xref: /linux/fs/xfs/xfs_inode.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_imap.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_dir2.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
44 #include "xfs_bmap.h"
45 #include "xfs_rw.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
50 #include "xfs_acl.h"
51 
52 
53 kmem_zone_t *xfs_ifork_zone;
54 kmem_zone_t *xfs_inode_zone;
55 kmem_zone_t *xfs_chashlist_zone;
56 
57 /*
58  * Used in xfs_itruncate().  This is the maximum number of extents
59  * freed from a file in a single transaction.
60  */
61 #define	XFS_ITRUNC_MAX_EXTENTS	2
62 
63 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
64 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
65 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
66 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
67 
68 
69 #ifdef DEBUG
70 /*
71  * Make sure that the extents in the given memory buffer
72  * are valid.
73  */
74 STATIC void
75 xfs_validate_extents(
76 	xfs_ifork_t		*ifp,
77 	int			nrecs,
78 	int			disk,
79 	xfs_exntfmt_t		fmt)
80 {
81 	xfs_bmbt_rec_t		*ep;
82 	xfs_bmbt_irec_t		irec;
83 	xfs_bmbt_rec_t		rec;
84 	int			i;
85 
86 	for (i = 0; i < nrecs; i++) {
87 		ep = xfs_iext_get_ext(ifp, i);
88 		rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
89 		rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
90 		if (disk)
91 			xfs_bmbt_disk_get_all(&rec, &irec);
92 		else
93 			xfs_bmbt_get_all(&rec, &irec);
94 		if (fmt == XFS_EXTFMT_NOSTATE)
95 			ASSERT(irec.br_state == XFS_EXT_NORM);
96 	}
97 }
98 #else /* DEBUG */
99 #define xfs_validate_extents(ifp, nrecs, disk, fmt)
100 #endif /* DEBUG */
101 
102 /*
103  * Check that none of the inode's in the buffer have a next
104  * unlinked field of 0.
105  */
106 #if defined(DEBUG)
107 void
108 xfs_inobp_check(
109 	xfs_mount_t	*mp,
110 	xfs_buf_t	*bp)
111 {
112 	int		i;
113 	int		j;
114 	xfs_dinode_t	*dip;
115 
116 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
117 
118 	for (i = 0; i < j; i++) {
119 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
120 					i * mp->m_sb.sb_inodesize);
121 		if (!dip->di_next_unlinked)  {
122 			xfs_fs_cmn_err(CE_ALERT, mp,
123 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
124 				bp);
125 			ASSERT(dip->di_next_unlinked);
126 		}
127 	}
128 }
129 #endif
130 
131 /*
132  * This routine is called to map an inode number within a file
133  * system to the buffer containing the on-disk version of the
134  * inode.  It returns a pointer to the buffer containing the
135  * on-disk inode in the bpp parameter, and in the dip parameter
136  * it returns a pointer to the on-disk inode within that buffer.
137  *
138  * If a non-zero error is returned, then the contents of bpp and
139  * dipp are undefined.
140  *
141  * Use xfs_imap() to determine the size and location of the
142  * buffer to read from disk.
143  */
144 STATIC int
145 xfs_inotobp(
146 	xfs_mount_t	*mp,
147 	xfs_trans_t	*tp,
148 	xfs_ino_t	ino,
149 	xfs_dinode_t	**dipp,
150 	xfs_buf_t	**bpp,
151 	int		*offset)
152 {
153 	int		di_ok;
154 	xfs_imap_t	imap;
155 	xfs_buf_t	*bp;
156 	int		error;
157 	xfs_dinode_t	*dip;
158 
159 	/*
160 	 * Call the space management code to find the location of the
161 	 * inode on disk.
162 	 */
163 	imap.im_blkno = 0;
164 	error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
165 	if (error != 0) {
166 		cmn_err(CE_WARN,
167 	"xfs_inotobp: xfs_imap()  returned an "
168 	"error %d on %s.  Returning error.", error, mp->m_fsname);
169 		return error;
170 	}
171 
172 	/*
173 	 * If the inode number maps to a block outside the bounds of the
174 	 * file system then return NULL rather than calling read_buf
175 	 * and panicing when we get an error from the driver.
176 	 */
177 	if ((imap.im_blkno + imap.im_len) >
178 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
179 		cmn_err(CE_WARN,
180 	"xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
181 	"of the file system %s.  Returning EINVAL.",
182 			(unsigned long long)imap.im_blkno,
183 			imap.im_len, mp->m_fsname);
184 		return XFS_ERROR(EINVAL);
185 	}
186 
187 	/*
188 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
189 	 * default to just a read_buf() call.
190 	 */
191 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
192 				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
193 
194 	if (error) {
195 		cmn_err(CE_WARN,
196 	"xfs_inotobp: xfs_trans_read_buf()  returned an "
197 	"error %d on %s.  Returning error.", error, mp->m_fsname);
198 		return error;
199 	}
200 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
201 	di_ok =
202 		INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
203 		XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
204 	if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
205 			XFS_RANDOM_ITOBP_INOTOBP))) {
206 		XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
207 		xfs_trans_brelse(tp, bp);
208 		cmn_err(CE_WARN,
209 	"xfs_inotobp: XFS_TEST_ERROR()  returned an "
210 	"error on %s.  Returning EFSCORRUPTED.",  mp->m_fsname);
211 		return XFS_ERROR(EFSCORRUPTED);
212 	}
213 
214 	xfs_inobp_check(mp, bp);
215 
216 	/*
217 	 * Set *dipp to point to the on-disk inode in the buffer.
218 	 */
219 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
220 	*bpp = bp;
221 	*offset = imap.im_boffset;
222 	return 0;
223 }
224 
225 
226 /*
227  * This routine is called to map an inode to the buffer containing
228  * the on-disk version of the inode.  It returns a pointer to the
229  * buffer containing the on-disk inode in the bpp parameter, and in
230  * the dip parameter it returns a pointer to the on-disk inode within
231  * that buffer.
232  *
233  * If a non-zero error is returned, then the contents of bpp and
234  * dipp are undefined.
235  *
236  * If the inode is new and has not yet been initialized, use xfs_imap()
237  * to determine the size and location of the buffer to read from disk.
238  * If the inode has already been mapped to its buffer and read in once,
239  * then use the mapping information stored in the inode rather than
240  * calling xfs_imap().  This allows us to avoid the overhead of looking
241  * at the inode btree for small block file systems (see xfs_dilocate()).
242  * We can tell whether the inode has been mapped in before by comparing
243  * its disk block address to 0.  Only uninitialized inodes will have
244  * 0 for the disk block address.
245  */
246 int
247 xfs_itobp(
248 	xfs_mount_t	*mp,
249 	xfs_trans_t	*tp,
250 	xfs_inode_t	*ip,
251 	xfs_dinode_t	**dipp,
252 	xfs_buf_t	**bpp,
253 	xfs_daddr_t	bno,
254 	uint		imap_flags)
255 {
256 	xfs_imap_t	imap;
257 	xfs_buf_t	*bp;
258 	int		error;
259 	int		i;
260 	int		ni;
261 
262 	if (ip->i_blkno == (xfs_daddr_t)0) {
263 		/*
264 		 * Call the space management code to find the location of the
265 		 * inode on disk.
266 		 */
267 		imap.im_blkno = bno;
268 		if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
269 					XFS_IMAP_LOOKUP | imap_flags)))
270 			return error;
271 
272 		/*
273 		 * If the inode number maps to a block outside the bounds
274 		 * of the file system then return NULL rather than calling
275 		 * read_buf and panicing when we get an error from the
276 		 * driver.
277 		 */
278 		if ((imap.im_blkno + imap.im_len) >
279 		    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
280 #ifdef DEBUG
281 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
282 					"(imap.im_blkno (0x%llx) "
283 					"+ imap.im_len (0x%llx)) > "
284 					" XFS_FSB_TO_BB(mp, "
285 					"mp->m_sb.sb_dblocks) (0x%llx)",
286 					(unsigned long long) imap.im_blkno,
287 					(unsigned long long) imap.im_len,
288 					XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
289 #endif /* DEBUG */
290 			return XFS_ERROR(EINVAL);
291 		}
292 
293 		/*
294 		 * Fill in the fields in the inode that will be used to
295 		 * map the inode to its buffer from now on.
296 		 */
297 		ip->i_blkno = imap.im_blkno;
298 		ip->i_len = imap.im_len;
299 		ip->i_boffset = imap.im_boffset;
300 	} else {
301 		/*
302 		 * We've already mapped the inode once, so just use the
303 		 * mapping that we saved the first time.
304 		 */
305 		imap.im_blkno = ip->i_blkno;
306 		imap.im_len = ip->i_len;
307 		imap.im_boffset = ip->i_boffset;
308 	}
309 	ASSERT(bno == 0 || bno == imap.im_blkno);
310 
311 	/*
312 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
313 	 * default to just a read_buf() call.
314 	 */
315 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
316 				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
317 	if (error) {
318 #ifdef DEBUG
319 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
320 				"xfs_trans_read_buf() returned error %d, "
321 				"imap.im_blkno 0x%llx, imap.im_len 0x%llx",
322 				error, (unsigned long long) imap.im_blkno,
323 				(unsigned long long) imap.im_len);
324 #endif /* DEBUG */
325 		return error;
326 	}
327 
328 	/*
329 	 * Validate the magic number and version of every inode in the buffer
330 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
331 	 * No validation is done here in userspace (xfs_repair).
332 	 */
333 #if !defined(__KERNEL__)
334 	ni = 0;
335 #elif defined(DEBUG)
336 	ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
337 #else	/* usual case */
338 	ni = 1;
339 #endif
340 
341 	for (i = 0; i < ni; i++) {
342 		int		di_ok;
343 		xfs_dinode_t	*dip;
344 
345 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
346 					(i << mp->m_sb.sb_inodelog));
347 		di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
348 			    XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
349 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
350 						XFS_ERRTAG_ITOBP_INOTOBP,
351 						XFS_RANDOM_ITOBP_INOTOBP))) {
352 			if (imap_flags & XFS_IMAP_BULKSTAT) {
353 				xfs_trans_brelse(tp, bp);
354 				return XFS_ERROR(EINVAL);
355 			}
356 #ifdef DEBUG
357 			cmn_err(CE_ALERT,
358 					"Device %s - bad inode magic/vsn "
359 					"daddr %lld #%d (magic=%x)",
360 				XFS_BUFTARG_NAME(mp->m_ddev_targp),
361 				(unsigned long long)imap.im_blkno, i,
362 				INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
363 #endif
364 			XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
365 					     mp, dip);
366 			xfs_trans_brelse(tp, bp);
367 			return XFS_ERROR(EFSCORRUPTED);
368 		}
369 	}
370 
371 	xfs_inobp_check(mp, bp);
372 
373 	/*
374 	 * Mark the buffer as an inode buffer now that it looks good
375 	 */
376 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
377 
378 	/*
379 	 * Set *dipp to point to the on-disk inode in the buffer.
380 	 */
381 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
382 	*bpp = bp;
383 	return 0;
384 }
385 
386 /*
387  * Move inode type and inode format specific information from the
388  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
389  * this means set if_rdev to the proper value.  For files, directories,
390  * and symlinks this means to bring in the in-line data or extent
391  * pointers.  For a file in B-tree format, only the root is immediately
392  * brought in-core.  The rest will be in-lined in if_extents when it
393  * is first referenced (see xfs_iread_extents()).
394  */
395 STATIC int
396 xfs_iformat(
397 	xfs_inode_t		*ip,
398 	xfs_dinode_t		*dip)
399 {
400 	xfs_attr_shortform_t	*atp;
401 	int			size;
402 	int			error;
403 	xfs_fsize_t             di_size;
404 	ip->i_df.if_ext_max =
405 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
406 	error = 0;
407 
408 	if (unlikely(
409 	    INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
410 		INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
411 	    INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
412 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
413 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
414 			(unsigned long long)ip->i_ino,
415 			(int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
416 			    + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
417 			(unsigned long long)
418 			INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
419 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
420 				     ip->i_mount, dip);
421 		return XFS_ERROR(EFSCORRUPTED);
422 	}
423 
424 	if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
425 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
426 			"corrupt dinode %Lu, forkoff = 0x%x.",
427 			(unsigned long long)ip->i_ino,
428 			(int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
429 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
430 				     ip->i_mount, dip);
431 		return XFS_ERROR(EFSCORRUPTED);
432 	}
433 
434 	switch (ip->i_d.di_mode & S_IFMT) {
435 	case S_IFIFO:
436 	case S_IFCHR:
437 	case S_IFBLK:
438 	case S_IFSOCK:
439 		if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
440 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
441 					      ip->i_mount, dip);
442 			return XFS_ERROR(EFSCORRUPTED);
443 		}
444 		ip->i_d.di_size = 0;
445 		ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
446 		break;
447 
448 	case S_IFREG:
449 	case S_IFLNK:
450 	case S_IFDIR:
451 		switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
452 		case XFS_DINODE_FMT_LOCAL:
453 			/*
454 			 * no local regular files yet
455 			 */
456 			if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
457 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
458 					"corrupt inode %Lu "
459 					"(local format for regular file).",
460 					(unsigned long long) ip->i_ino);
461 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
462 						     XFS_ERRLEVEL_LOW,
463 						     ip->i_mount, dip);
464 				return XFS_ERROR(EFSCORRUPTED);
465 			}
466 
467 			di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
468 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
469 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
470 					"corrupt inode %Lu "
471 					"(bad size %Ld for local inode).",
472 					(unsigned long long) ip->i_ino,
473 					(long long) di_size);
474 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
475 						     XFS_ERRLEVEL_LOW,
476 						     ip->i_mount, dip);
477 				return XFS_ERROR(EFSCORRUPTED);
478 			}
479 
480 			size = (int)di_size;
481 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
482 			break;
483 		case XFS_DINODE_FMT_EXTENTS:
484 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
485 			break;
486 		case XFS_DINODE_FMT_BTREE:
487 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
488 			break;
489 		default:
490 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
491 					 ip->i_mount);
492 			return XFS_ERROR(EFSCORRUPTED);
493 		}
494 		break;
495 
496 	default:
497 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
498 		return XFS_ERROR(EFSCORRUPTED);
499 	}
500 	if (error) {
501 		return error;
502 	}
503 	if (!XFS_DFORK_Q(dip))
504 		return 0;
505 	ASSERT(ip->i_afp == NULL);
506 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
507 	ip->i_afp->if_ext_max =
508 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
509 	switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
510 	case XFS_DINODE_FMT_LOCAL:
511 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
512 		size = be16_to_cpu(atp->hdr.totsize);
513 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
514 		break;
515 	case XFS_DINODE_FMT_EXTENTS:
516 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
517 		break;
518 	case XFS_DINODE_FMT_BTREE:
519 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
520 		break;
521 	default:
522 		error = XFS_ERROR(EFSCORRUPTED);
523 		break;
524 	}
525 	if (error) {
526 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
527 		ip->i_afp = NULL;
528 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
529 	}
530 	return error;
531 }
532 
533 /*
534  * The file is in-lined in the on-disk inode.
535  * If it fits into if_inline_data, then copy
536  * it there, otherwise allocate a buffer for it
537  * and copy the data there.  Either way, set
538  * if_data to point at the data.
539  * If we allocate a buffer for the data, make
540  * sure that its size is a multiple of 4 and
541  * record the real size in i_real_bytes.
542  */
543 STATIC int
544 xfs_iformat_local(
545 	xfs_inode_t	*ip,
546 	xfs_dinode_t	*dip,
547 	int		whichfork,
548 	int		size)
549 {
550 	xfs_ifork_t	*ifp;
551 	int		real_size;
552 
553 	/*
554 	 * If the size is unreasonable, then something
555 	 * is wrong and we just bail out rather than crash in
556 	 * kmem_alloc() or memcpy() below.
557 	 */
558 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
559 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
560 			"corrupt inode %Lu "
561 			"(bad size %d for local fork, size = %d).",
562 			(unsigned long long) ip->i_ino, size,
563 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
564 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
565 				     ip->i_mount, dip);
566 		return XFS_ERROR(EFSCORRUPTED);
567 	}
568 	ifp = XFS_IFORK_PTR(ip, whichfork);
569 	real_size = 0;
570 	if (size == 0)
571 		ifp->if_u1.if_data = NULL;
572 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
573 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
574 	else {
575 		real_size = roundup(size, 4);
576 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
577 	}
578 	ifp->if_bytes = size;
579 	ifp->if_real_bytes = real_size;
580 	if (size)
581 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
582 	ifp->if_flags &= ~XFS_IFEXTENTS;
583 	ifp->if_flags |= XFS_IFINLINE;
584 	return 0;
585 }
586 
587 /*
588  * The file consists of a set of extents all
589  * of which fit into the on-disk inode.
590  * If there are few enough extents to fit into
591  * the if_inline_ext, then copy them there.
592  * Otherwise allocate a buffer for them and copy
593  * them into it.  Either way, set if_extents
594  * to point at the extents.
595  */
596 STATIC int
597 xfs_iformat_extents(
598 	xfs_inode_t	*ip,
599 	xfs_dinode_t	*dip,
600 	int		whichfork)
601 {
602 	xfs_bmbt_rec_t	*ep, *dp;
603 	xfs_ifork_t	*ifp;
604 	int		nex;
605 	int		size;
606 	int		i;
607 
608 	ifp = XFS_IFORK_PTR(ip, whichfork);
609 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
610 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
611 
612 	/*
613 	 * If the number of extents is unreasonable, then something
614 	 * is wrong and we just bail out rather than crash in
615 	 * kmem_alloc() or memcpy() below.
616 	 */
617 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
618 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
619 			"corrupt inode %Lu ((a)extents = %d).",
620 			(unsigned long long) ip->i_ino, nex);
621 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
622 				     ip->i_mount, dip);
623 		return XFS_ERROR(EFSCORRUPTED);
624 	}
625 
626 	ifp->if_real_bytes = 0;
627 	if (nex == 0)
628 		ifp->if_u1.if_extents = NULL;
629 	else if (nex <= XFS_INLINE_EXTS)
630 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
631 	else
632 		xfs_iext_add(ifp, 0, nex);
633 
634 	ifp->if_bytes = size;
635 	if (size) {
636 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
637 		xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
638 		for (i = 0; i < nex; i++, dp++) {
639 			ep = xfs_iext_get_ext(ifp, i);
640 			ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
641 								ARCH_CONVERT);
642 			ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
643 								ARCH_CONVERT);
644 		}
645 		xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
646 			whichfork);
647 		if (whichfork != XFS_DATA_FORK ||
648 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
649 				if (unlikely(xfs_check_nostate_extents(
650 				    ifp, 0, nex))) {
651 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
652 							 XFS_ERRLEVEL_LOW,
653 							 ip->i_mount);
654 					return XFS_ERROR(EFSCORRUPTED);
655 				}
656 	}
657 	ifp->if_flags |= XFS_IFEXTENTS;
658 	return 0;
659 }
660 
661 /*
662  * The file has too many extents to fit into
663  * the inode, so they are in B-tree format.
664  * Allocate a buffer for the root of the B-tree
665  * and copy the root into it.  The i_extents
666  * field will remain NULL until all of the
667  * extents are read in (when they are needed).
668  */
669 STATIC int
670 xfs_iformat_btree(
671 	xfs_inode_t		*ip,
672 	xfs_dinode_t		*dip,
673 	int			whichfork)
674 {
675 	xfs_bmdr_block_t	*dfp;
676 	xfs_ifork_t		*ifp;
677 	/* REFERENCED */
678 	int			nrecs;
679 	int			size;
680 
681 	ifp = XFS_IFORK_PTR(ip, whichfork);
682 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
683 	size = XFS_BMAP_BROOT_SPACE(dfp);
684 	nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
685 
686 	/*
687 	 * blow out if -- fork has less extents than can fit in
688 	 * fork (fork shouldn't be a btree format), root btree
689 	 * block has more records than can fit into the fork,
690 	 * or the number of extents is greater than the number of
691 	 * blocks.
692 	 */
693 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
694 	    || XFS_BMDR_SPACE_CALC(nrecs) >
695 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
696 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
697 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
698 			"corrupt inode %Lu (btree).",
699 			(unsigned long long) ip->i_ino);
700 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
701 				 ip->i_mount);
702 		return XFS_ERROR(EFSCORRUPTED);
703 	}
704 
705 	ifp->if_broot_bytes = size;
706 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
707 	ASSERT(ifp->if_broot != NULL);
708 	/*
709 	 * Copy and convert from the on-disk structure
710 	 * to the in-memory structure.
711 	 */
712 	xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
713 		ifp->if_broot, size);
714 	ifp->if_flags &= ~XFS_IFEXTENTS;
715 	ifp->if_flags |= XFS_IFBROOT;
716 
717 	return 0;
718 }
719 
720 /*
721  * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
722  * and native format
723  *
724  * buf  = on-disk representation
725  * dip  = native representation
726  * dir  = direction - +ve -> disk to native
727  *                    -ve -> native to disk
728  */
729 void
730 xfs_xlate_dinode_core(
731 	xfs_caddr_t		buf,
732 	xfs_dinode_core_t	*dip,
733 	int			dir)
734 {
735 	xfs_dinode_core_t	*buf_core = (xfs_dinode_core_t *)buf;
736 	xfs_dinode_core_t	*mem_core = (xfs_dinode_core_t *)dip;
737 	xfs_arch_t		arch = ARCH_CONVERT;
738 
739 	ASSERT(dir);
740 
741 	INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
742 	INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
743 	INT_XLATE(buf_core->di_version,	mem_core->di_version, dir, arch);
744 	INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
745 	INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
746 	INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
747 	INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
748 	INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
749 	INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
750 
751 	if (dir > 0) {
752 		memcpy(mem_core->di_pad, buf_core->di_pad,
753 			sizeof(buf_core->di_pad));
754 	} else {
755 		memcpy(buf_core->di_pad, mem_core->di_pad,
756 			sizeof(buf_core->di_pad));
757 	}
758 
759 	INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
760 
761 	INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
762 			dir, arch);
763 	INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
764 			dir, arch);
765 	INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
766 			dir, arch);
767 	INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
768 			dir, arch);
769 	INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
770 			dir, arch);
771 	INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
772 			dir, arch);
773 	INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
774 	INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
775 	INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
776 	INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
777 	INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
778 	INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
779 	INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
780 	INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
781 	INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
782 	INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
783 	INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
784 }
785 
786 STATIC uint
787 _xfs_dic2xflags(
788 	__uint16_t		di_flags)
789 {
790 	uint			flags = 0;
791 
792 	if (di_flags & XFS_DIFLAG_ANY) {
793 		if (di_flags & XFS_DIFLAG_REALTIME)
794 			flags |= XFS_XFLAG_REALTIME;
795 		if (di_flags & XFS_DIFLAG_PREALLOC)
796 			flags |= XFS_XFLAG_PREALLOC;
797 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
798 			flags |= XFS_XFLAG_IMMUTABLE;
799 		if (di_flags & XFS_DIFLAG_APPEND)
800 			flags |= XFS_XFLAG_APPEND;
801 		if (di_flags & XFS_DIFLAG_SYNC)
802 			flags |= XFS_XFLAG_SYNC;
803 		if (di_flags & XFS_DIFLAG_NOATIME)
804 			flags |= XFS_XFLAG_NOATIME;
805 		if (di_flags & XFS_DIFLAG_NODUMP)
806 			flags |= XFS_XFLAG_NODUMP;
807 		if (di_flags & XFS_DIFLAG_RTINHERIT)
808 			flags |= XFS_XFLAG_RTINHERIT;
809 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
810 			flags |= XFS_XFLAG_PROJINHERIT;
811 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
812 			flags |= XFS_XFLAG_NOSYMLINKS;
813 		if (di_flags & XFS_DIFLAG_EXTSIZE)
814 			flags |= XFS_XFLAG_EXTSIZE;
815 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
816 			flags |= XFS_XFLAG_EXTSZINHERIT;
817 		if (di_flags & XFS_DIFLAG_NODEFRAG)
818 			flags |= XFS_XFLAG_NODEFRAG;
819 	}
820 
821 	return flags;
822 }
823 
824 uint
825 xfs_ip2xflags(
826 	xfs_inode_t		*ip)
827 {
828 	xfs_dinode_core_t	*dic = &ip->i_d;
829 
830 	return _xfs_dic2xflags(dic->di_flags) |
831 				(XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
832 }
833 
834 uint
835 xfs_dic2xflags(
836 	xfs_dinode_core_t	*dic)
837 {
838 	return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
839 				(XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
840 }
841 
842 /*
843  * Given a mount structure and an inode number, return a pointer
844  * to a newly allocated in-core inode corresponding to the given
845  * inode number.
846  *
847  * Initialize the inode's attributes and extent pointers if it
848  * already has them (it will not if the inode has no links).
849  */
850 int
851 xfs_iread(
852 	xfs_mount_t	*mp,
853 	xfs_trans_t	*tp,
854 	xfs_ino_t	ino,
855 	xfs_inode_t	**ipp,
856 	xfs_daddr_t	bno,
857 	uint		imap_flags)
858 {
859 	xfs_buf_t	*bp;
860 	xfs_dinode_t	*dip;
861 	xfs_inode_t	*ip;
862 	int		error;
863 
864 	ASSERT(xfs_inode_zone != NULL);
865 
866 	ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
867 	ip->i_ino = ino;
868 	ip->i_mount = mp;
869 	spin_lock_init(&ip->i_flags_lock);
870 
871 	/*
872 	 * Get pointer's to the on-disk inode and the buffer containing it.
873 	 * If the inode number refers to a block outside the file system
874 	 * then xfs_itobp() will return NULL.  In this case we should
875 	 * return NULL as well.  Set i_blkno to 0 so that xfs_itobp() will
876 	 * know that this is a new incore inode.
877 	 */
878 	error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
879 	if (error) {
880 		kmem_zone_free(xfs_inode_zone, ip);
881 		return error;
882 	}
883 
884 	/*
885 	 * Initialize inode's trace buffers.
886 	 * Do this before xfs_iformat in case it adds entries.
887 	 */
888 #ifdef XFS_BMAP_TRACE
889 	ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
890 #endif
891 #ifdef XFS_BMBT_TRACE
892 	ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
893 #endif
894 #ifdef XFS_RW_TRACE
895 	ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
896 #endif
897 #ifdef XFS_ILOCK_TRACE
898 	ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
899 #endif
900 #ifdef XFS_DIR2_TRACE
901 	ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
902 #endif
903 
904 	/*
905 	 * If we got something that isn't an inode it means someone
906 	 * (nfs or dmi) has a stale handle.
907 	 */
908 	if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
909 		kmem_zone_free(xfs_inode_zone, ip);
910 		xfs_trans_brelse(tp, bp);
911 #ifdef DEBUG
912 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
913 				"dip->di_core.di_magic (0x%x) != "
914 				"XFS_DINODE_MAGIC (0x%x)",
915 				INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
916 				XFS_DINODE_MAGIC);
917 #endif /* DEBUG */
918 		return XFS_ERROR(EINVAL);
919 	}
920 
921 	/*
922 	 * If the on-disk inode is already linked to a directory
923 	 * entry, copy all of the inode into the in-core inode.
924 	 * xfs_iformat() handles copying in the inode format
925 	 * specific information.
926 	 * Otherwise, just get the truly permanent information.
927 	 */
928 	if (dip->di_core.di_mode) {
929 		xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
930 		     &(ip->i_d), 1);
931 		error = xfs_iformat(ip, dip);
932 		if (error)  {
933 			kmem_zone_free(xfs_inode_zone, ip);
934 			xfs_trans_brelse(tp, bp);
935 #ifdef DEBUG
936 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
937 					"xfs_iformat() returned error %d",
938 					error);
939 #endif /* DEBUG */
940 			return error;
941 		}
942 	} else {
943 		ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
944 		ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
945 		ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
946 		ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
947 		/*
948 		 * Make sure to pull in the mode here as well in
949 		 * case the inode is released without being used.
950 		 * This ensures that xfs_inactive() will see that
951 		 * the inode is already free and not try to mess
952 		 * with the uninitialized part of it.
953 		 */
954 		ip->i_d.di_mode = 0;
955 		/*
956 		 * Initialize the per-fork minima and maxima for a new
957 		 * inode here.  xfs_iformat will do it for old inodes.
958 		 */
959 		ip->i_df.if_ext_max =
960 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
961 	}
962 
963 	INIT_LIST_HEAD(&ip->i_reclaim);
964 
965 	/*
966 	 * The inode format changed when we moved the link count and
967 	 * made it 32 bits long.  If this is an old format inode,
968 	 * convert it in memory to look like a new one.  If it gets
969 	 * flushed to disk we will convert back before flushing or
970 	 * logging it.  We zero out the new projid field and the old link
971 	 * count field.  We'll handle clearing the pad field (the remains
972 	 * of the old uuid field) when we actually convert the inode to
973 	 * the new format. We don't change the version number so that we
974 	 * can distinguish this from a real new format inode.
975 	 */
976 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
977 		ip->i_d.di_nlink = ip->i_d.di_onlink;
978 		ip->i_d.di_onlink = 0;
979 		ip->i_d.di_projid = 0;
980 	}
981 
982 	ip->i_delayed_blks = 0;
983 
984 	/*
985 	 * Mark the buffer containing the inode as something to keep
986 	 * around for a while.  This helps to keep recently accessed
987 	 * meta-data in-core longer.
988 	 */
989 	 XFS_BUF_SET_REF(bp, XFS_INO_REF);
990 
991 	/*
992 	 * Use xfs_trans_brelse() to release the buffer containing the
993 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
994 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
995 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
996 	 * will only release the buffer if it is not dirty within the
997 	 * transaction.  It will be OK to release the buffer in this case,
998 	 * because inodes on disk are never destroyed and we will be
999 	 * locking the new in-core inode before putting it in the hash
1000 	 * table where other processes can find it.  Thus we don't have
1001 	 * to worry about the inode being changed just because we released
1002 	 * the buffer.
1003 	 */
1004 	xfs_trans_brelse(tp, bp);
1005 	*ipp = ip;
1006 	return 0;
1007 }
1008 
1009 /*
1010  * Read in extents from a btree-format inode.
1011  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
1012  */
1013 int
1014 xfs_iread_extents(
1015 	xfs_trans_t	*tp,
1016 	xfs_inode_t	*ip,
1017 	int		whichfork)
1018 {
1019 	int		error;
1020 	xfs_ifork_t	*ifp;
1021 	xfs_extnum_t	nextents;
1022 	size_t		size;
1023 
1024 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1025 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1026 				 ip->i_mount);
1027 		return XFS_ERROR(EFSCORRUPTED);
1028 	}
1029 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1030 	size = nextents * sizeof(xfs_bmbt_rec_t);
1031 	ifp = XFS_IFORK_PTR(ip, whichfork);
1032 
1033 	/*
1034 	 * We know that the size is valid (it's checked in iformat_btree)
1035 	 */
1036 	ifp->if_lastex = NULLEXTNUM;
1037 	ifp->if_bytes = ifp->if_real_bytes = 0;
1038 	ifp->if_flags |= XFS_IFEXTENTS;
1039 	xfs_iext_add(ifp, 0, nextents);
1040 	error = xfs_bmap_read_extents(tp, ip, whichfork);
1041 	if (error) {
1042 		xfs_iext_destroy(ifp);
1043 		ifp->if_flags &= ~XFS_IFEXTENTS;
1044 		return error;
1045 	}
1046 	xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
1047 	return 0;
1048 }
1049 
1050 /*
1051  * Allocate an inode on disk and return a copy of its in-core version.
1052  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
1053  * appropriately within the inode.  The uid and gid for the inode are
1054  * set according to the contents of the given cred structure.
1055  *
1056  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1057  * has a free inode available, call xfs_iget()
1058  * to obtain the in-core version of the allocated inode.  Finally,
1059  * fill in the inode and log its initial contents.  In this case,
1060  * ialloc_context would be set to NULL and call_again set to false.
1061  *
1062  * If xfs_dialloc() does not have an available inode,
1063  * it will replenish its supply by doing an allocation. Since we can
1064  * only do one allocation within a transaction without deadlocks, we
1065  * must commit the current transaction before returning the inode itself.
1066  * In this case, therefore, we will set call_again to true and return.
1067  * The caller should then commit the current transaction, start a new
1068  * transaction, and call xfs_ialloc() again to actually get the inode.
1069  *
1070  * To ensure that some other process does not grab the inode that
1071  * was allocated during the first call to xfs_ialloc(), this routine
1072  * also returns the [locked] bp pointing to the head of the freelist
1073  * as ialloc_context.  The caller should hold this buffer across
1074  * the commit and pass it back into this routine on the second call.
1075  */
1076 int
1077 xfs_ialloc(
1078 	xfs_trans_t	*tp,
1079 	xfs_inode_t	*pip,
1080 	mode_t		mode,
1081 	xfs_nlink_t	nlink,
1082 	xfs_dev_t	rdev,
1083 	cred_t		*cr,
1084 	xfs_prid_t	prid,
1085 	int		okalloc,
1086 	xfs_buf_t	**ialloc_context,
1087 	boolean_t	*call_again,
1088 	xfs_inode_t	**ipp)
1089 {
1090 	xfs_ino_t	ino;
1091 	xfs_inode_t	*ip;
1092 	bhv_vnode_t	*vp;
1093 	uint		flags;
1094 	int		error;
1095 
1096 	/*
1097 	 * Call the space management code to pick
1098 	 * the on-disk inode to be allocated.
1099 	 */
1100 	error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1101 			    ialloc_context, call_again, &ino);
1102 	if (error != 0) {
1103 		return error;
1104 	}
1105 	if (*call_again || ino == NULLFSINO) {
1106 		*ipp = NULL;
1107 		return 0;
1108 	}
1109 	ASSERT(*ialloc_context == NULL);
1110 
1111 	/*
1112 	 * Get the in-core inode with the lock held exclusively.
1113 	 * This is because we're setting fields here we need
1114 	 * to prevent others from looking at until we're done.
1115 	 */
1116 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1117 				XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1118 	if (error != 0) {
1119 		return error;
1120 	}
1121 	ASSERT(ip != NULL);
1122 
1123 	vp = XFS_ITOV(ip);
1124 	ip->i_d.di_mode = (__uint16_t)mode;
1125 	ip->i_d.di_onlink = 0;
1126 	ip->i_d.di_nlink = nlink;
1127 	ASSERT(ip->i_d.di_nlink == nlink);
1128 	ip->i_d.di_uid = current_fsuid(cr);
1129 	ip->i_d.di_gid = current_fsgid(cr);
1130 	ip->i_d.di_projid = prid;
1131 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1132 
1133 	/*
1134 	 * If the superblock version is up to where we support new format
1135 	 * inodes and this is currently an old format inode, then change
1136 	 * the inode version number now.  This way we only do the conversion
1137 	 * here rather than here and in the flush/logging code.
1138 	 */
1139 	if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1140 	    ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1141 		ip->i_d.di_version = XFS_DINODE_VERSION_2;
1142 		/*
1143 		 * We've already zeroed the old link count, the projid field,
1144 		 * and the pad field.
1145 		 */
1146 	}
1147 
1148 	/*
1149 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1150 	 */
1151 	if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1152 		xfs_bump_ino_vers2(tp, ip);
1153 
1154 	if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1155 		ip->i_d.di_gid = pip->i_d.di_gid;
1156 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1157 			ip->i_d.di_mode |= S_ISGID;
1158 		}
1159 	}
1160 
1161 	/*
1162 	 * If the group ID of the new file does not match the effective group
1163 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1164 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1165 	 */
1166 	if ((irix_sgid_inherit) &&
1167 	    (ip->i_d.di_mode & S_ISGID) &&
1168 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1169 		ip->i_d.di_mode &= ~S_ISGID;
1170 	}
1171 
1172 	ip->i_d.di_size = 0;
1173 	ip->i_d.di_nextents = 0;
1174 	ASSERT(ip->i_d.di_nblocks == 0);
1175 	xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1176 	/*
1177 	 * di_gen will have been taken care of in xfs_iread.
1178 	 */
1179 	ip->i_d.di_extsize = 0;
1180 	ip->i_d.di_dmevmask = 0;
1181 	ip->i_d.di_dmstate = 0;
1182 	ip->i_d.di_flags = 0;
1183 	flags = XFS_ILOG_CORE;
1184 	switch (mode & S_IFMT) {
1185 	case S_IFIFO:
1186 	case S_IFCHR:
1187 	case S_IFBLK:
1188 	case S_IFSOCK:
1189 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1190 		ip->i_df.if_u2.if_rdev = rdev;
1191 		ip->i_df.if_flags = 0;
1192 		flags |= XFS_ILOG_DEV;
1193 		break;
1194 	case S_IFREG:
1195 	case S_IFDIR:
1196 		if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1197 			uint	di_flags = 0;
1198 
1199 			if ((mode & S_IFMT) == S_IFDIR) {
1200 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1201 					di_flags |= XFS_DIFLAG_RTINHERIT;
1202 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1203 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1204 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1205 				}
1206 			} else if ((mode & S_IFMT) == S_IFREG) {
1207 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1208 					di_flags |= XFS_DIFLAG_REALTIME;
1209 					ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1210 				}
1211 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1212 					di_flags |= XFS_DIFLAG_EXTSIZE;
1213 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1214 				}
1215 			}
1216 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1217 			    xfs_inherit_noatime)
1218 				di_flags |= XFS_DIFLAG_NOATIME;
1219 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1220 			    xfs_inherit_nodump)
1221 				di_flags |= XFS_DIFLAG_NODUMP;
1222 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1223 			    xfs_inherit_sync)
1224 				di_flags |= XFS_DIFLAG_SYNC;
1225 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1226 			    xfs_inherit_nosymlinks)
1227 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1228 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1229 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1230 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1231 			    xfs_inherit_nodefrag)
1232 				di_flags |= XFS_DIFLAG_NODEFRAG;
1233 			ip->i_d.di_flags |= di_flags;
1234 		}
1235 		/* FALLTHROUGH */
1236 	case S_IFLNK:
1237 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1238 		ip->i_df.if_flags = XFS_IFEXTENTS;
1239 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1240 		ip->i_df.if_u1.if_extents = NULL;
1241 		break;
1242 	default:
1243 		ASSERT(0);
1244 	}
1245 	/*
1246 	 * Attribute fork settings for new inode.
1247 	 */
1248 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1249 	ip->i_d.di_anextents = 0;
1250 
1251 	/*
1252 	 * Log the new values stuffed into the inode.
1253 	 */
1254 	xfs_trans_log_inode(tp, ip, flags);
1255 
1256 	/* now that we have an i_mode we can setup inode ops and unlock */
1257 	bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1258 
1259 	*ipp = ip;
1260 	return 0;
1261 }
1262 
1263 /*
1264  * Check to make sure that there are no blocks allocated to the
1265  * file beyond the size of the file.  We don't check this for
1266  * files with fixed size extents or real time extents, but we
1267  * at least do it for regular files.
1268  */
1269 #ifdef DEBUG
1270 void
1271 xfs_isize_check(
1272 	xfs_mount_t	*mp,
1273 	xfs_inode_t	*ip,
1274 	xfs_fsize_t	isize)
1275 {
1276 	xfs_fileoff_t	map_first;
1277 	int		nimaps;
1278 	xfs_bmbt_irec_t	imaps[2];
1279 
1280 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1281 		return;
1282 
1283 	if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1284 		return;
1285 
1286 	nimaps = 2;
1287 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1288 	/*
1289 	 * The filesystem could be shutting down, so bmapi may return
1290 	 * an error.
1291 	 */
1292 	if (xfs_bmapi(NULL, ip, map_first,
1293 			 (XFS_B_TO_FSB(mp,
1294 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1295 			  map_first),
1296 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1297 			 NULL, NULL))
1298 	    return;
1299 	ASSERT(nimaps == 1);
1300 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1301 }
1302 #endif	/* DEBUG */
1303 
1304 /*
1305  * Calculate the last possible buffered byte in a file.  This must
1306  * include data that was buffered beyond the EOF by the write code.
1307  * This also needs to deal with overflowing the xfs_fsize_t type
1308  * which can happen for sizes near the limit.
1309  *
1310  * We also need to take into account any blocks beyond the EOF.  It
1311  * may be the case that they were buffered by a write which failed.
1312  * In that case the pages will still be in memory, but the inode size
1313  * will never have been updated.
1314  */
1315 xfs_fsize_t
1316 xfs_file_last_byte(
1317 	xfs_inode_t	*ip)
1318 {
1319 	xfs_mount_t	*mp;
1320 	xfs_fsize_t	last_byte;
1321 	xfs_fileoff_t	last_block;
1322 	xfs_fileoff_t	size_last_block;
1323 	int		error;
1324 
1325 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1326 
1327 	mp = ip->i_mount;
1328 	/*
1329 	 * Only check for blocks beyond the EOF if the extents have
1330 	 * been read in.  This eliminates the need for the inode lock,
1331 	 * and it also saves us from looking when it really isn't
1332 	 * necessary.
1333 	 */
1334 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1335 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1336 			XFS_DATA_FORK);
1337 		if (error) {
1338 			last_block = 0;
1339 		}
1340 	} else {
1341 		last_block = 0;
1342 	}
1343 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1344 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1345 
1346 	last_byte = XFS_FSB_TO_B(mp, last_block);
1347 	if (last_byte < 0) {
1348 		return XFS_MAXIOFFSET(mp);
1349 	}
1350 	last_byte += (1 << mp->m_writeio_log);
1351 	if (last_byte < 0) {
1352 		return XFS_MAXIOFFSET(mp);
1353 	}
1354 	return last_byte;
1355 }
1356 
1357 #if defined(XFS_RW_TRACE)
1358 STATIC void
1359 xfs_itrunc_trace(
1360 	int		tag,
1361 	xfs_inode_t	*ip,
1362 	int		flag,
1363 	xfs_fsize_t	new_size,
1364 	xfs_off_t	toss_start,
1365 	xfs_off_t	toss_finish)
1366 {
1367 	if (ip->i_rwtrace == NULL) {
1368 		return;
1369 	}
1370 
1371 	ktrace_enter(ip->i_rwtrace,
1372 		     (void*)((long)tag),
1373 		     (void*)ip,
1374 		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1375 		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1376 		     (void*)((long)flag),
1377 		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1378 		     (void*)(unsigned long)(new_size & 0xffffffff),
1379 		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1380 		     (void*)(unsigned long)(toss_start & 0xffffffff),
1381 		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1382 		     (void*)(unsigned long)(toss_finish & 0xffffffff),
1383 		     (void*)(unsigned long)current_cpu(),
1384 		     (void*)(unsigned long)current_pid(),
1385 		     (void*)NULL,
1386 		     (void*)NULL,
1387 		     (void*)NULL);
1388 }
1389 #else
1390 #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1391 #endif
1392 
1393 /*
1394  * Start the truncation of the file to new_size.  The new size
1395  * must be smaller than the current size.  This routine will
1396  * clear the buffer and page caches of file data in the removed
1397  * range, and xfs_itruncate_finish() will remove the underlying
1398  * disk blocks.
1399  *
1400  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1401  * must NOT have the inode lock held at all.  This is because we're
1402  * calling into the buffer/page cache code and we can't hold the
1403  * inode lock when we do so.
1404  *
1405  * We need to wait for any direct I/Os in flight to complete before we
1406  * proceed with the truncate. This is needed to prevent the extents
1407  * being read or written by the direct I/Os from being removed while the
1408  * I/O is in flight as there is no other method of synchronising
1409  * direct I/O with the truncate operation.  Also, because we hold
1410  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1411  * started until the truncate completes and drops the lock. Essentially,
1412  * the vn_iowait() call forms an I/O barrier that provides strict ordering
1413  * between direct I/Os and the truncate operation.
1414  *
1415  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1416  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1417  * in the case that the caller is locking things out of order and
1418  * may not be able to call xfs_itruncate_finish() with the inode lock
1419  * held without dropping the I/O lock.  If the caller must drop the
1420  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1421  * must be called again with all the same restrictions as the initial
1422  * call.
1423  */
1424 void
1425 xfs_itruncate_start(
1426 	xfs_inode_t	*ip,
1427 	uint		flags,
1428 	xfs_fsize_t	new_size)
1429 {
1430 	xfs_fsize_t	last_byte;
1431 	xfs_off_t	toss_start;
1432 	xfs_mount_t	*mp;
1433 	bhv_vnode_t	*vp;
1434 
1435 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1436 	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1437 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1438 	       (flags == XFS_ITRUNC_MAYBE));
1439 
1440 	mp = ip->i_mount;
1441 	vp = XFS_ITOV(ip);
1442 
1443 	vn_iowait(vp);  /* wait for the completion of any pending DIOs */
1444 
1445 	/*
1446 	 * Call toss_pages or flushinval_pages to get rid of pages
1447 	 * overlapping the region being removed.  We have to use
1448 	 * the less efficient flushinval_pages in the case that the
1449 	 * caller may not be able to finish the truncate without
1450 	 * dropping the inode's I/O lock.  Make sure
1451 	 * to catch any pages brought in by buffers overlapping
1452 	 * the EOF by searching out beyond the isize by our
1453 	 * block size. We round new_size up to a block boundary
1454 	 * so that we don't toss things on the same block as
1455 	 * new_size but before it.
1456 	 *
1457 	 * Before calling toss_page or flushinval_pages, make sure to
1458 	 * call remapf() over the same region if the file is mapped.
1459 	 * This frees up mapped file references to the pages in the
1460 	 * given range and for the flushinval_pages case it ensures
1461 	 * that we get the latest mapped changes flushed out.
1462 	 */
1463 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1464 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1465 	if (toss_start < 0) {
1466 		/*
1467 		 * The place to start tossing is beyond our maximum
1468 		 * file size, so there is no way that the data extended
1469 		 * out there.
1470 		 */
1471 		return;
1472 	}
1473 	last_byte = xfs_file_last_byte(ip);
1474 	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1475 			 last_byte);
1476 	if (last_byte > toss_start) {
1477 		if (flags & XFS_ITRUNC_DEFINITE) {
1478 			bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1479 		} else {
1480 			bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1481 		}
1482 	}
1483 
1484 #ifdef DEBUG
1485 	if (new_size == 0) {
1486 		ASSERT(VN_CACHED(vp) == 0);
1487 	}
1488 #endif
1489 }
1490 
1491 /*
1492  * Shrink the file to the given new_size.  The new
1493  * size must be smaller than the current size.
1494  * This will free up the underlying blocks
1495  * in the removed range after a call to xfs_itruncate_start()
1496  * or xfs_atruncate_start().
1497  *
1498  * The transaction passed to this routine must have made
1499  * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1500  * This routine may commit the given transaction and
1501  * start new ones, so make sure everything involved in
1502  * the transaction is tidy before calling here.
1503  * Some transaction will be returned to the caller to be
1504  * committed.  The incoming transaction must already include
1505  * the inode, and both inode locks must be held exclusively.
1506  * The inode must also be "held" within the transaction.  On
1507  * return the inode will be "held" within the returned transaction.
1508  * This routine does NOT require any disk space to be reserved
1509  * for it within the transaction.
1510  *
1511  * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1512  * and it indicates the fork which is to be truncated.  For the
1513  * attribute fork we only support truncation to size 0.
1514  *
1515  * We use the sync parameter to indicate whether or not the first
1516  * transaction we perform might have to be synchronous.  For the attr fork,
1517  * it needs to be so if the unlink of the inode is not yet known to be
1518  * permanent in the log.  This keeps us from freeing and reusing the
1519  * blocks of the attribute fork before the unlink of the inode becomes
1520  * permanent.
1521  *
1522  * For the data fork, we normally have to run synchronously if we're
1523  * being called out of the inactive path or we're being called
1524  * out of the create path where we're truncating an existing file.
1525  * Either way, the truncate needs to be sync so blocks don't reappear
1526  * in the file with altered data in case of a crash.  wsync filesystems
1527  * can run the first case async because anything that shrinks the inode
1528  * has to run sync so by the time we're called here from inactive, the
1529  * inode size is permanently set to 0.
1530  *
1531  * Calls from the truncate path always need to be sync unless we're
1532  * in a wsync filesystem and the file has already been unlinked.
1533  *
1534  * The caller is responsible for correctly setting the sync parameter.
1535  * It gets too hard for us to guess here which path we're being called
1536  * out of just based on inode state.
1537  */
1538 int
1539 xfs_itruncate_finish(
1540 	xfs_trans_t	**tp,
1541 	xfs_inode_t	*ip,
1542 	xfs_fsize_t	new_size,
1543 	int		fork,
1544 	int		sync)
1545 {
1546 	xfs_fsblock_t	first_block;
1547 	xfs_fileoff_t	first_unmap_block;
1548 	xfs_fileoff_t	last_block;
1549 	xfs_filblks_t	unmap_len=0;
1550 	xfs_mount_t	*mp;
1551 	xfs_trans_t	*ntp;
1552 	int		done;
1553 	int		committed;
1554 	xfs_bmap_free_t	free_list;
1555 	int		error;
1556 
1557 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1558 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1559 	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1560 	ASSERT(*tp != NULL);
1561 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1562 	ASSERT(ip->i_transp == *tp);
1563 	ASSERT(ip->i_itemp != NULL);
1564 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1565 
1566 
1567 	ntp = *tp;
1568 	mp = (ntp)->t_mountp;
1569 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1570 
1571 	/*
1572 	 * We only support truncating the entire attribute fork.
1573 	 */
1574 	if (fork == XFS_ATTR_FORK) {
1575 		new_size = 0LL;
1576 	}
1577 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1578 	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1579 	/*
1580 	 * The first thing we do is set the size to new_size permanently
1581 	 * on disk.  This way we don't have to worry about anyone ever
1582 	 * being able to look at the data being freed even in the face
1583 	 * of a crash.  What we're getting around here is the case where
1584 	 * we free a block, it is allocated to another file, it is written
1585 	 * to, and then we crash.  If the new data gets written to the
1586 	 * file but the log buffers containing the free and reallocation
1587 	 * don't, then we'd end up with garbage in the blocks being freed.
1588 	 * As long as we make the new_size permanent before actually
1589 	 * freeing any blocks it doesn't matter if they get writtten to.
1590 	 *
1591 	 * The callers must signal into us whether or not the size
1592 	 * setting here must be synchronous.  There are a few cases
1593 	 * where it doesn't have to be synchronous.  Those cases
1594 	 * occur if the file is unlinked and we know the unlink is
1595 	 * permanent or if the blocks being truncated are guaranteed
1596 	 * to be beyond the inode eof (regardless of the link count)
1597 	 * and the eof value is permanent.  Both of these cases occur
1598 	 * only on wsync-mounted filesystems.  In those cases, we're
1599 	 * guaranteed that no user will ever see the data in the blocks
1600 	 * that are being truncated so the truncate can run async.
1601 	 * In the free beyond eof case, the file may wind up with
1602 	 * more blocks allocated to it than it needs if we crash
1603 	 * and that won't get fixed until the next time the file
1604 	 * is re-opened and closed but that's ok as that shouldn't
1605 	 * be too many blocks.
1606 	 *
1607 	 * However, we can't just make all wsync xactions run async
1608 	 * because there's one call out of the create path that needs
1609 	 * to run sync where it's truncating an existing file to size
1610 	 * 0 whose size is > 0.
1611 	 *
1612 	 * It's probably possible to come up with a test in this
1613 	 * routine that would correctly distinguish all the above
1614 	 * cases from the values of the function parameters and the
1615 	 * inode state but for sanity's sake, I've decided to let the
1616 	 * layers above just tell us.  It's simpler to correctly figure
1617 	 * out in the layer above exactly under what conditions we
1618 	 * can run async and I think it's easier for others read and
1619 	 * follow the logic in case something has to be changed.
1620 	 * cscope is your friend -- rcc.
1621 	 *
1622 	 * The attribute fork is much simpler.
1623 	 *
1624 	 * For the attribute fork we allow the caller to tell us whether
1625 	 * the unlink of the inode that led to this call is yet permanent
1626 	 * in the on disk log.  If it is not and we will be freeing extents
1627 	 * in this inode then we make the first transaction synchronous
1628 	 * to make sure that the unlink is permanent by the time we free
1629 	 * the blocks.
1630 	 */
1631 	if (fork == XFS_DATA_FORK) {
1632 		if (ip->i_d.di_nextents > 0) {
1633 			ip->i_d.di_size = new_size;
1634 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1635 		}
1636 	} else if (sync) {
1637 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1638 		if (ip->i_d.di_anextents > 0)
1639 			xfs_trans_set_sync(ntp);
1640 	}
1641 	ASSERT(fork == XFS_DATA_FORK ||
1642 		(fork == XFS_ATTR_FORK &&
1643 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1644 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1645 
1646 	/*
1647 	 * Since it is possible for space to become allocated beyond
1648 	 * the end of the file (in a crash where the space is allocated
1649 	 * but the inode size is not yet updated), simply remove any
1650 	 * blocks which show up between the new EOF and the maximum
1651 	 * possible file size.  If the first block to be removed is
1652 	 * beyond the maximum file size (ie it is the same as last_block),
1653 	 * then there is nothing to do.
1654 	 */
1655 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1656 	ASSERT(first_unmap_block <= last_block);
1657 	done = 0;
1658 	if (last_block == first_unmap_block) {
1659 		done = 1;
1660 	} else {
1661 		unmap_len = last_block - first_unmap_block + 1;
1662 	}
1663 	while (!done) {
1664 		/*
1665 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1666 		 * will tell us whether it freed the entire range or
1667 		 * not.  If this is a synchronous mount (wsync),
1668 		 * then we can tell bunmapi to keep all the
1669 		 * transactions asynchronous since the unlink
1670 		 * transaction that made this inode inactive has
1671 		 * already hit the disk.  There's no danger of
1672 		 * the freed blocks being reused, there being a
1673 		 * crash, and the reused blocks suddenly reappearing
1674 		 * in this file with garbage in them once recovery
1675 		 * runs.
1676 		 */
1677 		XFS_BMAP_INIT(&free_list, &first_block);
1678 		error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1679 				    first_unmap_block, unmap_len,
1680 				    XFS_BMAPI_AFLAG(fork) |
1681 				      (sync ? 0 : XFS_BMAPI_ASYNC),
1682 				    XFS_ITRUNC_MAX_EXTENTS,
1683 				    &first_block, &free_list,
1684 				    NULL, &done);
1685 		if (error) {
1686 			/*
1687 			 * If the bunmapi call encounters an error,
1688 			 * return to the caller where the transaction
1689 			 * can be properly aborted.  We just need to
1690 			 * make sure we're not holding any resources
1691 			 * that we were not when we came in.
1692 			 */
1693 			xfs_bmap_cancel(&free_list);
1694 			return error;
1695 		}
1696 
1697 		/*
1698 		 * Duplicate the transaction that has the permanent
1699 		 * reservation and commit the old transaction.
1700 		 */
1701 		error = xfs_bmap_finish(tp, &free_list, &committed);
1702 		ntp = *tp;
1703 		if (error) {
1704 			/*
1705 			 * If the bmap finish call encounters an error,
1706 			 * return to the caller where the transaction
1707 			 * can be properly aborted.  We just need to
1708 			 * make sure we're not holding any resources
1709 			 * that we were not when we came in.
1710 			 *
1711 			 * Aborting from this point might lose some
1712 			 * blocks in the file system, but oh well.
1713 			 */
1714 			xfs_bmap_cancel(&free_list);
1715 			if (committed) {
1716 				/*
1717 				 * If the passed in transaction committed
1718 				 * in xfs_bmap_finish(), then we want to
1719 				 * add the inode to this one before returning.
1720 				 * This keeps things simple for the higher
1721 				 * level code, because it always knows that
1722 				 * the inode is locked and held in the
1723 				 * transaction that returns to it whether
1724 				 * errors occur or not.  We don't mark the
1725 				 * inode dirty so that this transaction can
1726 				 * be easily aborted if possible.
1727 				 */
1728 				xfs_trans_ijoin(ntp, ip,
1729 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1730 				xfs_trans_ihold(ntp, ip);
1731 			}
1732 			return error;
1733 		}
1734 
1735 		if (committed) {
1736 			/*
1737 			 * The first xact was committed,
1738 			 * so add the inode to the new one.
1739 			 * Mark it dirty so it will be logged
1740 			 * and moved forward in the log as
1741 			 * part of every commit.
1742 			 */
1743 			xfs_trans_ijoin(ntp, ip,
1744 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1745 			xfs_trans_ihold(ntp, ip);
1746 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1747 		}
1748 		ntp = xfs_trans_dup(ntp);
1749 		(void) xfs_trans_commit(*tp, 0, NULL);
1750 		*tp = ntp;
1751 		error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1752 					  XFS_TRANS_PERM_LOG_RES,
1753 					  XFS_ITRUNCATE_LOG_COUNT);
1754 		/*
1755 		 * Add the inode being truncated to the next chained
1756 		 * transaction.
1757 		 */
1758 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1759 		xfs_trans_ihold(ntp, ip);
1760 		if (error)
1761 			return (error);
1762 	}
1763 	/*
1764 	 * Only update the size in the case of the data fork, but
1765 	 * always re-log the inode so that our permanent transaction
1766 	 * can keep on rolling it forward in the log.
1767 	 */
1768 	if (fork == XFS_DATA_FORK) {
1769 		xfs_isize_check(mp, ip, new_size);
1770 		ip->i_d.di_size = new_size;
1771 	}
1772 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1773 	ASSERT((new_size != 0) ||
1774 	       (fork == XFS_ATTR_FORK) ||
1775 	       (ip->i_delayed_blks == 0));
1776 	ASSERT((new_size != 0) ||
1777 	       (fork == XFS_ATTR_FORK) ||
1778 	       (ip->i_d.di_nextents == 0));
1779 	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1780 	return 0;
1781 }
1782 
1783 
1784 /*
1785  * xfs_igrow_start
1786  *
1787  * Do the first part of growing a file: zero any data in the last
1788  * block that is beyond the old EOF.  We need to do this before
1789  * the inode is joined to the transaction to modify the i_size.
1790  * That way we can drop the inode lock and call into the buffer
1791  * cache to get the buffer mapping the EOF.
1792  */
1793 int
1794 xfs_igrow_start(
1795 	xfs_inode_t	*ip,
1796 	xfs_fsize_t	new_size,
1797 	cred_t		*credp)
1798 {
1799 	int		error;
1800 
1801 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1802 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1803 	ASSERT(new_size > ip->i_d.di_size);
1804 
1805 	/*
1806 	 * Zero any pages that may have been created by
1807 	 * xfs_write_file() beyond the end of the file
1808 	 * and any blocks between the old and new file sizes.
1809 	 */
1810 	error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1811 			     ip->i_d.di_size);
1812 	return error;
1813 }
1814 
1815 /*
1816  * xfs_igrow_finish
1817  *
1818  * This routine is called to extend the size of a file.
1819  * The inode must have both the iolock and the ilock locked
1820  * for update and it must be a part of the current transaction.
1821  * The xfs_igrow_start() function must have been called previously.
1822  * If the change_flag is not zero, the inode change timestamp will
1823  * be updated.
1824  */
1825 void
1826 xfs_igrow_finish(
1827 	xfs_trans_t	*tp,
1828 	xfs_inode_t	*ip,
1829 	xfs_fsize_t	new_size,
1830 	int		change_flag)
1831 {
1832 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1833 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1834 	ASSERT(ip->i_transp == tp);
1835 	ASSERT(new_size > ip->i_d.di_size);
1836 
1837 	/*
1838 	 * Update the file size.  Update the inode change timestamp
1839 	 * if change_flag set.
1840 	 */
1841 	ip->i_d.di_size = new_size;
1842 	if (change_flag)
1843 		xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1844 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1845 
1846 }
1847 
1848 
1849 /*
1850  * This is called when the inode's link count goes to 0.
1851  * We place the on-disk inode on a list in the AGI.  It
1852  * will be pulled from this list when the inode is freed.
1853  */
1854 int
1855 xfs_iunlink(
1856 	xfs_trans_t	*tp,
1857 	xfs_inode_t	*ip)
1858 {
1859 	xfs_mount_t	*mp;
1860 	xfs_agi_t	*agi;
1861 	xfs_dinode_t	*dip;
1862 	xfs_buf_t	*agibp;
1863 	xfs_buf_t	*ibp;
1864 	xfs_agnumber_t	agno;
1865 	xfs_daddr_t	agdaddr;
1866 	xfs_agino_t	agino;
1867 	short		bucket_index;
1868 	int		offset;
1869 	int		error;
1870 	int		agi_ok;
1871 
1872 	ASSERT(ip->i_d.di_nlink == 0);
1873 	ASSERT(ip->i_d.di_mode != 0);
1874 	ASSERT(ip->i_transp == tp);
1875 
1876 	mp = tp->t_mountp;
1877 
1878 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1879 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1880 
1881 	/*
1882 	 * Get the agi buffer first.  It ensures lock ordering
1883 	 * on the list.
1884 	 */
1885 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1886 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1887 	if (error) {
1888 		return error;
1889 	}
1890 	/*
1891 	 * Validate the magic number of the agi block.
1892 	 */
1893 	agi = XFS_BUF_TO_AGI(agibp);
1894 	agi_ok =
1895 		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1896 		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1897 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1898 			XFS_RANDOM_IUNLINK))) {
1899 		XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1900 		xfs_trans_brelse(tp, agibp);
1901 		return XFS_ERROR(EFSCORRUPTED);
1902 	}
1903 	/*
1904 	 * Get the index into the agi hash table for the
1905 	 * list this inode will go on.
1906 	 */
1907 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1908 	ASSERT(agino != 0);
1909 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1910 	ASSERT(agi->agi_unlinked[bucket_index]);
1911 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1912 
1913 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1914 		/*
1915 		 * There is already another inode in the bucket we need
1916 		 * to add ourselves to.  Add us at the front of the list.
1917 		 * Here we put the head pointer into our next pointer,
1918 		 * and then we fall through to point the head at us.
1919 		 */
1920 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1921 		if (error) {
1922 			return error;
1923 		}
1924 		ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1925 		ASSERT(dip->di_next_unlinked);
1926 		/* both on-disk, don't endian flip twice */
1927 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1928 		offset = ip->i_boffset +
1929 			offsetof(xfs_dinode_t, di_next_unlinked);
1930 		xfs_trans_inode_buf(tp, ibp);
1931 		xfs_trans_log_buf(tp, ibp, offset,
1932 				  (offset + sizeof(xfs_agino_t) - 1));
1933 		xfs_inobp_check(mp, ibp);
1934 	}
1935 
1936 	/*
1937 	 * Point the bucket head pointer at the inode being inserted.
1938 	 */
1939 	ASSERT(agino != 0);
1940 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1941 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1942 		(sizeof(xfs_agino_t) * bucket_index);
1943 	xfs_trans_log_buf(tp, agibp, offset,
1944 			  (offset + sizeof(xfs_agino_t) - 1));
1945 	return 0;
1946 }
1947 
1948 /*
1949  * Pull the on-disk inode from the AGI unlinked list.
1950  */
1951 STATIC int
1952 xfs_iunlink_remove(
1953 	xfs_trans_t	*tp,
1954 	xfs_inode_t	*ip)
1955 {
1956 	xfs_ino_t	next_ino;
1957 	xfs_mount_t	*mp;
1958 	xfs_agi_t	*agi;
1959 	xfs_dinode_t	*dip;
1960 	xfs_buf_t	*agibp;
1961 	xfs_buf_t	*ibp;
1962 	xfs_agnumber_t	agno;
1963 	xfs_daddr_t	agdaddr;
1964 	xfs_agino_t	agino;
1965 	xfs_agino_t	next_agino;
1966 	xfs_buf_t	*last_ibp;
1967 	xfs_dinode_t	*last_dip = NULL;
1968 	short		bucket_index;
1969 	int		offset, last_offset = 0;
1970 	int		error;
1971 	int		agi_ok;
1972 
1973 	/*
1974 	 * First pull the on-disk inode from the AGI unlinked list.
1975 	 */
1976 	mp = tp->t_mountp;
1977 
1978 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1979 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1980 
1981 	/*
1982 	 * Get the agi buffer first.  It ensures lock ordering
1983 	 * on the list.
1984 	 */
1985 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1986 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1987 	if (error) {
1988 		cmn_err(CE_WARN,
1989 			"xfs_iunlink_remove: xfs_trans_read_buf()  returned an error %d on %s.  Returning error.",
1990 			error, mp->m_fsname);
1991 		return error;
1992 	}
1993 	/*
1994 	 * Validate the magic number of the agi block.
1995 	 */
1996 	agi = XFS_BUF_TO_AGI(agibp);
1997 	agi_ok =
1998 		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1999 		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
2000 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2001 			XFS_RANDOM_IUNLINK_REMOVE))) {
2002 		XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2003 				     mp, agi);
2004 		xfs_trans_brelse(tp, agibp);
2005 		cmn_err(CE_WARN,
2006 			"xfs_iunlink_remove: XFS_TEST_ERROR()  returned an error on %s.  Returning EFSCORRUPTED.",
2007 			 mp->m_fsname);
2008 		return XFS_ERROR(EFSCORRUPTED);
2009 	}
2010 	/*
2011 	 * Get the index into the agi hash table for the
2012 	 * list this inode will go on.
2013 	 */
2014 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2015 	ASSERT(agino != 0);
2016 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2017 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2018 	ASSERT(agi->agi_unlinked[bucket_index]);
2019 
2020 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2021 		/*
2022 		 * We're at the head of the list.  Get the inode's
2023 		 * on-disk buffer to see if there is anyone after us
2024 		 * on the list.  Only modify our next pointer if it
2025 		 * is not already NULLAGINO.  This saves us the overhead
2026 		 * of dealing with the buffer when there is no need to
2027 		 * change it.
2028 		 */
2029 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2030 		if (error) {
2031 			cmn_err(CE_WARN,
2032 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2033 				error, mp->m_fsname);
2034 			return error;
2035 		}
2036 		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2037 		ASSERT(next_agino != 0);
2038 		if (next_agino != NULLAGINO) {
2039 			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2040 			offset = ip->i_boffset +
2041 				offsetof(xfs_dinode_t, di_next_unlinked);
2042 			xfs_trans_inode_buf(tp, ibp);
2043 			xfs_trans_log_buf(tp, ibp, offset,
2044 					  (offset + sizeof(xfs_agino_t) - 1));
2045 			xfs_inobp_check(mp, ibp);
2046 		} else {
2047 			xfs_trans_brelse(tp, ibp);
2048 		}
2049 		/*
2050 		 * Point the bucket head pointer at the next inode.
2051 		 */
2052 		ASSERT(next_agino != 0);
2053 		ASSERT(next_agino != agino);
2054 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2055 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2056 			(sizeof(xfs_agino_t) * bucket_index);
2057 		xfs_trans_log_buf(tp, agibp, offset,
2058 				  (offset + sizeof(xfs_agino_t) - 1));
2059 	} else {
2060 		/*
2061 		 * We need to search the list for the inode being freed.
2062 		 */
2063 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2064 		last_ibp = NULL;
2065 		while (next_agino != agino) {
2066 			/*
2067 			 * If the last inode wasn't the one pointing to
2068 			 * us, then release its buffer since we're not
2069 			 * going to do anything with it.
2070 			 */
2071 			if (last_ibp != NULL) {
2072 				xfs_trans_brelse(tp, last_ibp);
2073 			}
2074 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2075 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2076 					    &last_ibp, &last_offset);
2077 			if (error) {
2078 				cmn_err(CE_WARN,
2079 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
2080 					error, mp->m_fsname);
2081 				return error;
2082 			}
2083 			next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2084 			ASSERT(next_agino != NULLAGINO);
2085 			ASSERT(next_agino != 0);
2086 		}
2087 		/*
2088 		 * Now last_ibp points to the buffer previous to us on
2089 		 * the unlinked list.  Pull us from the list.
2090 		 */
2091 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2092 		if (error) {
2093 			cmn_err(CE_WARN,
2094 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2095 				error, mp->m_fsname);
2096 			return error;
2097 		}
2098 		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2099 		ASSERT(next_agino != 0);
2100 		ASSERT(next_agino != agino);
2101 		if (next_agino != NULLAGINO) {
2102 			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2103 			offset = ip->i_boffset +
2104 				offsetof(xfs_dinode_t, di_next_unlinked);
2105 			xfs_trans_inode_buf(tp, ibp);
2106 			xfs_trans_log_buf(tp, ibp, offset,
2107 					  (offset + sizeof(xfs_agino_t) - 1));
2108 			xfs_inobp_check(mp, ibp);
2109 		} else {
2110 			xfs_trans_brelse(tp, ibp);
2111 		}
2112 		/*
2113 		 * Point the previous inode on the list to the next inode.
2114 		 */
2115 		INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2116 		ASSERT(next_agino != 0);
2117 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2118 		xfs_trans_inode_buf(tp, last_ibp);
2119 		xfs_trans_log_buf(tp, last_ibp, offset,
2120 				  (offset + sizeof(xfs_agino_t) - 1));
2121 		xfs_inobp_check(mp, last_ibp);
2122 	}
2123 	return 0;
2124 }
2125 
2126 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
2127 {
2128 	return (((ip->i_itemp == NULL) ||
2129 		!(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2130 		(ip->i_update_core == 0));
2131 }
2132 
2133 STATIC void
2134 xfs_ifree_cluster(
2135 	xfs_inode_t	*free_ip,
2136 	xfs_trans_t	*tp,
2137 	xfs_ino_t	inum)
2138 {
2139 	xfs_mount_t		*mp = free_ip->i_mount;
2140 	int			blks_per_cluster;
2141 	int			nbufs;
2142 	int			ninodes;
2143 	int			i, j, found, pre_flushed;
2144 	xfs_daddr_t		blkno;
2145 	xfs_buf_t		*bp;
2146 	xfs_ihash_t		*ih;
2147 	xfs_inode_t		*ip, **ip_found;
2148 	xfs_inode_log_item_t	*iip;
2149 	xfs_log_item_t		*lip;
2150 	SPLDECL(s);
2151 
2152 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2153 		blks_per_cluster = 1;
2154 		ninodes = mp->m_sb.sb_inopblock;
2155 		nbufs = XFS_IALLOC_BLOCKS(mp);
2156 	} else {
2157 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2158 					mp->m_sb.sb_blocksize;
2159 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2160 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2161 	}
2162 
2163 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2164 
2165 	for (j = 0; j < nbufs; j++, inum += ninodes) {
2166 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2167 					 XFS_INO_TO_AGBNO(mp, inum));
2168 
2169 
2170 		/*
2171 		 * Look for each inode in memory and attempt to lock it,
2172 		 * we can be racing with flush and tail pushing here.
2173 		 * any inode we get the locks on, add to an array of
2174 		 * inode items to process later.
2175 		 *
2176 		 * The get the buffer lock, we could beat a flush
2177 		 * or tail pushing thread to the lock here, in which
2178 		 * case they will go looking for the inode buffer
2179 		 * and fail, we need some other form of interlock
2180 		 * here.
2181 		 */
2182 		found = 0;
2183 		for (i = 0; i < ninodes; i++) {
2184 			ih = XFS_IHASH(mp, inum + i);
2185 			read_lock(&ih->ih_lock);
2186 			for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2187 				if (ip->i_ino == inum + i)
2188 					break;
2189 			}
2190 
2191 			/* Inode not in memory or we found it already,
2192 			 * nothing to do
2193 			 */
2194 			if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2195 				read_unlock(&ih->ih_lock);
2196 				continue;
2197 			}
2198 
2199 			if (xfs_inode_clean(ip)) {
2200 				read_unlock(&ih->ih_lock);
2201 				continue;
2202 			}
2203 
2204 			/* If we can get the locks then add it to the
2205 			 * list, otherwise by the time we get the bp lock
2206 			 * below it will already be attached to the
2207 			 * inode buffer.
2208 			 */
2209 
2210 			/* This inode will already be locked - by us, lets
2211 			 * keep it that way.
2212 			 */
2213 
2214 			if (ip == free_ip) {
2215 				if (xfs_iflock_nowait(ip)) {
2216 					xfs_iflags_set(ip, XFS_ISTALE);
2217 					if (xfs_inode_clean(ip)) {
2218 						xfs_ifunlock(ip);
2219 					} else {
2220 						ip_found[found++] = ip;
2221 					}
2222 				}
2223 				read_unlock(&ih->ih_lock);
2224 				continue;
2225 			}
2226 
2227 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2228 				if (xfs_iflock_nowait(ip)) {
2229 					xfs_iflags_set(ip, XFS_ISTALE);
2230 
2231 					if (xfs_inode_clean(ip)) {
2232 						xfs_ifunlock(ip);
2233 						xfs_iunlock(ip, XFS_ILOCK_EXCL);
2234 					} else {
2235 						ip_found[found++] = ip;
2236 					}
2237 				} else {
2238 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2239 				}
2240 			}
2241 
2242 			read_unlock(&ih->ih_lock);
2243 		}
2244 
2245 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2246 					mp->m_bsize * blks_per_cluster,
2247 					XFS_BUF_LOCK);
2248 
2249 		pre_flushed = 0;
2250 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2251 		while (lip) {
2252 			if (lip->li_type == XFS_LI_INODE) {
2253 				iip = (xfs_inode_log_item_t *)lip;
2254 				ASSERT(iip->ili_logged == 1);
2255 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2256 				AIL_LOCK(mp,s);
2257 				iip->ili_flush_lsn = iip->ili_item.li_lsn;
2258 				AIL_UNLOCK(mp, s);
2259 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2260 				pre_flushed++;
2261 			}
2262 			lip = lip->li_bio_list;
2263 		}
2264 
2265 		for (i = 0; i < found; i++) {
2266 			ip = ip_found[i];
2267 			iip = ip->i_itemp;
2268 
2269 			if (!iip) {
2270 				ip->i_update_core = 0;
2271 				xfs_ifunlock(ip);
2272 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2273 				continue;
2274 			}
2275 
2276 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2277 			iip->ili_format.ilf_fields = 0;
2278 			iip->ili_logged = 1;
2279 			AIL_LOCK(mp,s);
2280 			iip->ili_flush_lsn = iip->ili_item.li_lsn;
2281 			AIL_UNLOCK(mp, s);
2282 
2283 			xfs_buf_attach_iodone(bp,
2284 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2285 				xfs_istale_done, (xfs_log_item_t *)iip);
2286 			if (ip != free_ip) {
2287 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2288 			}
2289 		}
2290 
2291 		if (found || pre_flushed)
2292 			xfs_trans_stale_inode_buf(tp, bp);
2293 		xfs_trans_binval(tp, bp);
2294 	}
2295 
2296 	kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2297 }
2298 
2299 /*
2300  * This is called to return an inode to the inode free list.
2301  * The inode should already be truncated to 0 length and have
2302  * no pages associated with it.  This routine also assumes that
2303  * the inode is already a part of the transaction.
2304  *
2305  * The on-disk copy of the inode will have been added to the list
2306  * of unlinked inodes in the AGI. We need to remove the inode from
2307  * that list atomically with respect to freeing it here.
2308  */
2309 int
2310 xfs_ifree(
2311 	xfs_trans_t	*tp,
2312 	xfs_inode_t	*ip,
2313 	xfs_bmap_free_t	*flist)
2314 {
2315 	int			error;
2316 	int			delete;
2317 	xfs_ino_t		first_ino;
2318 
2319 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2320 	ASSERT(ip->i_transp == tp);
2321 	ASSERT(ip->i_d.di_nlink == 0);
2322 	ASSERT(ip->i_d.di_nextents == 0);
2323 	ASSERT(ip->i_d.di_anextents == 0);
2324 	ASSERT((ip->i_d.di_size == 0) ||
2325 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2326 	ASSERT(ip->i_d.di_nblocks == 0);
2327 
2328 	/*
2329 	 * Pull the on-disk inode from the AGI unlinked list.
2330 	 */
2331 	error = xfs_iunlink_remove(tp, ip);
2332 	if (error != 0) {
2333 		return error;
2334 	}
2335 
2336 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2337 	if (error != 0) {
2338 		return error;
2339 	}
2340 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2341 	ip->i_d.di_flags = 0;
2342 	ip->i_d.di_dmevmask = 0;
2343 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2344 	ip->i_df.if_ext_max =
2345 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2346 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2347 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2348 	/*
2349 	 * Bump the generation count so no one will be confused
2350 	 * by reincarnations of this inode.
2351 	 */
2352 	ip->i_d.di_gen++;
2353 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2354 
2355 	if (delete) {
2356 		xfs_ifree_cluster(ip, tp, first_ino);
2357 	}
2358 
2359 	return 0;
2360 }
2361 
2362 /*
2363  * Reallocate the space for if_broot based on the number of records
2364  * being added or deleted as indicated in rec_diff.  Move the records
2365  * and pointers in if_broot to fit the new size.  When shrinking this
2366  * will eliminate holes between the records and pointers created by
2367  * the caller.  When growing this will create holes to be filled in
2368  * by the caller.
2369  *
2370  * The caller must not request to add more records than would fit in
2371  * the on-disk inode root.  If the if_broot is currently NULL, then
2372  * if we adding records one will be allocated.  The caller must also
2373  * not request that the number of records go below zero, although
2374  * it can go to zero.
2375  *
2376  * ip -- the inode whose if_broot area is changing
2377  * ext_diff -- the change in the number of records, positive or negative,
2378  *	 requested for the if_broot array.
2379  */
2380 void
2381 xfs_iroot_realloc(
2382 	xfs_inode_t		*ip,
2383 	int			rec_diff,
2384 	int			whichfork)
2385 {
2386 	int			cur_max;
2387 	xfs_ifork_t		*ifp;
2388 	xfs_bmbt_block_t	*new_broot;
2389 	int			new_max;
2390 	size_t			new_size;
2391 	char			*np;
2392 	char			*op;
2393 
2394 	/*
2395 	 * Handle the degenerate case quietly.
2396 	 */
2397 	if (rec_diff == 0) {
2398 		return;
2399 	}
2400 
2401 	ifp = XFS_IFORK_PTR(ip, whichfork);
2402 	if (rec_diff > 0) {
2403 		/*
2404 		 * If there wasn't any memory allocated before, just
2405 		 * allocate it now and get out.
2406 		 */
2407 		if (ifp->if_broot_bytes == 0) {
2408 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2409 			ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2410 								     KM_SLEEP);
2411 			ifp->if_broot_bytes = (int)new_size;
2412 			return;
2413 		}
2414 
2415 		/*
2416 		 * If there is already an existing if_broot, then we need
2417 		 * to realloc() it and shift the pointers to their new
2418 		 * location.  The records don't change location because
2419 		 * they are kept butted up against the btree block header.
2420 		 */
2421 		cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2422 		new_max = cur_max + rec_diff;
2423 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2424 		ifp->if_broot = (xfs_bmbt_block_t *)
2425 		  kmem_realloc(ifp->if_broot,
2426 				new_size,
2427 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2428 				KM_SLEEP);
2429 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2430 						      ifp->if_broot_bytes);
2431 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2432 						      (int)new_size);
2433 		ifp->if_broot_bytes = (int)new_size;
2434 		ASSERT(ifp->if_broot_bytes <=
2435 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2436 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2437 		return;
2438 	}
2439 
2440 	/*
2441 	 * rec_diff is less than 0.  In this case, we are shrinking the
2442 	 * if_broot buffer.  It must already exist.  If we go to zero
2443 	 * records, just get rid of the root and clear the status bit.
2444 	 */
2445 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2446 	cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2447 	new_max = cur_max + rec_diff;
2448 	ASSERT(new_max >= 0);
2449 	if (new_max > 0)
2450 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2451 	else
2452 		new_size = 0;
2453 	if (new_size > 0) {
2454 		new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2455 		/*
2456 		 * First copy over the btree block header.
2457 		 */
2458 		memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2459 	} else {
2460 		new_broot = NULL;
2461 		ifp->if_flags &= ~XFS_IFBROOT;
2462 	}
2463 
2464 	/*
2465 	 * Only copy the records and pointers if there are any.
2466 	 */
2467 	if (new_max > 0) {
2468 		/*
2469 		 * First copy the records.
2470 		 */
2471 		op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2472 						     ifp->if_broot_bytes);
2473 		np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2474 						     (int)new_size);
2475 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2476 
2477 		/*
2478 		 * Then copy the pointers.
2479 		 */
2480 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2481 						     ifp->if_broot_bytes);
2482 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2483 						     (int)new_size);
2484 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2485 	}
2486 	kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2487 	ifp->if_broot = new_broot;
2488 	ifp->if_broot_bytes = (int)new_size;
2489 	ASSERT(ifp->if_broot_bytes <=
2490 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2491 	return;
2492 }
2493 
2494 
2495 /*
2496  * This is called when the amount of space needed for if_data
2497  * is increased or decreased.  The change in size is indicated by
2498  * the number of bytes that need to be added or deleted in the
2499  * byte_diff parameter.
2500  *
2501  * If the amount of space needed has decreased below the size of the
2502  * inline buffer, then switch to using the inline buffer.  Otherwise,
2503  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2504  * to what is needed.
2505  *
2506  * ip -- the inode whose if_data area is changing
2507  * byte_diff -- the change in the number of bytes, positive or negative,
2508  *	 requested for the if_data array.
2509  */
2510 void
2511 xfs_idata_realloc(
2512 	xfs_inode_t	*ip,
2513 	int		byte_diff,
2514 	int		whichfork)
2515 {
2516 	xfs_ifork_t	*ifp;
2517 	int		new_size;
2518 	int		real_size;
2519 
2520 	if (byte_diff == 0) {
2521 		return;
2522 	}
2523 
2524 	ifp = XFS_IFORK_PTR(ip, whichfork);
2525 	new_size = (int)ifp->if_bytes + byte_diff;
2526 	ASSERT(new_size >= 0);
2527 
2528 	if (new_size == 0) {
2529 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2530 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2531 		}
2532 		ifp->if_u1.if_data = NULL;
2533 		real_size = 0;
2534 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2535 		/*
2536 		 * If the valid extents/data can fit in if_inline_ext/data,
2537 		 * copy them from the malloc'd vector and free it.
2538 		 */
2539 		if (ifp->if_u1.if_data == NULL) {
2540 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2541 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2542 			ASSERT(ifp->if_real_bytes != 0);
2543 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2544 			      new_size);
2545 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2546 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2547 		}
2548 		real_size = 0;
2549 	} else {
2550 		/*
2551 		 * Stuck with malloc/realloc.
2552 		 * For inline data, the underlying buffer must be
2553 		 * a multiple of 4 bytes in size so that it can be
2554 		 * logged and stay on word boundaries.  We enforce
2555 		 * that here.
2556 		 */
2557 		real_size = roundup(new_size, 4);
2558 		if (ifp->if_u1.if_data == NULL) {
2559 			ASSERT(ifp->if_real_bytes == 0);
2560 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2561 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2562 			/*
2563 			 * Only do the realloc if the underlying size
2564 			 * is really changing.
2565 			 */
2566 			if (ifp->if_real_bytes != real_size) {
2567 				ifp->if_u1.if_data =
2568 					kmem_realloc(ifp->if_u1.if_data,
2569 							real_size,
2570 							ifp->if_real_bytes,
2571 							KM_SLEEP);
2572 			}
2573 		} else {
2574 			ASSERT(ifp->if_real_bytes == 0);
2575 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2576 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2577 				ifp->if_bytes);
2578 		}
2579 	}
2580 	ifp->if_real_bytes = real_size;
2581 	ifp->if_bytes = new_size;
2582 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2583 }
2584 
2585 
2586 
2587 
2588 /*
2589  * Map inode to disk block and offset.
2590  *
2591  * mp -- the mount point structure for the current file system
2592  * tp -- the current transaction
2593  * ino -- the inode number of the inode to be located
2594  * imap -- this structure is filled in with the information necessary
2595  *	 to retrieve the given inode from disk
2596  * flags -- flags to pass to xfs_dilocate indicating whether or not
2597  *	 lookups in the inode btree were OK or not
2598  */
2599 int
2600 xfs_imap(
2601 	xfs_mount_t	*mp,
2602 	xfs_trans_t	*tp,
2603 	xfs_ino_t	ino,
2604 	xfs_imap_t	*imap,
2605 	uint		flags)
2606 {
2607 	xfs_fsblock_t	fsbno;
2608 	int		len;
2609 	int		off;
2610 	int		error;
2611 
2612 	fsbno = imap->im_blkno ?
2613 		XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2614 	error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2615 	if (error != 0) {
2616 		return error;
2617 	}
2618 	imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2619 	imap->im_len = XFS_FSB_TO_BB(mp, len);
2620 	imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2621 	imap->im_ioffset = (ushort)off;
2622 	imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2623 	return 0;
2624 }
2625 
2626 void
2627 xfs_idestroy_fork(
2628 	xfs_inode_t	*ip,
2629 	int		whichfork)
2630 {
2631 	xfs_ifork_t	*ifp;
2632 
2633 	ifp = XFS_IFORK_PTR(ip, whichfork);
2634 	if (ifp->if_broot != NULL) {
2635 		kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2636 		ifp->if_broot = NULL;
2637 	}
2638 
2639 	/*
2640 	 * If the format is local, then we can't have an extents
2641 	 * array so just look for an inline data array.  If we're
2642 	 * not local then we may or may not have an extents list,
2643 	 * so check and free it up if we do.
2644 	 */
2645 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2646 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2647 		    (ifp->if_u1.if_data != NULL)) {
2648 			ASSERT(ifp->if_real_bytes != 0);
2649 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2650 			ifp->if_u1.if_data = NULL;
2651 			ifp->if_real_bytes = 0;
2652 		}
2653 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2654 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2655 		    ((ifp->if_u1.if_extents != NULL) &&
2656 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2657 		ASSERT(ifp->if_real_bytes != 0);
2658 		xfs_iext_destroy(ifp);
2659 	}
2660 	ASSERT(ifp->if_u1.if_extents == NULL ||
2661 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2662 	ASSERT(ifp->if_real_bytes == 0);
2663 	if (whichfork == XFS_ATTR_FORK) {
2664 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2665 		ip->i_afp = NULL;
2666 	}
2667 }
2668 
2669 /*
2670  * This is called free all the memory associated with an inode.
2671  * It must free the inode itself and any buffers allocated for
2672  * if_extents/if_data and if_broot.  It must also free the lock
2673  * associated with the inode.
2674  */
2675 void
2676 xfs_idestroy(
2677 	xfs_inode_t	*ip)
2678 {
2679 
2680 	switch (ip->i_d.di_mode & S_IFMT) {
2681 	case S_IFREG:
2682 	case S_IFDIR:
2683 	case S_IFLNK:
2684 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
2685 		break;
2686 	}
2687 	if (ip->i_afp)
2688 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2689 	mrfree(&ip->i_lock);
2690 	mrfree(&ip->i_iolock);
2691 	freesema(&ip->i_flock);
2692 #ifdef XFS_BMAP_TRACE
2693 	ktrace_free(ip->i_xtrace);
2694 #endif
2695 #ifdef XFS_BMBT_TRACE
2696 	ktrace_free(ip->i_btrace);
2697 #endif
2698 #ifdef XFS_RW_TRACE
2699 	ktrace_free(ip->i_rwtrace);
2700 #endif
2701 #ifdef XFS_ILOCK_TRACE
2702 	ktrace_free(ip->i_lock_trace);
2703 #endif
2704 #ifdef XFS_DIR2_TRACE
2705 	ktrace_free(ip->i_dir_trace);
2706 #endif
2707 	if (ip->i_itemp) {
2708 		/*
2709 		 * Only if we are shutting down the fs will we see an
2710 		 * inode still in the AIL. If it is there, we should remove
2711 		 * it to prevent a use-after-free from occurring.
2712 		 */
2713 		xfs_mount_t	*mp = ip->i_mount;
2714 		xfs_log_item_t	*lip = &ip->i_itemp->ili_item;
2715 		int		s;
2716 
2717 		ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2718 				       XFS_FORCED_SHUTDOWN(ip->i_mount));
2719 		if (lip->li_flags & XFS_LI_IN_AIL) {
2720 			AIL_LOCK(mp, s);
2721 			if (lip->li_flags & XFS_LI_IN_AIL)
2722 				xfs_trans_delete_ail(mp, lip, s);
2723 			else
2724 				AIL_UNLOCK(mp, s);
2725 		}
2726 		xfs_inode_item_destroy(ip);
2727 	}
2728 	kmem_zone_free(xfs_inode_zone, ip);
2729 }
2730 
2731 
2732 /*
2733  * Increment the pin count of the given buffer.
2734  * This value is protected by ipinlock spinlock in the mount structure.
2735  */
2736 void
2737 xfs_ipin(
2738 	xfs_inode_t	*ip)
2739 {
2740 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2741 
2742 	atomic_inc(&ip->i_pincount);
2743 }
2744 
2745 /*
2746  * Decrement the pin count of the given inode, and wake up
2747  * anyone in xfs_iwait_unpin() if the count goes to 0.  The
2748  * inode must have been previously pinned with a call to xfs_ipin().
2749  */
2750 void
2751 xfs_iunpin(
2752 	xfs_inode_t	*ip)
2753 {
2754 	ASSERT(atomic_read(&ip->i_pincount) > 0);
2755 
2756 	if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2757 
2758 		/*
2759 		 * If the inode is currently being reclaimed, the link between
2760 		 * the bhv_vnode and the xfs_inode will be broken after the
2761 		 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2762 		 * set, then we can move forward and mark the linux inode dirty
2763 		 * knowing that it is still valid as it won't freed until after
2764 		 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2765 		 * i_flags_lock is used to synchronise the setting of the
2766 		 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2767 		 * can execute atomically w.r.t to reclaim by holding this lock
2768 		 * here.
2769 		 *
2770 		 * However, we still need to issue the unpin wakeup call as the
2771 		 * inode reclaim may be blocked waiting for the inode to become
2772 		 * unpinned.
2773 		 */
2774 
2775 		if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
2776 			bhv_vnode_t	*vp = XFS_ITOV_NULL(ip);
2777 			struct inode *inode = NULL;
2778 
2779 			BUG_ON(vp == NULL);
2780 			inode = vn_to_inode(vp);
2781 			BUG_ON(inode->i_state & I_CLEAR);
2782 
2783 			/* make sync come back and flush this inode */
2784 			if (!(inode->i_state & (I_NEW|I_FREEING)))
2785 				mark_inode_dirty_sync(inode);
2786 		}
2787 		spin_unlock(&ip->i_flags_lock);
2788 		wake_up(&ip->i_ipin_wait);
2789 	}
2790 }
2791 
2792 /*
2793  * This is called to wait for the given inode to be unpinned.
2794  * It will sleep until this happens.  The caller must have the
2795  * inode locked in at least shared mode so that the buffer cannot
2796  * be subsequently pinned once someone is waiting for it to be
2797  * unpinned.
2798  */
2799 STATIC void
2800 xfs_iunpin_wait(
2801 	xfs_inode_t	*ip)
2802 {
2803 	xfs_inode_log_item_t	*iip;
2804 	xfs_lsn_t	lsn;
2805 
2806 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2807 
2808 	if (atomic_read(&ip->i_pincount) == 0) {
2809 		return;
2810 	}
2811 
2812 	iip = ip->i_itemp;
2813 	if (iip && iip->ili_last_lsn) {
2814 		lsn = iip->ili_last_lsn;
2815 	} else {
2816 		lsn = (xfs_lsn_t)0;
2817 	}
2818 
2819 	/*
2820 	 * Give the log a push so we don't wait here too long.
2821 	 */
2822 	xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2823 
2824 	wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2825 }
2826 
2827 
2828 /*
2829  * xfs_iextents_copy()
2830  *
2831  * This is called to copy the REAL extents (as opposed to the delayed
2832  * allocation extents) from the inode into the given buffer.  It
2833  * returns the number of bytes copied into the buffer.
2834  *
2835  * If there are no delayed allocation extents, then we can just
2836  * memcpy() the extents into the buffer.  Otherwise, we need to
2837  * examine each extent in turn and skip those which are delayed.
2838  */
2839 int
2840 xfs_iextents_copy(
2841 	xfs_inode_t		*ip,
2842 	xfs_bmbt_rec_t		*buffer,
2843 	int			whichfork)
2844 {
2845 	int			copied;
2846 	xfs_bmbt_rec_t		*dest_ep;
2847 	xfs_bmbt_rec_t		*ep;
2848 #ifdef XFS_BMAP_TRACE
2849 	static char		fname[] = "xfs_iextents_copy";
2850 #endif
2851 	int			i;
2852 	xfs_ifork_t		*ifp;
2853 	int			nrecs;
2854 	xfs_fsblock_t		start_block;
2855 
2856 	ifp = XFS_IFORK_PTR(ip, whichfork);
2857 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2858 	ASSERT(ifp->if_bytes > 0);
2859 
2860 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2861 	xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2862 	ASSERT(nrecs > 0);
2863 
2864 	/*
2865 	 * There are some delayed allocation extents in the
2866 	 * inode, so copy the extents one at a time and skip
2867 	 * the delayed ones.  There must be at least one
2868 	 * non-delayed extent.
2869 	 */
2870 	dest_ep = buffer;
2871 	copied = 0;
2872 	for (i = 0; i < nrecs; i++) {
2873 		ep = xfs_iext_get_ext(ifp, i);
2874 		start_block = xfs_bmbt_get_startblock(ep);
2875 		if (ISNULLSTARTBLOCK(start_block)) {
2876 			/*
2877 			 * It's a delayed allocation extent, so skip it.
2878 			 */
2879 			continue;
2880 		}
2881 
2882 		/* Translate to on disk format */
2883 		put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2884 			      (__uint64_t*)&dest_ep->l0);
2885 		put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2886 			      (__uint64_t*)&dest_ep->l1);
2887 		dest_ep++;
2888 		copied++;
2889 	}
2890 	ASSERT(copied != 0);
2891 	xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
2892 
2893 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2894 }
2895 
2896 /*
2897  * Each of the following cases stores data into the same region
2898  * of the on-disk inode, so only one of them can be valid at
2899  * any given time. While it is possible to have conflicting formats
2900  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2901  * in EXTENTS format, this can only happen when the fork has
2902  * changed formats after being modified but before being flushed.
2903  * In these cases, the format always takes precedence, because the
2904  * format indicates the current state of the fork.
2905  */
2906 /*ARGSUSED*/
2907 STATIC int
2908 xfs_iflush_fork(
2909 	xfs_inode_t		*ip,
2910 	xfs_dinode_t		*dip,
2911 	xfs_inode_log_item_t	*iip,
2912 	int			whichfork,
2913 	xfs_buf_t		*bp)
2914 {
2915 	char			*cp;
2916 	xfs_ifork_t		*ifp;
2917 	xfs_mount_t		*mp;
2918 #ifdef XFS_TRANS_DEBUG
2919 	int			first;
2920 #endif
2921 	static const short	brootflag[2] =
2922 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2923 	static const short	dataflag[2] =
2924 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2925 	static const short	extflag[2] =
2926 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2927 
2928 	if (iip == NULL)
2929 		return 0;
2930 	ifp = XFS_IFORK_PTR(ip, whichfork);
2931 	/*
2932 	 * This can happen if we gave up in iformat in an error path,
2933 	 * for the attribute fork.
2934 	 */
2935 	if (ifp == NULL) {
2936 		ASSERT(whichfork == XFS_ATTR_FORK);
2937 		return 0;
2938 	}
2939 	cp = XFS_DFORK_PTR(dip, whichfork);
2940 	mp = ip->i_mount;
2941 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2942 	case XFS_DINODE_FMT_LOCAL:
2943 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2944 		    (ifp->if_bytes > 0)) {
2945 			ASSERT(ifp->if_u1.if_data != NULL);
2946 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2947 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2948 		}
2949 		break;
2950 
2951 	case XFS_DINODE_FMT_EXTENTS:
2952 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2953 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2954 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2955 			(ifp->if_bytes == 0));
2956 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2957 			(ifp->if_bytes > 0));
2958 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2959 		    (ifp->if_bytes > 0)) {
2960 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2961 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2962 				whichfork);
2963 		}
2964 		break;
2965 
2966 	case XFS_DINODE_FMT_BTREE:
2967 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2968 		    (ifp->if_broot_bytes > 0)) {
2969 			ASSERT(ifp->if_broot != NULL);
2970 			ASSERT(ifp->if_broot_bytes <=
2971 			       (XFS_IFORK_SIZE(ip, whichfork) +
2972 				XFS_BROOT_SIZE_ADJ));
2973 			xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2974 				(xfs_bmdr_block_t *)cp,
2975 				XFS_DFORK_SIZE(dip, mp, whichfork));
2976 		}
2977 		break;
2978 
2979 	case XFS_DINODE_FMT_DEV:
2980 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2981 			ASSERT(whichfork == XFS_DATA_FORK);
2982 			INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
2983 		}
2984 		break;
2985 
2986 	case XFS_DINODE_FMT_UUID:
2987 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2988 			ASSERT(whichfork == XFS_DATA_FORK);
2989 			memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2990 				sizeof(uuid_t));
2991 		}
2992 		break;
2993 
2994 	default:
2995 		ASSERT(0);
2996 		break;
2997 	}
2998 
2999 	return 0;
3000 }
3001 
3002 /*
3003  * xfs_iflush() will write a modified inode's changes out to the
3004  * inode's on disk home.  The caller must have the inode lock held
3005  * in at least shared mode and the inode flush semaphore must be
3006  * held as well.  The inode lock will still be held upon return from
3007  * the call and the caller is free to unlock it.
3008  * The inode flush lock will be unlocked when the inode reaches the disk.
3009  * The flags indicate how the inode's buffer should be written out.
3010  */
3011 int
3012 xfs_iflush(
3013 	xfs_inode_t		*ip,
3014 	uint			flags)
3015 {
3016 	xfs_inode_log_item_t	*iip;
3017 	xfs_buf_t		*bp;
3018 	xfs_dinode_t		*dip;
3019 	xfs_mount_t		*mp;
3020 	int			error;
3021 	/* REFERENCED */
3022 	xfs_chash_t		*ch;
3023 	xfs_inode_t		*iq;
3024 	int			clcount;	/* count of inodes clustered */
3025 	int			bufwasdelwri;
3026 	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3027 	SPLDECL(s);
3028 
3029 	XFS_STATS_INC(xs_iflush_count);
3030 
3031 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3032 	ASSERT(issemalocked(&(ip->i_flock)));
3033 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3034 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3035 
3036 	iip = ip->i_itemp;
3037 	mp = ip->i_mount;
3038 
3039 	/*
3040 	 * If the inode isn't dirty, then just release the inode
3041 	 * flush lock and do nothing.
3042 	 */
3043 	if ((ip->i_update_core == 0) &&
3044 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3045 		ASSERT((iip != NULL) ?
3046 			 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3047 		xfs_ifunlock(ip);
3048 		return 0;
3049 	}
3050 
3051 	/*
3052 	 * We can't flush the inode until it is unpinned, so
3053 	 * wait for it.  We know noone new can pin it, because
3054 	 * we are holding the inode lock shared and you need
3055 	 * to hold it exclusively to pin the inode.
3056 	 */
3057 	xfs_iunpin_wait(ip);
3058 
3059 	/*
3060 	 * This may have been unpinned because the filesystem is shutting
3061 	 * down forcibly. If that's the case we must not write this inode
3062 	 * to disk, because the log record didn't make it to disk!
3063 	 */
3064 	if (XFS_FORCED_SHUTDOWN(mp)) {
3065 		ip->i_update_core = 0;
3066 		if (iip)
3067 			iip->ili_format.ilf_fields = 0;
3068 		xfs_ifunlock(ip);
3069 		return XFS_ERROR(EIO);
3070 	}
3071 
3072 	/*
3073 	 * Get the buffer containing the on-disk inode.
3074 	 */
3075 	error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3076 	if (error) {
3077 		xfs_ifunlock(ip);
3078 		return error;
3079 	}
3080 
3081 	/*
3082 	 * Decide how buffer will be flushed out.  This is done before
3083 	 * the call to xfs_iflush_int because this field is zeroed by it.
3084 	 */
3085 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3086 		/*
3087 		 * Flush out the inode buffer according to the directions
3088 		 * of the caller.  In the cases where the caller has given
3089 		 * us a choice choose the non-delwri case.  This is because
3090 		 * the inode is in the AIL and we need to get it out soon.
3091 		 */
3092 		switch (flags) {
3093 		case XFS_IFLUSH_SYNC:
3094 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3095 			flags = 0;
3096 			break;
3097 		case XFS_IFLUSH_ASYNC:
3098 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3099 			flags = INT_ASYNC;
3100 			break;
3101 		case XFS_IFLUSH_DELWRI:
3102 			flags = INT_DELWRI;
3103 			break;
3104 		default:
3105 			ASSERT(0);
3106 			flags = 0;
3107 			break;
3108 		}
3109 	} else {
3110 		switch (flags) {
3111 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3112 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3113 		case XFS_IFLUSH_DELWRI:
3114 			flags = INT_DELWRI;
3115 			break;
3116 		case XFS_IFLUSH_ASYNC:
3117 			flags = INT_ASYNC;
3118 			break;
3119 		case XFS_IFLUSH_SYNC:
3120 			flags = 0;
3121 			break;
3122 		default:
3123 			ASSERT(0);
3124 			flags = 0;
3125 			break;
3126 		}
3127 	}
3128 
3129 	/*
3130 	 * First flush out the inode that xfs_iflush was called with.
3131 	 */
3132 	error = xfs_iflush_int(ip, bp);
3133 	if (error) {
3134 		goto corrupt_out;
3135 	}
3136 
3137 	/*
3138 	 * inode clustering:
3139 	 * see if other inodes can be gathered into this write
3140 	 */
3141 
3142 	ip->i_chash->chl_buf = bp;
3143 
3144 	ch = XFS_CHASH(mp, ip->i_blkno);
3145 	s = mutex_spinlock(&ch->ch_lock);
3146 
3147 	clcount = 0;
3148 	for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3149 		/*
3150 		 * Do an un-protected check to see if the inode is dirty and
3151 		 * is a candidate for flushing.  These checks will be repeated
3152 		 * later after the appropriate locks are acquired.
3153 		 */
3154 		iip = iq->i_itemp;
3155 		if ((iq->i_update_core == 0) &&
3156 		    ((iip == NULL) ||
3157 		     !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3158 		      xfs_ipincount(iq) == 0) {
3159 			continue;
3160 		}
3161 
3162 		/*
3163 		 * Try to get locks.  If any are unavailable,
3164 		 * then this inode cannot be flushed and is skipped.
3165 		 */
3166 
3167 		/* get inode locks (just i_lock) */
3168 		if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3169 			/* get inode flush lock */
3170 			if (xfs_iflock_nowait(iq)) {
3171 				/* check if pinned */
3172 				if (xfs_ipincount(iq) == 0) {
3173 					/* arriving here means that
3174 					 * this inode can be flushed.
3175 					 * first re-check that it's
3176 					 * dirty
3177 					 */
3178 					iip = iq->i_itemp;
3179 					if ((iq->i_update_core != 0)||
3180 					    ((iip != NULL) &&
3181 					     (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3182 						clcount++;
3183 						error = xfs_iflush_int(iq, bp);
3184 						if (error) {
3185 							xfs_iunlock(iq,
3186 								    XFS_ILOCK_SHARED);
3187 							goto cluster_corrupt_out;
3188 						}
3189 					} else {
3190 						xfs_ifunlock(iq);
3191 					}
3192 				} else {
3193 					xfs_ifunlock(iq);
3194 				}
3195 			}
3196 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3197 		}
3198 	}
3199 	mutex_spinunlock(&ch->ch_lock, s);
3200 
3201 	if (clcount) {
3202 		XFS_STATS_INC(xs_icluster_flushcnt);
3203 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3204 	}
3205 
3206 	/*
3207 	 * If the buffer is pinned then push on the log so we won't
3208 	 * get stuck waiting in the write for too long.
3209 	 */
3210 	if (XFS_BUF_ISPINNED(bp)){
3211 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3212 	}
3213 
3214 	if (flags & INT_DELWRI) {
3215 		xfs_bdwrite(mp, bp);
3216 	} else if (flags & INT_ASYNC) {
3217 		xfs_bawrite(mp, bp);
3218 	} else {
3219 		error = xfs_bwrite(mp, bp);
3220 	}
3221 	return error;
3222 
3223 corrupt_out:
3224 	xfs_buf_relse(bp);
3225 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3226 	xfs_iflush_abort(ip);
3227 	/*
3228 	 * Unlocks the flush lock
3229 	 */
3230 	return XFS_ERROR(EFSCORRUPTED);
3231 
3232 cluster_corrupt_out:
3233 	/* Corruption detected in the clustering loop.  Invalidate the
3234 	 * inode buffer and shut down the filesystem.
3235 	 */
3236 	mutex_spinunlock(&ch->ch_lock, s);
3237 
3238 	/*
3239 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
3240 	 * brelse can handle it with no problems.  If not, shut down the
3241 	 * filesystem before releasing the buffer.
3242 	 */
3243 	if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3244 		xfs_buf_relse(bp);
3245 	}
3246 
3247 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3248 
3249 	if(!bufwasdelwri)  {
3250 		/*
3251 		 * Just like incore_relse: if we have b_iodone functions,
3252 		 * mark the buffer as an error and call them.  Otherwise
3253 		 * mark it as stale and brelse.
3254 		 */
3255 		if (XFS_BUF_IODONE_FUNC(bp)) {
3256 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3257 			XFS_BUF_UNDONE(bp);
3258 			XFS_BUF_STALE(bp);
3259 			XFS_BUF_SHUT(bp);
3260 			XFS_BUF_ERROR(bp,EIO);
3261 			xfs_biodone(bp);
3262 		} else {
3263 			XFS_BUF_STALE(bp);
3264 			xfs_buf_relse(bp);
3265 		}
3266 	}
3267 
3268 	xfs_iflush_abort(iq);
3269 	/*
3270 	 * Unlocks the flush lock
3271 	 */
3272 	return XFS_ERROR(EFSCORRUPTED);
3273 }
3274 
3275 
3276 STATIC int
3277 xfs_iflush_int(
3278 	xfs_inode_t		*ip,
3279 	xfs_buf_t		*bp)
3280 {
3281 	xfs_inode_log_item_t	*iip;
3282 	xfs_dinode_t		*dip;
3283 	xfs_mount_t		*mp;
3284 #ifdef XFS_TRANS_DEBUG
3285 	int			first;
3286 #endif
3287 	SPLDECL(s);
3288 
3289 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3290 	ASSERT(issemalocked(&(ip->i_flock)));
3291 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3292 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3293 
3294 	iip = ip->i_itemp;
3295 	mp = ip->i_mount;
3296 
3297 
3298 	/*
3299 	 * If the inode isn't dirty, then just release the inode
3300 	 * flush lock and do nothing.
3301 	 */
3302 	if ((ip->i_update_core == 0) &&
3303 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3304 		xfs_ifunlock(ip);
3305 		return 0;
3306 	}
3307 
3308 	/* set *dip = inode's place in the buffer */
3309 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3310 
3311 	/*
3312 	 * Clear i_update_core before copying out the data.
3313 	 * This is for coordination with our timestamp updates
3314 	 * that don't hold the inode lock. They will always
3315 	 * update the timestamps BEFORE setting i_update_core,
3316 	 * so if we clear i_update_core after they set it we
3317 	 * are guaranteed to see their updates to the timestamps.
3318 	 * I believe that this depends on strongly ordered memory
3319 	 * semantics, but we have that.  We use the SYNCHRONIZE
3320 	 * macro to make sure that the compiler does not reorder
3321 	 * the i_update_core access below the data copy below.
3322 	 */
3323 	ip->i_update_core = 0;
3324 	SYNCHRONIZE();
3325 
3326 	/*
3327 	 * Make sure to get the latest atime from the Linux inode.
3328 	 */
3329 	xfs_synchronize_atime(ip);
3330 
3331 	if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3332 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3333 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3334 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3335 			ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3336 		goto corrupt_out;
3337 	}
3338 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3339 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3340 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3341 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3342 			ip->i_ino, ip, ip->i_d.di_magic);
3343 		goto corrupt_out;
3344 	}
3345 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3346 		if (XFS_TEST_ERROR(
3347 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3348 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3349 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3350 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3351 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3352 				ip->i_ino, ip);
3353 			goto corrupt_out;
3354 		}
3355 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3356 		if (XFS_TEST_ERROR(
3357 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3358 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3359 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3360 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3361 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3362 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3363 				ip->i_ino, ip);
3364 			goto corrupt_out;
3365 		}
3366 	}
3367 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3368 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3369 				XFS_RANDOM_IFLUSH_5)) {
3370 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3371 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3372 			ip->i_ino,
3373 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3374 			ip->i_d.di_nblocks,
3375 			ip);
3376 		goto corrupt_out;
3377 	}
3378 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3379 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3380 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3381 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3382 			ip->i_ino, ip->i_d.di_forkoff, ip);
3383 		goto corrupt_out;
3384 	}
3385 	/*
3386 	 * bump the flush iteration count, used to detect flushes which
3387 	 * postdate a log record during recovery.
3388 	 */
3389 
3390 	ip->i_d.di_flushiter++;
3391 
3392 	/*
3393 	 * Copy the dirty parts of the inode into the on-disk
3394 	 * inode.  We always copy out the core of the inode,
3395 	 * because if the inode is dirty at all the core must
3396 	 * be.
3397 	 */
3398 	xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3399 
3400 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3401 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3402 		ip->i_d.di_flushiter = 0;
3403 
3404 	/*
3405 	 * If this is really an old format inode and the superblock version
3406 	 * has not been updated to support only new format inodes, then
3407 	 * convert back to the old inode format.  If the superblock version
3408 	 * has been updated, then make the conversion permanent.
3409 	 */
3410 	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3411 	       XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3412 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3413 		if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3414 			/*
3415 			 * Convert it back.
3416 			 */
3417 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3418 			INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3419 		} else {
3420 			/*
3421 			 * The superblock version has already been bumped,
3422 			 * so just make the conversion to the new inode
3423 			 * format permanent.
3424 			 */
3425 			ip->i_d.di_version = XFS_DINODE_VERSION_2;
3426 			INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3427 			ip->i_d.di_onlink = 0;
3428 			dip->di_core.di_onlink = 0;
3429 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3430 			memset(&(dip->di_core.di_pad[0]), 0,
3431 			      sizeof(dip->di_core.di_pad));
3432 			ASSERT(ip->i_d.di_projid == 0);
3433 		}
3434 	}
3435 
3436 	if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3437 		goto corrupt_out;
3438 	}
3439 
3440 	if (XFS_IFORK_Q(ip)) {
3441 		/*
3442 		 * The only error from xfs_iflush_fork is on the data fork.
3443 		 */
3444 		(void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3445 	}
3446 	xfs_inobp_check(mp, bp);
3447 
3448 	/*
3449 	 * We've recorded everything logged in the inode, so we'd
3450 	 * like to clear the ilf_fields bits so we don't log and
3451 	 * flush things unnecessarily.  However, we can't stop
3452 	 * logging all this information until the data we've copied
3453 	 * into the disk buffer is written to disk.  If we did we might
3454 	 * overwrite the copy of the inode in the log with all the
3455 	 * data after re-logging only part of it, and in the face of
3456 	 * a crash we wouldn't have all the data we need to recover.
3457 	 *
3458 	 * What we do is move the bits to the ili_last_fields field.
3459 	 * When logging the inode, these bits are moved back to the
3460 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3461 	 * clear ili_last_fields, since we know that the information
3462 	 * those bits represent is permanently on disk.  As long as
3463 	 * the flush completes before the inode is logged again, then
3464 	 * both ilf_fields and ili_last_fields will be cleared.
3465 	 *
3466 	 * We can play with the ilf_fields bits here, because the inode
3467 	 * lock must be held exclusively in order to set bits there
3468 	 * and the flush lock protects the ili_last_fields bits.
3469 	 * Set ili_logged so the flush done
3470 	 * routine can tell whether or not to look in the AIL.
3471 	 * Also, store the current LSN of the inode so that we can tell
3472 	 * whether the item has moved in the AIL from xfs_iflush_done().
3473 	 * In order to read the lsn we need the AIL lock, because
3474 	 * it is a 64 bit value that cannot be read atomically.
3475 	 */
3476 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3477 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3478 		iip->ili_format.ilf_fields = 0;
3479 		iip->ili_logged = 1;
3480 
3481 		ASSERT(sizeof(xfs_lsn_t) == 8);	/* don't lock if it shrinks */
3482 		AIL_LOCK(mp,s);
3483 		iip->ili_flush_lsn = iip->ili_item.li_lsn;
3484 		AIL_UNLOCK(mp, s);
3485 
3486 		/*
3487 		 * Attach the function xfs_iflush_done to the inode's
3488 		 * buffer.  This will remove the inode from the AIL
3489 		 * and unlock the inode's flush lock when the inode is
3490 		 * completely written to disk.
3491 		 */
3492 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3493 				      xfs_iflush_done, (xfs_log_item_t *)iip);
3494 
3495 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3496 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3497 	} else {
3498 		/*
3499 		 * We're flushing an inode which is not in the AIL and has
3500 		 * not been logged but has i_update_core set.  For this
3501 		 * case we can use a B_DELWRI flush and immediately drop
3502 		 * the inode flush lock because we can avoid the whole
3503 		 * AIL state thing.  It's OK to drop the flush lock now,
3504 		 * because we've already locked the buffer and to do anything
3505 		 * you really need both.
3506 		 */
3507 		if (iip != NULL) {
3508 			ASSERT(iip->ili_logged == 0);
3509 			ASSERT(iip->ili_last_fields == 0);
3510 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3511 		}
3512 		xfs_ifunlock(ip);
3513 	}
3514 
3515 	return 0;
3516 
3517 corrupt_out:
3518 	return XFS_ERROR(EFSCORRUPTED);
3519 }
3520 
3521 
3522 /*
3523  * Flush all inactive inodes in mp.
3524  */
3525 void
3526 xfs_iflush_all(
3527 	xfs_mount_t	*mp)
3528 {
3529 	xfs_inode_t	*ip;
3530 	bhv_vnode_t	*vp;
3531 
3532  again:
3533 	XFS_MOUNT_ILOCK(mp);
3534 	ip = mp->m_inodes;
3535 	if (ip == NULL)
3536 		goto out;
3537 
3538 	do {
3539 		/* Make sure we skip markers inserted by sync */
3540 		if (ip->i_mount == NULL) {
3541 			ip = ip->i_mnext;
3542 			continue;
3543 		}
3544 
3545 		vp = XFS_ITOV_NULL(ip);
3546 		if (!vp) {
3547 			XFS_MOUNT_IUNLOCK(mp);
3548 			xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3549 			goto again;
3550 		}
3551 
3552 		ASSERT(vn_count(vp) == 0);
3553 
3554 		ip = ip->i_mnext;
3555 	} while (ip != mp->m_inodes);
3556  out:
3557 	XFS_MOUNT_IUNLOCK(mp);
3558 }
3559 
3560 /*
3561  * xfs_iaccess: check accessibility of inode for mode.
3562  */
3563 int
3564 xfs_iaccess(
3565 	xfs_inode_t	*ip,
3566 	mode_t		mode,
3567 	cred_t		*cr)
3568 {
3569 	int		error;
3570 	mode_t		orgmode = mode;
3571 	struct inode	*inode = vn_to_inode(XFS_ITOV(ip));
3572 
3573 	if (mode & S_IWUSR) {
3574 		umode_t		imode = inode->i_mode;
3575 
3576 		if (IS_RDONLY(inode) &&
3577 		    (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3578 			return XFS_ERROR(EROFS);
3579 
3580 		if (IS_IMMUTABLE(inode))
3581 			return XFS_ERROR(EACCES);
3582 	}
3583 
3584 	/*
3585 	 * If there's an Access Control List it's used instead of
3586 	 * the mode bits.
3587 	 */
3588 	if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3589 		return error ? XFS_ERROR(error) : 0;
3590 
3591 	if (current_fsuid(cr) != ip->i_d.di_uid) {
3592 		mode >>= 3;
3593 		if (!in_group_p((gid_t)ip->i_d.di_gid))
3594 			mode >>= 3;
3595 	}
3596 
3597 	/*
3598 	 * If the DACs are ok we don't need any capability check.
3599 	 */
3600 	if ((ip->i_d.di_mode & mode) == mode)
3601 		return 0;
3602 	/*
3603 	 * Read/write DACs are always overridable.
3604 	 * Executable DACs are overridable if at least one exec bit is set.
3605 	 */
3606 	if (!(orgmode & S_IXUSR) ||
3607 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3608 		if (capable_cred(cr, CAP_DAC_OVERRIDE))
3609 			return 0;
3610 
3611 	if ((orgmode == S_IRUSR) ||
3612 	    (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3613 		if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3614 			return 0;
3615 #ifdef	NOISE
3616 		cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3617 #endif	/* NOISE */
3618 		return XFS_ERROR(EACCES);
3619 	}
3620 	return XFS_ERROR(EACCES);
3621 }
3622 
3623 /*
3624  * xfs_iroundup: round up argument to next power of two
3625  */
3626 uint
3627 xfs_iroundup(
3628 	uint	v)
3629 {
3630 	int i;
3631 	uint m;
3632 
3633 	if ((v & (v - 1)) == 0)
3634 		return v;
3635 	ASSERT((v & 0x80000000) == 0);
3636 	if ((v & (v + 1)) == 0)
3637 		return v + 1;
3638 	for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3639 		if (v & m)
3640 			continue;
3641 		v |= m;
3642 		if ((v & (v + 1)) == 0)
3643 			return v + 1;
3644 	}
3645 	ASSERT(0);
3646 	return( 0 );
3647 }
3648 
3649 #ifdef XFS_ILOCK_TRACE
3650 ktrace_t	*xfs_ilock_trace_buf;
3651 
3652 void
3653 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3654 {
3655 	ktrace_enter(ip->i_lock_trace,
3656 		     (void *)ip,
3657 		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3658 		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3659 		     (void *)ra,		/* caller of ilock */
3660 		     (void *)(unsigned long)current_cpu(),
3661 		     (void *)(unsigned long)current_pid(),
3662 		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3663 }
3664 #endif
3665 
3666 /*
3667  * Return a pointer to the extent record at file index idx.
3668  */
3669 xfs_bmbt_rec_t *
3670 xfs_iext_get_ext(
3671 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3672 	xfs_extnum_t	idx)		/* index of target extent */
3673 {
3674 	ASSERT(idx >= 0);
3675 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3676 		return ifp->if_u1.if_ext_irec->er_extbuf;
3677 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3678 		xfs_ext_irec_t	*erp;		/* irec pointer */
3679 		int		erp_idx = 0;	/* irec index */
3680 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3681 
3682 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3683 		return &erp->er_extbuf[page_idx];
3684 	} else if (ifp->if_bytes) {
3685 		return &ifp->if_u1.if_extents[idx];
3686 	} else {
3687 		return NULL;
3688 	}
3689 }
3690 
3691 /*
3692  * Insert new item(s) into the extent records for incore inode
3693  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3694  */
3695 void
3696 xfs_iext_insert(
3697 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3698 	xfs_extnum_t	idx,		/* starting index of new items */
3699 	xfs_extnum_t	count,		/* number of inserted items */
3700 	xfs_bmbt_irec_t	*new)		/* items to insert */
3701 {
3702 	xfs_bmbt_rec_t	*ep;		/* extent record pointer */
3703 	xfs_extnum_t	i;		/* extent record index */
3704 
3705 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3706 	xfs_iext_add(ifp, idx, count);
3707 	for (i = idx; i < idx + count; i++, new++) {
3708 		ep = xfs_iext_get_ext(ifp, i);
3709 		xfs_bmbt_set_all(ep, new);
3710 	}
3711 }
3712 
3713 /*
3714  * This is called when the amount of space required for incore file
3715  * extents needs to be increased. The ext_diff parameter stores the
3716  * number of new extents being added and the idx parameter contains
3717  * the extent index where the new extents will be added. If the new
3718  * extents are being appended, then we just need to (re)allocate and
3719  * initialize the space. Otherwise, if the new extents are being
3720  * inserted into the middle of the existing entries, a bit more work
3721  * is required to make room for the new extents to be inserted. The
3722  * caller is responsible for filling in the new extent entries upon
3723  * return.
3724  */
3725 void
3726 xfs_iext_add(
3727 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3728 	xfs_extnum_t	idx,		/* index to begin adding exts */
3729 	int		ext_diff)	/* number of extents to add */
3730 {
3731 	int		byte_diff;	/* new bytes being added */
3732 	int		new_size;	/* size of extents after adding */
3733 	xfs_extnum_t	nextents;	/* number of extents in file */
3734 
3735 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3736 	ASSERT((idx >= 0) && (idx <= nextents));
3737 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3738 	new_size = ifp->if_bytes + byte_diff;
3739 	/*
3740 	 * If the new number of extents (nextents + ext_diff)
3741 	 * fits inside the inode, then continue to use the inline
3742 	 * extent buffer.
3743 	 */
3744 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3745 		if (idx < nextents) {
3746 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3747 				&ifp->if_u2.if_inline_ext[idx],
3748 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3749 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3750 		}
3751 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3752 		ifp->if_real_bytes = 0;
3753 		ifp->if_lastex = nextents + ext_diff;
3754 	}
3755 	/*
3756 	 * Otherwise use a linear (direct) extent list.
3757 	 * If the extents are currently inside the inode,
3758 	 * xfs_iext_realloc_direct will switch us from
3759 	 * inline to direct extent allocation mode.
3760 	 */
3761 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3762 		xfs_iext_realloc_direct(ifp, new_size);
3763 		if (idx < nextents) {
3764 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3765 				&ifp->if_u1.if_extents[idx],
3766 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3767 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3768 		}
3769 	}
3770 	/* Indirection array */
3771 	else {
3772 		xfs_ext_irec_t	*erp;
3773 		int		erp_idx = 0;
3774 		int		page_idx = idx;
3775 
3776 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3777 		if (ifp->if_flags & XFS_IFEXTIREC) {
3778 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3779 		} else {
3780 			xfs_iext_irec_init(ifp);
3781 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3782 			erp = ifp->if_u1.if_ext_irec;
3783 		}
3784 		/* Extents fit in target extent page */
3785 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3786 			if (page_idx < erp->er_extcount) {
3787 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3788 					&erp->er_extbuf[page_idx],
3789 					(erp->er_extcount - page_idx) *
3790 					sizeof(xfs_bmbt_rec_t));
3791 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3792 			}
3793 			erp->er_extcount += ext_diff;
3794 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3795 		}
3796 		/* Insert a new extent page */
3797 		else if (erp) {
3798 			xfs_iext_add_indirect_multi(ifp,
3799 				erp_idx, page_idx, ext_diff);
3800 		}
3801 		/*
3802 		 * If extent(s) are being appended to the last page in
3803 		 * the indirection array and the new extent(s) don't fit
3804 		 * in the page, then erp is NULL and erp_idx is set to
3805 		 * the next index needed in the indirection array.
3806 		 */
3807 		else {
3808 			int	count = ext_diff;
3809 
3810 			while (count) {
3811 				erp = xfs_iext_irec_new(ifp, erp_idx);
3812 				erp->er_extcount = count;
3813 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3814 				if (count) {
3815 					erp_idx++;
3816 				}
3817 			}
3818 		}
3819 	}
3820 	ifp->if_bytes = new_size;
3821 }
3822 
3823 /*
3824  * This is called when incore extents are being added to the indirection
3825  * array and the new extents do not fit in the target extent list. The
3826  * erp_idx parameter contains the irec index for the target extent list
3827  * in the indirection array, and the idx parameter contains the extent
3828  * index within the list. The number of extents being added is stored
3829  * in the count parameter.
3830  *
3831  *    |-------|   |-------|
3832  *    |       |   |       |    idx - number of extents before idx
3833  *    |  idx  |   | count |
3834  *    |       |   |       |    count - number of extents being inserted at idx
3835  *    |-------|   |-------|
3836  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3837  *    |-------|   |-------|
3838  */
3839 void
3840 xfs_iext_add_indirect_multi(
3841 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3842 	int		erp_idx,		/* target extent irec index */
3843 	xfs_extnum_t	idx,			/* index within target list */
3844 	int		count)			/* new extents being added */
3845 {
3846 	int		byte_diff;		/* new bytes being added */
3847 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3848 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3849 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3850 	xfs_extnum_t	nex2;			/* extents after idx + count */
3851 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3852 	int		nlists;			/* number of irec's (lists) */
3853 
3854 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3855 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3856 	nex2 = erp->er_extcount - idx;
3857 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3858 
3859 	/*
3860 	 * Save second part of target extent list
3861 	 * (all extents past */
3862 	if (nex2) {
3863 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3864 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3865 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3866 		erp->er_extcount -= nex2;
3867 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3868 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3869 	}
3870 
3871 	/*
3872 	 * Add the new extents to the end of the target
3873 	 * list, then allocate new irec record(s) and
3874 	 * extent buffer(s) as needed to store the rest
3875 	 * of the new extents.
3876 	 */
3877 	ext_cnt = count;
3878 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3879 	if (ext_diff) {
3880 		erp->er_extcount += ext_diff;
3881 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3882 		ext_cnt -= ext_diff;
3883 	}
3884 	while (ext_cnt) {
3885 		erp_idx++;
3886 		erp = xfs_iext_irec_new(ifp, erp_idx);
3887 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3888 		erp->er_extcount = ext_diff;
3889 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3890 		ext_cnt -= ext_diff;
3891 	}
3892 
3893 	/* Add nex2 extents back to indirection array */
3894 	if (nex2) {
3895 		xfs_extnum_t	ext_avail;
3896 		int		i;
3897 
3898 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3899 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3900 		i = 0;
3901 		/*
3902 		 * If nex2 extents fit in the current page, append
3903 		 * nex2_ep after the new extents.
3904 		 */
3905 		if (nex2 <= ext_avail) {
3906 			i = erp->er_extcount;
3907 		}
3908 		/*
3909 		 * Otherwise, check if space is available in the
3910 		 * next page.
3911 		 */
3912 		else if ((erp_idx < nlists - 1) &&
3913 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3914 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3915 			erp_idx++;
3916 			erp++;
3917 			/* Create a hole for nex2 extents */
3918 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3919 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3920 		}
3921 		/*
3922 		 * Final choice, create a new extent page for
3923 		 * nex2 extents.
3924 		 */
3925 		else {
3926 			erp_idx++;
3927 			erp = xfs_iext_irec_new(ifp, erp_idx);
3928 		}
3929 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3930 		kmem_free(nex2_ep, byte_diff);
3931 		erp->er_extcount += nex2;
3932 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3933 	}
3934 }
3935 
3936 /*
3937  * This is called when the amount of space required for incore file
3938  * extents needs to be decreased. The ext_diff parameter stores the
3939  * number of extents to be removed and the idx parameter contains
3940  * the extent index where the extents will be removed from.
3941  *
3942  * If the amount of space needed has decreased below the linear
3943  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3944  * extent array.  Otherwise, use kmem_realloc() to adjust the
3945  * size to what is needed.
3946  */
3947 void
3948 xfs_iext_remove(
3949 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3950 	xfs_extnum_t	idx,		/* index to begin removing exts */
3951 	int		ext_diff)	/* number of extents to remove */
3952 {
3953 	xfs_extnum_t	nextents;	/* number of extents in file */
3954 	int		new_size;	/* size of extents after removal */
3955 
3956 	ASSERT(ext_diff > 0);
3957 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3958 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3959 
3960 	if (new_size == 0) {
3961 		xfs_iext_destroy(ifp);
3962 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3963 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3964 	} else if (ifp->if_real_bytes) {
3965 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3966 	} else {
3967 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3968 	}
3969 	ifp->if_bytes = new_size;
3970 }
3971 
3972 /*
3973  * This removes ext_diff extents from the inline buffer, beginning
3974  * at extent index idx.
3975  */
3976 void
3977 xfs_iext_remove_inline(
3978 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3979 	xfs_extnum_t	idx,		/* index to begin removing exts */
3980 	int		ext_diff)	/* number of extents to remove */
3981 {
3982 	int		nextents;	/* number of extents in file */
3983 
3984 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3985 	ASSERT(idx < XFS_INLINE_EXTS);
3986 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3987 	ASSERT(((nextents - ext_diff) > 0) &&
3988 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3989 
3990 	if (idx + ext_diff < nextents) {
3991 		memmove(&ifp->if_u2.if_inline_ext[idx],
3992 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3993 			(nextents - (idx + ext_diff)) *
3994 			 sizeof(xfs_bmbt_rec_t));
3995 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3996 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3997 	} else {
3998 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3999 			ext_diff * sizeof(xfs_bmbt_rec_t));
4000 	}
4001 }
4002 
4003 /*
4004  * This removes ext_diff extents from a linear (direct) extent list,
4005  * beginning at extent index idx. If the extents are being removed
4006  * from the end of the list (ie. truncate) then we just need to re-
4007  * allocate the list to remove the extra space. Otherwise, if the
4008  * extents are being removed from the middle of the existing extent
4009  * entries, then we first need to move the extent records beginning
4010  * at idx + ext_diff up in the list to overwrite the records being
4011  * removed, then remove the extra space via kmem_realloc.
4012  */
4013 void
4014 xfs_iext_remove_direct(
4015 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4016 	xfs_extnum_t	idx,		/* index to begin removing exts */
4017 	int		ext_diff)	/* number of extents to remove */
4018 {
4019 	xfs_extnum_t	nextents;	/* number of extents in file */
4020 	int		new_size;	/* size of extents after removal */
4021 
4022 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4023 	new_size = ifp->if_bytes -
4024 		(ext_diff * sizeof(xfs_bmbt_rec_t));
4025 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4026 
4027 	if (new_size == 0) {
4028 		xfs_iext_destroy(ifp);
4029 		return;
4030 	}
4031 	/* Move extents up in the list (if needed) */
4032 	if (idx + ext_diff < nextents) {
4033 		memmove(&ifp->if_u1.if_extents[idx],
4034 			&ifp->if_u1.if_extents[idx + ext_diff],
4035 			(nextents - (idx + ext_diff)) *
4036 			 sizeof(xfs_bmbt_rec_t));
4037 	}
4038 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4039 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
4040 	/*
4041 	 * Reallocate the direct extent list. If the extents
4042 	 * will fit inside the inode then xfs_iext_realloc_direct
4043 	 * will switch from direct to inline extent allocation
4044 	 * mode for us.
4045 	 */
4046 	xfs_iext_realloc_direct(ifp, new_size);
4047 	ifp->if_bytes = new_size;
4048 }
4049 
4050 /*
4051  * This is called when incore extents are being removed from the
4052  * indirection array and the extents being removed span multiple extent
4053  * buffers. The idx parameter contains the file extent index where we
4054  * want to begin removing extents, and the count parameter contains
4055  * how many extents need to be removed.
4056  *
4057  *    |-------|   |-------|
4058  *    | nex1  |   |       |    nex1 - number of extents before idx
4059  *    |-------|   | count |
4060  *    |       |   |       |    count - number of extents being removed at idx
4061  *    | count |   |-------|
4062  *    |       |   | nex2  |    nex2 - number of extents after idx + count
4063  *    |-------|   |-------|
4064  */
4065 void
4066 xfs_iext_remove_indirect(
4067 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4068 	xfs_extnum_t	idx,		/* index to begin removing extents */
4069 	int		count)		/* number of extents to remove */
4070 {
4071 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4072 	int		erp_idx = 0;	/* indirection array index */
4073 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
4074 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
4075 	xfs_extnum_t	nex1;		/* number of extents before idx */
4076 	xfs_extnum_t	nex2;		/* extents after idx + count */
4077 	int		nlists;		/* entries in indirection array */
4078 	int		page_idx = idx;	/* index in target extent list */
4079 
4080 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4081 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
4082 	ASSERT(erp != NULL);
4083 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4084 	nex1 = page_idx;
4085 	ext_cnt = count;
4086 	while (ext_cnt) {
4087 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4088 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4089 		/*
4090 		 * Check for deletion of entire list;
4091 		 * xfs_iext_irec_remove() updates extent offsets.
4092 		 */
4093 		if (ext_diff == erp->er_extcount) {
4094 			xfs_iext_irec_remove(ifp, erp_idx);
4095 			ext_cnt -= ext_diff;
4096 			nex1 = 0;
4097 			if (ext_cnt) {
4098 				ASSERT(erp_idx < ifp->if_real_bytes /
4099 					XFS_IEXT_BUFSZ);
4100 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
4101 				nex1 = 0;
4102 				continue;
4103 			} else {
4104 				break;
4105 			}
4106 		}
4107 		/* Move extents up (if needed) */
4108 		if (nex2) {
4109 			memmove(&erp->er_extbuf[nex1],
4110 				&erp->er_extbuf[nex1 + ext_diff],
4111 				nex2 * sizeof(xfs_bmbt_rec_t));
4112 		}
4113 		/* Zero out rest of page */
4114 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4115 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4116 		/* Update remaining counters */
4117 		erp->er_extcount -= ext_diff;
4118 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4119 		ext_cnt -= ext_diff;
4120 		nex1 = 0;
4121 		erp_idx++;
4122 		erp++;
4123 	}
4124 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4125 	xfs_iext_irec_compact(ifp);
4126 }
4127 
4128 /*
4129  * Create, destroy, or resize a linear (direct) block of extents.
4130  */
4131 void
4132 xfs_iext_realloc_direct(
4133 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4134 	int		new_size)	/* new size of extents */
4135 {
4136 	int		rnew_size;	/* real new size of extents */
4137 
4138 	rnew_size = new_size;
4139 
4140 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4141 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4142 		 (new_size != ifp->if_real_bytes)));
4143 
4144 	/* Free extent records */
4145 	if (new_size == 0) {
4146 		xfs_iext_destroy(ifp);
4147 	}
4148 	/* Resize direct extent list and zero any new bytes */
4149 	else if (ifp->if_real_bytes) {
4150 		/* Check if extents will fit inside the inode */
4151 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4152 			xfs_iext_direct_to_inline(ifp, new_size /
4153 				(uint)sizeof(xfs_bmbt_rec_t));
4154 			ifp->if_bytes = new_size;
4155 			return;
4156 		}
4157 		if ((new_size & (new_size - 1)) != 0) {
4158 			rnew_size = xfs_iroundup(new_size);
4159 		}
4160 		if (rnew_size != ifp->if_real_bytes) {
4161 			ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4162 				kmem_realloc(ifp->if_u1.if_extents,
4163 						rnew_size,
4164 						ifp->if_real_bytes,
4165 						KM_SLEEP);
4166 		}
4167 		if (rnew_size > ifp->if_real_bytes) {
4168 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4169 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
4170 				rnew_size - ifp->if_real_bytes);
4171 		}
4172 	}
4173 	/*
4174 	 * Switch from the inline extent buffer to a direct
4175 	 * extent list. Be sure to include the inline extent
4176 	 * bytes in new_size.
4177 	 */
4178 	else {
4179 		new_size += ifp->if_bytes;
4180 		if ((new_size & (new_size - 1)) != 0) {
4181 			rnew_size = xfs_iroundup(new_size);
4182 		}
4183 		xfs_iext_inline_to_direct(ifp, rnew_size);
4184 	}
4185 	ifp->if_real_bytes = rnew_size;
4186 	ifp->if_bytes = new_size;
4187 }
4188 
4189 /*
4190  * Switch from linear (direct) extent records to inline buffer.
4191  */
4192 void
4193 xfs_iext_direct_to_inline(
4194 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4195 	xfs_extnum_t	nextents)	/* number of extents in file */
4196 {
4197 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4198 	ASSERT(nextents <= XFS_INLINE_EXTS);
4199 	/*
4200 	 * The inline buffer was zeroed when we switched
4201 	 * from inline to direct extent allocation mode,
4202 	 * so we don't need to clear it here.
4203 	 */
4204 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4205 		nextents * sizeof(xfs_bmbt_rec_t));
4206 	kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4207 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4208 	ifp->if_real_bytes = 0;
4209 }
4210 
4211 /*
4212  * Switch from inline buffer to linear (direct) extent records.
4213  * new_size should already be rounded up to the next power of 2
4214  * by the caller (when appropriate), so use new_size as it is.
4215  * However, since new_size may be rounded up, we can't update
4216  * if_bytes here. It is the caller's responsibility to update
4217  * if_bytes upon return.
4218  */
4219 void
4220 xfs_iext_inline_to_direct(
4221 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4222 	int		new_size)	/* number of extents in file */
4223 {
4224 	ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4225 		kmem_alloc(new_size, KM_SLEEP);
4226 	memset(ifp->if_u1.if_extents, 0, new_size);
4227 	if (ifp->if_bytes) {
4228 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4229 			ifp->if_bytes);
4230 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4231 			sizeof(xfs_bmbt_rec_t));
4232 	}
4233 	ifp->if_real_bytes = new_size;
4234 }
4235 
4236 /*
4237  * Resize an extent indirection array to new_size bytes.
4238  */
4239 void
4240 xfs_iext_realloc_indirect(
4241 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4242 	int		new_size)	/* new indirection array size */
4243 {
4244 	int		nlists;		/* number of irec's (ex lists) */
4245 	int		size;		/* current indirection array size */
4246 
4247 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4248 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4249 	size = nlists * sizeof(xfs_ext_irec_t);
4250 	ASSERT(ifp->if_real_bytes);
4251 	ASSERT((new_size >= 0) && (new_size != size));
4252 	if (new_size == 0) {
4253 		xfs_iext_destroy(ifp);
4254 	} else {
4255 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4256 			kmem_realloc(ifp->if_u1.if_ext_irec,
4257 				new_size, size, KM_SLEEP);
4258 	}
4259 }
4260 
4261 /*
4262  * Switch from indirection array to linear (direct) extent allocations.
4263  */
4264 void
4265 xfs_iext_indirect_to_direct(
4266 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
4267 {
4268 	xfs_bmbt_rec_t	*ep;		/* extent record pointer */
4269 	xfs_extnum_t	nextents;	/* number of extents in file */
4270 	int		size;		/* size of file extents */
4271 
4272 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4273 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4274 	ASSERT(nextents <= XFS_LINEAR_EXTS);
4275 	size = nextents * sizeof(xfs_bmbt_rec_t);
4276 
4277 	xfs_iext_irec_compact_full(ifp);
4278 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4279 
4280 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
4281 	kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4282 	ifp->if_flags &= ~XFS_IFEXTIREC;
4283 	ifp->if_u1.if_extents = ep;
4284 	ifp->if_bytes = size;
4285 	if (nextents < XFS_LINEAR_EXTS) {
4286 		xfs_iext_realloc_direct(ifp, size);
4287 	}
4288 }
4289 
4290 /*
4291  * Free incore file extents.
4292  */
4293 void
4294 xfs_iext_destroy(
4295 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4296 {
4297 	if (ifp->if_flags & XFS_IFEXTIREC) {
4298 		int	erp_idx;
4299 		int	nlists;
4300 
4301 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4302 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4303 			xfs_iext_irec_remove(ifp, erp_idx);
4304 		}
4305 		ifp->if_flags &= ~XFS_IFEXTIREC;
4306 	} else if (ifp->if_real_bytes) {
4307 		kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4308 	} else if (ifp->if_bytes) {
4309 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4310 			sizeof(xfs_bmbt_rec_t));
4311 	}
4312 	ifp->if_u1.if_extents = NULL;
4313 	ifp->if_real_bytes = 0;
4314 	ifp->if_bytes = 0;
4315 }
4316 
4317 /*
4318  * Return a pointer to the extent record for file system block bno.
4319  */
4320 xfs_bmbt_rec_t *			/* pointer to found extent record */
4321 xfs_iext_bno_to_ext(
4322 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4323 	xfs_fileoff_t	bno,		/* block number to search for */
4324 	xfs_extnum_t	*idxp)		/* index of target extent */
4325 {
4326 	xfs_bmbt_rec_t	*base;		/* pointer to first extent */
4327 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
4328 	xfs_bmbt_rec_t	*ep = NULL;	/* pointer to target extent */
4329 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
4330 	int		high;		/* upper boundary in search */
4331 	xfs_extnum_t	idx = 0;	/* index of target extent */
4332 	int		low;		/* lower boundary in search */
4333 	xfs_extnum_t	nextents;	/* number of file extents */
4334 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
4335 
4336 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4337 	if (nextents == 0) {
4338 		*idxp = 0;
4339 		return NULL;
4340 	}
4341 	low = 0;
4342 	if (ifp->if_flags & XFS_IFEXTIREC) {
4343 		/* Find target extent list */
4344 		int	erp_idx = 0;
4345 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4346 		base = erp->er_extbuf;
4347 		high = erp->er_extcount - 1;
4348 	} else {
4349 		base = ifp->if_u1.if_extents;
4350 		high = nextents - 1;
4351 	}
4352 	/* Binary search extent records */
4353 	while (low <= high) {
4354 		idx = (low + high) >> 1;
4355 		ep = base + idx;
4356 		startoff = xfs_bmbt_get_startoff(ep);
4357 		blockcount = xfs_bmbt_get_blockcount(ep);
4358 		if (bno < startoff) {
4359 			high = idx - 1;
4360 		} else if (bno >= startoff + blockcount) {
4361 			low = idx + 1;
4362 		} else {
4363 			/* Convert back to file-based extent index */
4364 			if (ifp->if_flags & XFS_IFEXTIREC) {
4365 				idx += erp->er_extoff;
4366 			}
4367 			*idxp = idx;
4368 			return ep;
4369 		}
4370 	}
4371 	/* Convert back to file-based extent index */
4372 	if (ifp->if_flags & XFS_IFEXTIREC) {
4373 		idx += erp->er_extoff;
4374 	}
4375 	if (bno >= startoff + blockcount) {
4376 		if (++idx == nextents) {
4377 			ep = NULL;
4378 		} else {
4379 			ep = xfs_iext_get_ext(ifp, idx);
4380 		}
4381 	}
4382 	*idxp = idx;
4383 	return ep;
4384 }
4385 
4386 /*
4387  * Return a pointer to the indirection array entry containing the
4388  * extent record for filesystem block bno. Store the index of the
4389  * target irec in *erp_idxp.
4390  */
4391 xfs_ext_irec_t *			/* pointer to found extent record */
4392 xfs_iext_bno_to_irec(
4393 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4394 	xfs_fileoff_t	bno,		/* block number to search for */
4395 	int		*erp_idxp)	/* irec index of target ext list */
4396 {
4397 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
4398 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
4399 	int		erp_idx;	/* indirection array index */
4400 	int		nlists;		/* number of extent irec's (lists) */
4401 	int		high;		/* binary search upper limit */
4402 	int		low;		/* binary search lower limit */
4403 
4404 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4405 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4406 	erp_idx = 0;
4407 	low = 0;
4408 	high = nlists - 1;
4409 	while (low <= high) {
4410 		erp_idx = (low + high) >> 1;
4411 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4412 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4413 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4414 			high = erp_idx - 1;
4415 		} else if (erp_next && bno >=
4416 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4417 			low = erp_idx + 1;
4418 		} else {
4419 			break;
4420 		}
4421 	}
4422 	*erp_idxp = erp_idx;
4423 	return erp;
4424 }
4425 
4426 /*
4427  * Return a pointer to the indirection array entry containing the
4428  * extent record at file extent index *idxp. Store the index of the
4429  * target irec in *erp_idxp and store the page index of the target
4430  * extent record in *idxp.
4431  */
4432 xfs_ext_irec_t *
4433 xfs_iext_idx_to_irec(
4434 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4435 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
4436 	int		*erp_idxp,	/* pointer to target irec */
4437 	int		realloc)	/* new bytes were just added */
4438 {
4439 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
4440 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
4441 	int		erp_idx;	/* indirection array index */
4442 	int		nlists;		/* number of irec's (ex lists) */
4443 	int		high;		/* binary search upper limit */
4444 	int		low;		/* binary search lower limit */
4445 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
4446 
4447 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4448 	ASSERT(page_idx >= 0 && page_idx <=
4449 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4450 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4451 	erp_idx = 0;
4452 	low = 0;
4453 	high = nlists - 1;
4454 
4455 	/* Binary search extent irec's */
4456 	while (low <= high) {
4457 		erp_idx = (low + high) >> 1;
4458 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4459 		prev = erp_idx > 0 ? erp - 1 : NULL;
4460 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4461 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4462 			high = erp_idx - 1;
4463 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
4464 			   (page_idx == erp->er_extoff + erp->er_extcount &&
4465 			    !realloc)) {
4466 			low = erp_idx + 1;
4467 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
4468 			   erp->er_extcount == XFS_LINEAR_EXTS) {
4469 			ASSERT(realloc);
4470 			page_idx = 0;
4471 			erp_idx++;
4472 			erp = erp_idx < nlists ? erp + 1 : NULL;
4473 			break;
4474 		} else {
4475 			page_idx -= erp->er_extoff;
4476 			break;
4477 		}
4478 	}
4479 	*idxp = page_idx;
4480 	*erp_idxp = erp_idx;
4481 	return(erp);
4482 }
4483 
4484 /*
4485  * Allocate and initialize an indirection array once the space needed
4486  * for incore extents increases above XFS_IEXT_BUFSZ.
4487  */
4488 void
4489 xfs_iext_irec_init(
4490 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4491 {
4492 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4493 	xfs_extnum_t	nextents;	/* number of extents in file */
4494 
4495 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4496 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4497 	ASSERT(nextents <= XFS_LINEAR_EXTS);
4498 
4499 	erp = (xfs_ext_irec_t *)
4500 		kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4501 
4502 	if (nextents == 0) {
4503 		ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4504 			kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4505 	} else if (!ifp->if_real_bytes) {
4506 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4507 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4508 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4509 	}
4510 	erp->er_extbuf = ifp->if_u1.if_extents;
4511 	erp->er_extcount = nextents;
4512 	erp->er_extoff = 0;
4513 
4514 	ifp->if_flags |= XFS_IFEXTIREC;
4515 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4516 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4517 	ifp->if_u1.if_ext_irec = erp;
4518 
4519 	return;
4520 }
4521 
4522 /*
4523  * Allocate and initialize a new entry in the indirection array.
4524  */
4525 xfs_ext_irec_t *
4526 xfs_iext_irec_new(
4527 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4528 	int		erp_idx)	/* index for new irec */
4529 {
4530 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4531 	int		i;		/* loop counter */
4532 	int		nlists;		/* number of irec's (ex lists) */
4533 
4534 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4535 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4536 
4537 	/* Resize indirection array */
4538 	xfs_iext_realloc_indirect(ifp, ++nlists *
4539 				  sizeof(xfs_ext_irec_t));
4540 	/*
4541 	 * Move records down in the array so the
4542 	 * new page can use erp_idx.
4543 	 */
4544 	erp = ifp->if_u1.if_ext_irec;
4545 	for (i = nlists - 1; i > erp_idx; i--) {
4546 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4547 	}
4548 	ASSERT(i == erp_idx);
4549 
4550 	/* Initialize new extent record */
4551 	erp = ifp->if_u1.if_ext_irec;
4552 	erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
4553 		kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4554 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4555 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4556 	erp[erp_idx].er_extcount = 0;
4557 	erp[erp_idx].er_extoff = erp_idx > 0 ?
4558 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4559 	return (&erp[erp_idx]);
4560 }
4561 
4562 /*
4563  * Remove a record from the indirection array.
4564  */
4565 void
4566 xfs_iext_irec_remove(
4567 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4568 	int		erp_idx)	/* irec index to remove */
4569 {
4570 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4571 	int		i;		/* loop counter */
4572 	int		nlists;		/* number of irec's (ex lists) */
4573 
4574 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4575 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4576 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4577 	if (erp->er_extbuf) {
4578 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4579 			-erp->er_extcount);
4580 		kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4581 	}
4582 	/* Compact extent records */
4583 	erp = ifp->if_u1.if_ext_irec;
4584 	for (i = erp_idx; i < nlists - 1; i++) {
4585 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4586 	}
4587 	/*
4588 	 * Manually free the last extent record from the indirection
4589 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4590 	 * of zero would result in a call to xfs_iext_destroy() which
4591 	 * would in turn call this function again, creating a nasty
4592 	 * infinite loop.
4593 	 */
4594 	if (--nlists) {
4595 		xfs_iext_realloc_indirect(ifp,
4596 			nlists * sizeof(xfs_ext_irec_t));
4597 	} else {
4598 		kmem_free(ifp->if_u1.if_ext_irec,
4599 			sizeof(xfs_ext_irec_t));
4600 	}
4601 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4602 }
4603 
4604 /*
4605  * This is called to clean up large amounts of unused memory allocated
4606  * by the indirection array.  Before compacting anything though, verify
4607  * that the indirection array is still needed and switch back to the
4608  * linear extent list (or even the inline buffer) if possible.  The
4609  * compaction policy is as follows:
4610  *
4611  *    Full Compaction: Extents fit into a single page (or inline buffer)
4612  *    Full Compaction: Extents occupy less than 10% of allocated space
4613  * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4614  *      No Compaction: Extents occupy at least 50% of allocated space
4615  */
4616 void
4617 xfs_iext_irec_compact(
4618 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4619 {
4620 	xfs_extnum_t	nextents;	/* number of extents in file */
4621 	int		nlists;		/* number of irec's (ex lists) */
4622 
4623 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4624 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4625 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4626 
4627 	if (nextents == 0) {
4628 		xfs_iext_destroy(ifp);
4629 	} else if (nextents <= XFS_INLINE_EXTS) {
4630 		xfs_iext_indirect_to_direct(ifp);
4631 		xfs_iext_direct_to_inline(ifp, nextents);
4632 	} else if (nextents <= XFS_LINEAR_EXTS) {
4633 		xfs_iext_indirect_to_direct(ifp);
4634 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4635 		xfs_iext_irec_compact_full(ifp);
4636 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4637 		xfs_iext_irec_compact_pages(ifp);
4638 	}
4639 }
4640 
4641 /*
4642  * Combine extents from neighboring extent pages.
4643  */
4644 void
4645 xfs_iext_irec_compact_pages(
4646 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4647 {
4648 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4649 	int		erp_idx = 0;	/* indirection array index */
4650 	int		nlists;		/* number of irec's (ex lists) */
4651 
4652 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4653 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4654 	while (erp_idx < nlists - 1) {
4655 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4656 		erp_next = erp + 1;
4657 		if (erp_next->er_extcount <=
4658 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4659 			memmove(&erp->er_extbuf[erp->er_extcount],
4660 				erp_next->er_extbuf, erp_next->er_extcount *
4661 				sizeof(xfs_bmbt_rec_t));
4662 			erp->er_extcount += erp_next->er_extcount;
4663 			/*
4664 			 * Free page before removing extent record
4665 			 * so er_extoffs don't get modified in
4666 			 * xfs_iext_irec_remove.
4667 			 */
4668 			kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4669 			erp_next->er_extbuf = NULL;
4670 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4671 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4672 		} else {
4673 			erp_idx++;
4674 		}
4675 	}
4676 }
4677 
4678 /*
4679  * Fully compact the extent records managed by the indirection array.
4680  */
4681 void
4682 xfs_iext_irec_compact_full(
4683 	xfs_ifork_t	*ifp)			/* inode fork pointer */
4684 {
4685 	xfs_bmbt_rec_t	*ep, *ep_next;		/* extent record pointers */
4686 	xfs_ext_irec_t	*erp, *erp_next;	/* extent irec pointers */
4687 	int		erp_idx = 0;		/* extent irec index */
4688 	int		ext_avail;		/* empty entries in ex list */
4689 	int		ext_diff;		/* number of exts to add */
4690 	int		nlists;			/* number of irec's (ex lists) */
4691 
4692 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4693 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4694 	erp = ifp->if_u1.if_ext_irec;
4695 	ep = &erp->er_extbuf[erp->er_extcount];
4696 	erp_next = erp + 1;
4697 	ep_next = erp_next->er_extbuf;
4698 	while (erp_idx < nlists - 1) {
4699 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4700 		ext_diff = MIN(ext_avail, erp_next->er_extcount);
4701 		memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4702 		erp->er_extcount += ext_diff;
4703 		erp_next->er_extcount -= ext_diff;
4704 		/* Remove next page */
4705 		if (erp_next->er_extcount == 0) {
4706 			/*
4707 			 * Free page before removing extent record
4708 			 * so er_extoffs don't get modified in
4709 			 * xfs_iext_irec_remove.
4710 			 */
4711 			kmem_free(erp_next->er_extbuf,
4712 				erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4713 			erp_next->er_extbuf = NULL;
4714 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4715 			erp = &ifp->if_u1.if_ext_irec[erp_idx];
4716 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4717 		/* Update next page */
4718 		} else {
4719 			/* Move rest of page up to become next new page */
4720 			memmove(erp_next->er_extbuf, ep_next,
4721 				erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4722 			ep_next = erp_next->er_extbuf;
4723 			memset(&ep_next[erp_next->er_extcount], 0,
4724 				(XFS_LINEAR_EXTS - erp_next->er_extcount) *
4725 				sizeof(xfs_bmbt_rec_t));
4726 		}
4727 		if (erp->er_extcount == XFS_LINEAR_EXTS) {
4728 			erp_idx++;
4729 			if (erp_idx < nlists)
4730 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
4731 			else
4732 				break;
4733 		}
4734 		ep = &erp->er_extbuf[erp->er_extcount];
4735 		erp_next = erp + 1;
4736 		ep_next = erp_next->er_extbuf;
4737 	}
4738 }
4739 
4740 /*
4741  * This is called to update the er_extoff field in the indirection
4742  * array when extents have been added or removed from one of the
4743  * extent lists. erp_idx contains the irec index to begin updating
4744  * at and ext_diff contains the number of extents that were added
4745  * or removed.
4746  */
4747 void
4748 xfs_iext_irec_update_extoffs(
4749 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4750 	int		erp_idx,	/* irec index to update */
4751 	int		ext_diff)	/* number of new extents */
4752 {
4753 	int		i;		/* loop counter */
4754 	int		nlists;		/* number of irec's (ex lists */
4755 
4756 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4757 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4758 	for (i = erp_idx; i < nlists; i++) {
4759 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4760 	}
4761 }
4762