 0) 628 ifp->if_u1.if_extents = NULL; 629 else if (nex <= XFS_INLINE_EXTS) 630 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 631 else 632 xfs_iext_add(ifp, 0, nex); 633 634 ifp->if_bytes = size; 635 if (size) { 636 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 637 xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip)); 638 for (i = 0; i < nex; i++, dp++) { 639 ep = xfs_iext_get_ext(ifp, i); 640 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0), 641 ARCH_CONVERT); 642 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1), 643 ARCH_CONVERT); 644 } 645 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex, 646 whichfork); 647 if (whichfork != XFS_DATA_FORK || 648 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 649 if (unlikely(xfs_check_nostate_extents( 650 ifp, 0, nex))) { 651 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 652 XFS_ERRLEVEL_LOW, 653 ip->i_mount); 654 return XFS_ERROR(EFSCORRUPTED); 655 } 656 } 657 ifp->if_flags |= XFS_IFEXTENTS; 658 return 0; 659 } 660 661 /* 662 * The file has too many extents to fit into 663 * the inode, so they are in B-tree format. 664 * Allocate a buffer for the root of the B-tree 665 * and copy the root into it. The i_extents 666 * field will remain NULL until all of the 667 * extents are read in (when they are needed). 668 */ 669 STATIC int 670 xfs_iformat_btree( 671 xfs_inode_t *ip, 672 xfs_dinode_t *dip, 673 int whichfork) 674 { 675 xfs_bmdr_block_t *dfp; 676 xfs_ifork_t *ifp; 677 /* REFERENCED */ 678 int nrecs; 679 int size; 680 681 ifp = XFS_IFORK_PTR(ip, whichfork); 682 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 683 size = XFS_BMAP_BROOT_SPACE(dfp); 684 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp); 685 686 /* 687 * blow out if -- fork has less extents than can fit in 688 * fork (fork shouldn't be a btree format), root btree 689 * block has more records than can fit into the fork, 690 * or the number of extents is greater than the number of 691 * blocks. 692 */ 693 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max 694 || XFS_BMDR_SPACE_CALC(nrecs) > 695 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) 696 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 697 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 698 "corrupt inode %Lu (btree).", 699 (unsigned long long) ip->i_ino); 700 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 701 ip->i_mount); 702 return XFS_ERROR(EFSCORRUPTED); 703 } 704 705 ifp->if_broot_bytes = size; 706 ifp->if_broot = kmem_alloc(size, KM_SLEEP); 707 ASSERT(ifp->if_broot != NULL); 708 /* 709 * Copy and convert from the on-disk structure 710 * to the in-memory structure. 711 */ 712 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 713 ifp->if_broot, size); 714 ifp->if_flags &= ~XFS_IFEXTENTS; 715 ifp->if_flags |= XFS_IFBROOT; 716 717 return 0; 718 } 719 720 /* 721 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk 722 * and native format 723 * 724 * buf = on-disk representation 725 * dip = native representation 726 * dir = direction - +ve -> disk to native 727 * -ve -> native to disk 728 */ 729 void 730 xfs_xlate_dinode_core( 731 xfs_caddr_t buf, 732 xfs_dinode_core_t *dip, 733 int dir) 734 { 735 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf; 736 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip; 737 xfs_arch_t arch = ARCH_CONVERT; 738 739 ASSERT(dir); 740 741 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch); 742 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch); 743 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch); 744 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch); 745 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch); 746 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch); 747 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch); 748 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch); 749 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch); 750 751 if (dir > 0) { 752 memcpy(mem_core->di_pad, buf_core->di_pad, 753 sizeof(buf_core->di_pad)); 754 } else { 755 memcpy(buf_core->di_pad, mem_core->di_pad, 756 sizeof(buf_core->di_pad)); 757 } 758 759 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch); 760 761 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec, 762 dir, arch); 763 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec, 764 dir, arch); 765 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec, 766 dir, arch); 767 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec, 768 dir, arch); 769 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec, 770 dir, arch); 771 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec, 772 dir, arch); 773 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch); 774 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch); 775 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch); 776 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch); 777 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch); 778 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch); 779 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch); 780 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch); 781 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch); 782 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch); 783 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch); 784 } 785 786 STATIC uint 787 _xfs_dic2xflags( 788 __uint16_t di_flags) 789 { 790 uint flags = 0; 791 792 if (di_flags & XFS_DIFLAG_ANY) { 793 if (di_flags & XFS_DIFLAG_REALTIME) 794 flags |= XFS_XFLAG_REALTIME; 795 if (di_flags & XFS_DIFLAG_PREALLOC) 796 flags |= XFS_XFLAG_PREALLOC; 797 if (di_flags & XFS_DIFLAG_IMMUTABLE) 798 flags |= XFS_XFLAG_IMMUTABLE; 799 if (di_flags & XFS_DIFLAG_APPEND) 800 flags |= XFS_XFLAG_APPEND; 801 if (di_flags & XFS_DIFLAG_SYNC) 802 flags |= XFS_XFLAG_SYNC; 803 if (di_flags & XFS_DIFLAG_NOATIME) 804 flags |= XFS_XFLAG_NOATIME; 805 if (di_flags & XFS_DIFLAG_NODUMP) 806 flags |= XFS_XFLAG_NODUMP; 807 if (di_flags & XFS_DIFLAG_RTINHERIT) 808 flags |= XFS_XFLAG_RTINHERIT; 809 if (di_flags & XFS_DIFLAG_PROJINHERIT) 810 flags |= XFS_XFLAG_PROJINHERIT; 811 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 812 flags |= XFS_XFLAG_NOSYMLINKS; 813 if (di_flags & XFS_DIFLAG_EXTSIZE) 814 flags |= XFS_XFLAG_EXTSIZE; 815 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 816 flags |= XFS_XFLAG_EXTSZINHERIT; 817 if (di_flags & XFS_DIFLAG_NODEFRAG) 818 flags |= XFS_XFLAG_NODEFRAG; 819 } 820 821 return flags; 822 } 823 824 uint 825 xfs_ip2xflags( 826 xfs_inode_t *ip) 827 { 828 xfs_dinode_core_t *dic = &ip->i_d; 829 830 return _xfs_dic2xflags(dic->di_flags) | 831 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0); 832 } 833 834 uint 835 xfs_dic2xflags( 836 xfs_dinode_core_t *dic) 837 { 838 return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) | 839 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0); 840 } 841 842 /* 843 * Given a mount structure and an inode number, return a pointer 844 * to a newly allocated in-core inode corresponding to the given 845 * inode number. 846 * 847 * Initialize the inode's attributes and extent pointers if it 848 * already has them (it will not if the inode has no links). 849 */ 850 int 851 xfs_iread( 852 xfs_mount_t *mp, 853 xfs_trans_t *tp, 854 xfs_ino_t ino, 855 xfs_inode_t **ipp, 856 xfs_daddr_t bno, 857 uint imap_flags) 858 { 859 xfs_buf_t *bp; 860 xfs_dinode_t *dip; 861 xfs_inode_t *ip; 862 int error; 863 864 ASSERT(xfs_inode_zone != NULL); 865 866 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP); 867 ip->i_ino = ino; 868 ip->i_mount = mp; 869 spin_lock_init(&ip->i_flags_lock); 870 871 /* 872 * Get pointer's to the on-disk inode and the buffer containing it. 873 * If the inode number refers to a block outside the file system 874 * then xfs_itobp() will return NULL. In this case we should 875 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will 876 * know that this is a new incore inode. 877 */ 878 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags); 879 if (error) { 880 kmem_zone_free(xfs_inode_zone, ip); 881 return error; 882 } 883 884 /* 885 * Initialize inode's trace buffers. 886 * Do this before xfs_iformat in case it adds entries. 887 */ 888 #ifdef XFS_BMAP_TRACE 889 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP); 890 #endif 891 #ifdef XFS_BMBT_TRACE 892 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP); 893 #endif 894 #ifdef XFS_RW_TRACE 895 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP); 896 #endif 897 #ifdef XFS_ILOCK_TRACE 898 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP); 899 #endif 900 #ifdef XFS_DIR2_TRACE 901 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP); 902 #endif 903 904 /* 905 * If we got something that isn't an inode it means someone 906 * (nfs or dmi) has a stale handle. 907 */ 908 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) { 909 kmem_zone_free(xfs_inode_zone, ip); 910 xfs_trans_brelse(tp, bp); 911 #ifdef DEBUG 912 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 913 "dip->di_core.di_magic (0x%x) != " 914 "XFS_DINODE_MAGIC (0x%x)", 915 INT_GET(dip->di_core.di_magic, ARCH_CONVERT), 916 XFS_DINODE_MAGIC); 917 #endif /* DEBUG */ 918 return XFS_ERROR(EINVAL); 919 } 920 921 /* 922 * If the on-disk inode is already linked to a directory 923 * entry, copy all of the inode into the in-core inode. 924 * xfs_iformat() handles copying in the inode format 925 * specific information. 926 * Otherwise, just get the truly permanent information. 927 */ 928 if (dip->di_core.di_mode) { 929 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, 930 &(ip->i_d), 1); 931 error = xfs_iformat(ip, dip); 932 if (error) { 933 kmem_zone_free(xfs_inode_zone, ip); 934 xfs_trans_brelse(tp, bp); 935 #ifdef DEBUG 936 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 937 "xfs_iformat() returned error %d", 938 error); 939 #endif /* DEBUG */ 940 return error; 941 } 942 } else { 943 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT); 944 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT); 945 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT); 946 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT); 947 /* 948 * Make sure to pull in the mode here as well in 949 * case the inode is released without being used. 950 * This ensures that xfs_inactive() will see that 951 * the inode is already free and not try to mess 952 * with the uninitialized part of it. 953 */ 954 ip->i_d.di_mode = 0; 955 /* 956 * Initialize the per-fork minima and maxima for a new 957 * inode here. xfs_iformat will do it for old inodes. 958 */ 959 ip->i_df.if_ext_max = 960 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 961 } 962 963 INIT_LIST_HEAD(&ip->i_reclaim); 964 965 /* 966 * The inode format changed when we moved the link count and 967 * made it 32 bits long. If this is an old format inode, 968 * convert it in memory to look like a new one. If it gets 969 * flushed to disk we will convert back before flushing or 970 * logging it. We zero out the new projid field and the old link 971 * count field. We'll handle clearing the pad field (the remains 972 * of the old uuid field) when we actually convert the inode to 973 * the new format. We don't change the version number so that we 974 * can distinguish this from a real new format inode. 975 */ 976 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 977 ip->i_d.di_nlink = ip->i_d.di_onlink; 978 ip->i_d.di_onlink = 0; 979 ip->i_d.di_projid = 0; 980 } 981 982 ip->i_delayed_blks = 0; 983 984 /* 985 * Mark the buffer containing the inode as something to keep 986 * around for a while. This helps to keep recently accessed 987 * meta-data in-core longer. 988 */ 989 XFS_BUF_SET_REF(bp, XFS_INO_REF); 990 991 /* 992 * Use xfs_trans_brelse() to release the buffer containing the 993 * on-disk inode, because it was acquired with xfs_trans_read_buf() 994 * in xfs_itobp() above. If tp is NULL, this is just a normal 995 * brelse(). If we're within a transaction, then xfs_trans_brelse() 996 * will only release the buffer if it is not dirty within the 997 * transaction. It will be OK to release the buffer in this case, 998 * because inodes on disk are never destroyed and we will be 999 * locking the new in-core inode before putting it in the hash 1000 * table where other processes can find it. Thus we don't have 1001 * to worry about the inode being changed just because we released 1002 * the buffer. 1003 */ 1004 xfs_trans_brelse(tp, bp); 1005 *ipp = ip; 1006 return 0; 1007 } 1008 1009 /* 1010 * Read in extents from a btree-format inode. 1011 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 1012 */ 1013 int 1014 xfs_iread_extents( 1015 xfs_trans_t *tp, 1016 xfs_inode_t *ip, 1017 int whichfork) 1018 { 1019 int error; 1020 xfs_ifork_t *ifp; 1021 xfs_extnum_t nextents; 1022 size_t size; 1023 1024 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 1025 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 1026 ip->i_mount); 1027 return XFS_ERROR(EFSCORRUPTED); 1028 } 1029 nextents = XFS_IFORK_NEXTENTS(ip, whichfork); 1030 size = nextents * sizeof(xfs_bmbt_rec_t); 1031 ifp = XFS_IFORK_PTR(ip, whichfork); 1032 1033 /* 1034 * We know that the size is valid (it's checked in iformat_btree) 1035 */ 1036 ifp->if_lastex = NULLEXTNUM; 1037 ifp->if_bytes = ifp->if_real_bytes = 0; 1038 ifp->if_flags |= XFS_IFEXTENTS; 1039 xfs_iext_add(ifp, 0, nextents); 1040 error = xfs_bmap_read_extents(tp, ip, whichfork); 1041 if (error) { 1042 xfs_iext_destroy(ifp); 1043 ifp->if_flags &= ~XFS_IFEXTENTS; 1044 return error; 1045 } 1046 xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip)); 1047 return 0; 1048 } 1049 1050 /* 1051 * Allocate an inode on disk and return a copy of its in-core version. 1052 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 1053 * appropriately within the inode. The uid and gid for the inode are 1054 * set according to the contents of the given cred structure. 1055 * 1056 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 1057 * has a free inode available, call xfs_iget() 1058 * to obtain the in-core version of the allocated inode. Finally, 1059 * fill in the inode and log its initial contents. In this case, 1060 * ialloc_context would be set to NULL and call_again set to false. 1061 * 1062 * If xfs_dialloc() does not have an available inode, 1063 * it will replenish its supply by doing an allocation. Since we can 1064 * only do one allocation within a transaction without deadlocks, we 1065 * must commit the current transaction before returning the inode itself. 1066 * In this case, therefore, we will set call_again to true and return. 1067 * The caller should then commit the current transaction, start a new 1068 * transaction, and call xfs_ialloc() again to actually get the inode. 1069 * 1070 * To ensure that some other process does not grab the inode that 1071 * was allocated during the first call to xfs_ialloc(), this routine 1072 * also returns the [locked] bp pointing to the head of the freelist 1073 * as ialloc_context. The caller should hold this buffer across 1074 * the commit and pass it back into this routine on the second call. 1075 */ 1076 int 1077 xfs_ialloc( 1078 xfs_trans_t *tp, 1079 xfs_inode_t *pip, 1080 mode_t mode, 1081 xfs_nlink_t nlink, 1082 xfs_dev_t rdev, 1083 cred_t *cr, 1084 xfs_prid_t prid, 1085 int okalloc, 1086 xfs_buf_t **ialloc_context, 1087 boolean_t *call_again, 1088 xfs_inode_t **ipp) 1089 { 1090 xfs_ino_t ino; 1091 xfs_inode_t *ip; 1092 bhv_vnode_t *vp; 1093 uint flags; 1094 int error; 1095 1096 /* 1097 * Call the space management code to pick 1098 * the on-disk inode to be allocated. 1099 */ 1100 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc, 1101 ialloc_context, call_again, &ino); 1102 if (error != 0) { 1103 return error; 1104 } 1105 if (*call_again || ino == NULLFSINO) { 1106 *ipp = NULL; 1107 return 0; 1108 } 1109 ASSERT(*ialloc_context == NULL); 1110 1111 /* 1112 * Get the in-core inode with the lock held exclusively. 1113 * This is because we're setting fields here we need 1114 * to prevent others from looking at until we're done. 1115 */ 1116 error = xfs_trans_iget(tp->t_mountp, tp, ino, 1117 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 1118 if (error != 0) { 1119 return error; 1120 } 1121 ASSERT(ip != NULL); 1122 1123 vp = XFS_ITOV(ip); 1124 ip->i_d.di_mode = (__uint16_t)mode; 1125 ip->i_d.di_onlink = 0; 1126 ip->i_d.di_nlink = nlink; 1127 ASSERT(ip->i_d.di_nlink == nlink); 1128 ip->i_d.di_uid = current_fsuid(cr); 1129 ip->i_d.di_gid = current_fsgid(cr); 1130 ip->i_d.di_projid = prid; 1131 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1132 1133 /* 1134 * If the superblock version is up to where we support new format 1135 * inodes and this is currently an old format inode, then change 1136 * the inode version number now. This way we only do the conversion 1137 * here rather than here and in the flush/logging code. 1138 */ 1139 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) && 1140 ip->i_d.di_version == XFS_DINODE_VERSION_1) { 1141 ip->i_d.di_version = XFS_DINODE_VERSION_2; 1142 /* 1143 * We've already zeroed the old link count, the projid field, 1144 * and the pad field. 1145 */ 1146 } 1147 1148 /* 1149 * Project ids won't be stored on disk if we are using a version 1 inode. 1150 */ 1151 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1)) 1152 xfs_bump_ino_vers2(tp, ip); 1153 1154 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) { 1155 ip->i_d.di_gid = pip->i_d.di_gid; 1156 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { 1157 ip->i_d.di_mode |= S_ISGID; 1158 } 1159 } 1160 1161 /* 1162 * If the group ID of the new file does not match the effective group 1163 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1164 * (and only if the irix_sgid_inherit compatibility variable is set). 1165 */ 1166 if ((irix_sgid_inherit) && 1167 (ip->i_d.di_mode & S_ISGID) && 1168 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1169 ip->i_d.di_mode &= ~S_ISGID; 1170 } 1171 1172 ip->i_d.di_size = 0; 1173 ip->i_d.di_nextents = 0; 1174 ASSERT(ip->i_d.di_nblocks == 0); 1175 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD); 1176 /* 1177 * di_gen will have been taken care of in xfs_iread. 1178 */ 1179 ip->i_d.di_extsize = 0; 1180 ip->i_d.di_dmevmask = 0; 1181 ip->i_d.di_dmstate = 0; 1182 ip->i_d.di_flags = 0; 1183 flags = XFS_ILOG_CORE; 1184 switch (mode & S_IFMT) { 1185 case S_IFIFO: 1186 case S_IFCHR: 1187 case S_IFBLK: 1188 case S_IFSOCK: 1189 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1190 ip->i_df.if_u2.if_rdev = rdev; 1191 ip->i_df.if_flags = 0; 1192 flags |= XFS_ILOG_DEV; 1193 break; 1194 case S_IFREG: 1195 case S_IFDIR: 1196 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1197 uint di_flags = 0; 1198 1199 if ((mode & S_IFMT) == S_IFDIR) { 1200 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1201 di_flags |= XFS_DIFLAG_RTINHERIT; 1202 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1203 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 1204 ip->i_d.di_extsize = pip->i_d.di_extsize; 1205 } 1206 } else if ((mode & S_IFMT) == S_IFREG) { 1207 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) { 1208 di_flags |= XFS_DIFLAG_REALTIME; 1209 ip->i_iocore.io_flags |= XFS_IOCORE_RT; 1210 } 1211 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1212 di_flags |= XFS_DIFLAG_EXTSIZE; 1213 ip->i_d.di_extsize = pip->i_d.di_extsize; 1214 } 1215 } 1216 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1217 xfs_inherit_noatime) 1218 di_flags |= XFS_DIFLAG_NOATIME; 1219 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1220 xfs_inherit_nodump) 1221 di_flags |= XFS_DIFLAG_NODUMP; 1222 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1223 xfs_inherit_sync) 1224 di_flags |= XFS_DIFLAG_SYNC; 1225 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1226 xfs_inherit_nosymlinks) 1227 di_flags |= XFS_DIFLAG_NOSYMLINKS; 1228 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1229 di_flags |= XFS_DIFLAG_PROJINHERIT; 1230 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 1231 xfs_inherit_nodefrag) 1232 di_flags |= XFS_DIFLAG_NODEFRAG; 1233 ip->i_d.di_flags |= di_flags; 1234 } 1235 /* FALLTHROUGH */ 1236 case S_IFLNK: 1237 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1238 ip->i_df.if_flags = XFS_IFEXTENTS; 1239 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1240 ip->i_df.if_u1.if_extents = NULL; 1241 break; 1242 default: 1243 ASSERT(0); 1244 } 1245 /* 1246 * Attribute fork settings for new inode. 1247 */ 1248 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1249 ip->i_d.di_anextents = 0; 1250 1251 /* 1252 * Log the new values stuffed into the inode. 1253 */ 1254 xfs_trans_log_inode(tp, ip, flags); 1255 1256 /* now that we have an i_mode we can setup inode ops and unlock */ 1257 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1); 1258 1259 *ipp = ip; 1260 return 0; 1261 } 1262 1263 /* 1264 * Check to make sure that there are no blocks allocated to the 1265 * file beyond the size of the file. We don't check this for 1266 * files with fixed size extents or real time extents, but we 1267 * at least do it for regular files. 1268 */ 1269 #ifdef DEBUG 1270 void 1271 xfs_isize_check( 1272 xfs_mount_t *mp, 1273 xfs_inode_t *ip, 1274 xfs_fsize_t isize) 1275 { 1276 xfs_fileoff_t map_first; 1277 int nimaps; 1278 xfs_bmbt_irec_t imaps[2]; 1279 1280 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) 1281 return; 1282 1283 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE)) 1284 return; 1285 1286 nimaps = 2; 1287 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 1288 /* 1289 * The filesystem could be shutting down, so bmapi may return 1290 * an error. 1291 */ 1292 if (xfs_bmapi(NULL, ip, map_first, 1293 (XFS_B_TO_FSB(mp, 1294 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - 1295 map_first), 1296 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, 1297 NULL, NULL)) 1298 return; 1299 ASSERT(nimaps == 1); 1300 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); 1301 } 1302 #endif /* DEBUG */ 1303 1304 /* 1305 * Calculate the last possible buffered byte in a file. This must 1306 * include data that was buffered beyond the EOF by the write code. 1307 * This also needs to deal with overflowing the xfs_fsize_t type 1308 * which can happen for sizes near the limit. 1309 * 1310 * We also need to take into account any blocks beyond the EOF. It 1311 * may be the case that they were buffered by a write which failed. 1312 * In that case the pages will still be in memory, but the inode size 1313 * will never have been updated. 1314 */ 1315 xfs_fsize_t 1316 xfs_file_last_byte( 1317 xfs_inode_t *ip) 1318 { 1319 xfs_mount_t *mp; 1320 xfs_fsize_t last_byte; 1321 xfs_fileoff_t last_block; 1322 xfs_fileoff_t size_last_block; 1323 int error; 1324 1325 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS)); 1326 1327 mp = ip->i_mount; 1328 /* 1329 * Only check for blocks beyond the EOF if the extents have 1330 * been read in. This eliminates the need for the inode lock, 1331 * and it also saves us from looking when it really isn't 1332 * necessary. 1333 */ 1334 if (ip->i_df.if_flags & XFS_IFEXTENTS) { 1335 error = xfs_bmap_last_offset(NULL, ip, &last_block, 1336 XFS_DATA_FORK); 1337 if (error) { 1338 last_block = 0; 1339 } 1340 } else { 1341 last_block = 0; 1342 } 1343 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size); 1344 last_block = XFS_FILEOFF_MAX(last_block, size_last_block); 1345 1346 last_byte = XFS_FSB_TO_B(mp, last_block); 1347 if (last_byte < 0) { 1348 return XFS_MAXIOFFSET(mp); 1349 } 1350 last_byte += (1 << mp->m_writeio_log); 1351 if (last_byte < 0) { 1352 return XFS_MAXIOFFSET(mp); 1353 } 1354 return last_byte; 1355 } 1356 1357 #if defined(XFS_RW_TRACE) 1358 STATIC void 1359 xfs_itrunc_trace( 1360 int tag, 1361 xfs_inode_t *ip, 1362 int flag, 1363 xfs_fsize_t new_size, 1364 xfs_off_t toss_start, 1365 xfs_off_t toss_finish) 1366 { 1367 if (ip->i_rwtrace == NULL) { 1368 return; 1369 } 1370 1371 ktrace_enter(ip->i_rwtrace, 1372 (void*)((long)tag), 1373 (void*)ip, 1374 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), 1375 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), 1376 (void*)((long)flag), 1377 (void*)(unsigned long)((new_size >> 32) & 0xffffffff), 1378 (void*)(unsigned long)(new_size & 0xffffffff), 1379 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), 1380 (void*)(unsigned long)(toss_start & 0xffffffff), 1381 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), 1382 (void*)(unsigned long)(toss_finish & 0xffffffff), 1383 (void*)(unsigned long)current_cpu(), 1384 (void*)(unsigned long)current_pid(), 1385 (void*)NULL, 1386 (void*)NULL, 1387 (void*)NULL); 1388 } 1389 #else 1390 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) 1391 #endif 1392 1393 /* 1394 * Start the truncation of the file to new_size. The new size 1395 * must be smaller than the current size. This routine will 1396 * clear the buffer and page caches of file data in the removed 1397 * range, and xfs_itruncate_finish() will remove the underlying 1398 * disk blocks. 1399 * 1400 * The inode must have its I/O lock locked EXCLUSIVELY, and it 1401 * must NOT have the inode lock held at all. This is because we're 1402 * calling into the buffer/page cache code and we can't hold the 1403 * inode lock when we do so. 1404 * 1405 * We need to wait for any direct I/Os in flight to complete before we 1406 * proceed with the truncate. This is needed to prevent the extents 1407 * being read or written by the direct I/Os from being removed while the 1408 * I/O is in flight as there is no other method of synchronising 1409 * direct I/O with the truncate operation. Also, because we hold 1410 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being 1411 * started until the truncate completes and drops the lock. Essentially, 1412 * the vn_iowait() call forms an I/O barrier that provides strict ordering 1413 * between direct I/Os and the truncate operation. 1414 * 1415 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE 1416 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used 1417 * in the case that the caller is locking things out of order and 1418 * may not be able to call xfs_itruncate_finish() with the inode lock 1419 * held without dropping the I/O lock. If the caller must drop the 1420 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() 1421 * must be called again with all the same restrictions as the initial 1422 * call. 1423 */ 1424 void 1425 xfs_itruncate_start( 1426 xfs_inode_t *ip, 1427 uint flags, 1428 xfs_fsize_t new_size) 1429 { 1430 xfs_fsize_t last_byte; 1431 xfs_off_t toss_start; 1432 xfs_mount_t *mp; 1433 bhv_vnode_t *vp; 1434 1435 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); 1436 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); 1437 ASSERT((flags == XFS_ITRUNC_DEFINITE) || 1438 (flags == XFS_ITRUNC_MAYBE)); 1439 1440 mp = ip->i_mount; 1441 vp = XFS_ITOV(ip); 1442 1443 vn_iowait(vp); /* wait for the completion of any pending DIOs */ 1444 1445 /* 1446 * Call toss_pages or flushinval_pages to get rid of pages 1447 * overlapping the region being removed. We have to use 1448 * the less efficient flushinval_pages in the case that the 1449 * caller may not be able to finish the truncate without 1450 * dropping the inode's I/O lock. Make sure 1451 * to catch any pages brought in by buffers overlapping 1452 * the EOF by searching out beyond the isize by our 1453 * block size. We round new_size up to a block boundary 1454 * so that we don't toss things on the same block as 1455 * new_size but before it. 1456 * 1457 * Before calling toss_page or flushinval_pages, make sure to 1458 * call remapf() over the same region if the file is mapped. 1459 * This frees up mapped file references to the pages in the 1460 * given range and for the flushinval_pages case it ensures 1461 * that we get the latest mapped changes flushed out. 1462 */ 1463 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1464 toss_start = XFS_FSB_TO_B(mp, toss_start); 1465 if (toss_start < 0) { 1466 /* 1467 * The place to start tossing is beyond our maximum 1468 * file size, so there is no way that the data extended 1469 * out there. 1470 */ 1471 return; 1472 } 1473 last_byte = xfs_file_last_byte(ip); 1474 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, 1475 last_byte); 1476 if (last_byte > toss_start) { 1477 if (flags & XFS_ITRUNC_DEFINITE) { 1478 bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED); 1479 } else { 1480 bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED); 1481 } 1482 } 1483 1484 #ifdef DEBUG 1485 if (new_size == 0) { 1486 ASSERT(VN_CACHED(vp) == 0); 1487 } 1488 #endif 1489 } 1490 1491 /* 1492 * Shrink the file to the given new_size. The new 1493 * size must be smaller than the current size. 1494 * This will free up the underlying blocks 1495 * in the removed range after a call to xfs_itruncate_start() 1496 * or xfs_atruncate_start(). 1497 * 1498 * The transaction passed to this routine must have made 1499 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES. 1500 * This routine may commit the given transaction and 1501 * start new ones, so make sure everything involved in 1502 * the transaction is tidy before calling here. 1503 * Some transaction will be returned to the caller to be 1504 * committed. The incoming transaction must already include 1505 * the inode, and both inode locks must be held exclusively. 1506 * The inode must also be "held" within the transaction. On 1507 * return the inode will be "held" within the returned transaction. 1508 * This routine does NOT require any disk space to be reserved 1509 * for it within the transaction. 1510 * 1511 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, 1512 * and it indicates the fork which is to be truncated. For the 1513 * attribute fork we only support truncation to size 0. 1514 * 1515 * We use the sync parameter to indicate whether or not the first 1516 * transaction we perform might have to be synchronous. For the attr fork, 1517 * it needs to be so if the unlink of the inode is not yet known to be 1518 * permanent in the log. This keeps us from freeing and reusing the 1519 * blocks of the attribute fork before the unlink of the inode becomes 1520 * permanent. 1521 * 1522 * For the data fork, we normally have to run synchronously if we're 1523 * being called out of the inactive path or we're being called 1524 * out of the create path where we're truncating an existing file. 1525 * Either way, the truncate needs to be sync so blocks don't reappear 1526 * in the file with altered data in case of a crash. wsync filesystems 1527 * can run the first case async because anything that shrinks the inode 1528 * has to run sync so by the time we're called here from inactive, the 1529 * inode size is permanently set to 0. 1530 * 1531 * Calls from the truncate path always need to be sync unless we're 1532 * in a wsync filesystem and the file has already been unlinked. 1533 * 1534 * The caller is responsible for correctly setting the sync parameter. 1535 * It gets too hard for us to guess here which path we're being called 1536 * out of just based on inode state. 1537 */ 1538 int 1539 xfs_itruncate_finish( 1540 xfs_trans_t **tp, 1541 xfs_inode_t *ip, 1542 xfs_fsize_t new_size, 1543 int fork, 1544 int sync) 1545 { 1546 xfs_fsblock_t first_block; 1547 xfs_fileoff_t first_unmap_block; 1548 xfs_fileoff_t last_block; 1549 xfs_filblks_t unmap_len=0; 1550 xfs_mount_t *mp; 1551 xfs_trans_t *ntp; 1552 int done; 1553 int committed; 1554 xfs_bmap_free_t free_list; 1555 int error; 1556 1557 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); 1558 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0); 1559 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); 1560 ASSERT(*tp != NULL); 1561 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 1562 ASSERT(ip->i_transp == *tp); 1563 ASSERT(ip->i_itemp != NULL); 1564 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); 1565 1566 1567 ntp = *tp; 1568 mp = (ntp)->t_mountp; 1569 ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); 1570 1571 /* 1572 * We only support truncating the entire attribute fork. 1573 */ 1574 if (fork == XFS_ATTR_FORK) { 1575 new_size = 0LL; 1576 } 1577 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1578 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); 1579 /* 1580 * The first thing we do is set the size to new_size permanently 1581 * on disk. This way we don't have to worry about anyone ever 1582 * being able to look at the data being freed even in the face 1583 * of a crash. What we're getting around here is the case where 1584 * we free a block, it is allocated to another file, it is written 1585 * to, and then we crash. If the new data gets written to the 1586 * file but the log buffers containing the free and reallocation 1587 * don't, then we'd end up with garbage in the blocks being freed. 1588 * As long as we make the new_size permanent before actually 1589 * freeing any blocks it doesn't matter if they get writtten to. 1590 * 1591 * The callers must signal into us whether or not the size 1592 * setting here must be synchronous. There are a few cases 1593 * where it doesn't have to be synchronous. Those cases 1594 * occur if the file is unlinked and we know the unlink is 1595 * permanent or if the blocks being truncated are guaranteed 1596 * to be beyond the inode eof (regardless of the link count) 1597 * and the eof value is permanent. Both of these cases occur 1598 * only on wsync-mounted filesystems. In those cases, we're 1599 * guaranteed that no user will ever see the data in the blocks 1600 * that are being truncated so the truncate can run async. 1601 * In the free beyond eof case, the file may wind up with 1602 * more blocks allocated to it than it needs if we crash 1603 * and that won't get fixed until the next time the file 1604 * is re-opened and closed but that's ok as that shouldn't 1605 * be too many blocks. 1606 * 1607 * However, we can't just make all wsync xactions run async 1608 * because there's one call out of the create path that needs 1609 * to run sync where it's truncating an existing file to size 1610 * 0 whose size is > 0. 1611 * 1612 * It's probably possible to come up with a test in this 1613 * routine that would correctly distinguish all the above 1614 * cases from the values of the function parameters and the 1615 * inode state but for sanity's sake, I've decided to let the 1616 * layers above just tell us. It's simpler to correctly figure 1617 * out in the layer above exactly under what conditions we 1618 * can run async and I think it's easier for others read and 1619 * follow the logic in case something has to be changed. 1620 * cscope is your friend -- rcc. 1621 * 1622 * The attribute fork is much simpler. 1623 * 1624 * For the attribute fork we allow the caller to tell us whether 1625 * the unlink of the inode that led to this call is yet permanent 1626 * in the on disk log. If it is not and we will be freeing extents 1627 * in this inode then we make the first transaction synchronous 1628 * to make sure that the unlink is permanent by the time we free 1629 * the blocks. 1630 */ 1631 if (fork == XFS_DATA_FORK) { 1632 if (ip->i_d.di_nextents > 0) { 1633 ip->i_d.di_size = new_size; 1634 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1635 } 1636 } else if (sync) { 1637 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); 1638 if (ip->i_d.di_anextents > 0) 1639 xfs_trans_set_sync(ntp); 1640 } 1641 ASSERT(fork == XFS_DATA_FORK || 1642 (fork == XFS_ATTR_FORK && 1643 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || 1644 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); 1645 1646 /* 1647 * Since it is possible for space to become allocated beyond 1648 * the end of the file (in a crash where the space is allocated 1649 * but the inode size is not yet updated), simply remove any 1650 * blocks which show up between the new EOF and the maximum 1651 * possible file size. If the first block to be removed is 1652 * beyond the maximum file size (ie it is the same as last_block), 1653 * then there is nothing to do. 1654 */ 1655 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); 1656 ASSERT(first_unmap_block <= last_block); 1657 done = 0; 1658 if (last_block == first_unmap_block) { 1659 done = 1; 1660 } else { 1661 unmap_len = last_block - first_unmap_block + 1; 1662 } 1663 while (!done) { 1664 /* 1665 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() 1666 * will tell us whether it freed the entire range or 1667 * not. If this is a synchronous mount (wsync), 1668 * then we can tell bunmapi to keep all the 1669 * transactions asynchronous since the unlink 1670 * transaction that made this inode inactive has 1671 * already hit the disk. There's no danger of 1672 * the freed blocks being reused, there being a 1673 * crash, and the reused blocks suddenly reappearing 1674 * in this file with garbage in them once recovery 1675 * runs. 1676 */ 1677 XFS_BMAP_INIT(&free_list, &first_block); 1678 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore, 1679 first_unmap_block, unmap_len, 1680 XFS_BMAPI_AFLAG(fork) | 1681 (sync ? 0 : XFS_BMAPI_ASYNC), 1682 XFS_ITRUNC_MAX_EXTENTS, 1683 &first_block, &free_list, 1684 NULL, &done); 1685 if (error) { 1686 /* 1687 * If the bunmapi call encounters an error, 1688 * return to the caller where the transaction 1689 * can be properly aborted. We just need to 1690 * make sure we're not holding any resources 1691 * that we were not when we came in. 1692 */ 1693 xfs_bmap_cancel(&free_list); 1694 return error; 1695 } 1696 1697 /* 1698 * Duplicate the transaction that has the permanent 1699 * reservation and commit the old transaction. 1700 */ 1701 error = xfs_bmap_finish(tp, &free_list, &committed); 1702 ntp = *tp; 1703 if (error) { 1704 /* 1705 * If the bmap finish call encounters an error, 1706 * return to the caller where the transaction 1707 * can be properly aborted. We just need to 1708 * make sure we're not holding any resources 1709 * that we were not when we came in. 1710 * 1711 * Aborting from this point might lose some 1712 * blocks in the file system, but oh well. 1713 */ 1714 xfs_bmap_cancel(&free_list); 1715 if (committed) { 1716 /* 1717 * If the passed in transaction committed 1718 * in xfs_bmap_finish(), then we want to 1719 * add the inode to this one before returning. 1720 * This keeps things simple for the higher 1721 * level code, because it always knows that 1722 * the inode is locked and held in the 1723 * transaction that returns to it whether 1724 * errors occur or not. We don't mark the 1725 * inode dirty so that this transaction can 1726 * be easily aborted if possible. 1727 */ 1728 xfs_trans_ijoin(ntp, ip, 1729 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1730 xfs_trans_ihold(ntp, ip); 1731 } 1732 return error; 1733 } 1734 1735 if (committed) { 1736 /* 1737 * The first xact was committed, 1738 * so add the inode to the new one. 1739 * Mark it dirty so it will be logged 1740 * and moved forward in the log as 1741 * part of every commit. 1742 */ 1743 xfs_trans_ijoin(ntp, ip, 1744 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1745 xfs_trans_ihold(ntp, ip); 1746 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1747 } 1748 ntp = xfs_trans_dup(ntp); 1749 (void) xfs_trans_commit(*tp, 0, NULL); 1750 *tp = ntp; 1751 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 1752 XFS_TRANS_PERM_LOG_RES, 1753 XFS_ITRUNCATE_LOG_COUNT); 1754 /* 1755 * Add the inode being truncated to the next chained 1756 * transaction. 1757 */ 1758 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1759 xfs_trans_ihold(ntp, ip); 1760 if (error) 1761 return (error); 1762 } 1763 /* 1764 * Only update the size in the case of the data fork, but 1765 * always re-log the inode so that our permanent transaction 1766 * can keep on rolling it forward in the log. 1767 */ 1768 if (fork == XFS_DATA_FORK) { 1769 xfs_isize_check(mp, ip, new_size); 1770 ip->i_d.di_size = new_size; 1771 } 1772 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1773 ASSERT((new_size != 0) || 1774 (fork == XFS_ATTR_FORK) || 1775 (ip->i_delayed_blks == 0)); 1776 ASSERT((new_size != 0) || 1777 (fork == XFS_ATTR_FORK) || 1778 (ip->i_d.di_nextents == 0)); 1779 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); 1780 return 0; 1781 } 1782 1783 1784 /* 1785 * xfs_igrow_start 1786 * 1787 * Do the first part of growing a file: zero any data in the last 1788 * block that is beyond the old EOF. We need to do this before 1789 * the inode is joined to the transaction to modify the i_size. 1790 * That way we can drop the inode lock and call into the buffer 1791 * cache to get the buffer mapping the EOF. 1792 */ 1793 int 1794 xfs_igrow_start( 1795 xfs_inode_t *ip, 1796 xfs_fsize_t new_size, 1797 cred_t *credp) 1798 { 1799 int error; 1800 1801 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); 1802 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); 1803 ASSERT(new_size > ip->i_d.di_size); 1804 1805 /* 1806 * Zero any pages that may have been created by 1807 * xfs_write_file() beyond the end of the file 1808 * and any blocks between the old and new file sizes. 1809 */ 1810 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, 1811 ip->i_d.di_size); 1812 return error; 1813 } 1814 1815 /* 1816 * xfs_igrow_finish 1817 * 1818 * This routine is called to extend the size of a file. 1819 * The inode must have both the iolock and the ilock locked 1820 * for update and it must be a part of the current transaction. 1821 * The xfs_igrow_start() function must have been called previously. 1822 * If the change_flag is not zero, the inode change timestamp will 1823 * be updated. 1824 */ 1825 void 1826 xfs_igrow_finish( 1827 xfs_trans_t *tp, 1828 xfs_inode_t *ip, 1829 xfs_fsize_t new_size, 1830 int change_flag) 1831 { 1832 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); 1833 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); 1834 ASSERT(ip->i_transp == tp); 1835 ASSERT(new_size > ip->i_d.di_size); 1836 1837 /* 1838 * Update the file size. Update the inode change timestamp 1839 * if change_flag set. 1840 */ 1841 ip->i_d.di_size = new_size; 1842 if (change_flag) 1843 xfs_ichgtime(ip, XFS_ICHGTIME_CHG); 1844 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1845 1846 } 1847 1848 1849 /* 1850 * This is called when the inode's link count goes to 0. 1851 * We place the on-disk inode on a list in the AGI. It 1852 * will be pulled from this list when the inode is freed. 1853 */ 1854 int 1855 xfs_iunlink( 1856 xfs_trans_t *tp, 1857 xfs_inode_t *ip) 1858 { 1859 xfs_mount_t *mp; 1860 xfs_agi_t *agi; 1861 xfs_dinode_t *dip; 1862 xfs_buf_t *agibp; 1863 xfs_buf_t *ibp; 1864 xfs_agnumber_t agno; 1865 xfs_daddr_t agdaddr; 1866 xfs_agino_t agino; 1867 short bucket_index; 1868 int offset; 1869 int error; 1870 int agi_ok; 1871 1872 ASSERT(ip->i_d.di_nlink == 0); 1873 ASSERT(ip->i_d.di_mode != 0); 1874 ASSERT(ip->i_transp == tp); 1875 1876 mp = tp->t_mountp; 1877 1878 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1879 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 1880 1881 /* 1882 * Get the agi buffer first. It ensures lock ordering 1883 * on the list. 1884 */ 1885 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, 1886 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 1887 if (error) { 1888 return error; 1889 } 1890 /* 1891 * Validate the magic number of the agi block. 1892 */ 1893 agi = XFS_BUF_TO_AGI(agibp); 1894 agi_ok = 1895 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && 1896 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); 1897 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK, 1898 XFS_RANDOM_IUNLINK))) { 1899 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi); 1900 xfs_trans_brelse(tp, agibp); 1901 return XFS_ERROR(EFSCORRUPTED); 1902 } 1903 /* 1904 * Get the index into the agi hash table for the 1905 * list this inode will go on. 1906 */ 1907 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1908 ASSERT(agino != 0); 1909 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1910 ASSERT(agi->agi_unlinked[bucket_index]); 1911 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1912 1913 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) { 1914 /* 1915 * There is already another inode in the bucket we need 1916 * to add ourselves to. Add us at the front of the list. 1917 * Here we put the head pointer into our next pointer, 1918 * and then we fall through to point the head at us. 1919 */ 1920 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0); 1921 if (error) { 1922 return error; 1923 } 1924 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO); 1925 ASSERT(dip->di_next_unlinked); 1926 /* both on-disk, don't endian flip twice */ 1927 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1928 offset = ip->i_boffset + 1929 offsetof(xfs_dinode_t, di_next_unlinked); 1930 xfs_trans_inode_buf(tp, ibp); 1931 xfs_trans_log_buf(tp, ibp, offset, 1932 (offset + sizeof(xfs_agino_t) - 1)); 1933 xfs_inobp_check(mp, ibp); 1934 } 1935 1936 /* 1937 * Point the bucket head pointer at the inode being inserted. 1938 */ 1939 ASSERT(agino != 0); 1940 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1941 offset = offsetof(xfs_agi_t, agi_unlinked) + 1942 (sizeof(xfs_agino_t) * bucket_index); 1943 xfs_trans_log_buf(tp, agibp, offset, 1944 (offset + sizeof(xfs_agino_t) - 1)); 1945 return 0; 1946 } 1947 1948 /* 1949 * Pull the on-disk inode from the AGI unlinked list. 1950 */ 1951 STATIC int 1952 xfs_iunlink_remove( 1953 xfs_trans_t *tp, 1954 xfs_inode_t *ip) 1955 { 1956 xfs_ino_t next_ino; 1957 xfs_mount_t *mp; 1958 xfs_agi_t *agi; 1959 xfs_dinode_t *dip; 1960 xfs_buf_t *agibp; 1961 xfs_buf_t *ibp; 1962 xfs_agnumber_t agno; 1963 xfs_daddr_t agdaddr; 1964 xfs_agino_t agino; 1965 xfs_agino_t next_agino; 1966 xfs_buf_t *last_ibp; 1967 xfs_dinode_t *last_dip = NULL; 1968 short bucket_index; 1969 int offset, last_offset = 0; 1970 int error; 1971 int agi_ok; 1972 1973 /* 1974 * First pull the on-disk inode from the AGI unlinked list. 1975 */ 1976 mp = tp->t_mountp; 1977 1978 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1979 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 1980 1981 /* 1982 * Get the agi buffer first. It ensures lock ordering 1983 * on the list. 1984 */ 1985 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, 1986 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 1987 if (error) { 1988 cmn_err(CE_WARN, 1989 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.", 1990 error, mp->m_fsname); 1991 return error; 1992 } 1993 /* 1994 * Validate the magic number of the agi block. 1995 */ 1996 agi = XFS_BUF_TO_AGI(agibp); 1997 agi_ok = 1998 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && 1999 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); 2000 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE, 2001 XFS_RANDOM_IUNLINK_REMOVE))) { 2002 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW, 2003 mp, agi); 2004 xfs_trans_brelse(tp, agibp); 2005 cmn_err(CE_WARN, 2006 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.", 2007 mp->m_fsname); 2008 return XFS_ERROR(EFSCORRUPTED); 2009 } 2010 /* 2011 * Get the index into the agi hash table for the 2012 * list this inode will go on. 2013 */ 2014 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2015 ASSERT(agino != 0); 2016 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2017 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO); 2018 ASSERT(agi->agi_unlinked[bucket_index]); 2019 2020 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2021 /* 2022 * We're at the head of the list. Get the inode's 2023 * on-disk buffer to see if there is anyone after us 2024 * on the list. Only modify our next pointer if it 2025 * is not already NULLAGINO. This saves us the overhead 2026 * of dealing with the buffer when there is no need to 2027 * change it. 2028 */ 2029 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0); 2030 if (error) { 2031 cmn_err(CE_WARN, 2032 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 2033 error, mp->m_fsname); 2034 return error; 2035 } 2036 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); 2037 ASSERT(next_agino != 0); 2038 if (next_agino != NULLAGINO) { 2039 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); 2040 offset = ip->i_boffset + 2041 offsetof(xfs_dinode_t, di_next_unlinked); 2042 xfs_trans_inode_buf(tp, ibp); 2043 xfs_trans_log_buf(tp, ibp, offset, 2044 (offset + sizeof(xfs_agino_t) - 1)); 2045 xfs_inobp_check(mp, ibp); 2046 } else { 2047 xfs_trans_brelse(tp, ibp); 2048 } 2049 /* 2050 * Point the bucket head pointer at the next inode. 2051 */ 2052 ASSERT(next_agino != 0); 2053 ASSERT(next_agino != agino); 2054 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2055 offset = offsetof(xfs_agi_t, agi_unlinked) + 2056 (sizeof(xfs_agino_t) * bucket_index); 2057 xfs_trans_log_buf(tp, agibp, offset, 2058 (offset + sizeof(xfs_agino_t) - 1)); 2059 } else { 2060 /* 2061 * We need to search the list for the inode being freed. 2062 */ 2063 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2064 last_ibp = NULL; 2065 while (next_agino != agino) { 2066 /* 2067 * If the last inode wasn't the one pointing to 2068 * us, then release its buffer since we're not 2069 * going to do anything with it. 2070 */ 2071 if (last_ibp != NULL) { 2072 xfs_trans_brelse(tp, last_ibp); 2073 } 2074 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2075 error = xfs_inotobp(mp, tp, next_ino, &last_dip, 2076 &last_ibp, &last_offset); 2077 if (error) { 2078 cmn_err(CE_WARN, 2079 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", 2080 error, mp->m_fsname); 2081 return error; 2082 } 2083 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT); 2084 ASSERT(next_agino != NULLAGINO); 2085 ASSERT(next_agino != 0); 2086 } 2087 /* 2088 * Now last_ibp points to the buffer previous to us on 2089 * the unlinked list. Pull us from the list. 2090 */ 2091 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0); 2092 if (error) { 2093 cmn_err(CE_WARN, 2094 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 2095 error, mp->m_fsname); 2096 return error; 2097 } 2098 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); 2099 ASSERT(next_agino != 0); 2100 ASSERT(next_agino != agino); 2101 if (next_agino != NULLAGINO) { 2102 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); 2103 offset = ip->i_boffset + 2104 offsetof(xfs_dinode_t, di_next_unlinked); 2105 xfs_trans_inode_buf(tp, ibp); 2106 xfs_trans_log_buf(tp, ibp, offset, 2107 (offset + sizeof(xfs_agino_t) - 1)); 2108 xfs_inobp_check(mp, ibp); 2109 } else { 2110 xfs_trans_brelse(tp, ibp); 2111 } 2112 /* 2113 * Point the previous inode on the list to the next inode. 2114 */ 2115 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino); 2116 ASSERT(next_agino != 0); 2117 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2118 xfs_trans_inode_buf(tp, last_ibp); 2119 xfs_trans_log_buf(tp, last_ibp, offset, 2120 (offset + sizeof(xfs_agino_t) - 1)); 2121 xfs_inobp_check(mp, last_ibp); 2122 } 2123 return 0; 2124 } 2125 2126 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip) 2127 { 2128 return (((ip->i_itemp == NULL) || 2129 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) && 2130 (ip->i_update_core == 0)); 2131 } 2132 2133 STATIC void 2134 xfs_ifree_cluster( 2135 xfs_inode_t *free_ip, 2136 xfs_trans_t *tp, 2137 xfs_ino_t inum) 2138 { 2139 xfs_mount_t *mp = free_ip->i_mount; 2140 int blks_per_cluster; 2141 int nbufs; 2142 int ninodes; 2143 int i, j, found, pre_flushed; 2144 xfs_daddr_t blkno; 2145 xfs_buf_t *bp; 2146 xfs_ihash_t *ih; 2147 xfs_inode_t *ip, **ip_found; 2148 xfs_inode_log_item_t *iip; 2149 xfs_log_item_t *lip; 2150 SPLDECL(s); 2151 2152 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 2153 blks_per_cluster = 1; 2154 ninodes = mp->m_sb.sb_inopblock; 2155 nbufs = XFS_IALLOC_BLOCKS(mp); 2156 } else { 2157 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 2158 mp->m_sb.sb_blocksize; 2159 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 2160 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 2161 } 2162 2163 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); 2164 2165 for (j = 0; j < nbufs; j++, inum += ninodes) { 2166 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2167 XFS_INO_TO_AGBNO(mp, inum)); 2168 2169 2170 /* 2171 * Look for each inode in memory and attempt to lock it, 2172 * we can be racing with flush and tail pushing here. 2173 * any inode we get the locks on, add to an array of 2174 * inode items to process later. 2175 * 2176 * The get the buffer lock, we could beat a flush 2177 * or tail pushing thread to the lock here, in which 2178 * case they will go looking for the inode buffer 2179 * and fail, we need some other form of interlock 2180 * here. 2181 */ 2182 found = 0; 2183 for (i = 0; i < ninodes; i++) { 2184 ih = XFS_IHASH(mp, inum + i); 2185 read_lock(&ih->ih_lock); 2186 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { 2187 if (ip->i_ino == inum + i) 2188 break; 2189 } 2190 2191 /* Inode not in memory or we found it already, 2192 * nothing to do 2193 */ 2194 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) { 2195 read_unlock(&ih->ih_lock); 2196 continue; 2197 } 2198 2199 if (xfs_inode_clean(ip)) { 2200 read_unlock(&ih->ih_lock); 2201 continue; 2202 } 2203 2204 /* If we can get the locks then add it to the 2205 * list, otherwise by the time we get the bp lock 2206 * below it will already be attached to the 2207 * inode buffer. 2208 */ 2209 2210 /* This inode will already be locked - by us, lets 2211 * keep it that way. 2212 */ 2213 2214 if (ip == free_ip) { 2215 if (xfs_iflock_nowait(ip)) { 2216 xfs_iflags_set(ip, XFS_ISTALE); 2217 if (xfs_inode_clean(ip)) { 2218 xfs_ifunlock(ip); 2219 } else { 2220 ip_found[found++] = ip; 2221 } 2222 } 2223 read_unlock(&ih->ih_lock); 2224 continue; 2225 } 2226 2227 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2228 if (xfs_iflock_nowait(ip)) { 2229 xfs_iflags_set(ip, XFS_ISTALE); 2230 2231 if (xfs_inode_clean(ip)) { 2232 xfs_ifunlock(ip); 2233 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2234 } else { 2235 ip_found[found++] = ip; 2236 } 2237 } else { 2238 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2239 } 2240 } 2241 2242 read_unlock(&ih->ih_lock); 2243 } 2244 2245 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2246 mp->m_bsize * blks_per_cluster, 2247 XFS_BUF_LOCK); 2248 2249 pre_flushed = 0; 2250 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 2251 while (lip) { 2252 if (lip->li_type == XFS_LI_INODE) { 2253 iip = (xfs_inode_log_item_t *)lip; 2254 ASSERT(iip->ili_logged == 1); 2255 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; 2256 AIL_LOCK(mp,s); 2257 iip->ili_flush_lsn = iip->ili_item.li_lsn; 2258 AIL_UNLOCK(mp, s); 2259 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2260 pre_flushed++; 2261 } 2262 lip = lip->li_bio_list; 2263 } 2264 2265 for (i = 0; i < found; i++) { 2266 ip = ip_found[i]; 2267 iip = ip->i_itemp; 2268 2269 if (!iip) { 2270 ip->i_update_core = 0; 2271 xfs_ifunlock(ip); 2272 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2273 continue; 2274 } 2275 2276 iip->ili_last_fields = iip->ili_format.ilf_fields; 2277 iip->ili_format.ilf_fields = 0; 2278 iip->ili_logged = 1; 2279 AIL_LOCK(mp,s); 2280 iip->ili_flush_lsn = iip->ili_item.li_lsn; 2281 AIL_UNLOCK(mp, s); 2282 2283 xfs_buf_attach_iodone(bp, 2284 (void(*)(xfs_buf_t*,xfs_log_item_t*)) 2285 xfs_istale_done, (xfs_log_item_t *)iip); 2286 if (ip != free_ip) { 2287 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2288 } 2289 } 2290 2291 if (found || pre_flushed) 2292 xfs_trans_stale_inode_buf(tp, bp); 2293 xfs_trans_binval(tp, bp); 2294 } 2295 2296 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *)); 2297 } 2298 2299 /* 2300 * This is called to return an inode to the inode free list. 2301 * The inode should already be truncated to 0 length and have 2302 * no pages associated with it. This routine also assumes that 2303 * the inode is already a part of the transaction. 2304 * 2305 * The on-disk copy of the inode will have been added to the list 2306 * of unlinked inodes in the AGI. We need to remove the inode from 2307 * that list atomically with respect to freeing it here. 2308 */ 2309 int 2310 xfs_ifree( 2311 xfs_trans_t *tp, 2312 xfs_inode_t *ip, 2313 xfs_bmap_free_t *flist) 2314 { 2315 int error; 2316 int delete; 2317 xfs_ino_t first_ino; 2318 2319 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); 2320 ASSERT(ip->i_transp == tp); 2321 ASSERT(ip->i_d.di_nlink == 0); 2322 ASSERT(ip->i_d.di_nextents == 0); 2323 ASSERT(ip->i_d.di_anextents == 0); 2324 ASSERT((ip->i_d.di_size == 0) || 2325 ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); 2326 ASSERT(ip->i_d.di_nblocks == 0); 2327 2328 /* 2329 * Pull the on-disk inode from the AGI unlinked list. 2330 */ 2331 error = xfs_iunlink_remove(tp, ip); 2332 if (error != 0) { 2333 return error; 2334 } 2335 2336 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2337 if (error != 0) { 2338 return error; 2339 } 2340 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2341 ip->i_d.di_flags = 0; 2342 ip->i_d.di_dmevmask = 0; 2343 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2344 ip->i_df.if_ext_max = 2345 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 2346 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2347 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2348 /* 2349 * Bump the generation count so no one will be confused 2350 * by reincarnations of this inode. 2351 */ 2352 ip->i_d.di_gen++; 2353 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2354 2355 if (delete) { 2356 xfs_ifree_cluster(ip, tp, first_ino); 2357 } 2358 2359 return 0; 2360 } 2361 2362 /* 2363 * Reallocate the space for if_broot based on the number of records 2364 * being added or deleted as indicated in rec_diff. Move the records 2365 * and pointers in if_broot to fit the new size. When shrinking this 2366 * will eliminate holes between the records and pointers created by 2367 * the caller. When growing this will create holes to be filled in 2368 * by the caller. 2369 * 2370 * The caller must not request to add more records than would fit in 2371 * the on-disk inode root. If the if_broot is currently NULL, then 2372 * if we adding records one will be allocated. The caller must also 2373 * not request that the number of records go below zero, although 2374 * it can go to zero. 2375 * 2376 * ip -- the inode whose if_broot area is changing 2377 * ext_diff -- the change in the number of records, positive or negative, 2378 * requested for the if_broot array. 2379 */ 2380 void 2381 xfs_iroot_realloc( 2382 xfs_inode_t *ip, 2383 int rec_diff, 2384 int whichfork) 2385 { 2386 int cur_max; 2387 xfs_ifork_t *ifp; 2388 xfs_bmbt_block_t *new_broot; 2389 int new_max; 2390 size_t new_size; 2391 char *np; 2392 char *op; 2393 2394 /* 2395 * Handle the degenerate case quietly. 2396 */ 2397 if (rec_diff == 0) { 2398 return; 2399 } 2400 2401 ifp = XFS_IFORK_PTR(ip, whichfork); 2402 if (rec_diff > 0) { 2403 /* 2404 * If there wasn't any memory allocated before, just 2405 * allocate it now and get out. 2406 */ 2407 if (ifp->if_broot_bytes == 0) { 2408 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); 2409 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size, 2410 KM_SLEEP); 2411 ifp->if_broot_bytes = (int)new_size; 2412 return; 2413 } 2414 2415 /* 2416 * If there is already an existing if_broot, then we need 2417 * to realloc() it and shift the pointers to their new 2418 * location. The records don't change location because 2419 * they are kept butted up against the btree block header. 2420 */ 2421 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); 2422 new_max = cur_max + rec_diff; 2423 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2424 ifp->if_broot = (xfs_bmbt_block_t *) 2425 kmem_realloc(ifp->if_broot, 2426 new_size, 2427 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ 2428 KM_SLEEP); 2429 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2430 ifp->if_broot_bytes); 2431 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2432 (int)new_size); 2433 ifp->if_broot_bytes = (int)new_size; 2434 ASSERT(ifp->if_broot_bytes <= 2435 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2436 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 2437 return; 2438 } 2439 2440 /* 2441 * rec_diff is less than 0. In this case, we are shrinking the 2442 * if_broot buffer. It must already exist. If we go to zero 2443 * records, just get rid of the root and clear the status bit. 2444 */ 2445 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 2446 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); 2447 new_max = cur_max + rec_diff; 2448 ASSERT(new_max >= 0); 2449 if (new_max > 0) 2450 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2451 else 2452 new_size = 0; 2453 if (new_size > 0) { 2454 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP); 2455 /* 2456 * First copy over the btree block header. 2457 */ 2458 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t)); 2459 } else { 2460 new_broot = NULL; 2461 ifp->if_flags &= ~XFS_IFBROOT; 2462 } 2463 2464 /* 2465 * Only copy the records and pointers if there are any. 2466 */ 2467 if (new_max > 0) { 2468 /* 2469 * First copy the records. 2470 */ 2471 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1, 2472 ifp->if_broot_bytes); 2473 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1, 2474 (int)new_size); 2475 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 2476 2477 /* 2478 * Then copy the pointers. 2479 */ 2480 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2481 ifp->if_broot_bytes); 2482 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1, 2483 (int)new_size); 2484 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 2485 } 2486 kmem_free(ifp->if_broot, ifp->if_broot_bytes); 2487 ifp->if_broot = new_broot; 2488 ifp->if_broot_bytes = (int)new_size; 2489 ASSERT(ifp->if_broot_bytes <= 2490 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2491 return; 2492 } 2493 2494 2495 /* 2496 * This is called when the amount of space needed for if_data 2497 * is increased or decreased. The change in size is indicated by 2498 * the number of bytes that need to be added or deleted in the 2499 * byte_diff parameter. 2500 * 2501 * If the amount of space needed has decreased below the size of the 2502 * inline buffer, then switch to using the inline buffer. Otherwise, 2503 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2504 * to what is needed. 2505 * 2506 * ip -- the inode whose if_data area is changing 2507 * byte_diff -- the change in the number of bytes, positive or negative, 2508 * requested for the if_data array. 2509 */ 2510 void 2511 xfs_idata_realloc( 2512 xfs_inode_t *ip, 2513 int byte_diff, 2514 int whichfork) 2515 { 2516 xfs_ifork_t *ifp; 2517 int new_size; 2518 int real_size; 2519 2520 if (byte_diff == 0) { 2521 return; 2522 } 2523 2524 ifp = XFS_IFORK_PTR(ip, whichfork); 2525 new_size = (int)ifp->if_bytes + byte_diff; 2526 ASSERT(new_size >= 0); 2527 2528 if (new_size == 0) { 2529 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2530 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2531 } 2532 ifp->if_u1.if_data = NULL; 2533 real_size = 0; 2534 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 2535 /* 2536 * If the valid extents/data can fit in if_inline_ext/data, 2537 * copy them from the malloc'd vector and free it. 2538 */ 2539 if (ifp->if_u1.if_data == NULL) { 2540 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2541 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2542 ASSERT(ifp->if_real_bytes != 0); 2543 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 2544 new_size); 2545 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2546 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2547 } 2548 real_size = 0; 2549 } else { 2550 /* 2551 * Stuck with malloc/realloc. 2552 * For inline data, the underlying buffer must be 2553 * a multiple of 4 bytes in size so that it can be 2554 * logged and stay on word boundaries. We enforce 2555 * that here. 2556 */ 2557 real_size = roundup(new_size, 4); 2558 if (ifp->if_u1.if_data == NULL) { 2559 ASSERT(ifp->if_real_bytes == 0); 2560 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2561 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2562 /* 2563 * Only do the realloc if the underlying size 2564 * is really changing. 2565 */ 2566 if (ifp->if_real_bytes != real_size) { 2567 ifp->if_u1.if_data = 2568 kmem_realloc(ifp->if_u1.if_data, 2569 real_size, 2570 ifp->if_real_bytes, 2571 KM_SLEEP); 2572 } 2573 } else { 2574 ASSERT(ifp->if_real_bytes == 0); 2575 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2576 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 2577 ifp->if_bytes); 2578 } 2579 } 2580 ifp->if_real_bytes = real_size; 2581 ifp->if_bytes = new_size; 2582 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2583 } 2584 2585 2586 2587 2588 /* 2589 * Map inode to disk block and offset. 2590 * 2591 * mp -- the mount point structure for the current file system 2592 * tp -- the current transaction 2593 * ino -- the inode number of the inode to be located 2594 * imap -- this structure is filled in with the information necessary 2595 * to retrieve the given inode from disk 2596 * flags -- flags to pass to xfs_dilocate indicating whether or not 2597 * lookups in the inode btree were OK or not 2598 */ 2599 int 2600 xfs_imap( 2601 xfs_mount_t *mp, 2602 xfs_trans_t *tp, 2603 xfs_ino_t ino, 2604 xfs_imap_t *imap, 2605 uint flags) 2606 { 2607 xfs_fsblock_t fsbno; 2608 int len; 2609 int off; 2610 int error; 2611 2612 fsbno = imap->im_blkno ? 2613 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK; 2614 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags); 2615 if (error != 0) { 2616 return error; 2617 } 2618 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno); 2619 imap->im_len = XFS_FSB_TO_BB(mp, len); 2620 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno); 2621 imap->im_ioffset = (ushort)off; 2622 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog); 2623 return 0; 2624 } 2625 2626 void 2627 xfs_idestroy_fork( 2628 xfs_inode_t *ip, 2629 int whichfork) 2630 { 2631 xfs_ifork_t *ifp; 2632 2633 ifp = XFS_IFORK_PTR(ip, whichfork); 2634 if (ifp->if_broot != NULL) { 2635 kmem_free(ifp->if_broot, ifp->if_broot_bytes); 2636 ifp->if_broot = NULL; 2637 } 2638 2639 /* 2640 * If the format is local, then we can't have an extents 2641 * array so just look for an inline data array. If we're 2642 * not local then we may or may not have an extents list, 2643 * so check and free it up if we do. 2644 */ 2645 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2646 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2647 (ifp->if_u1.if_data != NULL)) { 2648 ASSERT(ifp->if_real_bytes != 0); 2649 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2650 ifp->if_u1.if_data = NULL; 2651 ifp->if_real_bytes = 0; 2652 } 2653 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2654 ((ifp->if_flags & XFS_IFEXTIREC) || 2655 ((ifp->if_u1.if_extents != NULL) && 2656 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { 2657 ASSERT(ifp->if_real_bytes != 0); 2658 xfs_iext_destroy(ifp); 2659 } 2660 ASSERT(ifp->if_u1.if_extents == NULL || 2661 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2662 ASSERT(ifp->if_real_bytes == 0); 2663 if (whichfork == XFS_ATTR_FORK) { 2664 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2665 ip->i_afp = NULL; 2666 } 2667 } 2668 2669 /* 2670 * This is called free all the memory associated with an inode. 2671 * It must free the inode itself and any buffers allocated for 2672 * if_extents/if_data and if_broot. It must also free the lock 2673 * associated with the inode. 2674 */ 2675 void 2676 xfs_idestroy( 2677 xfs_inode_t *ip) 2678 { 2679 2680 switch (ip->i_d.di_mode & S_IFMT) { 2681 case S_IFREG: 2682 case S_IFDIR: 2683 case S_IFLNK: 2684 xfs_idestroy_fork(ip, XFS_DATA_FORK); 2685 break; 2686 } 2687 if (ip->i_afp) 2688 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 2689 mrfree(&ip->i_lock); 2690 mrfree(&ip->i_iolock); 2691 freesema(&ip->i_flock); 2692 #ifdef XFS_BMAP_TRACE 2693 ktrace_free(ip->i_xtrace); 2694 #endif 2695 #ifdef XFS_BMBT_TRACE 2696 ktrace_free(ip->i_btrace); 2697 #endif 2698 #ifdef XFS_RW_TRACE 2699 ktrace_free(ip->i_rwtrace); 2700 #endif 2701 #ifdef XFS_ILOCK_TRACE 2702 ktrace_free(ip->i_lock_trace); 2703 #endif 2704 #ifdef XFS_DIR2_TRACE 2705 ktrace_free(ip->i_dir_trace); 2706 #endif 2707 if (ip->i_itemp) { 2708 /* 2709 * Only if we are shutting down the fs will we see an 2710 * inode still in the AIL. If it is there, we should remove 2711 * it to prevent a use-after-free from occurring. 2712 */ 2713 xfs_mount_t *mp = ip->i_mount; 2714 xfs_log_item_t *lip = &ip->i_itemp->ili_item; 2715 int s; 2716 2717 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) || 2718 XFS_FORCED_SHUTDOWN(ip->i_mount)); 2719 if (lip->li_flags & XFS_LI_IN_AIL) { 2720 AIL_LOCK(mp, s); 2721 if (lip->li_flags & XFS_LI_IN_AIL) 2722 xfs_trans_delete_ail(mp, lip, s); 2723 else 2724 AIL_UNLOCK(mp, s); 2725 } 2726 xfs_inode_item_destroy(ip); 2727 } 2728 kmem_zone_free(xfs_inode_zone, ip); 2729 } 2730 2731 2732 /* 2733 * Increment the pin count of the given buffer. 2734 * This value is protected by ipinlock spinlock in the mount structure. 2735 */ 2736 void 2737 xfs_ipin( 2738 xfs_inode_t *ip) 2739 { 2740 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); 2741 2742 atomic_inc(&ip->i_pincount); 2743 } 2744 2745 /* 2746 * Decrement the pin count of the given inode, and wake up 2747 * anyone in xfs_iwait_unpin() if the count goes to 0. The 2748 * inode must have been previously pinned with a call to xfs_ipin(). 2749 */ 2750 void 2751 xfs_iunpin( 2752 xfs_inode_t *ip) 2753 { 2754 ASSERT(atomic_read(&ip->i_pincount) > 0); 2755 2756 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) { 2757 2758 /* 2759 * If the inode is currently being reclaimed, the link between 2760 * the bhv_vnode and the xfs_inode will be broken after the 2761 * XFS_IRECLAIM* flag is set. Hence, if these flags are not 2762 * set, then we can move forward and mark the linux inode dirty 2763 * knowing that it is still valid as it won't freed until after 2764 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The 2765 * i_flags_lock is used to synchronise the setting of the 2766 * XFS_IRECLAIM* flags and the breaking of the link, and so we 2767 * can execute atomically w.r.t to reclaim by holding this lock 2768 * here. 2769 * 2770 * However, we still need to issue the unpin wakeup call as the 2771 * inode reclaim may be blocked waiting for the inode to become 2772 * unpinned. 2773 */ 2774 2775 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) { 2776 bhv_vnode_t *vp = XFS_ITOV_NULL(ip); 2777 struct inode *inode = NULL; 2778 2779 BUG_ON(vp == NULL); 2780 inode = vn_to_inode(vp); 2781 BUG_ON(inode->i_state & I_CLEAR); 2782 2783 /* make sync come back and flush this inode */ 2784 if (!(inode->i_state & (I_NEW|I_FREEING))) 2785 mark_inode_dirty_sync(inode); 2786 } 2787 spin_unlock(&ip->i_flags_lock); 2788 wake_up(&ip->i_ipin_wait); 2789 } 2790 } 2791 2792 /* 2793 * This is called to wait for the given inode to be unpinned. 2794 * It will sleep until this happens. The caller must have the 2795 * inode locked in at least shared mode so that the buffer cannot 2796 * be subsequently pinned once someone is waiting for it to be 2797 * unpinned. 2798 */ 2799 STATIC void 2800 xfs_iunpin_wait( 2801 xfs_inode_t *ip) 2802 { 2803 xfs_inode_log_item_t *iip; 2804 xfs_lsn_t lsn; 2805 2806 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS)); 2807 2808 if (atomic_read(&ip->i_pincount) == 0) { 2809 return; 2810 } 2811 2812 iip = ip->i_itemp; 2813 if (iip && iip->ili_last_lsn) { 2814 lsn = iip->ili_last_lsn; 2815 } else { 2816 lsn = (xfs_lsn_t)0; 2817 } 2818 2819 /* 2820 * Give the log a push so we don't wait here too long. 2821 */ 2822 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE); 2823 2824 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); 2825 } 2826 2827 2828 /* 2829 * xfs_iextents_copy() 2830 * 2831 * This is called to copy the REAL extents (as opposed to the delayed 2832 * allocation extents) from the inode into the given buffer. It 2833 * returns the number of bytes copied into the buffer. 2834 * 2835 * If there are no delayed allocation extents, then we can just 2836 * memcpy() the extents into the buffer. Otherwise, we need to 2837 * examine each extent in turn and skip those which are delayed. 2838 */ 2839 int 2840 xfs_iextents_copy( 2841 xfs_inode_t *ip, 2842 xfs_bmbt_rec_t *buffer, 2843 int whichfork) 2844 { 2845 int copied; 2846 xfs_bmbt_rec_t *dest_ep; 2847 xfs_bmbt_rec_t *ep; 2848 #ifdef XFS_BMAP_TRACE 2849 static char fname[] = "xfs_iextents_copy"; 2850 #endif 2851 int i; 2852 xfs_ifork_t *ifp; 2853 int nrecs; 2854 xfs_fsblock_t start_block; 2855 2856 ifp = XFS_IFORK_PTR(ip, whichfork); 2857 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 2858 ASSERT(ifp->if_bytes > 0); 2859 2860 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2861 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork); 2862 ASSERT(nrecs > 0); 2863 2864 /* 2865 * There are some delayed allocation extents in the 2866 * inode, so copy the extents one at a time and skip 2867 * the delayed ones. There must be at least one 2868 * non-delayed extent. 2869 */ 2870 dest_ep = buffer; 2871 copied = 0; 2872 for (i = 0; i < nrecs; i++) { 2873 ep = xfs_iext_get_ext(ifp, i); 2874 start_block = xfs_bmbt_get_startblock(ep); 2875 if (ISNULLSTARTBLOCK(start_block)) { 2876 /* 2877 * It's a delayed allocation extent, so skip it. 2878 */ 2879 continue; 2880 } 2881 2882 /* Translate to on disk format */ 2883 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT), 2884 (__uint64_t*)&dest_ep->l0); 2885 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT), 2886 (__uint64_t*)&dest_ep->l1); 2887 dest_ep++; 2888 copied++; 2889 } 2890 ASSERT(copied != 0); 2891 xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip)); 2892 2893 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2894 } 2895 2896 /* 2897 * Each of the following cases stores data into the same region 2898 * of the on-disk inode, so only one of them can be valid at 2899 * any given time. While it is possible to have conflicting formats 2900 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2901 * in EXTENTS format, this can only happen when the fork has 2902 * changed formats after being modified but before being flushed. 2903 * In these cases, the format always takes precedence, because the 2904 * format indicates the current state of the fork. 2905 */ 2906 /*ARGSUSED*/ 2907 STATIC int 2908 xfs_iflush_fork( 2909 xfs_inode_t *ip, 2910 xfs_dinode_t *dip, 2911 xfs_inode_log_item_t *iip, 2912 int whichfork, 2913 xfs_buf_t *bp) 2914 { 2915 char *cp; 2916 xfs_ifork_t *ifp; 2917 xfs_mount_t *mp; 2918 #ifdef XFS_TRANS_DEBUG 2919 int first; 2920 #endif 2921 static const short brootflag[2] = 2922 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 2923 static const short dataflag[2] = 2924 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 2925 static const short extflag[2] = 2926 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 2927 2928 if (iip == NULL) 2929 return 0; 2930 ifp = XFS_IFORK_PTR(ip, whichfork); 2931 /* 2932 * This can happen if we gave up in iformat in an error path, 2933 * for the attribute fork. 2934 */ 2935 if (ifp == NULL) { 2936 ASSERT(whichfork == XFS_ATTR_FORK); 2937 return 0; 2938 } 2939 cp = XFS_DFORK_PTR(dip, whichfork); 2940 mp = ip->i_mount; 2941 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 2942 case XFS_DINODE_FMT_LOCAL: 2943 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && 2944 (ifp->if_bytes > 0)) { 2945 ASSERT(ifp->if_u1.if_data != NULL); 2946 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2947 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 2948 } 2949 break; 2950 2951 case XFS_DINODE_FMT_EXTENTS: 2952 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 2953 !(iip->ili_format.ilf_fields & extflag[whichfork])); 2954 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) || 2955 (ifp->if_bytes == 0)); 2956 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) || 2957 (ifp->if_bytes > 0)); 2958 if ((iip->ili_format.ilf_fields & extflag[whichfork]) && 2959 (ifp->if_bytes > 0)) { 2960 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 2961 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 2962 whichfork); 2963 } 2964 break; 2965 2966 case XFS_DINODE_FMT_BTREE: 2967 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && 2968 (ifp->if_broot_bytes > 0)) { 2969 ASSERT(ifp->if_broot != NULL); 2970 ASSERT(ifp->if_broot_bytes <= 2971 (XFS_IFORK_SIZE(ip, whichfork) + 2972 XFS_BROOT_SIZE_ADJ)); 2973 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes, 2974 (xfs_bmdr_block_t *)cp, 2975 XFS_DFORK_SIZE(dip, mp, whichfork)); 2976 } 2977 break; 2978 2979 case XFS_DINODE_FMT_DEV: 2980 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 2981 ASSERT(whichfork == XFS_DATA_FORK); 2982 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev); 2983 } 2984 break; 2985 2986 case XFS_DINODE_FMT_UUID: 2987 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 2988 ASSERT(whichfork == XFS_DATA_FORK); 2989 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid, 2990 sizeof(uuid_t)); 2991 } 2992 break; 2993 2994 default: 2995 ASSERT(0); 2996 break; 2997 } 2998 2999 return 0; 3000 } 3001 3002 /* 3003 * xfs_iflush() will write a modified inode's changes out to the 3004 * inode's on disk home. The caller must have the inode lock held 3005 * in at least shared mode and the inode flush semaphore must be 3006 * held as well. The inode lock will still be held upon return from 3007 * the call and the caller is free to unlock it. 3008 * The inode flush lock will be unlocked when the inode reaches the disk. 3009 * The flags indicate how the inode's buffer should be written out. 3010 */ 3011 int 3012 xfs_iflush( 3013 xfs_inode_t *ip, 3014 uint flags) 3015 { 3016 xfs_inode_log_item_t *iip; 3017 xfs_buf_t *bp; 3018 xfs_dinode_t *dip; 3019 xfs_mount_t *mp; 3020 int error; 3021 /* REFERENCED */ 3022 xfs_chash_t *ch; 3023 xfs_inode_t *iq; 3024 int clcount; /* count of inodes clustered */ 3025 int bufwasdelwri; 3026 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; 3027 SPLDECL(s); 3028 3029 XFS_STATS_INC(xs_iflush_count); 3030 3031 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 3032 ASSERT(issemalocked(&(ip->i_flock))); 3033 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3034 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3035 3036 iip = ip->i_itemp; 3037 mp = ip->i_mount; 3038 3039 /* 3040 * If the inode isn't dirty, then just release the inode 3041 * flush lock and do nothing. 3042 */ 3043 if ((ip->i_update_core == 0) && 3044 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3045 ASSERT((iip != NULL) ? 3046 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1); 3047 xfs_ifunlock(ip); 3048 return 0; 3049 } 3050 3051 /* 3052 * We can't flush the inode until it is unpinned, so 3053 * wait for it. We know noone new can pin it, because 3054 * we are holding the inode lock shared and you need 3055 * to hold it exclusively to pin the inode. 3056 */ 3057 xfs_iunpin_wait(ip); 3058 3059 /* 3060 * This may have been unpinned because the filesystem is shutting 3061 * down forcibly. If that's the case we must not write this inode 3062 * to disk, because the log record didn't make it to disk! 3063 */ 3064 if (XFS_FORCED_SHUTDOWN(mp)) { 3065 ip->i_update_core = 0; 3066 if (iip) 3067 iip->ili_format.ilf_fields = 0; 3068 xfs_ifunlock(ip); 3069 return XFS_ERROR(EIO); 3070 } 3071 3072 /* 3073 * Get the buffer containing the on-disk inode. 3074 */ 3075 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0); 3076 if (error) { 3077 xfs_ifunlock(ip); 3078 return error; 3079 } 3080 3081 /* 3082 * Decide how buffer will be flushed out. This is done before 3083 * the call to xfs_iflush_int because this field is zeroed by it. 3084 */ 3085 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3086 /* 3087 * Flush out the inode buffer according to the directions 3088 * of the caller. In the cases where the caller has given 3089 * us a choice choose the non-delwri case. This is because 3090 * the inode is in the AIL and we need to get it out soon. 3091 */ 3092 switch (flags) { 3093 case XFS_IFLUSH_SYNC: 3094 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3095 flags = 0; 3096 break; 3097 case XFS_IFLUSH_ASYNC: 3098 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3099 flags = INT_ASYNC; 3100 break; 3101 case XFS_IFLUSH_DELWRI: 3102 flags = INT_DELWRI; 3103 break; 3104 default: 3105 ASSERT(0); 3106 flags = 0; 3107 break; 3108 } 3109 } else { 3110 switch (flags) { 3111 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3112 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3113 case XFS_IFLUSH_DELWRI: 3114 flags = INT_DELWRI; 3115 break; 3116 case XFS_IFLUSH_ASYNC: 3117 flags = INT_ASYNC; 3118 break; 3119 case XFS_IFLUSH_SYNC: 3120 flags = 0; 3121 break; 3122 default: 3123 ASSERT(0); 3124 flags = 0; 3125 break; 3126 } 3127 } 3128 3129 /* 3130 * First flush out the inode that xfs_iflush was called with. 3131 */ 3132 error = xfs_iflush_int(ip, bp); 3133 if (error) { 3134 goto corrupt_out; 3135 } 3136 3137 /* 3138 * inode clustering: 3139 * see if other inodes can be gathered into this write 3140 */ 3141 3142 ip->i_chash->chl_buf = bp; 3143 3144 ch = XFS_CHASH(mp, ip->i_blkno); 3145 s = mutex_spinlock(&ch->ch_lock); 3146 3147 clcount = 0; 3148 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) { 3149 /* 3150 * Do an un-protected check to see if the inode is dirty and 3151 * is a candidate for flushing. These checks will be repeated 3152 * later after the appropriate locks are acquired. 3153 */ 3154 iip = iq->i_itemp; 3155 if ((iq->i_update_core == 0) && 3156 ((iip == NULL) || 3157 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) && 3158 xfs_ipincount(iq) == 0) { 3159 continue; 3160 } 3161 3162 /* 3163 * Try to get locks. If any are unavailable, 3164 * then this inode cannot be flushed and is skipped. 3165 */ 3166 3167 /* get inode locks (just i_lock) */ 3168 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) { 3169 /* get inode flush lock */ 3170 if (xfs_iflock_nowait(iq)) { 3171 /* check if pinned */ 3172 if (xfs_ipincount(iq) == 0) { 3173 /* arriving here means that 3174 * this inode can be flushed. 3175 * first re-check that it's 3176 * dirty 3177 */ 3178 iip = iq->i_itemp; 3179 if ((iq->i_update_core != 0)|| 3180 ((iip != NULL) && 3181 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3182 clcount++; 3183 error = xfs_iflush_int(iq, bp); 3184 if (error) { 3185 xfs_iunlock(iq, 3186 XFS_ILOCK_SHARED); 3187 goto cluster_corrupt_out; 3188 } 3189 } else { 3190 xfs_ifunlock(iq); 3191 } 3192 } else { 3193 xfs_ifunlock(iq); 3194 } 3195 } 3196 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3197 } 3198 } 3199 mutex_spinunlock(&ch->ch_lock, s); 3200 3201 if (clcount) { 3202 XFS_STATS_INC(xs_icluster_flushcnt); 3203 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 3204 } 3205 3206 /* 3207 * If the buffer is pinned then push on the log so we won't 3208 * get stuck waiting in the write for too long. 3209 */ 3210 if (XFS_BUF_ISPINNED(bp)){ 3211 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); 3212 } 3213 3214 if (flags & INT_DELWRI) { 3215 xfs_bdwrite(mp, bp); 3216 } else if (flags & INT_ASYNC) { 3217 xfs_bawrite(mp, bp); 3218 } else { 3219 error = xfs_bwrite(mp, bp); 3220 } 3221 return error; 3222 3223 corrupt_out: 3224 xfs_buf_relse(bp); 3225 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3226 xfs_iflush_abort(ip); 3227 /* 3228 * Unlocks the flush lock 3229 */ 3230 return XFS_ERROR(EFSCORRUPTED); 3231 3232 cluster_corrupt_out: 3233 /* Corruption detected in the clustering loop. Invalidate the 3234 * inode buffer and shut down the filesystem. 3235 */ 3236 mutex_spinunlock(&ch->ch_lock, s); 3237 3238 /* 3239 * Clean up the buffer. If it was B_DELWRI, just release it -- 3240 * brelse can handle it with no problems. If not, shut down the 3241 * filesystem before releasing the buffer. 3242 */ 3243 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) { 3244 xfs_buf_relse(bp); 3245 } 3246 3247 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3248 3249 if(!bufwasdelwri) { 3250 /* 3251 * Just like incore_relse: if we have b_iodone functions, 3252 * mark the buffer as an error and call them. Otherwise 3253 * mark it as stale and brelse. 3254 */ 3255 if (XFS_BUF_IODONE_FUNC(bp)) { 3256 XFS_BUF_CLR_BDSTRAT_FUNC(bp); 3257 XFS_BUF_UNDONE(bp); 3258 XFS_BUF_STALE(bp); 3259 XFS_BUF_SHUT(bp); 3260 XFS_BUF_ERROR(bp,EIO); 3261 xfs_biodone(bp); 3262 } else { 3263 XFS_BUF_STALE(bp); 3264 xfs_buf_relse(bp); 3265 } 3266 } 3267 3268 xfs_iflush_abort(iq); 3269 /* 3270 * Unlocks the flush lock 3271 */ 3272 return XFS_ERROR(EFSCORRUPTED); 3273 } 3274 3275 3276 STATIC int 3277 xfs_iflush_int( 3278 xfs_inode_t *ip, 3279 xfs_buf_t *bp) 3280 { 3281 xfs_inode_log_item_t *iip; 3282 xfs_dinode_t *dip; 3283 xfs_mount_t *mp; 3284 #ifdef XFS_TRANS_DEBUG 3285 int first; 3286 #endif 3287 SPLDECL(s); 3288 3289 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 3290 ASSERT(issemalocked(&(ip->i_flock))); 3291 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3292 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3293 3294 iip = ip->i_itemp; 3295 mp = ip->i_mount; 3296 3297 3298 /* 3299 * If the inode isn't dirty, then just release the inode 3300 * flush lock and do nothing. 3301 */ 3302 if ((ip->i_update_core == 0) && 3303 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3304 xfs_ifunlock(ip); 3305 return 0; 3306 } 3307 3308 /* set *dip = inode's place in the buffer */ 3309 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset); 3310 3311 /* 3312 * Clear i_update_core before copying out the data. 3313 * This is for coordination with our timestamp updates 3314 * that don't hold the inode lock. They will always 3315 * update the timestamps BEFORE setting i_update_core, 3316 * so if we clear i_update_core after they set it we 3317 * are guaranteed to see their updates to the timestamps. 3318 * I believe that this depends on strongly ordered memory 3319 * semantics, but we have that. We use the SYNCHRONIZE 3320 * macro to make sure that the compiler does not reorder 3321 * the i_update_core access below the data copy below. 3322 */ 3323 ip->i_update_core = 0; 3324 SYNCHRONIZE(); 3325 3326 /* 3327 * Make sure to get the latest atime from the Linux inode. 3328 */ 3329 xfs_synchronize_atime(ip); 3330 3331 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC, 3332 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3333 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3334 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3335 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip); 3336 goto corrupt_out; 3337 } 3338 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3339 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3340 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3341 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3342 ip->i_ino, ip, ip->i_d.di_magic); 3343 goto corrupt_out; 3344 } 3345 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { 3346 if (XFS_TEST_ERROR( 3347 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3348 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3349 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3350 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3351 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", 3352 ip->i_ino, ip); 3353 goto corrupt_out; 3354 } 3355 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { 3356 if (XFS_TEST_ERROR( 3357 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3358 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3359 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3360 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3361 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3362 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", 3363 ip->i_ino, ip); 3364 goto corrupt_out; 3365 } 3366 } 3367 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3368 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3369 XFS_RANDOM_IFLUSH_5)) { 3370 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3371 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", 3372 ip->i_ino, 3373 ip->i_d.di_nextents + ip->i_d.di_anextents, 3374 ip->i_d.di_nblocks, 3375 ip); 3376 goto corrupt_out; 3377 } 3378 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3379 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3380 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3381 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3382 ip->i_ino, ip->i_d.di_forkoff, ip); 3383 goto corrupt_out; 3384 } 3385 /* 3386 * bump the flush iteration count, used to detect flushes which 3387 * postdate a log record during recovery. 3388 */ 3389 3390 ip->i_d.di_flushiter++; 3391 3392 /* 3393 * Copy the dirty parts of the inode into the on-disk 3394 * inode. We always copy out the core of the inode, 3395 * because if the inode is dirty at all the core must 3396 * be. 3397 */ 3398 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1); 3399 3400 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3401 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3402 ip->i_d.di_flushiter = 0; 3403 3404 /* 3405 * If this is really an old format inode and the superblock version 3406 * has not been updated to support only new format inodes, then 3407 * convert back to the old inode format. If the superblock version 3408 * has been updated, then make the conversion permanent. 3409 */ 3410 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || 3411 XFS_SB_VERSION_HASNLINK(&mp->m_sb)); 3412 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 3413 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { 3414 /* 3415 * Convert it back. 3416 */ 3417 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 3418 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink); 3419 } else { 3420 /* 3421 * The superblock version has already been bumped, 3422 * so just make the conversion to the new inode 3423 * format permanent. 3424 */ 3425 ip->i_d.di_version = XFS_DINODE_VERSION_2; 3426 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2); 3427 ip->i_d.di_onlink = 0; 3428 dip->di_core.di_onlink = 0; 3429 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 3430 memset(&(dip->di_core.di_pad[0]), 0, 3431 sizeof(dip->di_core.di_pad)); 3432 ASSERT(ip->i_d.di_projid == 0); 3433 } 3434 } 3435 3436 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) { 3437 goto corrupt_out; 3438 } 3439 3440 if (XFS_IFORK_Q(ip)) { 3441 /* 3442 * The only error from xfs_iflush_fork is on the data fork. 3443 */ 3444 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 3445 } 3446 xfs_inobp_check(mp, bp); 3447 3448 /* 3449 * We've recorded everything logged in the inode, so we'd 3450 * like to clear the ilf_fields bits so we don't log and 3451 * flush things unnecessarily. However, we can't stop 3452 * logging all this information until the data we've copied 3453 * into the disk buffer is written to disk. If we did we might 3454 * overwrite the copy of the inode in the log with all the 3455 * data after re-logging only part of it, and in the face of 3456 * a crash we wouldn't have all the data we need to recover. 3457 * 3458 * What we do is move the bits to the ili_last_fields field. 3459 * When logging the inode, these bits are moved back to the 3460 * ilf_fields field. In the xfs_iflush_done() routine we 3461 * clear ili_last_fields, since we know that the information 3462 * those bits represent is permanently on disk. As long as 3463 * the flush completes before the inode is logged again, then 3464 * both ilf_fields and ili_last_fields will be cleared. 3465 * 3466 * We can play with the ilf_fields bits here, because the inode 3467 * lock must be held exclusively in order to set bits there 3468 * and the flush lock protects the ili_last_fields bits. 3469 * Set ili_logged so the flush done 3470 * routine can tell whether or not to look in the AIL. 3471 * Also, store the current LSN of the inode so that we can tell 3472 * whether the item has moved in the AIL from xfs_iflush_done(). 3473 * In order to read the lsn we need the AIL lock, because 3474 * it is a 64 bit value that cannot be read atomically. 3475 */ 3476 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3477 iip->ili_last_fields = iip->ili_format.ilf_fields; 3478 iip->ili_format.ilf_fields = 0; 3479 iip->ili_logged = 1; 3480 3481 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */ 3482 AIL_LOCK(mp,s); 3483 iip->ili_flush_lsn = iip->ili_item.li_lsn; 3484 AIL_UNLOCK(mp, s); 3485 3486 /* 3487 * Attach the function xfs_iflush_done to the inode's 3488 * buffer. This will remove the inode from the AIL 3489 * and unlock the inode's flush lock when the inode is 3490 * completely written to disk. 3491 */ 3492 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) 3493 xfs_iflush_done, (xfs_log_item_t *)iip); 3494 3495 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 3496 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); 3497 } else { 3498 /* 3499 * We're flushing an inode which is not in the AIL and has 3500 * not been logged but has i_update_core set. For this 3501 * case we can use a B_DELWRI flush and immediately drop 3502 * the inode flush lock because we can avoid the whole 3503 * AIL state thing. It's OK to drop the flush lock now, 3504 * because we've already locked the buffer and to do anything 3505 * you really need both. 3506 */ 3507 if (iip != NULL) { 3508 ASSERT(iip->ili_logged == 0); 3509 ASSERT(iip->ili_last_fields == 0); 3510 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); 3511 } 3512 xfs_ifunlock(ip); 3513 } 3514 3515 return 0; 3516 3517 corrupt_out: 3518 return XFS_ERROR(EFSCORRUPTED); 3519 } 3520 3521 3522 /* 3523 * Flush all inactive inodes in mp. 3524 */ 3525 void 3526 xfs_iflush_all( 3527 xfs_mount_t *mp) 3528 { 3529 xfs_inode_t *ip; 3530 bhv_vnode_t *vp; 3531 3532 again: 3533 XFS_MOUNT_ILOCK(mp); 3534 ip = mp->m_inodes; 3535 if (ip == NULL) 3536 goto out; 3537 3538 do { 3539 /* Make sure we skip markers inserted by sync */ 3540 if (ip->i_mount == NULL) { 3541 ip = ip->i_mnext; 3542 continue; 3543 } 3544 3545 vp = XFS_ITOV_NULL(ip); 3546 if (!vp) { 3547 XFS_MOUNT_IUNLOCK(mp); 3548 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC); 3549 goto again; 3550 } 3551 3552 ASSERT(vn_count(vp) == 0); 3553 3554 ip = ip->i_mnext; 3555 } while (ip != mp->m_inodes); 3556 out: 3557 XFS_MOUNT_IUNLOCK(mp); 3558 } 3559 3560 /* 3561 * xfs_iaccess: check accessibility of inode for mode. 3562 */ 3563 int 3564 xfs_iaccess( 3565 xfs_inode_t *ip, 3566 mode_t mode, 3567 cred_t *cr) 3568 { 3569 int error; 3570 mode_t orgmode = mode; 3571 struct inode *inode = vn_to_inode(XFS_ITOV(ip)); 3572 3573 if (mode & S_IWUSR) { 3574 umode_t imode = inode->i_mode; 3575 3576 if (IS_RDONLY(inode) && 3577 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode))) 3578 return XFS_ERROR(EROFS); 3579 3580 if (IS_IMMUTABLE(inode)) 3581 return XFS_ERROR(EACCES); 3582 } 3583 3584 /* 3585 * If there's an Access Control List it's used instead of 3586 * the mode bits. 3587 */ 3588 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1) 3589 return error ? XFS_ERROR(error) : 0; 3590 3591 if (current_fsuid(cr) != ip->i_d.di_uid) { 3592 mode >>= 3; 3593 if (!in_group_p((gid_t)ip->i_d.di_gid)) 3594 mode >>= 3; 3595 } 3596 3597 /* 3598 * If the DACs are ok we don't need any capability check. 3599 */ 3600 if ((ip->i_d.di_mode & mode) == mode) 3601 return 0; 3602 /* 3603 * Read/write DACs are always overridable. 3604 * Executable DACs are overridable if at least one exec bit is set. 3605 */ 3606 if (!(orgmode & S_IXUSR) || 3607 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) 3608 if (capable_cred(cr, CAP_DAC_OVERRIDE)) 3609 return 0; 3610 3611 if ((orgmode == S_IRUSR) || 3612 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) { 3613 if (capable_cred(cr, CAP_DAC_READ_SEARCH)) 3614 return 0; 3615 #ifdef NOISE 3616 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode); 3617 #endif /* NOISE */ 3618 return XFS_ERROR(EACCES); 3619 } 3620 return XFS_ERROR(EACCES); 3621 } 3622 3623 /* 3624 * xfs_iroundup: round up argument to next power of two 3625 */ 3626 uint 3627 xfs_iroundup( 3628 uint v) 3629 { 3630 int i; 3631 uint m; 3632 3633 if ((v & (v - 1)) == 0) 3634 return v; 3635 ASSERT((v & 0x80000000) == 0); 3636 if ((v & (v + 1)) == 0) 3637 return v + 1; 3638 for (i = 0, m = 1; i < 31; i++, m <<= 1) { 3639 if (v & m) 3640 continue; 3641 v |= m; 3642 if ((v & (v + 1)) == 0) 3643 return v + 1; 3644 } 3645 ASSERT(0); 3646 return( 0 ); 3647 } 3648 3649 #ifdef XFS_ILOCK_TRACE 3650 ktrace_t *xfs_ilock_trace_buf; 3651 3652 void 3653 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) 3654 { 3655 ktrace_enter(ip->i_lock_trace, 3656 (void *)ip, 3657 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ 3658 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ 3659 (void *)ra, /* caller of ilock */ 3660 (void *)(unsigned long)current_cpu(), 3661 (void *)(unsigned long)current_pid(), 3662 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); 3663 } 3664 #endif 3665 3666 /* 3667 * Return a pointer to the extent record at file index idx. 3668 */ 3669 xfs_bmbt_rec_t * 3670 xfs_iext_get_ext( 3671 xfs_ifork_t *ifp, /* inode fork pointer */ 3672 xfs_extnum_t idx) /* index of target extent */ 3673 { 3674 ASSERT(idx >= 0); 3675 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { 3676 return ifp->if_u1.if_ext_irec->er_extbuf; 3677 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3678 xfs_ext_irec_t *erp; /* irec pointer */ 3679 int erp_idx = 0; /* irec index */ 3680 xfs_extnum_t page_idx = idx; /* ext index in target list */ 3681 3682 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3683 return &erp->er_extbuf[page_idx]; 3684 } else if (ifp->if_bytes) { 3685 return &ifp->if_u1.if_extents[idx]; 3686 } else { 3687 return NULL; 3688 } 3689 } 3690 3691 /* 3692 * Insert new item(s) into the extent records for incore inode 3693 * fork 'ifp'. 'count' new items are inserted at index 'idx'. 3694 */ 3695 void 3696 xfs_iext_insert( 3697 xfs_ifork_t *ifp, /* inode fork pointer */ 3698 xfs_extnum_t idx, /* starting index of new items */ 3699 xfs_extnum_t count, /* number of inserted items */ 3700 xfs_bmbt_irec_t *new) /* items to insert */ 3701 { 3702 xfs_bmbt_rec_t *ep; /* extent record pointer */ 3703 xfs_extnum_t i; /* extent record index */ 3704 3705 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3706 xfs_iext_add(ifp, idx, count); 3707 for (i = idx; i < idx + count; i++, new++) { 3708 ep = xfs_iext_get_ext(ifp, i); 3709 xfs_bmbt_set_all(ep, new); 3710 } 3711 } 3712 3713 /* 3714 * This is called when the amount of space required for incore file 3715 * extents needs to be increased. The ext_diff parameter stores the 3716 * number of new extents being added and the idx parameter contains 3717 * the extent index where the new extents will be added. If the new 3718 * extents are being appended, then we just need to (re)allocate and 3719 * initialize the space. Otherwise, if the new extents are being 3720 * inserted into the middle of the existing entries, a bit more work 3721 * is required to make room for the new extents to be inserted. The 3722 * caller is responsible for filling in the new extent entries upon 3723 * return. 3724 */ 3725 void 3726 xfs_iext_add( 3727 xfs_ifork_t *ifp, /* inode fork pointer */ 3728 xfs_extnum_t idx, /* index to begin adding exts */ 3729 int ext_diff) /* number of extents to add */ 3730 { 3731 int byte_diff; /* new bytes being added */ 3732 int new_size; /* size of extents after adding */ 3733 xfs_extnum_t nextents; /* number of extents in file */ 3734 3735 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3736 ASSERT((idx >= 0) && (idx <= nextents)); 3737 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); 3738 new_size = ifp->if_bytes + byte_diff; 3739 /* 3740 * If the new number of extents (nextents + ext_diff) 3741 * fits inside the inode, then continue to use the inline 3742 * extent buffer. 3743 */ 3744 if (nextents + ext_diff <= XFS_INLINE_EXTS) { 3745 if (idx < nextents) { 3746 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], 3747 &ifp->if_u2.if_inline_ext[idx], 3748 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3749 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); 3750 } 3751 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3752 ifp->if_real_bytes = 0; 3753 ifp->if_lastex = nextents + ext_diff; 3754 } 3755 /* 3756 * Otherwise use a linear (direct) extent list. 3757 * If the extents are currently inside the inode, 3758 * xfs_iext_realloc_direct will switch us from 3759 * inline to direct extent allocation mode. 3760 */ 3761 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { 3762 xfs_iext_realloc_direct(ifp, new_size); 3763 if (idx < nextents) { 3764 memmove(&ifp->if_u1.if_extents[idx + ext_diff], 3765 &ifp->if_u1.if_extents[idx], 3766 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3767 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); 3768 } 3769 } 3770 /* Indirection array */ 3771 else { 3772 xfs_ext_irec_t *erp; 3773 int erp_idx = 0; 3774 int page_idx = idx; 3775 3776 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); 3777 if (ifp->if_flags & XFS_IFEXTIREC) { 3778 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); 3779 } else { 3780 xfs_iext_irec_init(ifp); 3781 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3782 erp = ifp->if_u1.if_ext_irec; 3783 } 3784 /* Extents fit in target extent page */ 3785 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { 3786 if (page_idx < erp->er_extcount) { 3787 memmove(&erp->er_extbuf[page_idx + ext_diff], 3788 &erp->er_extbuf[page_idx], 3789 (erp->er_extcount - page_idx) * 3790 sizeof(xfs_bmbt_rec_t)); 3791 memset(&erp->er_extbuf[page_idx], 0, byte_diff); 3792 } 3793 erp->er_extcount += ext_diff; 3794 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3795 } 3796 /* Insert a new extent page */ 3797 else if (erp) { 3798 xfs_iext_add_indirect_multi(ifp, 3799 erp_idx, page_idx, ext_diff); 3800 } 3801 /* 3802 * If extent(s) are being appended to the last page in 3803 * the indirection array and the new extent(s) don't fit 3804 * in the page, then erp is NULL and erp_idx is set to 3805 * the next index needed in the indirection array. 3806 */ 3807 else { 3808 int count = ext_diff; 3809 3810 while (count) { 3811 erp = xfs_iext_irec_new(ifp, erp_idx); 3812 erp->er_extcount = count; 3813 count -= MIN(count, (int)XFS_LINEAR_EXTS); 3814 if (count) { 3815 erp_idx++; 3816 } 3817 } 3818 } 3819 } 3820 ifp->if_bytes = new_size; 3821 } 3822 3823 /* 3824 * This is called when incore extents are being added to the indirection 3825 * array and the new extents do not fit in the target extent list. The 3826 * erp_idx parameter contains the irec index for the target extent list 3827 * in the indirection array, and the idx parameter contains the extent 3828 * index within the list. The number of extents being added is stored 3829 * in the count parameter. 3830 * 3831 * |-------| |-------| 3832 * | | | | idx - number of extents before idx 3833 * | idx | | count | 3834 * | | | | count - number of extents being inserted at idx 3835 * |-------| |-------| 3836 * | count | | nex2 | nex2 - number of extents after idx + count 3837 * |-------| |-------| 3838 */ 3839 void 3840 xfs_iext_add_indirect_multi( 3841 xfs_ifork_t *ifp, /* inode fork pointer */ 3842 int erp_idx, /* target extent irec index */ 3843 xfs_extnum_t idx, /* index within target list */ 3844 int count) /* new extents being added */ 3845 { 3846 int byte_diff; /* new bytes being added */ 3847 xfs_ext_irec_t *erp; /* pointer to irec entry */ 3848 xfs_extnum_t ext_diff; /* number of extents to add */ 3849 xfs_extnum_t ext_cnt; /* new extents still needed */ 3850 xfs_extnum_t nex2; /* extents after idx + count */ 3851 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ 3852 int nlists; /* number of irec's (lists) */ 3853 3854 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3855 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3856 nex2 = erp->er_extcount - idx; 3857 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3858 3859 /* 3860 * Save second part of target extent list 3861 * (all extents past */ 3862 if (nex2) { 3863 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3864 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP); 3865 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); 3866 erp->er_extcount -= nex2; 3867 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); 3868 memset(&erp->er_extbuf[idx], 0, byte_diff); 3869 } 3870 3871 /* 3872 * Add the new extents to the end of the target 3873 * list, then allocate new irec record(s) and 3874 * extent buffer(s) as needed to store the rest 3875 * of the new extents. 3876 */ 3877 ext_cnt = count; 3878 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); 3879 if (ext_diff) { 3880 erp->er_extcount += ext_diff; 3881 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3882 ext_cnt -= ext_diff; 3883 } 3884 while (ext_cnt) { 3885 erp_idx++; 3886 erp = xfs_iext_irec_new(ifp, erp_idx); 3887 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); 3888 erp->er_extcount = ext_diff; 3889 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3890 ext_cnt -= ext_diff; 3891 } 3892 3893 /* Add nex2 extents back to indirection array */ 3894 if (nex2) { 3895 xfs_extnum_t ext_avail; 3896 int i; 3897 3898 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3899 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 3900 i = 0; 3901 /* 3902 * If nex2 extents fit in the current page, append 3903 * nex2_ep after the new extents. 3904 */ 3905 if (nex2 <= ext_avail) { 3906 i = erp->er_extcount; 3907 } 3908 /* 3909 * Otherwise, check if space is available in the 3910 * next page. 3911 */ 3912 else if ((erp_idx < nlists - 1) && 3913 (nex2 <= (ext_avail = XFS_LINEAR_EXTS - 3914 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { 3915 erp_idx++; 3916 erp++; 3917 /* Create a hole for nex2 extents */ 3918 memmove(&erp->er_extbuf[nex2], erp->er_extbuf, 3919 erp->er_extcount * sizeof(xfs_bmbt_rec_t)); 3920 } 3921 /* 3922 * Final choice, create a new extent page for 3923 * nex2 extents. 3924 */ 3925 else { 3926 erp_idx++; 3927 erp = xfs_iext_irec_new(ifp, erp_idx); 3928 } 3929 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); 3930 kmem_free(nex2_ep, byte_diff); 3931 erp->er_extcount += nex2; 3932 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); 3933 } 3934 } 3935 3936 /* 3937 * This is called when the amount of space required for incore file 3938 * extents needs to be decreased. The ext_diff parameter stores the 3939 * number of extents to be removed and the idx parameter contains 3940 * the extent index where the extents will be removed from. 3941 * 3942 * If the amount of space needed has decreased below the linear 3943 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous 3944 * extent array. Otherwise, use kmem_realloc() to adjust the 3945 * size to what is needed. 3946 */ 3947 void 3948 xfs_iext_remove( 3949 xfs_ifork_t *ifp, /* inode fork pointer */ 3950 xfs_extnum_t idx, /* index to begin removing exts */ 3951 int ext_diff) /* number of extents to remove */ 3952 { 3953 xfs_extnum_t nextents; /* number of extents in file */ 3954 int new_size; /* size of extents after removal */ 3955 3956 ASSERT(ext_diff > 0); 3957 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3958 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); 3959 3960 if (new_size == 0) { 3961 xfs_iext_destroy(ifp); 3962 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3963 xfs_iext_remove_indirect(ifp, idx, ext_diff); 3964 } else if (ifp->if_real_bytes) { 3965 xfs_iext_remove_direct(ifp, idx, ext_diff); 3966 } else { 3967 xfs_iext_remove_inline(ifp, idx, ext_diff); 3968 } 3969 ifp->if_bytes = new_size; 3970 } 3971 3972 /* 3973 * This removes ext_diff extents from the inline buffer, beginning 3974 * at extent index idx. 3975 */ 3976 void 3977 xfs_iext_remove_inline( 3978 xfs_ifork_t *ifp, /* inode fork pointer */ 3979 xfs_extnum_t idx, /* index to begin removing exts */ 3980 int ext_diff) /* number of extents to remove */ 3981 { 3982 int nextents; /* number of extents in file */ 3983 3984 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3985 ASSERT(idx < XFS_INLINE_EXTS); 3986 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3987 ASSERT(((nextents - ext_diff) > 0) && 3988 (nextents - ext_diff) < XFS_INLINE_EXTS); 3989 3990 if (idx + ext_diff < nextents) { 3991 memmove(&ifp->if_u2.if_inline_ext[idx], 3992 &ifp->if_u2.if_inline_ext[idx + ext_diff], 3993 (nextents - (idx + ext_diff)) * 3994 sizeof(xfs_bmbt_rec_t)); 3995 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], 3996 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3997 } else { 3998 memset(&ifp->if_u2.if_inline_ext[idx], 0, 3999 ext_diff * sizeof(xfs_bmbt_rec_t)); 4000 } 4001 } 4002 4003 /* 4004 * This removes ext_diff extents from a linear (direct) extent list, 4005 * beginning at extent index idx. If the extents are being removed 4006 * from the end of the list (ie. truncate) then we just need to re- 4007 * allocate the list to remove the extra space. Otherwise, if the 4008 * extents are being removed from the middle of the existing extent 4009 * entries, then we first need to move the extent records beginning 4010 * at idx + ext_diff up in the list to overwrite the records being 4011 * removed, then remove the extra space via kmem_realloc. 4012 */ 4013 void 4014 xfs_iext_remove_direct( 4015 xfs_ifork_t *ifp, /* inode fork pointer */ 4016 xfs_extnum_t idx, /* index to begin removing exts */ 4017 int ext_diff) /* number of extents to remove */ 4018 { 4019 xfs_extnum_t nextents; /* number of extents in file */ 4020 int new_size; /* size of extents after removal */ 4021 4022 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 4023 new_size = ifp->if_bytes - 4024 (ext_diff * sizeof(xfs_bmbt_rec_t)); 4025 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4026 4027 if (new_size == 0) { 4028 xfs_iext_destroy(ifp); 4029 return; 4030 } 4031 /* Move extents up in the list (if needed) */ 4032 if (idx + ext_diff < nextents) { 4033 memmove(&ifp->if_u1.if_extents[idx], 4034 &ifp->if_u1.if_extents[idx + ext_diff], 4035 (nextents - (idx + ext_diff)) * 4036 sizeof(xfs_bmbt_rec_t)); 4037 } 4038 memset(&ifp->if_u1.if_extents[nextents - ext_diff], 4039 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 4040 /* 4041 * Reallocate the direct extent list. If the extents 4042 * will fit inside the inode then xfs_iext_realloc_direct 4043 * will switch from direct to inline extent allocation 4044 * mode for us. 4045 */ 4046 xfs_iext_realloc_direct(ifp, new_size); 4047 ifp->if_bytes = new_size; 4048 } 4049 4050 /* 4051 * This is called when incore extents are being removed from the 4052 * indirection array and the extents being removed span multiple extent 4053 * buffers. The idx parameter contains the file extent index where we 4054 * want to begin removing extents, and the count parameter contains 4055 * how many extents need to be removed. 4056 * 4057 * |-------| |-------| 4058 * | nex1 | | | nex1 - number of extents before idx 4059 * |-------| | count | 4060 * | | | | count - number of extents being removed at idx 4061 * | count | |-------| 4062 * | | | nex2 | nex2 - number of extents after idx + count 4063 * |-------| |-------| 4064 */ 4065 void 4066 xfs_iext_remove_indirect( 4067 xfs_ifork_t *ifp, /* inode fork pointer */ 4068 xfs_extnum_t idx, /* index to begin removing extents */ 4069 int count) /* number of extents to remove */ 4070 { 4071 xfs_ext_irec_t *erp; /* indirection array pointer */ 4072 int erp_idx = 0; /* indirection array index */ 4073 xfs_extnum_t ext_cnt; /* extents left to remove */ 4074 xfs_extnum_t ext_diff; /* extents to remove in current list */ 4075 xfs_extnum_t nex1; /* number of extents before idx */ 4076 xfs_extnum_t nex2; /* extents after idx + count */ 4077 int nlists; /* entries in indirection array */ 4078 int page_idx = idx; /* index in target extent list */ 4079 4080 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4081 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 4082 ASSERT(erp != NULL); 4083 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4084 nex1 = page_idx; 4085 ext_cnt = count; 4086 while (ext_cnt) { 4087 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); 4088 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); 4089 /* 4090 * Check for deletion of entire list; 4091 * xfs_iext_irec_remove() updates extent offsets. 4092 */ 4093 if (ext_diff == erp->er_extcount) { 4094 xfs_iext_irec_remove(ifp, erp_idx); 4095 ext_cnt -= ext_diff; 4096 nex1 = 0; 4097 if (ext_cnt) { 4098 ASSERT(erp_idx < ifp->if_real_bytes / 4099 XFS_IEXT_BUFSZ); 4100 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4101 nex1 = 0; 4102 continue; 4103 } else { 4104 break; 4105 } 4106 } 4107 /* Move extents up (if needed) */ 4108 if (nex2) { 4109 memmove(&erp->er_extbuf[nex1], 4110 &erp->er_extbuf[nex1 + ext_diff], 4111 nex2 * sizeof(xfs_bmbt_rec_t)); 4112 } 4113 /* Zero out rest of page */ 4114 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - 4115 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); 4116 /* Update remaining counters */ 4117 erp->er_extcount -= ext_diff; 4118 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); 4119 ext_cnt -= ext_diff; 4120 nex1 = 0; 4121 erp_idx++; 4122 erp++; 4123 } 4124 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); 4125 xfs_iext_irec_compact(ifp); 4126 } 4127 4128 /* 4129 * Create, destroy, or resize a linear (direct) block of extents. 4130 */ 4131 void 4132 xfs_iext_realloc_direct( 4133 xfs_ifork_t *ifp, /* inode fork pointer */ 4134 int new_size) /* new size of extents */ 4135 { 4136 int rnew_size; /* real new size of extents */ 4137 4138 rnew_size = new_size; 4139 4140 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || 4141 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && 4142 (new_size != ifp->if_real_bytes))); 4143 4144 /* Free extent records */ 4145 if (new_size == 0) { 4146 xfs_iext_destroy(ifp); 4147 } 4148 /* Resize direct extent list and zero any new bytes */ 4149 else if (ifp->if_real_bytes) { 4150 /* Check if extents will fit inside the inode */ 4151 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { 4152 xfs_iext_direct_to_inline(ifp, new_size / 4153 (uint)sizeof(xfs_bmbt_rec_t)); 4154 ifp->if_bytes = new_size; 4155 return; 4156 } 4157 if ((new_size & (new_size - 1)) != 0) { 4158 rnew_size = xfs_iroundup(new_size); 4159 } 4160 if (rnew_size != ifp->if_real_bytes) { 4161 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) 4162 kmem_realloc(ifp->if_u1.if_extents, 4163 rnew_size, 4164 ifp->if_real_bytes, 4165 KM_SLEEP); 4166 } 4167 if (rnew_size > ifp->if_real_bytes) { 4168 memset(&ifp->if_u1.if_extents[ifp->if_bytes / 4169 (uint)sizeof(xfs_bmbt_rec_t)], 0, 4170 rnew_size - ifp->if_real_bytes); 4171 } 4172 } 4173 /* 4174 * Switch from the inline extent buffer to a direct 4175 * extent list. Be sure to include the inline extent 4176 * bytes in new_size. 4177 */ 4178 else { 4179 new_size += ifp->if_bytes; 4180 if ((new_size & (new_size - 1)) != 0) { 4181 rnew_size = xfs_iroundup(new_size); 4182 } 4183 xfs_iext_inline_to_direct(ifp, rnew_size); 4184 } 4185 ifp->if_real_bytes = rnew_size; 4186 ifp->if_bytes = new_size; 4187 } 4188 4189 /* 4190 * Switch from linear (direct) extent records to inline buffer. 4191 */ 4192 void 4193 xfs_iext_direct_to_inline( 4194 xfs_ifork_t *ifp, /* inode fork pointer */ 4195 xfs_extnum_t nextents) /* number of extents in file */ 4196 { 4197 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 4198 ASSERT(nextents <= XFS_INLINE_EXTS); 4199 /* 4200 * The inline buffer was zeroed when we switched 4201 * from inline to direct extent allocation mode, 4202 * so we don't need to clear it here. 4203 */ 4204 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, 4205 nextents * sizeof(xfs_bmbt_rec_t)); 4206 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); 4207 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 4208 ifp->if_real_bytes = 0; 4209 } 4210 4211 /* 4212 * Switch from inline buffer to linear (direct) extent records. 4213 * new_size should already be rounded up to the next power of 2 4214 * by the caller (when appropriate), so use new_size as it is. 4215 * However, since new_size may be rounded up, we can't update 4216 * if_bytes here. It is the caller's responsibility to update 4217 * if_bytes upon return. 4218 */ 4219 void 4220 xfs_iext_inline_to_direct( 4221 xfs_ifork_t *ifp, /* inode fork pointer */ 4222 int new_size) /* number of extents in file */ 4223 { 4224 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) 4225 kmem_alloc(new_size, KM_SLEEP); 4226 memset(ifp->if_u1.if_extents, 0, new_size); 4227 if (ifp->if_bytes) { 4228 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 4229 ifp->if_bytes); 4230 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 4231 sizeof(xfs_bmbt_rec_t)); 4232 } 4233 ifp->if_real_bytes = new_size; 4234 } 4235 4236 /* 4237 * Resize an extent indirection array to new_size bytes. 4238 */ 4239 void 4240 xfs_iext_realloc_indirect( 4241 xfs_ifork_t *ifp, /* inode fork pointer */ 4242 int new_size) /* new indirection array size */ 4243 { 4244 int nlists; /* number of irec's (ex lists) */ 4245 int size; /* current indirection array size */ 4246 4247 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4248 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4249 size = nlists * sizeof(xfs_ext_irec_t); 4250 ASSERT(ifp->if_real_bytes); 4251 ASSERT((new_size >= 0) && (new_size != size)); 4252 if (new_size == 0) { 4253 xfs_iext_destroy(ifp); 4254 } else { 4255 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) 4256 kmem_realloc(ifp->if_u1.if_ext_irec, 4257 new_size, size, KM_SLEEP); 4258 } 4259 } 4260 4261 /* 4262 * Switch from indirection array to linear (direct) extent allocations. 4263 */ 4264 void 4265 xfs_iext_indirect_to_direct( 4266 xfs_ifork_t *ifp) /* inode fork pointer */ 4267 { 4268 xfs_bmbt_rec_t *ep; /* extent record pointer */ 4269 xfs_extnum_t nextents; /* number of extents in file */ 4270 int size; /* size of file extents */ 4271 4272 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4273 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4274 ASSERT(nextents <= XFS_LINEAR_EXTS); 4275 size = nextents * sizeof(xfs_bmbt_rec_t); 4276 4277 xfs_iext_irec_compact_full(ifp); 4278 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); 4279 4280 ep = ifp->if_u1.if_ext_irec->er_extbuf; 4281 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t)); 4282 ifp->if_flags &= ~XFS_IFEXTIREC; 4283 ifp->if_u1.if_extents = ep; 4284 ifp->if_bytes = size; 4285 if (nextents < XFS_LINEAR_EXTS) { 4286 xfs_iext_realloc_direct(ifp, size); 4287 } 4288 } 4289 4290 /* 4291 * Free incore file extents. 4292 */ 4293 void 4294 xfs_iext_destroy( 4295 xfs_ifork_t *ifp) /* inode fork pointer */ 4296 { 4297 if (ifp->if_flags & XFS_IFEXTIREC) { 4298 int erp_idx; 4299 int nlists; 4300 4301 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4302 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { 4303 xfs_iext_irec_remove(ifp, erp_idx); 4304 } 4305 ifp->if_flags &= ~XFS_IFEXTIREC; 4306 } else if (ifp->if_real_bytes) { 4307 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); 4308 } else if (ifp->if_bytes) { 4309 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 4310 sizeof(xfs_bmbt_rec_t)); 4311 } 4312 ifp->if_u1.if_extents = NULL; 4313 ifp->if_real_bytes = 0; 4314 ifp->if_bytes = 0; 4315 } 4316 4317 /* 4318 * Return a pointer to the extent record for file system block bno. 4319 */ 4320 xfs_bmbt_rec_t * /* pointer to found extent record */ 4321 xfs_iext_bno_to_ext( 4322 xfs_ifork_t *ifp, /* inode fork pointer */ 4323 xfs_fileoff_t bno, /* block number to search for */ 4324 xfs_extnum_t *idxp) /* index of target extent */ 4325 { 4326 xfs_bmbt_rec_t *base; /* pointer to first extent */ 4327 xfs_filblks_t blockcount = 0; /* number of blocks in extent */ 4328 xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */ 4329 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 4330 int high; /* upper boundary in search */ 4331 xfs_extnum_t idx = 0; /* index of target extent */ 4332 int low; /* lower boundary in search */ 4333 xfs_extnum_t nextents; /* number of file extents */ 4334 xfs_fileoff_t startoff = 0; /* start offset of extent */ 4335 4336 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4337 if (nextents == 0) { 4338 *idxp = 0; 4339 return NULL; 4340 } 4341 low = 0; 4342 if (ifp->if_flags & XFS_IFEXTIREC) { 4343 /* Find target extent list */ 4344 int erp_idx = 0; 4345 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); 4346 base = erp->er_extbuf; 4347 high = erp->er_extcount - 1; 4348 } else { 4349 base = ifp->if_u1.if_extents; 4350 high = nextents - 1; 4351 } 4352 /* Binary search extent records */ 4353 while (low <= high) { 4354 idx = (low + high) >> 1; 4355 ep = base + idx; 4356 startoff = xfs_bmbt_get_startoff(ep); 4357 blockcount = xfs_bmbt_get_blockcount(ep); 4358 if (bno < startoff) { 4359 high = idx - 1; 4360 } else if (bno >= startoff + blockcount) { 4361 low = idx + 1; 4362 } else { 4363 /* Convert back to file-based extent index */ 4364 if (ifp->if_flags & XFS_IFEXTIREC) { 4365 idx += erp->er_extoff; 4366 } 4367 *idxp = idx; 4368 return ep; 4369 } 4370 } 4371 /* Convert back to file-based extent index */ 4372 if (ifp->if_flags & XFS_IFEXTIREC) { 4373 idx += erp->er_extoff; 4374 } 4375 if (bno >= startoff + blockcount) { 4376 if (++idx == nextents) { 4377 ep = NULL; 4378 } else { 4379 ep = xfs_iext_get_ext(ifp, idx); 4380 } 4381 } 4382 *idxp = idx; 4383 return ep; 4384 } 4385 4386 /* 4387 * Return a pointer to the indirection array entry containing the 4388 * extent record for filesystem block bno. Store the index of the 4389 * target irec in *erp_idxp. 4390 */ 4391 xfs_ext_irec_t * /* pointer to found extent record */ 4392 xfs_iext_bno_to_irec( 4393 xfs_ifork_t *ifp, /* inode fork pointer */ 4394 xfs_fileoff_t bno, /* block number to search for */ 4395 int *erp_idxp) /* irec index of target ext list */ 4396 { 4397 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 4398 xfs_ext_irec_t *erp_next; /* next indirection array entry */ 4399 int erp_idx; /* indirection array index */ 4400 int nlists; /* number of extent irec's (lists) */ 4401 int high; /* binary search upper limit */ 4402 int low; /* binary search lower limit */ 4403 4404 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4405 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4406 erp_idx = 0; 4407 low = 0; 4408 high = nlists - 1; 4409 while (low <= high) { 4410 erp_idx = (low + high) >> 1; 4411 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4412 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; 4413 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { 4414 high = erp_idx - 1; 4415 } else if (erp_next && bno >= 4416 xfs_bmbt_get_startoff(erp_next->er_extbuf)) { 4417 low = erp_idx + 1; 4418 } else { 4419 break; 4420 } 4421 } 4422 *erp_idxp = erp_idx; 4423 return erp; 4424 } 4425 4426 /* 4427 * Return a pointer to the indirection array entry containing the 4428 * extent record at file extent index *idxp. Store the index of the 4429 * target irec in *erp_idxp and store the page index of the target 4430 * extent record in *idxp. 4431 */ 4432 xfs_ext_irec_t * 4433 xfs_iext_idx_to_irec( 4434 xfs_ifork_t *ifp, /* inode fork pointer */ 4435 xfs_extnum_t *idxp, /* extent index (file -> page) */ 4436 int *erp_idxp, /* pointer to target irec */ 4437 int realloc) /* new bytes were just added */ 4438 { 4439 xfs_ext_irec_t *prev; /* pointer to previous irec */ 4440 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ 4441 int erp_idx; /* indirection array index */ 4442 int nlists; /* number of irec's (ex lists) */ 4443 int high; /* binary search upper limit */ 4444 int low; /* binary search lower limit */ 4445 xfs_extnum_t page_idx = *idxp; /* extent index in target list */ 4446 4447 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4448 ASSERT(page_idx >= 0 && page_idx <= 4449 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t)); 4450 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4451 erp_idx = 0; 4452 low = 0; 4453 high = nlists - 1; 4454 4455 /* Binary search extent irec's */ 4456 while (low <= high) { 4457 erp_idx = (low + high) >> 1; 4458 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4459 prev = erp_idx > 0 ? erp - 1 : NULL; 4460 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && 4461 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { 4462 high = erp_idx - 1; 4463 } else if (page_idx > erp->er_extoff + erp->er_extcount || 4464 (page_idx == erp->er_extoff + erp->er_extcount && 4465 !realloc)) { 4466 low = erp_idx + 1; 4467 } else if (page_idx == erp->er_extoff + erp->er_extcount && 4468 erp->er_extcount == XFS_LINEAR_EXTS) { 4469 ASSERT(realloc); 4470 page_idx = 0; 4471 erp_idx++; 4472 erp = erp_idx < nlists ? erp + 1 : NULL; 4473 break; 4474 } else { 4475 page_idx -= erp->er_extoff; 4476 break; 4477 } 4478 } 4479 *idxp = page_idx; 4480 *erp_idxp = erp_idx; 4481 return(erp); 4482 } 4483 4484 /* 4485 * Allocate and initialize an indirection array once the space needed 4486 * for incore extents increases above XFS_IEXT_BUFSZ. 4487 */ 4488 void 4489 xfs_iext_irec_init( 4490 xfs_ifork_t *ifp) /* inode fork pointer */ 4491 { 4492 xfs_ext_irec_t *erp; /* indirection array pointer */ 4493 xfs_extnum_t nextents; /* number of extents in file */ 4494 4495 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 4496 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4497 ASSERT(nextents <= XFS_LINEAR_EXTS); 4498 4499 erp = (xfs_ext_irec_t *) 4500 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP); 4501 4502 if (nextents == 0) { 4503 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) 4504 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP); 4505 } else if (!ifp->if_real_bytes) { 4506 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); 4507 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { 4508 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); 4509 } 4510 erp->er_extbuf = ifp->if_u1.if_extents; 4511 erp->er_extcount = nextents; 4512 erp->er_extoff = 0; 4513 4514 ifp->if_flags |= XFS_IFEXTIREC; 4515 ifp->if_real_bytes = XFS_IEXT_BUFSZ; 4516 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); 4517 ifp->if_u1.if_ext_irec = erp; 4518 4519 return; 4520 } 4521 4522 /* 4523 * Allocate and initialize a new entry in the indirection array. 4524 */ 4525 xfs_ext_irec_t * 4526 xfs_iext_irec_new( 4527 xfs_ifork_t *ifp, /* inode fork pointer */ 4528 int erp_idx) /* index for new irec */ 4529 { 4530 xfs_ext_irec_t *erp; /* indirection array pointer */ 4531 int i; /* loop counter */ 4532 int nlists; /* number of irec's (ex lists) */ 4533 4534 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4535 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4536 4537 /* Resize indirection array */ 4538 xfs_iext_realloc_indirect(ifp, ++nlists * 4539 sizeof(xfs_ext_irec_t)); 4540 /* 4541 * Move records down in the array so the 4542 * new page can use erp_idx. 4543 */ 4544 erp = ifp->if_u1.if_ext_irec; 4545 for (i = nlists - 1; i > erp_idx; i--) { 4546 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); 4547 } 4548 ASSERT(i == erp_idx); 4549 4550 /* Initialize new extent record */ 4551 erp = ifp->if_u1.if_ext_irec; 4552 erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *) 4553 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP); 4554 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4555 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); 4556 erp[erp_idx].er_extcount = 0; 4557 erp[erp_idx].er_extoff = erp_idx > 0 ? 4558 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; 4559 return (&erp[erp_idx]); 4560 } 4561 4562 /* 4563 * Remove a record from the indirection array. 4564 */ 4565 void 4566 xfs_iext_irec_remove( 4567 xfs_ifork_t *ifp, /* inode fork pointer */ 4568 int erp_idx) /* irec index to remove */ 4569 { 4570 xfs_ext_irec_t *erp; /* indirection array pointer */ 4571 int i; /* loop counter */ 4572 int nlists; /* number of irec's (ex lists) */ 4573 4574 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4575 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4576 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4577 if (erp->er_extbuf) { 4578 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, 4579 -erp->er_extcount); 4580 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ); 4581 } 4582 /* Compact extent records */ 4583 erp = ifp->if_u1.if_ext_irec; 4584 for (i = erp_idx; i < nlists - 1; i++) { 4585 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); 4586 } 4587 /* 4588 * Manually free the last extent record from the indirection 4589 * array. A call to xfs_iext_realloc_indirect() with a size 4590 * of zero would result in a call to xfs_iext_destroy() which 4591 * would in turn call this function again, creating a nasty 4592 * infinite loop. 4593 */ 4594 if (--nlists) { 4595 xfs_iext_realloc_indirect(ifp, 4596 nlists * sizeof(xfs_ext_irec_t)); 4597 } else { 4598 kmem_free(ifp->if_u1.if_ext_irec, 4599 sizeof(xfs_ext_irec_t)); 4600 } 4601 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4602 } 4603 4604 /* 4605 * This is called to clean up large amounts of unused memory allocated 4606 * by the indirection array. Before compacting anything though, verify 4607 * that the indirection array is still needed and switch back to the 4608 * linear extent list (or even the inline buffer) if possible. The 4609 * compaction policy is as follows: 4610 * 4611 * Full Compaction: Extents fit into a single page (or inline buffer) 4612 * Full Compaction: Extents occupy less than 10% of allocated space 4613 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space 4614 * No Compaction: Extents occupy at least 50% of allocated space 4615 */ 4616 void 4617 xfs_iext_irec_compact( 4618 xfs_ifork_t *ifp) /* inode fork pointer */ 4619 { 4620 xfs_extnum_t nextents; /* number of extents in file */ 4621 int nlists; /* number of irec's (ex lists) */ 4622 4623 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4624 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4625 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4626 4627 if (nextents == 0) { 4628 xfs_iext_destroy(ifp); 4629 } else if (nextents <= XFS_INLINE_EXTS) { 4630 xfs_iext_indirect_to_direct(ifp); 4631 xfs_iext_direct_to_inline(ifp, nextents); 4632 } else if (nextents <= XFS_LINEAR_EXTS) { 4633 xfs_iext_indirect_to_direct(ifp); 4634 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) { 4635 xfs_iext_irec_compact_full(ifp); 4636 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { 4637 xfs_iext_irec_compact_pages(ifp); 4638 } 4639 } 4640 4641 /* 4642 * Combine extents from neighboring extent pages. 4643 */ 4644 void 4645 xfs_iext_irec_compact_pages( 4646 xfs_ifork_t *ifp) /* inode fork pointer */ 4647 { 4648 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ 4649 int erp_idx = 0; /* indirection array index */ 4650 int nlists; /* number of irec's (ex lists) */ 4651 4652 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4653 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4654 while (erp_idx < nlists - 1) { 4655 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4656 erp_next = erp + 1; 4657 if (erp_next->er_extcount <= 4658 (XFS_LINEAR_EXTS - erp->er_extcount)) { 4659 memmove(&erp->er_extbuf[erp->er_extcount], 4660 erp_next->er_extbuf, erp_next->er_extcount * 4661 sizeof(xfs_bmbt_rec_t)); 4662 erp->er_extcount += erp_next->er_extcount; 4663 /* 4664 * Free page before removing extent record 4665 * so er_extoffs don't get modified in 4666 * xfs_iext_irec_remove. 4667 */ 4668 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ); 4669 erp_next->er_extbuf = NULL; 4670 xfs_iext_irec_remove(ifp, erp_idx + 1); 4671 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4672 } else { 4673 erp_idx++; 4674 } 4675 } 4676 } 4677 4678 /* 4679 * Fully compact the extent records managed by the indirection array. 4680 */ 4681 void 4682 xfs_iext_irec_compact_full( 4683 xfs_ifork_t *ifp) /* inode fork pointer */ 4684 { 4685 xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */ 4686 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */ 4687 int erp_idx = 0; /* extent irec index */ 4688 int ext_avail; /* empty entries in ex list */ 4689 int ext_diff; /* number of exts to add */ 4690 int nlists; /* number of irec's (ex lists) */ 4691 4692 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4693 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4694 erp = ifp->if_u1.if_ext_irec; 4695 ep = &erp->er_extbuf[erp->er_extcount]; 4696 erp_next = erp + 1; 4697 ep_next = erp_next->er_extbuf; 4698 while (erp_idx < nlists - 1) { 4699 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 4700 ext_diff = MIN(ext_avail, erp_next->er_extcount); 4701 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t)); 4702 erp->er_extcount += ext_diff; 4703 erp_next->er_extcount -= ext_diff; 4704 /* Remove next page */ 4705 if (erp_next->er_extcount == 0) { 4706 /* 4707 * Free page before removing extent record 4708 * so er_extoffs don't get modified in 4709 * xfs_iext_irec_remove. 4710 */ 4711 kmem_free(erp_next->er_extbuf, 4712 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t)); 4713 erp_next->er_extbuf = NULL; 4714 xfs_iext_irec_remove(ifp, erp_idx + 1); 4715 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4716 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4717 /* Update next page */ 4718 } else { 4719 /* Move rest of page up to become next new page */ 4720 memmove(erp_next->er_extbuf, ep_next, 4721 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t)); 4722 ep_next = erp_next->er_extbuf; 4723 memset(&ep_next[erp_next->er_extcount], 0, 4724 (XFS_LINEAR_EXTS - erp_next->er_extcount) * 4725 sizeof(xfs_bmbt_rec_t)); 4726 } 4727 if (erp->er_extcount == XFS_LINEAR_EXTS) { 4728 erp_idx++; 4729 if (erp_idx < nlists) 4730 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4731 else 4732 break; 4733 } 4734 ep = &erp->er_extbuf[erp->er_extcount]; 4735 erp_next = erp + 1; 4736 ep_next = erp_next->er_extbuf; 4737 } 4738 } 4739 4740 /* 4741 * This is called to update the er_extoff field in the indirection 4742 * array when extents have been added or removed from one of the 4743 * extent lists. erp_idx contains the irec index to begin updating 4744 * at and ext_diff contains the number of extents that were added 4745 * or removed. 4746 */ 4747 void 4748 xfs_iext_irec_update_extoffs( 4749 xfs_ifork_t *ifp, /* inode fork pointer */ 4750 int erp_idx, /* irec index to update */ 4751 int ext_diff) /* number of new extents */ 4752 { 4753 int i; /* loop counter */ 4754 int nlists; /* number of irec's (ex lists */ 4755 4756 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4757 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4758 for (i = erp_idx; i < nlists; i++) { 4759 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; 4760 } 4761 } 4762