1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_dir2.h" 18 #include "xfs_attr.h" 19 #include "xfs_trans_space.h" 20 #include "xfs_trans.h" 21 #include "xfs_buf_item.h" 22 #include "xfs_inode_item.h" 23 #include "xfs_iunlink_item.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_bmap.h" 26 #include "xfs_bmap_util.h" 27 #include "xfs_errortag.h" 28 #include "xfs_error.h" 29 #include "xfs_quota.h" 30 #include "xfs_filestream.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_symlink.h" 34 #include "xfs_trans_priv.h" 35 #include "xfs_log.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_reflink.h" 38 #include "xfs_ag.h" 39 #include "xfs_log_priv.h" 40 #include "xfs_health.h" 41 42 struct kmem_cache *xfs_inode_cache; 43 44 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 45 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag, 46 struct xfs_inode *); 47 48 /* 49 * helper function to extract extent size hint from inode 50 */ 51 xfs_extlen_t 52 xfs_get_extsz_hint( 53 struct xfs_inode *ip) 54 { 55 /* 56 * No point in aligning allocations if we need to COW to actually 57 * write to them. 58 */ 59 if (xfs_is_always_cow_inode(ip)) 60 return 0; 61 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize) 62 return ip->i_extsize; 63 if (XFS_IS_REALTIME_INODE(ip)) 64 return ip->i_mount->m_sb.sb_rextsize; 65 return 0; 66 } 67 68 /* 69 * Helper function to extract CoW extent size hint from inode. 70 * Between the extent size hint and the CoW extent size hint, we 71 * return the greater of the two. If the value is zero (automatic), 72 * use the default size. 73 */ 74 xfs_extlen_t 75 xfs_get_cowextsz_hint( 76 struct xfs_inode *ip) 77 { 78 xfs_extlen_t a, b; 79 80 a = 0; 81 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 82 a = ip->i_cowextsize; 83 b = xfs_get_extsz_hint(ip); 84 85 a = max(a, b); 86 if (a == 0) 87 return XFS_DEFAULT_COWEXTSZ_HINT; 88 return a; 89 } 90 91 /* 92 * These two are wrapper routines around the xfs_ilock() routine used to 93 * centralize some grungy code. They are used in places that wish to lock the 94 * inode solely for reading the extents. The reason these places can't just 95 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 96 * bringing in of the extents from disk for a file in b-tree format. If the 97 * inode is in b-tree format, then we need to lock the inode exclusively until 98 * the extents are read in. Locking it exclusively all the time would limit 99 * our parallelism unnecessarily, though. What we do instead is check to see 100 * if the extents have been read in yet, and only lock the inode exclusively 101 * if they have not. 102 * 103 * The functions return a value which should be given to the corresponding 104 * xfs_iunlock() call. 105 */ 106 uint 107 xfs_ilock_data_map_shared( 108 struct xfs_inode *ip) 109 { 110 uint lock_mode = XFS_ILOCK_SHARED; 111 112 if (xfs_need_iread_extents(&ip->i_df)) 113 lock_mode = XFS_ILOCK_EXCL; 114 xfs_ilock(ip, lock_mode); 115 return lock_mode; 116 } 117 118 uint 119 xfs_ilock_attr_map_shared( 120 struct xfs_inode *ip) 121 { 122 uint lock_mode = XFS_ILOCK_SHARED; 123 124 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) 125 lock_mode = XFS_ILOCK_EXCL; 126 xfs_ilock(ip, lock_mode); 127 return lock_mode; 128 } 129 130 /* 131 * You can't set both SHARED and EXCL for the same lock, 132 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED, 133 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values 134 * to set in lock_flags. 135 */ 136 static inline void 137 xfs_lock_flags_assert( 138 uint lock_flags) 139 { 140 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 141 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 142 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 143 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 144 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 145 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 146 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 147 ASSERT(lock_flags != 0); 148 } 149 150 /* 151 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 152 * multi-reader locks: invalidate_lock and the i_lock. This routine allows 153 * various combinations of the locks to be obtained. 154 * 155 * The 3 locks should always be ordered so that the IO lock is obtained first, 156 * the mmap lock second and the ilock last in order to prevent deadlock. 157 * 158 * Basic locking order: 159 * 160 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock 161 * 162 * mmap_lock locking order: 163 * 164 * i_rwsem -> page lock -> mmap_lock 165 * mmap_lock -> invalidate_lock -> page_lock 166 * 167 * The difference in mmap_lock locking order mean that we cannot hold the 168 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths 169 * can fault in pages during copy in/out (for buffered IO) or require the 170 * mmap_lock in get_user_pages() to map the user pages into the kernel address 171 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page 172 * fault because page faults already hold the mmap_lock. 173 * 174 * Hence to serialise fully against both syscall and mmap based IO, we need to 175 * take both the i_rwsem and the invalidate_lock. These locks should *only* be 176 * both taken in places where we need to invalidate the page cache in a race 177 * free manner (e.g. truncate, hole punch and other extent manipulation 178 * functions). 179 */ 180 void 181 xfs_ilock( 182 xfs_inode_t *ip, 183 uint lock_flags) 184 { 185 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 186 187 xfs_lock_flags_assert(lock_flags); 188 189 if (lock_flags & XFS_IOLOCK_EXCL) { 190 down_write_nested(&VFS_I(ip)->i_rwsem, 191 XFS_IOLOCK_DEP(lock_flags)); 192 } else if (lock_flags & XFS_IOLOCK_SHARED) { 193 down_read_nested(&VFS_I(ip)->i_rwsem, 194 XFS_IOLOCK_DEP(lock_flags)); 195 } 196 197 if (lock_flags & XFS_MMAPLOCK_EXCL) { 198 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 199 XFS_MMAPLOCK_DEP(lock_flags)); 200 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 201 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 202 XFS_MMAPLOCK_DEP(lock_flags)); 203 } 204 205 if (lock_flags & XFS_ILOCK_EXCL) 206 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 207 else if (lock_flags & XFS_ILOCK_SHARED) 208 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 209 } 210 211 /* 212 * This is just like xfs_ilock(), except that the caller 213 * is guaranteed not to sleep. It returns 1 if it gets 214 * the requested locks and 0 otherwise. If the IO lock is 215 * obtained but the inode lock cannot be, then the IO lock 216 * is dropped before returning. 217 * 218 * ip -- the inode being locked 219 * lock_flags -- this parameter indicates the inode's locks to be 220 * to be locked. See the comment for xfs_ilock() for a list 221 * of valid values. 222 */ 223 int 224 xfs_ilock_nowait( 225 xfs_inode_t *ip, 226 uint lock_flags) 227 { 228 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 229 230 xfs_lock_flags_assert(lock_flags); 231 232 if (lock_flags & XFS_IOLOCK_EXCL) { 233 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 234 goto out; 235 } else if (lock_flags & XFS_IOLOCK_SHARED) { 236 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 237 goto out; 238 } 239 240 if (lock_flags & XFS_MMAPLOCK_EXCL) { 241 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 242 goto out_undo_iolock; 243 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 244 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 245 goto out_undo_iolock; 246 } 247 248 if (lock_flags & XFS_ILOCK_EXCL) { 249 if (!mrtryupdate(&ip->i_lock)) 250 goto out_undo_mmaplock; 251 } else if (lock_flags & XFS_ILOCK_SHARED) { 252 if (!mrtryaccess(&ip->i_lock)) 253 goto out_undo_mmaplock; 254 } 255 return 1; 256 257 out_undo_mmaplock: 258 if (lock_flags & XFS_MMAPLOCK_EXCL) 259 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 260 else if (lock_flags & XFS_MMAPLOCK_SHARED) 261 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 262 out_undo_iolock: 263 if (lock_flags & XFS_IOLOCK_EXCL) 264 up_write(&VFS_I(ip)->i_rwsem); 265 else if (lock_flags & XFS_IOLOCK_SHARED) 266 up_read(&VFS_I(ip)->i_rwsem); 267 out: 268 return 0; 269 } 270 271 /* 272 * xfs_iunlock() is used to drop the inode locks acquired with 273 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 274 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 275 * that we know which locks to drop. 276 * 277 * ip -- the inode being unlocked 278 * lock_flags -- this parameter indicates the inode's locks to be 279 * to be unlocked. See the comment for xfs_ilock() for a list 280 * of valid values for this parameter. 281 * 282 */ 283 void 284 xfs_iunlock( 285 xfs_inode_t *ip, 286 uint lock_flags) 287 { 288 xfs_lock_flags_assert(lock_flags); 289 290 if (lock_flags & XFS_IOLOCK_EXCL) 291 up_write(&VFS_I(ip)->i_rwsem); 292 else if (lock_flags & XFS_IOLOCK_SHARED) 293 up_read(&VFS_I(ip)->i_rwsem); 294 295 if (lock_flags & XFS_MMAPLOCK_EXCL) 296 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 297 else if (lock_flags & XFS_MMAPLOCK_SHARED) 298 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 299 300 if (lock_flags & XFS_ILOCK_EXCL) 301 mrunlock_excl(&ip->i_lock); 302 else if (lock_flags & XFS_ILOCK_SHARED) 303 mrunlock_shared(&ip->i_lock); 304 305 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 306 } 307 308 /* 309 * give up write locks. the i/o lock cannot be held nested 310 * if it is being demoted. 311 */ 312 void 313 xfs_ilock_demote( 314 xfs_inode_t *ip, 315 uint lock_flags) 316 { 317 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 318 ASSERT((lock_flags & 319 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 320 321 if (lock_flags & XFS_ILOCK_EXCL) 322 mrdemote(&ip->i_lock); 323 if (lock_flags & XFS_MMAPLOCK_EXCL) 324 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); 325 if (lock_flags & XFS_IOLOCK_EXCL) 326 downgrade_write(&VFS_I(ip)->i_rwsem); 327 328 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 329 } 330 331 #if defined(DEBUG) || defined(XFS_WARN) 332 static inline bool 333 __xfs_rwsem_islocked( 334 struct rw_semaphore *rwsem, 335 bool shared) 336 { 337 if (!debug_locks) 338 return rwsem_is_locked(rwsem); 339 340 if (!shared) 341 return lockdep_is_held_type(rwsem, 0); 342 343 /* 344 * We are checking that the lock is held at least in shared 345 * mode but don't care that it might be held exclusively 346 * (i.e. shared | excl). Hence we check if the lock is held 347 * in any mode rather than an explicit shared mode. 348 */ 349 return lockdep_is_held_type(rwsem, -1); 350 } 351 352 bool 353 xfs_isilocked( 354 struct xfs_inode *ip, 355 uint lock_flags) 356 { 357 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 358 if (!(lock_flags & XFS_ILOCK_SHARED)) 359 return !!ip->i_lock.mr_writer; 360 return rwsem_is_locked(&ip->i_lock.mr_lock); 361 } 362 363 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 364 return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock, 365 (lock_flags & XFS_MMAPLOCK_SHARED)); 366 } 367 368 if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) { 369 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem, 370 (lock_flags & XFS_IOLOCK_SHARED)); 371 } 372 373 ASSERT(0); 374 return false; 375 } 376 #endif 377 378 /* 379 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 380 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 381 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 382 * errors and warnings. 383 */ 384 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 385 static bool 386 xfs_lockdep_subclass_ok( 387 int subclass) 388 { 389 return subclass < MAX_LOCKDEP_SUBCLASSES; 390 } 391 #else 392 #define xfs_lockdep_subclass_ok(subclass) (true) 393 #endif 394 395 /* 396 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 397 * value. This can be called for any type of inode lock combination, including 398 * parent locking. Care must be taken to ensure we don't overrun the subclass 399 * storage fields in the class mask we build. 400 */ 401 static inline uint 402 xfs_lock_inumorder( 403 uint lock_mode, 404 uint subclass) 405 { 406 uint class = 0; 407 408 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 409 XFS_ILOCK_RTSUM))); 410 ASSERT(xfs_lockdep_subclass_ok(subclass)); 411 412 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 413 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 414 class += subclass << XFS_IOLOCK_SHIFT; 415 } 416 417 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 418 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 419 class += subclass << XFS_MMAPLOCK_SHIFT; 420 } 421 422 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 423 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 424 class += subclass << XFS_ILOCK_SHIFT; 425 } 426 427 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 428 } 429 430 /* 431 * The following routine will lock n inodes in exclusive mode. We assume the 432 * caller calls us with the inodes in i_ino order. 433 * 434 * We need to detect deadlock where an inode that we lock is in the AIL and we 435 * start waiting for another inode that is locked by a thread in a long running 436 * transaction (such as truncate). This can result in deadlock since the long 437 * running trans might need to wait for the inode we just locked in order to 438 * push the tail and free space in the log. 439 * 440 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 441 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 442 * lock more than one at a time, lockdep will report false positives saying we 443 * have violated locking orders. 444 */ 445 static void 446 xfs_lock_inodes( 447 struct xfs_inode **ips, 448 int inodes, 449 uint lock_mode) 450 { 451 int attempts = 0; 452 uint i; 453 int j; 454 bool try_lock; 455 struct xfs_log_item *lp; 456 457 /* 458 * Currently supports between 2 and 5 inodes with exclusive locking. We 459 * support an arbitrary depth of locking here, but absolute limits on 460 * inodes depend on the type of locking and the limits placed by 461 * lockdep annotations in xfs_lock_inumorder. These are all checked by 462 * the asserts. 463 */ 464 ASSERT(ips && inodes >= 2 && inodes <= 5); 465 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 466 XFS_ILOCK_EXCL)); 467 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 468 XFS_ILOCK_SHARED))); 469 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 470 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 472 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 473 474 if (lock_mode & XFS_IOLOCK_EXCL) { 475 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 476 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 477 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 478 479 again: 480 try_lock = false; 481 i = 0; 482 for (; i < inodes; i++) { 483 ASSERT(ips[i]); 484 485 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 486 continue; 487 488 /* 489 * If try_lock is not set yet, make sure all locked inodes are 490 * not in the AIL. If any are, set try_lock to be used later. 491 */ 492 if (!try_lock) { 493 for (j = (i - 1); j >= 0 && !try_lock; j--) { 494 lp = &ips[j]->i_itemp->ili_item; 495 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 496 try_lock = true; 497 } 498 } 499 500 /* 501 * If any of the previous locks we have locked is in the AIL, 502 * we must TRY to get the second and subsequent locks. If 503 * we can't get any, we must release all we have 504 * and try again. 505 */ 506 if (!try_lock) { 507 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 508 continue; 509 } 510 511 /* try_lock means we have an inode locked that is in the AIL. */ 512 ASSERT(i != 0); 513 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 514 continue; 515 516 /* 517 * Unlock all previous guys and try again. xfs_iunlock will try 518 * to push the tail if the inode is in the AIL. 519 */ 520 attempts++; 521 for (j = i - 1; j >= 0; j--) { 522 /* 523 * Check to see if we've already unlocked this one. Not 524 * the first one going back, and the inode ptr is the 525 * same. 526 */ 527 if (j != (i - 1) && ips[j] == ips[j + 1]) 528 continue; 529 530 xfs_iunlock(ips[j], lock_mode); 531 } 532 533 if ((attempts % 5) == 0) { 534 delay(1); /* Don't just spin the CPU */ 535 } 536 goto again; 537 } 538 } 539 540 /* 541 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and 542 * mmaplock must be double-locked separately since we use i_rwsem and 543 * invalidate_lock for that. We now support taking one lock EXCL and the 544 * other SHARED. 545 */ 546 void 547 xfs_lock_two_inodes( 548 struct xfs_inode *ip0, 549 uint ip0_mode, 550 struct xfs_inode *ip1, 551 uint ip1_mode) 552 { 553 int attempts = 0; 554 struct xfs_log_item *lp; 555 556 ASSERT(hweight32(ip0_mode) == 1); 557 ASSERT(hweight32(ip1_mode) == 1); 558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 561 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 562 ASSERT(ip0->i_ino != ip1->i_ino); 563 564 if (ip0->i_ino > ip1->i_ino) { 565 swap(ip0, ip1); 566 swap(ip0_mode, ip1_mode); 567 } 568 569 again: 570 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 571 572 /* 573 * If the first lock we have locked is in the AIL, we must TRY to get 574 * the second lock. If we can't get it, we must release the first one 575 * and try again. 576 */ 577 lp = &ip0->i_itemp->ili_item; 578 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 579 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 580 xfs_iunlock(ip0, ip0_mode); 581 if ((++attempts % 5) == 0) 582 delay(1); /* Don't just spin the CPU */ 583 goto again; 584 } 585 } else { 586 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 587 } 588 } 589 590 uint 591 xfs_ip2xflags( 592 struct xfs_inode *ip) 593 { 594 uint flags = 0; 595 596 if (ip->i_diflags & XFS_DIFLAG_ANY) { 597 if (ip->i_diflags & XFS_DIFLAG_REALTIME) 598 flags |= FS_XFLAG_REALTIME; 599 if (ip->i_diflags & XFS_DIFLAG_PREALLOC) 600 flags |= FS_XFLAG_PREALLOC; 601 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 602 flags |= FS_XFLAG_IMMUTABLE; 603 if (ip->i_diflags & XFS_DIFLAG_APPEND) 604 flags |= FS_XFLAG_APPEND; 605 if (ip->i_diflags & XFS_DIFLAG_SYNC) 606 flags |= FS_XFLAG_SYNC; 607 if (ip->i_diflags & XFS_DIFLAG_NOATIME) 608 flags |= FS_XFLAG_NOATIME; 609 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 610 flags |= FS_XFLAG_NODUMP; 611 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) 612 flags |= FS_XFLAG_RTINHERIT; 613 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT) 614 flags |= FS_XFLAG_PROJINHERIT; 615 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS) 616 flags |= FS_XFLAG_NOSYMLINKS; 617 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE) 618 flags |= FS_XFLAG_EXTSIZE; 619 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) 620 flags |= FS_XFLAG_EXTSZINHERIT; 621 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG) 622 flags |= FS_XFLAG_NODEFRAG; 623 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM) 624 flags |= FS_XFLAG_FILESTREAM; 625 } 626 627 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) { 628 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 629 flags |= FS_XFLAG_DAX; 630 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 631 flags |= FS_XFLAG_COWEXTSIZE; 632 } 633 634 if (xfs_inode_has_attr_fork(ip)) 635 flags |= FS_XFLAG_HASATTR; 636 return flags; 637 } 638 639 /* 640 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 641 * is allowed, otherwise it has to be an exact match. If a CI match is found, 642 * ci_name->name will point to a the actual name (caller must free) or 643 * will be set to NULL if an exact match is found. 644 */ 645 int 646 xfs_lookup( 647 struct xfs_inode *dp, 648 const struct xfs_name *name, 649 struct xfs_inode **ipp, 650 struct xfs_name *ci_name) 651 { 652 xfs_ino_t inum; 653 int error; 654 655 trace_xfs_lookup(dp, name); 656 657 if (xfs_is_shutdown(dp->i_mount)) 658 return -EIO; 659 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 660 return -EIO; 661 662 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 663 if (error) 664 goto out_unlock; 665 666 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 667 if (error) 668 goto out_free_name; 669 670 return 0; 671 672 out_free_name: 673 if (ci_name) 674 kmem_free(ci_name->name); 675 out_unlock: 676 *ipp = NULL; 677 return error; 678 } 679 680 /* Propagate di_flags from a parent inode to a child inode. */ 681 static void 682 xfs_inode_inherit_flags( 683 struct xfs_inode *ip, 684 const struct xfs_inode *pip) 685 { 686 unsigned int di_flags = 0; 687 xfs_failaddr_t failaddr; 688 umode_t mode = VFS_I(ip)->i_mode; 689 690 if (S_ISDIR(mode)) { 691 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT) 692 di_flags |= XFS_DIFLAG_RTINHERIT; 693 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 694 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 695 ip->i_extsize = pip->i_extsize; 696 } 697 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT) 698 di_flags |= XFS_DIFLAG_PROJINHERIT; 699 } else if (S_ISREG(mode)) { 700 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) && 701 xfs_has_realtime(ip->i_mount)) 702 di_flags |= XFS_DIFLAG_REALTIME; 703 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 704 di_flags |= XFS_DIFLAG_EXTSIZE; 705 ip->i_extsize = pip->i_extsize; 706 } 707 } 708 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) && 709 xfs_inherit_noatime) 710 di_flags |= XFS_DIFLAG_NOATIME; 711 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) && 712 xfs_inherit_nodump) 713 di_flags |= XFS_DIFLAG_NODUMP; 714 if ((pip->i_diflags & XFS_DIFLAG_SYNC) && 715 xfs_inherit_sync) 716 di_flags |= XFS_DIFLAG_SYNC; 717 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) && 718 xfs_inherit_nosymlinks) 719 di_flags |= XFS_DIFLAG_NOSYMLINKS; 720 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) && 721 xfs_inherit_nodefrag) 722 di_flags |= XFS_DIFLAG_NODEFRAG; 723 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM) 724 di_flags |= XFS_DIFLAG_FILESTREAM; 725 726 ip->i_diflags |= di_flags; 727 728 /* 729 * Inode verifiers on older kernels only check that the extent size 730 * hint is an integer multiple of the rt extent size on realtime files. 731 * They did not check the hint alignment on a directory with both 732 * rtinherit and extszinherit flags set. If the misaligned hint is 733 * propagated from a directory into a new realtime file, new file 734 * allocations will fail due to math errors in the rt allocator and/or 735 * trip the verifiers. Validate the hint settings in the new file so 736 * that we don't let broken hints propagate. 737 */ 738 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize, 739 VFS_I(ip)->i_mode, ip->i_diflags); 740 if (failaddr) { 741 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 742 XFS_DIFLAG_EXTSZINHERIT); 743 ip->i_extsize = 0; 744 } 745 } 746 747 /* Propagate di_flags2 from a parent inode to a child inode. */ 748 static void 749 xfs_inode_inherit_flags2( 750 struct xfs_inode *ip, 751 const struct xfs_inode *pip) 752 { 753 xfs_failaddr_t failaddr; 754 755 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) { 756 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 757 ip->i_cowextsize = pip->i_cowextsize; 758 } 759 if (pip->i_diflags2 & XFS_DIFLAG2_DAX) 760 ip->i_diflags2 |= XFS_DIFLAG2_DAX; 761 762 /* Don't let invalid cowextsize hints propagate. */ 763 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize, 764 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2); 765 if (failaddr) { 766 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE; 767 ip->i_cowextsize = 0; 768 } 769 } 770 771 /* 772 * Initialise a newly allocated inode and return the in-core inode to the 773 * caller locked exclusively. 774 */ 775 int 776 xfs_init_new_inode( 777 struct mnt_idmap *idmap, 778 struct xfs_trans *tp, 779 struct xfs_inode *pip, 780 xfs_ino_t ino, 781 umode_t mode, 782 xfs_nlink_t nlink, 783 dev_t rdev, 784 prid_t prid, 785 bool init_xattrs, 786 struct xfs_inode **ipp) 787 { 788 struct inode *dir = pip ? VFS_I(pip) : NULL; 789 struct xfs_mount *mp = tp->t_mountp; 790 struct xfs_inode *ip; 791 unsigned int flags; 792 int error; 793 struct timespec64 tv; 794 struct inode *inode; 795 796 /* 797 * Protect against obviously corrupt allocation btree records. Later 798 * xfs_iget checks will catch re-allocation of other active in-memory 799 * and on-disk inodes. If we don't catch reallocating the parent inode 800 * here we will deadlock in xfs_iget() so we have to do these checks 801 * first. 802 */ 803 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 804 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 805 return -EFSCORRUPTED; 806 } 807 808 /* 809 * Get the in-core inode with the lock held exclusively to prevent 810 * others from looking at until we're done. 811 */ 812 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 813 if (error) 814 return error; 815 816 ASSERT(ip != NULL); 817 inode = VFS_I(ip); 818 set_nlink(inode, nlink); 819 inode->i_rdev = rdev; 820 ip->i_projid = prid; 821 822 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) { 823 inode_fsuid_set(inode, idmap); 824 inode->i_gid = dir->i_gid; 825 inode->i_mode = mode; 826 } else { 827 inode_init_owner(idmap, inode, dir, mode); 828 } 829 830 /* 831 * If the group ID of the new file does not match the effective group 832 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 833 * (and only if the irix_sgid_inherit compatibility variable is set). 834 */ 835 if (irix_sgid_inherit && (inode->i_mode & S_ISGID) && 836 !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode))) 837 inode->i_mode &= ~S_ISGID; 838 839 ip->i_disk_size = 0; 840 ip->i_df.if_nextents = 0; 841 ASSERT(ip->i_nblocks == 0); 842 843 tv = inode_set_ctime_current(inode); 844 inode_set_mtime_to_ts(inode, tv); 845 inode_set_atime_to_ts(inode, tv); 846 847 ip->i_extsize = 0; 848 ip->i_diflags = 0; 849 850 if (xfs_has_v3inodes(mp)) { 851 inode_set_iversion(inode, 1); 852 ip->i_cowextsize = 0; 853 ip->i_crtime = tv; 854 } 855 856 flags = XFS_ILOG_CORE; 857 switch (mode & S_IFMT) { 858 case S_IFIFO: 859 case S_IFCHR: 860 case S_IFBLK: 861 case S_IFSOCK: 862 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 863 flags |= XFS_ILOG_DEV; 864 break; 865 case S_IFREG: 866 case S_IFDIR: 867 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY)) 868 xfs_inode_inherit_flags(ip, pip); 869 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY)) 870 xfs_inode_inherit_flags2(ip, pip); 871 fallthrough; 872 case S_IFLNK: 873 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 874 ip->i_df.if_bytes = 0; 875 ip->i_df.if_data = NULL; 876 break; 877 default: 878 ASSERT(0); 879 } 880 881 /* 882 * If we need to create attributes immediately after allocating the 883 * inode, initialise an empty attribute fork right now. We use the 884 * default fork offset for attributes here as we don't know exactly what 885 * size or how many attributes we might be adding. We can do this 886 * safely here because we know the data fork is completely empty and 887 * this saves us from needing to run a separate transaction to set the 888 * fork offset in the immediate future. 889 */ 890 if (init_xattrs && xfs_has_attr(mp)) { 891 ip->i_forkoff = xfs_default_attroffset(ip) >> 3; 892 xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0); 893 } 894 895 /* 896 * Log the new values stuffed into the inode. 897 */ 898 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 899 xfs_trans_log_inode(tp, ip, flags); 900 901 /* now that we have an i_mode we can setup the inode structure */ 902 xfs_setup_inode(ip); 903 904 *ipp = ip; 905 return 0; 906 } 907 908 /* 909 * Decrement the link count on an inode & log the change. If this causes the 910 * link count to go to zero, move the inode to AGI unlinked list so that it can 911 * be freed when the last active reference goes away via xfs_inactive(). 912 */ 913 static int /* error */ 914 xfs_droplink( 915 xfs_trans_t *tp, 916 xfs_inode_t *ip) 917 { 918 if (VFS_I(ip)->i_nlink == 0) { 919 xfs_alert(ip->i_mount, 920 "%s: Attempt to drop inode (%llu) with nlink zero.", 921 __func__, ip->i_ino); 922 return -EFSCORRUPTED; 923 } 924 925 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 926 927 drop_nlink(VFS_I(ip)); 928 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 929 930 if (VFS_I(ip)->i_nlink) 931 return 0; 932 933 return xfs_iunlink(tp, ip); 934 } 935 936 /* 937 * Increment the link count on an inode & log the change. 938 */ 939 static void 940 xfs_bumplink( 941 xfs_trans_t *tp, 942 xfs_inode_t *ip) 943 { 944 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 945 946 inc_nlink(VFS_I(ip)); 947 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 948 } 949 950 int 951 xfs_create( 952 struct mnt_idmap *idmap, 953 xfs_inode_t *dp, 954 struct xfs_name *name, 955 umode_t mode, 956 dev_t rdev, 957 bool init_xattrs, 958 xfs_inode_t **ipp) 959 { 960 int is_dir = S_ISDIR(mode); 961 struct xfs_mount *mp = dp->i_mount; 962 struct xfs_inode *ip = NULL; 963 struct xfs_trans *tp = NULL; 964 int error; 965 bool unlock_dp_on_error = false; 966 prid_t prid; 967 struct xfs_dquot *udqp = NULL; 968 struct xfs_dquot *gdqp = NULL; 969 struct xfs_dquot *pdqp = NULL; 970 struct xfs_trans_res *tres; 971 uint resblks; 972 xfs_ino_t ino; 973 974 trace_xfs_create(dp, name); 975 976 if (xfs_is_shutdown(mp)) 977 return -EIO; 978 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 979 return -EIO; 980 981 prid = xfs_get_initial_prid(dp); 982 983 /* 984 * Make sure that we have allocated dquot(s) on disk. 985 */ 986 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns), 987 mapped_fsgid(idmap, &init_user_ns), prid, 988 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 989 &udqp, &gdqp, &pdqp); 990 if (error) 991 return error; 992 993 if (is_dir) { 994 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 995 tres = &M_RES(mp)->tr_mkdir; 996 } else { 997 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 998 tres = &M_RES(mp)->tr_create; 999 } 1000 1001 /* 1002 * Initially assume that the file does not exist and 1003 * reserve the resources for that case. If that is not 1004 * the case we'll drop the one we have and get a more 1005 * appropriate transaction later. 1006 */ 1007 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1008 &tp); 1009 if (error == -ENOSPC) { 1010 /* flush outstanding delalloc blocks and retry */ 1011 xfs_flush_inodes(mp); 1012 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 1013 resblks, &tp); 1014 } 1015 if (error) 1016 goto out_release_dquots; 1017 1018 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1019 unlock_dp_on_error = true; 1020 1021 /* 1022 * A newly created regular or special file just has one directory 1023 * entry pointing to them, but a directory also the "." entry 1024 * pointing to itself. 1025 */ 1026 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1027 if (!error) 1028 error = xfs_init_new_inode(idmap, tp, dp, ino, mode, 1029 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip); 1030 if (error) 1031 goto out_trans_cancel; 1032 1033 /* 1034 * Now we join the directory inode to the transaction. We do not do it 1035 * earlier because xfs_dialloc might commit the previous transaction 1036 * (and release all the locks). An error from here on will result in 1037 * the transaction cancel unlocking dp so don't do it explicitly in the 1038 * error path. 1039 */ 1040 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1041 unlock_dp_on_error = false; 1042 1043 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1044 resblks - XFS_IALLOC_SPACE_RES(mp)); 1045 if (error) { 1046 ASSERT(error != -ENOSPC); 1047 goto out_trans_cancel; 1048 } 1049 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1050 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1051 1052 if (is_dir) { 1053 error = xfs_dir_init(tp, ip, dp); 1054 if (error) 1055 goto out_trans_cancel; 1056 1057 xfs_bumplink(tp, dp); 1058 } 1059 1060 /* 1061 * If this is a synchronous mount, make sure that the 1062 * create transaction goes to disk before returning to 1063 * the user. 1064 */ 1065 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1066 xfs_trans_set_sync(tp); 1067 1068 /* 1069 * Attach the dquot(s) to the inodes and modify them incore. 1070 * These ids of the inode couldn't have changed since the new 1071 * inode has been locked ever since it was created. 1072 */ 1073 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1074 1075 error = xfs_trans_commit(tp); 1076 if (error) 1077 goto out_release_inode; 1078 1079 xfs_qm_dqrele(udqp); 1080 xfs_qm_dqrele(gdqp); 1081 xfs_qm_dqrele(pdqp); 1082 1083 *ipp = ip; 1084 return 0; 1085 1086 out_trans_cancel: 1087 xfs_trans_cancel(tp); 1088 out_release_inode: 1089 /* 1090 * Wait until after the current transaction is aborted to finish the 1091 * setup of the inode and release the inode. This prevents recursive 1092 * transactions and deadlocks from xfs_inactive. 1093 */ 1094 if (ip) { 1095 xfs_finish_inode_setup(ip); 1096 xfs_irele(ip); 1097 } 1098 out_release_dquots: 1099 xfs_qm_dqrele(udqp); 1100 xfs_qm_dqrele(gdqp); 1101 xfs_qm_dqrele(pdqp); 1102 1103 if (unlock_dp_on_error) 1104 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1105 return error; 1106 } 1107 1108 int 1109 xfs_create_tmpfile( 1110 struct mnt_idmap *idmap, 1111 struct xfs_inode *dp, 1112 umode_t mode, 1113 struct xfs_inode **ipp) 1114 { 1115 struct xfs_mount *mp = dp->i_mount; 1116 struct xfs_inode *ip = NULL; 1117 struct xfs_trans *tp = NULL; 1118 int error; 1119 prid_t prid; 1120 struct xfs_dquot *udqp = NULL; 1121 struct xfs_dquot *gdqp = NULL; 1122 struct xfs_dquot *pdqp = NULL; 1123 struct xfs_trans_res *tres; 1124 uint resblks; 1125 xfs_ino_t ino; 1126 1127 if (xfs_is_shutdown(mp)) 1128 return -EIO; 1129 1130 prid = xfs_get_initial_prid(dp); 1131 1132 /* 1133 * Make sure that we have allocated dquot(s) on disk. 1134 */ 1135 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns), 1136 mapped_fsgid(idmap, &init_user_ns), prid, 1137 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1138 &udqp, &gdqp, &pdqp); 1139 if (error) 1140 return error; 1141 1142 resblks = XFS_IALLOC_SPACE_RES(mp); 1143 tres = &M_RES(mp)->tr_create_tmpfile; 1144 1145 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1146 &tp); 1147 if (error) 1148 goto out_release_dquots; 1149 1150 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1151 if (!error) 1152 error = xfs_init_new_inode(idmap, tp, dp, ino, mode, 1153 0, 0, prid, false, &ip); 1154 if (error) 1155 goto out_trans_cancel; 1156 1157 if (xfs_has_wsync(mp)) 1158 xfs_trans_set_sync(tp); 1159 1160 /* 1161 * Attach the dquot(s) to the inodes and modify them incore. 1162 * These ids of the inode couldn't have changed since the new 1163 * inode has been locked ever since it was created. 1164 */ 1165 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1166 1167 error = xfs_iunlink(tp, ip); 1168 if (error) 1169 goto out_trans_cancel; 1170 1171 error = xfs_trans_commit(tp); 1172 if (error) 1173 goto out_release_inode; 1174 1175 xfs_qm_dqrele(udqp); 1176 xfs_qm_dqrele(gdqp); 1177 xfs_qm_dqrele(pdqp); 1178 1179 *ipp = ip; 1180 return 0; 1181 1182 out_trans_cancel: 1183 xfs_trans_cancel(tp); 1184 out_release_inode: 1185 /* 1186 * Wait until after the current transaction is aborted to finish the 1187 * setup of the inode and release the inode. This prevents recursive 1188 * transactions and deadlocks from xfs_inactive. 1189 */ 1190 if (ip) { 1191 xfs_finish_inode_setup(ip); 1192 xfs_irele(ip); 1193 } 1194 out_release_dquots: 1195 xfs_qm_dqrele(udqp); 1196 xfs_qm_dqrele(gdqp); 1197 xfs_qm_dqrele(pdqp); 1198 1199 return error; 1200 } 1201 1202 int 1203 xfs_link( 1204 xfs_inode_t *tdp, 1205 xfs_inode_t *sip, 1206 struct xfs_name *target_name) 1207 { 1208 xfs_mount_t *mp = tdp->i_mount; 1209 xfs_trans_t *tp; 1210 int error, nospace_error = 0; 1211 int resblks; 1212 1213 trace_xfs_link(tdp, target_name); 1214 1215 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1216 1217 if (xfs_is_shutdown(mp)) 1218 return -EIO; 1219 if (xfs_ifork_zapped(tdp, XFS_DATA_FORK)) 1220 return -EIO; 1221 1222 error = xfs_qm_dqattach(sip); 1223 if (error) 1224 goto std_return; 1225 1226 error = xfs_qm_dqattach(tdp); 1227 if (error) 1228 goto std_return; 1229 1230 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1231 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks, 1232 &tp, &nospace_error); 1233 if (error) 1234 goto std_return; 1235 1236 /* 1237 * If we are using project inheritance, we only allow hard link 1238 * creation in our tree when the project IDs are the same; else 1239 * the tree quota mechanism could be circumvented. 1240 */ 1241 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 1242 tdp->i_projid != sip->i_projid)) { 1243 error = -EXDEV; 1244 goto error_return; 1245 } 1246 1247 if (!resblks) { 1248 error = xfs_dir_canenter(tp, tdp, target_name); 1249 if (error) 1250 goto error_return; 1251 } 1252 1253 /* 1254 * Handle initial link state of O_TMPFILE inode 1255 */ 1256 if (VFS_I(sip)->i_nlink == 0) { 1257 struct xfs_perag *pag; 1258 1259 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino)); 1260 error = xfs_iunlink_remove(tp, pag, sip); 1261 xfs_perag_put(pag); 1262 if (error) 1263 goto error_return; 1264 } 1265 1266 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1267 resblks); 1268 if (error) 1269 goto error_return; 1270 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1271 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1272 1273 xfs_bumplink(tp, sip); 1274 1275 /* 1276 * If this is a synchronous mount, make sure that the 1277 * link transaction goes to disk before returning to 1278 * the user. 1279 */ 1280 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1281 xfs_trans_set_sync(tp); 1282 1283 return xfs_trans_commit(tp); 1284 1285 error_return: 1286 xfs_trans_cancel(tp); 1287 std_return: 1288 if (error == -ENOSPC && nospace_error) 1289 error = nospace_error; 1290 return error; 1291 } 1292 1293 /* Clear the reflink flag and the cowblocks tag if possible. */ 1294 static void 1295 xfs_itruncate_clear_reflink_flags( 1296 struct xfs_inode *ip) 1297 { 1298 struct xfs_ifork *dfork; 1299 struct xfs_ifork *cfork; 1300 1301 if (!xfs_is_reflink_inode(ip)) 1302 return; 1303 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK); 1304 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK); 1305 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1306 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1307 if (cfork->if_bytes == 0) 1308 xfs_inode_clear_cowblocks_tag(ip); 1309 } 1310 1311 /* 1312 * Free up the underlying blocks past new_size. The new size must be smaller 1313 * than the current size. This routine can be used both for the attribute and 1314 * data fork, and does not modify the inode size, which is left to the caller. 1315 * 1316 * The transaction passed to this routine must have made a permanent log 1317 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1318 * given transaction and start new ones, so make sure everything involved in 1319 * the transaction is tidy before calling here. Some transaction will be 1320 * returned to the caller to be committed. The incoming transaction must 1321 * already include the inode, and both inode locks must be held exclusively. 1322 * The inode must also be "held" within the transaction. On return the inode 1323 * will be "held" within the returned transaction. This routine does NOT 1324 * require any disk space to be reserved for it within the transaction. 1325 * 1326 * If we get an error, we must return with the inode locked and linked into the 1327 * current transaction. This keeps things simple for the higher level code, 1328 * because it always knows that the inode is locked and held in the transaction 1329 * that returns to it whether errors occur or not. We don't mark the inode 1330 * dirty on error so that transactions can be easily aborted if possible. 1331 */ 1332 int 1333 xfs_itruncate_extents_flags( 1334 struct xfs_trans **tpp, 1335 struct xfs_inode *ip, 1336 int whichfork, 1337 xfs_fsize_t new_size, 1338 int flags) 1339 { 1340 struct xfs_mount *mp = ip->i_mount; 1341 struct xfs_trans *tp = *tpp; 1342 xfs_fileoff_t first_unmap_block; 1343 int error = 0; 1344 1345 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1346 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1347 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1348 ASSERT(new_size <= XFS_ISIZE(ip)); 1349 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1350 ASSERT(ip->i_itemp != NULL); 1351 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1352 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1353 1354 trace_xfs_itruncate_extents_start(ip, new_size); 1355 1356 flags |= xfs_bmapi_aflag(whichfork); 1357 1358 /* 1359 * Since it is possible for space to become allocated beyond 1360 * the end of the file (in a crash where the space is allocated 1361 * but the inode size is not yet updated), simply remove any 1362 * blocks which show up between the new EOF and the maximum 1363 * possible file size. 1364 * 1365 * We have to free all the blocks to the bmbt maximum offset, even if 1366 * the page cache can't scale that far. 1367 */ 1368 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1369 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1370 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1371 return 0; 1372 } 1373 1374 error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block, 1375 XFS_MAX_FILEOFF); 1376 if (error) 1377 goto out; 1378 1379 if (whichfork == XFS_DATA_FORK) { 1380 /* Remove all pending CoW reservations. */ 1381 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1382 first_unmap_block, XFS_MAX_FILEOFF, true); 1383 if (error) 1384 goto out; 1385 1386 xfs_itruncate_clear_reflink_flags(ip); 1387 } 1388 1389 /* 1390 * Always re-log the inode so that our permanent transaction can keep 1391 * on rolling it forward in the log. 1392 */ 1393 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1394 1395 trace_xfs_itruncate_extents_end(ip, new_size); 1396 1397 out: 1398 *tpp = tp; 1399 return error; 1400 } 1401 1402 int 1403 xfs_release( 1404 xfs_inode_t *ip) 1405 { 1406 xfs_mount_t *mp = ip->i_mount; 1407 int error = 0; 1408 1409 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1410 return 0; 1411 1412 /* If this is a read-only mount, don't do this (would generate I/O) */ 1413 if (xfs_is_readonly(mp)) 1414 return 0; 1415 1416 if (!xfs_is_shutdown(mp)) { 1417 int truncated; 1418 1419 /* 1420 * If we previously truncated this file and removed old data 1421 * in the process, we want to initiate "early" writeout on 1422 * the last close. This is an attempt to combat the notorious 1423 * NULL files problem which is particularly noticeable from a 1424 * truncate down, buffered (re-)write (delalloc), followed by 1425 * a crash. What we are effectively doing here is 1426 * significantly reducing the time window where we'd otherwise 1427 * be exposed to that problem. 1428 */ 1429 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1430 if (truncated) { 1431 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1432 if (ip->i_delayed_blks > 0) { 1433 error = filemap_flush(VFS_I(ip)->i_mapping); 1434 if (error) 1435 return error; 1436 } 1437 } 1438 } 1439 1440 if (VFS_I(ip)->i_nlink == 0) 1441 return 0; 1442 1443 /* 1444 * If we can't get the iolock just skip truncating the blocks past EOF 1445 * because we could deadlock with the mmap_lock otherwise. We'll get 1446 * another chance to drop them once the last reference to the inode is 1447 * dropped, so we'll never leak blocks permanently. 1448 */ 1449 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) 1450 return 0; 1451 1452 if (xfs_can_free_eofblocks(ip, false)) { 1453 /* 1454 * Check if the inode is being opened, written and closed 1455 * frequently and we have delayed allocation blocks outstanding 1456 * (e.g. streaming writes from the NFS server), truncating the 1457 * blocks past EOF will cause fragmentation to occur. 1458 * 1459 * In this case don't do the truncation, but we have to be 1460 * careful how we detect this case. Blocks beyond EOF show up as 1461 * i_delayed_blks even when the inode is clean, so we need to 1462 * truncate them away first before checking for a dirty release. 1463 * Hence on the first dirty close we will still remove the 1464 * speculative allocation, but after that we will leave it in 1465 * place. 1466 */ 1467 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1468 goto out_unlock; 1469 1470 error = xfs_free_eofblocks(ip); 1471 if (error) 1472 goto out_unlock; 1473 1474 /* delalloc blocks after truncation means it really is dirty */ 1475 if (ip->i_delayed_blks) 1476 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1477 } 1478 1479 out_unlock: 1480 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1481 return error; 1482 } 1483 1484 /* 1485 * xfs_inactive_truncate 1486 * 1487 * Called to perform a truncate when an inode becomes unlinked. 1488 */ 1489 STATIC int 1490 xfs_inactive_truncate( 1491 struct xfs_inode *ip) 1492 { 1493 struct xfs_mount *mp = ip->i_mount; 1494 struct xfs_trans *tp; 1495 int error; 1496 1497 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1498 if (error) { 1499 ASSERT(xfs_is_shutdown(mp)); 1500 return error; 1501 } 1502 xfs_ilock(ip, XFS_ILOCK_EXCL); 1503 xfs_trans_ijoin(tp, ip, 0); 1504 1505 /* 1506 * Log the inode size first to prevent stale data exposure in the event 1507 * of a system crash before the truncate completes. See the related 1508 * comment in xfs_vn_setattr_size() for details. 1509 */ 1510 ip->i_disk_size = 0; 1511 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1512 1513 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1514 if (error) 1515 goto error_trans_cancel; 1516 1517 ASSERT(ip->i_df.if_nextents == 0); 1518 1519 error = xfs_trans_commit(tp); 1520 if (error) 1521 goto error_unlock; 1522 1523 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1524 return 0; 1525 1526 error_trans_cancel: 1527 xfs_trans_cancel(tp); 1528 error_unlock: 1529 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1530 return error; 1531 } 1532 1533 /* 1534 * xfs_inactive_ifree() 1535 * 1536 * Perform the inode free when an inode is unlinked. 1537 */ 1538 STATIC int 1539 xfs_inactive_ifree( 1540 struct xfs_inode *ip) 1541 { 1542 struct xfs_mount *mp = ip->i_mount; 1543 struct xfs_trans *tp; 1544 int error; 1545 1546 /* 1547 * We try to use a per-AG reservation for any block needed by the finobt 1548 * tree, but as the finobt feature predates the per-AG reservation 1549 * support a degraded file system might not have enough space for the 1550 * reservation at mount time. In that case try to dip into the reserved 1551 * pool and pray. 1552 * 1553 * Send a warning if the reservation does happen to fail, as the inode 1554 * now remains allocated and sits on the unlinked list until the fs is 1555 * repaired. 1556 */ 1557 if (unlikely(mp->m_finobt_nores)) { 1558 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1559 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1560 &tp); 1561 } else { 1562 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1563 } 1564 if (error) { 1565 if (error == -ENOSPC) { 1566 xfs_warn_ratelimited(mp, 1567 "Failed to remove inode(s) from unlinked list. " 1568 "Please free space, unmount and run xfs_repair."); 1569 } else { 1570 ASSERT(xfs_is_shutdown(mp)); 1571 } 1572 return error; 1573 } 1574 1575 /* 1576 * We do not hold the inode locked across the entire rolling transaction 1577 * here. We only need to hold it for the first transaction that 1578 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1579 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1580 * here breaks the relationship between cluster buffer invalidation and 1581 * stale inode invalidation on cluster buffer item journal commit 1582 * completion, and can result in leaving dirty stale inodes hanging 1583 * around in memory. 1584 * 1585 * We have no need for serialising this inode operation against other 1586 * operations - we freed the inode and hence reallocation is required 1587 * and that will serialise on reallocating the space the deferops need 1588 * to free. Hence we can unlock the inode on the first commit of 1589 * the transaction rather than roll it right through the deferops. This 1590 * avoids relogging the XFS_ISTALE inode. 1591 * 1592 * We check that xfs_ifree() hasn't grown an internal transaction roll 1593 * by asserting that the inode is still locked when it returns. 1594 */ 1595 xfs_ilock(ip, XFS_ILOCK_EXCL); 1596 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1597 1598 error = xfs_ifree(tp, ip); 1599 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1600 if (error) { 1601 /* 1602 * If we fail to free the inode, shut down. The cancel 1603 * might do that, we need to make sure. Otherwise the 1604 * inode might be lost for a long time or forever. 1605 */ 1606 if (!xfs_is_shutdown(mp)) { 1607 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1608 __func__, error); 1609 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1610 } 1611 xfs_trans_cancel(tp); 1612 return error; 1613 } 1614 1615 /* 1616 * Credit the quota account(s). The inode is gone. 1617 */ 1618 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1619 1620 return xfs_trans_commit(tp); 1621 } 1622 1623 /* 1624 * Returns true if we need to update the on-disk metadata before we can free 1625 * the memory used by this inode. Updates include freeing post-eof 1626 * preallocations; freeing COW staging extents; and marking the inode free in 1627 * the inobt if it is on the unlinked list. 1628 */ 1629 bool 1630 xfs_inode_needs_inactive( 1631 struct xfs_inode *ip) 1632 { 1633 struct xfs_mount *mp = ip->i_mount; 1634 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 1635 1636 /* 1637 * If the inode is already free, then there can be nothing 1638 * to clean up here. 1639 */ 1640 if (VFS_I(ip)->i_mode == 0) 1641 return false; 1642 1643 /* 1644 * If this is a read-only mount, don't do this (would generate I/O) 1645 * unless we're in log recovery and cleaning the iunlinked list. 1646 */ 1647 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1648 return false; 1649 1650 /* If the log isn't running, push inodes straight to reclaim. */ 1651 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) 1652 return false; 1653 1654 /* Metadata inodes require explicit resource cleanup. */ 1655 if (xfs_is_metadata_inode(ip)) 1656 return false; 1657 1658 /* Want to clean out the cow blocks if there are any. */ 1659 if (cow_ifp && cow_ifp->if_bytes > 0) 1660 return true; 1661 1662 /* Unlinked files must be freed. */ 1663 if (VFS_I(ip)->i_nlink == 0) 1664 return true; 1665 1666 /* 1667 * This file isn't being freed, so check if there are post-eof blocks 1668 * to free. @force is true because we are evicting an inode from the 1669 * cache. Post-eof blocks must be freed, lest we end up with broken 1670 * free space accounting. 1671 * 1672 * Note: don't bother with iolock here since lockdep complains about 1673 * acquiring it in reclaim context. We have the only reference to the 1674 * inode at this point anyways. 1675 */ 1676 return xfs_can_free_eofblocks(ip, true); 1677 } 1678 1679 /* 1680 * xfs_inactive 1681 * 1682 * This is called when the vnode reference count for the vnode 1683 * goes to zero. If the file has been unlinked, then it must 1684 * now be truncated. Also, we clear all of the read-ahead state 1685 * kept for the inode here since the file is now closed. 1686 */ 1687 int 1688 xfs_inactive( 1689 xfs_inode_t *ip) 1690 { 1691 struct xfs_mount *mp; 1692 int error = 0; 1693 int truncate = 0; 1694 1695 /* 1696 * If the inode is already free, then there can be nothing 1697 * to clean up here. 1698 */ 1699 if (VFS_I(ip)->i_mode == 0) { 1700 ASSERT(ip->i_df.if_broot_bytes == 0); 1701 goto out; 1702 } 1703 1704 mp = ip->i_mount; 1705 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1706 1707 /* 1708 * If this is a read-only mount, don't do this (would generate I/O) 1709 * unless we're in log recovery and cleaning the iunlinked list. 1710 */ 1711 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1712 goto out; 1713 1714 /* Metadata inodes require explicit resource cleanup. */ 1715 if (xfs_is_metadata_inode(ip)) 1716 goto out; 1717 1718 /* Try to clean out the cow blocks if there are any. */ 1719 if (xfs_inode_has_cow_data(ip)) 1720 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1721 1722 if (VFS_I(ip)->i_nlink != 0) { 1723 /* 1724 * force is true because we are evicting an inode from the 1725 * cache. Post-eof blocks must be freed, lest we end up with 1726 * broken free space accounting. 1727 * 1728 * Note: don't bother with iolock here since lockdep complains 1729 * about acquiring it in reclaim context. We have the only 1730 * reference to the inode at this point anyways. 1731 */ 1732 if (xfs_can_free_eofblocks(ip, true)) 1733 error = xfs_free_eofblocks(ip); 1734 1735 goto out; 1736 } 1737 1738 if (S_ISREG(VFS_I(ip)->i_mode) && 1739 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || 1740 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1741 truncate = 1; 1742 1743 if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) { 1744 /* 1745 * If this inode is being inactivated during a quotacheck and 1746 * has not yet been scanned by quotacheck, we /must/ remove 1747 * the dquots from the inode before inactivation changes the 1748 * block and inode counts. Most probably this is a result of 1749 * reloading the incore iunlinked list to purge unrecovered 1750 * unlinked inodes. 1751 */ 1752 xfs_qm_dqdetach(ip); 1753 } else { 1754 error = xfs_qm_dqattach(ip); 1755 if (error) 1756 goto out; 1757 } 1758 1759 if (S_ISLNK(VFS_I(ip)->i_mode)) 1760 error = xfs_inactive_symlink(ip); 1761 else if (truncate) 1762 error = xfs_inactive_truncate(ip); 1763 if (error) 1764 goto out; 1765 1766 /* 1767 * If there are attributes associated with the file then blow them away 1768 * now. The code calls a routine that recursively deconstructs the 1769 * attribute fork. If also blows away the in-core attribute fork. 1770 */ 1771 if (xfs_inode_has_attr_fork(ip)) { 1772 error = xfs_attr_inactive(ip); 1773 if (error) 1774 goto out; 1775 } 1776 1777 ASSERT(ip->i_forkoff == 0); 1778 1779 /* 1780 * Free the inode. 1781 */ 1782 error = xfs_inactive_ifree(ip); 1783 1784 out: 1785 /* 1786 * We're done making metadata updates for this inode, so we can release 1787 * the attached dquots. 1788 */ 1789 xfs_qm_dqdetach(ip); 1790 return error; 1791 } 1792 1793 /* 1794 * In-Core Unlinked List Lookups 1795 * ============================= 1796 * 1797 * Every inode is supposed to be reachable from some other piece of metadata 1798 * with the exception of the root directory. Inodes with a connection to a 1799 * file descriptor but not linked from anywhere in the on-disk directory tree 1800 * are collectively known as unlinked inodes, though the filesystem itself 1801 * maintains links to these inodes so that on-disk metadata are consistent. 1802 * 1803 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1804 * header contains a number of buckets that point to an inode, and each inode 1805 * record has a pointer to the next inode in the hash chain. This 1806 * singly-linked list causes scaling problems in the iunlink remove function 1807 * because we must walk that list to find the inode that points to the inode 1808 * being removed from the unlinked hash bucket list. 1809 * 1810 * Hence we keep an in-memory double linked list to link each inode on an 1811 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer 1812 * based lists would require having 64 list heads in the perag, one for each 1813 * list. This is expensive in terms of memory (think millions of AGs) and cache 1814 * misses on lookups. Instead, use the fact that inodes on the unlinked list 1815 * must be referenced at the VFS level to keep them on the list and hence we 1816 * have an existence guarantee for inodes on the unlinked list. 1817 * 1818 * Given we have an existence guarantee, we can use lockless inode cache lookups 1819 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode 1820 * for the double linked unlinked list, and we don't need any extra locking to 1821 * keep the list safe as all manipulations are done under the AGI buffer lock. 1822 * Keeping the list up to date does not require memory allocation, just finding 1823 * the XFS inode and updating the next/prev unlinked list aginos. 1824 */ 1825 1826 /* 1827 * Find an inode on the unlinked list. This does not take references to the 1828 * inode as we have existence guarantees by holding the AGI buffer lock and that 1829 * only unlinked, referenced inodes can be on the unlinked inode list. If we 1830 * don't find the inode in cache, then let the caller handle the situation. 1831 */ 1832 static struct xfs_inode * 1833 xfs_iunlink_lookup( 1834 struct xfs_perag *pag, 1835 xfs_agino_t agino) 1836 { 1837 struct xfs_inode *ip; 1838 1839 rcu_read_lock(); 1840 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 1841 if (!ip) { 1842 /* Caller can handle inode not being in memory. */ 1843 rcu_read_unlock(); 1844 return NULL; 1845 } 1846 1847 /* 1848 * Inode in RCU freeing limbo should not happen. Warn about this and 1849 * let the caller handle the failure. 1850 */ 1851 if (WARN_ON_ONCE(!ip->i_ino)) { 1852 rcu_read_unlock(); 1853 return NULL; 1854 } 1855 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)); 1856 rcu_read_unlock(); 1857 return ip; 1858 } 1859 1860 /* 1861 * Update the prev pointer of the next agino. Returns -ENOLINK if the inode 1862 * is not in cache. 1863 */ 1864 static int 1865 xfs_iunlink_update_backref( 1866 struct xfs_perag *pag, 1867 xfs_agino_t prev_agino, 1868 xfs_agino_t next_agino) 1869 { 1870 struct xfs_inode *ip; 1871 1872 /* No update necessary if we are at the end of the list. */ 1873 if (next_agino == NULLAGINO) 1874 return 0; 1875 1876 ip = xfs_iunlink_lookup(pag, next_agino); 1877 if (!ip) 1878 return -ENOLINK; 1879 1880 ip->i_prev_unlinked = prev_agino; 1881 return 0; 1882 } 1883 1884 /* 1885 * Point the AGI unlinked bucket at an inode and log the results. The caller 1886 * is responsible for validating the old value. 1887 */ 1888 STATIC int 1889 xfs_iunlink_update_bucket( 1890 struct xfs_trans *tp, 1891 struct xfs_perag *pag, 1892 struct xfs_buf *agibp, 1893 unsigned int bucket_index, 1894 xfs_agino_t new_agino) 1895 { 1896 struct xfs_agi *agi = agibp->b_addr; 1897 xfs_agino_t old_value; 1898 int offset; 1899 1900 ASSERT(xfs_verify_agino_or_null(pag, new_agino)); 1901 1902 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1903 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index, 1904 old_value, new_agino); 1905 1906 /* 1907 * We should never find the head of the list already set to the value 1908 * passed in because either we're adding or removing ourselves from the 1909 * head of the list. 1910 */ 1911 if (old_value == new_agino) { 1912 xfs_buf_mark_corrupt(agibp); 1913 return -EFSCORRUPTED; 1914 } 1915 1916 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 1917 offset = offsetof(struct xfs_agi, agi_unlinked) + 1918 (sizeof(xfs_agino_t) * bucket_index); 1919 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 1920 return 0; 1921 } 1922 1923 /* 1924 * Load the inode @next_agino into the cache and set its prev_unlinked pointer 1925 * to @prev_agino. Caller must hold the AGI to synchronize with other changes 1926 * to the unlinked list. 1927 */ 1928 STATIC int 1929 xfs_iunlink_reload_next( 1930 struct xfs_trans *tp, 1931 struct xfs_buf *agibp, 1932 xfs_agino_t prev_agino, 1933 xfs_agino_t next_agino) 1934 { 1935 struct xfs_perag *pag = agibp->b_pag; 1936 struct xfs_mount *mp = pag->pag_mount; 1937 struct xfs_inode *next_ip = NULL; 1938 xfs_ino_t ino; 1939 int error; 1940 1941 ASSERT(next_agino != NULLAGINO); 1942 1943 #ifdef DEBUG 1944 rcu_read_lock(); 1945 next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino); 1946 ASSERT(next_ip == NULL); 1947 rcu_read_unlock(); 1948 #endif 1949 1950 xfs_info_ratelimited(mp, 1951 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.", 1952 next_agino, pag->pag_agno); 1953 1954 /* 1955 * Use an untrusted lookup just to be cautious in case the AGI has been 1956 * corrupted and now points at a free inode. That shouldn't happen, 1957 * but we'd rather shut down now since we're already running in a weird 1958 * situation. 1959 */ 1960 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino); 1961 error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip); 1962 if (error) 1963 return error; 1964 1965 /* If this is not an unlinked inode, something is very wrong. */ 1966 if (VFS_I(next_ip)->i_nlink != 0) { 1967 error = -EFSCORRUPTED; 1968 goto rele; 1969 } 1970 1971 next_ip->i_prev_unlinked = prev_agino; 1972 trace_xfs_iunlink_reload_next(next_ip); 1973 rele: 1974 ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE)); 1975 if (xfs_is_quotacheck_running(mp) && next_ip) 1976 xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED); 1977 xfs_irele(next_ip); 1978 return error; 1979 } 1980 1981 static int 1982 xfs_iunlink_insert_inode( 1983 struct xfs_trans *tp, 1984 struct xfs_perag *pag, 1985 struct xfs_buf *agibp, 1986 struct xfs_inode *ip) 1987 { 1988 struct xfs_mount *mp = tp->t_mountp; 1989 struct xfs_agi *agi = agibp->b_addr; 1990 xfs_agino_t next_agino; 1991 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1992 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1993 int error; 1994 1995 /* 1996 * Get the index into the agi hash table for the list this inode will 1997 * go on. Make sure the pointer isn't garbage and that this inode 1998 * isn't already on the list. 1999 */ 2000 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2001 if (next_agino == agino || 2002 !xfs_verify_agino_or_null(pag, next_agino)) { 2003 xfs_buf_mark_corrupt(agibp); 2004 return -EFSCORRUPTED; 2005 } 2006 2007 /* 2008 * Update the prev pointer in the next inode to point back to this 2009 * inode. 2010 */ 2011 error = xfs_iunlink_update_backref(pag, agino, next_agino); 2012 if (error == -ENOLINK) 2013 error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino); 2014 if (error) 2015 return error; 2016 2017 if (next_agino != NULLAGINO) { 2018 /* 2019 * There is already another inode in the bucket, so point this 2020 * inode to the current head of the list. 2021 */ 2022 error = xfs_iunlink_log_inode(tp, ip, pag, next_agino); 2023 if (error) 2024 return error; 2025 ip->i_next_unlinked = next_agino; 2026 } 2027 2028 /* Point the head of the list to point to this inode. */ 2029 ip->i_prev_unlinked = NULLAGINO; 2030 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino); 2031 } 2032 2033 /* 2034 * This is called when the inode's link count has gone to 0 or we are creating 2035 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2036 * 2037 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2038 * list when the inode is freed. 2039 */ 2040 STATIC int 2041 xfs_iunlink( 2042 struct xfs_trans *tp, 2043 struct xfs_inode *ip) 2044 { 2045 struct xfs_mount *mp = tp->t_mountp; 2046 struct xfs_perag *pag; 2047 struct xfs_buf *agibp; 2048 int error; 2049 2050 ASSERT(VFS_I(ip)->i_nlink == 0); 2051 ASSERT(VFS_I(ip)->i_mode != 0); 2052 trace_xfs_iunlink(ip); 2053 2054 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2055 2056 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2057 error = xfs_read_agi(pag, tp, &agibp); 2058 if (error) 2059 goto out; 2060 2061 error = xfs_iunlink_insert_inode(tp, pag, agibp, ip); 2062 out: 2063 xfs_perag_put(pag); 2064 return error; 2065 } 2066 2067 static int 2068 xfs_iunlink_remove_inode( 2069 struct xfs_trans *tp, 2070 struct xfs_perag *pag, 2071 struct xfs_buf *agibp, 2072 struct xfs_inode *ip) 2073 { 2074 struct xfs_mount *mp = tp->t_mountp; 2075 struct xfs_agi *agi = agibp->b_addr; 2076 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2077 xfs_agino_t head_agino; 2078 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2079 int error; 2080 2081 trace_xfs_iunlink_remove(ip); 2082 2083 /* 2084 * Get the index into the agi hash table for the list this inode will 2085 * go on. Make sure the head pointer isn't garbage. 2086 */ 2087 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2088 if (!xfs_verify_agino(pag, head_agino)) { 2089 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2090 agi, sizeof(*agi)); 2091 return -EFSCORRUPTED; 2092 } 2093 2094 /* 2095 * Set our inode's next_unlinked pointer to NULL and then return 2096 * the old pointer value so that we can update whatever was previous 2097 * to us in the list to point to whatever was next in the list. 2098 */ 2099 error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO); 2100 if (error) 2101 return error; 2102 2103 /* 2104 * Update the prev pointer in the next inode to point back to previous 2105 * inode in the chain. 2106 */ 2107 error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked, 2108 ip->i_next_unlinked); 2109 if (error == -ENOLINK) 2110 error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked, 2111 ip->i_next_unlinked); 2112 if (error) 2113 return error; 2114 2115 if (head_agino != agino) { 2116 struct xfs_inode *prev_ip; 2117 2118 prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked); 2119 if (!prev_ip) 2120 return -EFSCORRUPTED; 2121 2122 error = xfs_iunlink_log_inode(tp, prev_ip, pag, 2123 ip->i_next_unlinked); 2124 prev_ip->i_next_unlinked = ip->i_next_unlinked; 2125 } else { 2126 /* Point the head of the list to the next unlinked inode. */ 2127 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, 2128 ip->i_next_unlinked); 2129 } 2130 2131 ip->i_next_unlinked = NULLAGINO; 2132 ip->i_prev_unlinked = 0; 2133 return error; 2134 } 2135 2136 /* 2137 * Pull the on-disk inode from the AGI unlinked list. 2138 */ 2139 STATIC int 2140 xfs_iunlink_remove( 2141 struct xfs_trans *tp, 2142 struct xfs_perag *pag, 2143 struct xfs_inode *ip) 2144 { 2145 struct xfs_buf *agibp; 2146 int error; 2147 2148 trace_xfs_iunlink_remove(ip); 2149 2150 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2151 error = xfs_read_agi(pag, tp, &agibp); 2152 if (error) 2153 return error; 2154 2155 return xfs_iunlink_remove_inode(tp, pag, agibp, ip); 2156 } 2157 2158 /* 2159 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2160 * mark it stale. We should only find clean inodes in this lookup that aren't 2161 * already stale. 2162 */ 2163 static void 2164 xfs_ifree_mark_inode_stale( 2165 struct xfs_perag *pag, 2166 struct xfs_inode *free_ip, 2167 xfs_ino_t inum) 2168 { 2169 struct xfs_mount *mp = pag->pag_mount; 2170 struct xfs_inode_log_item *iip; 2171 struct xfs_inode *ip; 2172 2173 retry: 2174 rcu_read_lock(); 2175 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2176 2177 /* Inode not in memory, nothing to do */ 2178 if (!ip) { 2179 rcu_read_unlock(); 2180 return; 2181 } 2182 2183 /* 2184 * because this is an RCU protected lookup, we could find a recently 2185 * freed or even reallocated inode during the lookup. We need to check 2186 * under the i_flags_lock for a valid inode here. Skip it if it is not 2187 * valid, the wrong inode or stale. 2188 */ 2189 spin_lock(&ip->i_flags_lock); 2190 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 2191 goto out_iflags_unlock; 2192 2193 /* 2194 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2195 * other inodes that we did not find in the list attached to the buffer 2196 * and are not already marked stale. If we can't lock it, back off and 2197 * retry. 2198 */ 2199 if (ip != free_ip) { 2200 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2201 spin_unlock(&ip->i_flags_lock); 2202 rcu_read_unlock(); 2203 delay(1); 2204 goto retry; 2205 } 2206 } 2207 ip->i_flags |= XFS_ISTALE; 2208 2209 /* 2210 * If the inode is flushing, it is already attached to the buffer. All 2211 * we needed to do here is mark the inode stale so buffer IO completion 2212 * will remove it from the AIL. 2213 */ 2214 iip = ip->i_itemp; 2215 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 2216 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2217 ASSERT(iip->ili_last_fields); 2218 goto out_iunlock; 2219 } 2220 2221 /* 2222 * Inodes not attached to the buffer can be released immediately. 2223 * Everything else has to go through xfs_iflush_abort() on journal 2224 * commit as the flock synchronises removal of the inode from the 2225 * cluster buffer against inode reclaim. 2226 */ 2227 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 2228 goto out_iunlock; 2229 2230 __xfs_iflags_set(ip, XFS_IFLUSHING); 2231 spin_unlock(&ip->i_flags_lock); 2232 rcu_read_unlock(); 2233 2234 /* we have a dirty inode in memory that has not yet been flushed. */ 2235 spin_lock(&iip->ili_lock); 2236 iip->ili_last_fields = iip->ili_fields; 2237 iip->ili_fields = 0; 2238 iip->ili_fsync_fields = 0; 2239 spin_unlock(&iip->ili_lock); 2240 ASSERT(iip->ili_last_fields); 2241 2242 if (ip != free_ip) 2243 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2244 return; 2245 2246 out_iunlock: 2247 if (ip != free_ip) 2248 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2249 out_iflags_unlock: 2250 spin_unlock(&ip->i_flags_lock); 2251 rcu_read_unlock(); 2252 } 2253 2254 /* 2255 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2256 * inodes that are in memory - they all must be marked stale and attached to 2257 * the cluster buffer. 2258 */ 2259 static int 2260 xfs_ifree_cluster( 2261 struct xfs_trans *tp, 2262 struct xfs_perag *pag, 2263 struct xfs_inode *free_ip, 2264 struct xfs_icluster *xic) 2265 { 2266 struct xfs_mount *mp = free_ip->i_mount; 2267 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2268 struct xfs_buf *bp; 2269 xfs_daddr_t blkno; 2270 xfs_ino_t inum = xic->first_ino; 2271 int nbufs; 2272 int i, j; 2273 int ioffset; 2274 int error; 2275 2276 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2277 2278 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2279 /* 2280 * The allocation bitmap tells us which inodes of the chunk were 2281 * physically allocated. Skip the cluster if an inode falls into 2282 * a sparse region. 2283 */ 2284 ioffset = inum - xic->first_ino; 2285 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2286 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2287 continue; 2288 } 2289 2290 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2291 XFS_INO_TO_AGBNO(mp, inum)); 2292 2293 /* 2294 * We obtain and lock the backing buffer first in the process 2295 * here to ensure dirty inodes attached to the buffer remain in 2296 * the flushing state while we mark them stale. 2297 * 2298 * If we scan the in-memory inodes first, then buffer IO can 2299 * complete before we get a lock on it, and hence we may fail 2300 * to mark all the active inodes on the buffer stale. 2301 */ 2302 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2303 mp->m_bsize * igeo->blocks_per_cluster, 2304 XBF_UNMAPPED, &bp); 2305 if (error) 2306 return error; 2307 2308 /* 2309 * This buffer may not have been correctly initialised as we 2310 * didn't read it from disk. That's not important because we are 2311 * only using to mark the buffer as stale in the log, and to 2312 * attach stale cached inodes on it. That means it will never be 2313 * dispatched for IO. If it is, we want to know about it, and we 2314 * want it to fail. We can acheive this by adding a write 2315 * verifier to the buffer. 2316 */ 2317 bp->b_ops = &xfs_inode_buf_ops; 2318 2319 /* 2320 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2321 * too. This requires lookups, and will skip inodes that we've 2322 * already marked XFS_ISTALE. 2323 */ 2324 for (i = 0; i < igeo->inodes_per_cluster; i++) 2325 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); 2326 2327 xfs_trans_stale_inode_buf(tp, bp); 2328 xfs_trans_binval(tp, bp); 2329 } 2330 return 0; 2331 } 2332 2333 /* 2334 * This is called to return an inode to the inode free list. The inode should 2335 * already be truncated to 0 length and have no pages associated with it. This 2336 * routine also assumes that the inode is already a part of the transaction. 2337 * 2338 * The on-disk copy of the inode will have been added to the list of unlinked 2339 * inodes in the AGI. We need to remove the inode from that list atomically with 2340 * respect to freeing it here. 2341 */ 2342 int 2343 xfs_ifree( 2344 struct xfs_trans *tp, 2345 struct xfs_inode *ip) 2346 { 2347 struct xfs_mount *mp = ip->i_mount; 2348 struct xfs_perag *pag; 2349 struct xfs_icluster xic = { 0 }; 2350 struct xfs_inode_log_item *iip = ip->i_itemp; 2351 int error; 2352 2353 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2354 ASSERT(VFS_I(ip)->i_nlink == 0); 2355 ASSERT(ip->i_df.if_nextents == 0); 2356 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2357 ASSERT(ip->i_nblocks == 0); 2358 2359 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2360 2361 /* 2362 * Free the inode first so that we guarantee that the AGI lock is going 2363 * to be taken before we remove the inode from the unlinked list. This 2364 * makes the AGI lock -> unlinked list modification order the same as 2365 * used in O_TMPFILE creation. 2366 */ 2367 error = xfs_difree(tp, pag, ip->i_ino, &xic); 2368 if (error) 2369 goto out; 2370 2371 error = xfs_iunlink_remove(tp, pag, ip); 2372 if (error) 2373 goto out; 2374 2375 /* 2376 * Free any local-format data sitting around before we reset the 2377 * data fork to extents format. Note that the attr fork data has 2378 * already been freed by xfs_attr_inactive. 2379 */ 2380 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2381 kmem_free(ip->i_df.if_data); 2382 ip->i_df.if_data = NULL; 2383 ip->i_df.if_bytes = 0; 2384 } 2385 2386 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2387 ip->i_diflags = 0; 2388 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 2389 ip->i_forkoff = 0; /* mark the attr fork not in use */ 2390 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2391 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) 2392 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); 2393 2394 /* Don't attempt to replay owner changes for a deleted inode */ 2395 spin_lock(&iip->ili_lock); 2396 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2397 spin_unlock(&iip->ili_lock); 2398 2399 /* 2400 * Bump the generation count so no one will be confused 2401 * by reincarnations of this inode. 2402 */ 2403 VFS_I(ip)->i_generation++; 2404 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2405 2406 if (xic.deleted) 2407 error = xfs_ifree_cluster(tp, pag, ip, &xic); 2408 out: 2409 xfs_perag_put(pag); 2410 return error; 2411 } 2412 2413 /* 2414 * This is called to unpin an inode. The caller must have the inode locked 2415 * in at least shared mode so that the buffer cannot be subsequently pinned 2416 * once someone is waiting for it to be unpinned. 2417 */ 2418 static void 2419 xfs_iunpin( 2420 struct xfs_inode *ip) 2421 { 2422 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2423 2424 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2425 2426 /* Give the log a push to start the unpinning I/O */ 2427 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); 2428 2429 } 2430 2431 static void 2432 __xfs_iunpin_wait( 2433 struct xfs_inode *ip) 2434 { 2435 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2436 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2437 2438 xfs_iunpin(ip); 2439 2440 do { 2441 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2442 if (xfs_ipincount(ip)) 2443 io_schedule(); 2444 } while (xfs_ipincount(ip)); 2445 finish_wait(wq, &wait.wq_entry); 2446 } 2447 2448 void 2449 xfs_iunpin_wait( 2450 struct xfs_inode *ip) 2451 { 2452 if (xfs_ipincount(ip)) 2453 __xfs_iunpin_wait(ip); 2454 } 2455 2456 /* 2457 * Removing an inode from the namespace involves removing the directory entry 2458 * and dropping the link count on the inode. Removing the directory entry can 2459 * result in locking an AGF (directory blocks were freed) and removing a link 2460 * count can result in placing the inode on an unlinked list which results in 2461 * locking an AGI. 2462 * 2463 * The big problem here is that we have an ordering constraint on AGF and AGI 2464 * locking - inode allocation locks the AGI, then can allocate a new extent for 2465 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2466 * removes the inode from the unlinked list, requiring that we lock the AGI 2467 * first, and then freeing the inode can result in an inode chunk being freed 2468 * and hence freeing disk space requiring that we lock an AGF. 2469 * 2470 * Hence the ordering that is imposed by other parts of the code is AGI before 2471 * AGF. This means we cannot remove the directory entry before we drop the inode 2472 * reference count and put it on the unlinked list as this results in a lock 2473 * order of AGF then AGI, and this can deadlock against inode allocation and 2474 * freeing. Therefore we must drop the link counts before we remove the 2475 * directory entry. 2476 * 2477 * This is still safe from a transactional point of view - it is not until we 2478 * get to xfs_defer_finish() that we have the possibility of multiple 2479 * transactions in this operation. Hence as long as we remove the directory 2480 * entry and drop the link count in the first transaction of the remove 2481 * operation, there are no transactional constraints on the ordering here. 2482 */ 2483 int 2484 xfs_remove( 2485 xfs_inode_t *dp, 2486 struct xfs_name *name, 2487 xfs_inode_t *ip) 2488 { 2489 xfs_mount_t *mp = dp->i_mount; 2490 xfs_trans_t *tp = NULL; 2491 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2492 int dontcare; 2493 int error = 0; 2494 uint resblks; 2495 2496 trace_xfs_remove(dp, name); 2497 2498 if (xfs_is_shutdown(mp)) 2499 return -EIO; 2500 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 2501 return -EIO; 2502 2503 error = xfs_qm_dqattach(dp); 2504 if (error) 2505 goto std_return; 2506 2507 error = xfs_qm_dqattach(ip); 2508 if (error) 2509 goto std_return; 2510 2511 /* 2512 * We try to get the real space reservation first, allowing for 2513 * directory btree deletion(s) implying possible bmap insert(s). If we 2514 * can't get the space reservation then we use 0 instead, and avoid the 2515 * bmap btree insert(s) in the directory code by, if the bmap insert 2516 * tries to happen, instead trimming the LAST block from the directory. 2517 * 2518 * Ignore EDQUOT and ENOSPC being returned via nospace_error because 2519 * the directory code can handle a reservationless update and we don't 2520 * want to prevent a user from trying to free space by deleting things. 2521 */ 2522 resblks = XFS_REMOVE_SPACE_RES(mp); 2523 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks, 2524 &tp, &dontcare); 2525 if (error) { 2526 ASSERT(error != -ENOSPC); 2527 goto std_return; 2528 } 2529 2530 /* 2531 * If we're removing a directory perform some additional validation. 2532 */ 2533 if (is_dir) { 2534 ASSERT(VFS_I(ip)->i_nlink >= 2); 2535 if (VFS_I(ip)->i_nlink != 2) { 2536 error = -ENOTEMPTY; 2537 goto out_trans_cancel; 2538 } 2539 if (!xfs_dir_isempty(ip)) { 2540 error = -ENOTEMPTY; 2541 goto out_trans_cancel; 2542 } 2543 2544 /* Drop the link from ip's "..". */ 2545 error = xfs_droplink(tp, dp); 2546 if (error) 2547 goto out_trans_cancel; 2548 2549 /* Drop the "." link from ip to self. */ 2550 error = xfs_droplink(tp, ip); 2551 if (error) 2552 goto out_trans_cancel; 2553 2554 /* 2555 * Point the unlinked child directory's ".." entry to the root 2556 * directory to eliminate back-references to inodes that may 2557 * get freed before the child directory is closed. If the fs 2558 * gets shrunk, this can lead to dirent inode validation errors. 2559 */ 2560 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) { 2561 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot, 2562 tp->t_mountp->m_sb.sb_rootino, 0); 2563 if (error) 2564 goto out_trans_cancel; 2565 } 2566 } else { 2567 /* 2568 * When removing a non-directory we need to log the parent 2569 * inode here. For a directory this is done implicitly 2570 * by the xfs_droplink call for the ".." entry. 2571 */ 2572 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2573 } 2574 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2575 2576 /* Drop the link from dp to ip. */ 2577 error = xfs_droplink(tp, ip); 2578 if (error) 2579 goto out_trans_cancel; 2580 2581 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2582 if (error) { 2583 ASSERT(error != -ENOENT); 2584 goto out_trans_cancel; 2585 } 2586 2587 /* 2588 * If this is a synchronous mount, make sure that the 2589 * remove transaction goes to disk before returning to 2590 * the user. 2591 */ 2592 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 2593 xfs_trans_set_sync(tp); 2594 2595 error = xfs_trans_commit(tp); 2596 if (error) 2597 goto std_return; 2598 2599 if (is_dir && xfs_inode_is_filestream(ip)) 2600 xfs_filestream_deassociate(ip); 2601 2602 return 0; 2603 2604 out_trans_cancel: 2605 xfs_trans_cancel(tp); 2606 std_return: 2607 return error; 2608 } 2609 2610 /* 2611 * Enter all inodes for a rename transaction into a sorted array. 2612 */ 2613 #define __XFS_SORT_INODES 5 2614 STATIC void 2615 xfs_sort_for_rename( 2616 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2617 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2618 struct xfs_inode *ip1, /* in: inode of old entry */ 2619 struct xfs_inode *ip2, /* in: inode of new entry */ 2620 struct xfs_inode *wip, /* in: whiteout inode */ 2621 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2622 int *num_inodes) /* in/out: inodes in array */ 2623 { 2624 int i, j; 2625 2626 ASSERT(*num_inodes == __XFS_SORT_INODES); 2627 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2628 2629 /* 2630 * i_tab contains a list of pointers to inodes. We initialize 2631 * the table here & we'll sort it. We will then use it to 2632 * order the acquisition of the inode locks. 2633 * 2634 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2635 */ 2636 i = 0; 2637 i_tab[i++] = dp1; 2638 i_tab[i++] = dp2; 2639 i_tab[i++] = ip1; 2640 if (ip2) 2641 i_tab[i++] = ip2; 2642 if (wip) 2643 i_tab[i++] = wip; 2644 *num_inodes = i; 2645 2646 /* 2647 * Sort the elements via bubble sort. (Remember, there are at 2648 * most 5 elements to sort, so this is adequate.) 2649 */ 2650 for (i = 0; i < *num_inodes; i++) { 2651 for (j = 1; j < *num_inodes; j++) { 2652 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2653 struct xfs_inode *temp = i_tab[j]; 2654 i_tab[j] = i_tab[j-1]; 2655 i_tab[j-1] = temp; 2656 } 2657 } 2658 } 2659 } 2660 2661 static int 2662 xfs_finish_rename( 2663 struct xfs_trans *tp) 2664 { 2665 /* 2666 * If this is a synchronous mount, make sure that the rename transaction 2667 * goes to disk before returning to the user. 2668 */ 2669 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) 2670 xfs_trans_set_sync(tp); 2671 2672 return xfs_trans_commit(tp); 2673 } 2674 2675 /* 2676 * xfs_cross_rename() 2677 * 2678 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall 2679 */ 2680 STATIC int 2681 xfs_cross_rename( 2682 struct xfs_trans *tp, 2683 struct xfs_inode *dp1, 2684 struct xfs_name *name1, 2685 struct xfs_inode *ip1, 2686 struct xfs_inode *dp2, 2687 struct xfs_name *name2, 2688 struct xfs_inode *ip2, 2689 int spaceres) 2690 { 2691 int error = 0; 2692 int ip1_flags = 0; 2693 int ip2_flags = 0; 2694 int dp2_flags = 0; 2695 2696 /* Swap inode number for dirent in first parent */ 2697 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 2698 if (error) 2699 goto out_trans_abort; 2700 2701 /* Swap inode number for dirent in second parent */ 2702 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 2703 if (error) 2704 goto out_trans_abort; 2705 2706 /* 2707 * If we're renaming one or more directories across different parents, 2708 * update the respective ".." entries (and link counts) to match the new 2709 * parents. 2710 */ 2711 if (dp1 != dp2) { 2712 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2713 2714 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2715 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2716 dp1->i_ino, spaceres); 2717 if (error) 2718 goto out_trans_abort; 2719 2720 /* transfer ip2 ".." reference to dp1 */ 2721 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2722 error = xfs_droplink(tp, dp2); 2723 if (error) 2724 goto out_trans_abort; 2725 xfs_bumplink(tp, dp1); 2726 } 2727 2728 /* 2729 * Although ip1 isn't changed here, userspace needs 2730 * to be warned about the change, so that applications 2731 * relying on it (like backup ones), will properly 2732 * notify the change 2733 */ 2734 ip1_flags |= XFS_ICHGTIME_CHG; 2735 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2736 } 2737 2738 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2739 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2740 dp2->i_ino, spaceres); 2741 if (error) 2742 goto out_trans_abort; 2743 2744 /* transfer ip1 ".." reference to dp2 */ 2745 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2746 error = xfs_droplink(tp, dp1); 2747 if (error) 2748 goto out_trans_abort; 2749 xfs_bumplink(tp, dp2); 2750 } 2751 2752 /* 2753 * Although ip2 isn't changed here, userspace needs 2754 * to be warned about the change, so that applications 2755 * relying on it (like backup ones), will properly 2756 * notify the change 2757 */ 2758 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2759 ip2_flags |= XFS_ICHGTIME_CHG; 2760 } 2761 } 2762 2763 if (ip1_flags) { 2764 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2765 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2766 } 2767 if (ip2_flags) { 2768 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2769 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2770 } 2771 if (dp2_flags) { 2772 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2773 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2774 } 2775 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2776 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2777 return xfs_finish_rename(tp); 2778 2779 out_trans_abort: 2780 xfs_trans_cancel(tp); 2781 return error; 2782 } 2783 2784 /* 2785 * xfs_rename_alloc_whiteout() 2786 * 2787 * Return a referenced, unlinked, unlocked inode that can be used as a 2788 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2789 * crash between allocating the inode and linking it into the rename transaction 2790 * recovery will free the inode and we won't leak it. 2791 */ 2792 static int 2793 xfs_rename_alloc_whiteout( 2794 struct mnt_idmap *idmap, 2795 struct xfs_name *src_name, 2796 struct xfs_inode *dp, 2797 struct xfs_inode **wip) 2798 { 2799 struct xfs_inode *tmpfile; 2800 struct qstr name; 2801 int error; 2802 2803 error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE, 2804 &tmpfile); 2805 if (error) 2806 return error; 2807 2808 name.name = src_name->name; 2809 name.len = src_name->len; 2810 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name); 2811 if (error) { 2812 xfs_finish_inode_setup(tmpfile); 2813 xfs_irele(tmpfile); 2814 return error; 2815 } 2816 2817 /* 2818 * Prepare the tmpfile inode as if it were created through the VFS. 2819 * Complete the inode setup and flag it as linkable. nlink is already 2820 * zero, so we can skip the drop_nlink. 2821 */ 2822 xfs_setup_iops(tmpfile); 2823 xfs_finish_inode_setup(tmpfile); 2824 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2825 2826 *wip = tmpfile; 2827 return 0; 2828 } 2829 2830 /* 2831 * xfs_rename 2832 */ 2833 int 2834 xfs_rename( 2835 struct mnt_idmap *idmap, 2836 struct xfs_inode *src_dp, 2837 struct xfs_name *src_name, 2838 struct xfs_inode *src_ip, 2839 struct xfs_inode *target_dp, 2840 struct xfs_name *target_name, 2841 struct xfs_inode *target_ip, 2842 unsigned int flags) 2843 { 2844 struct xfs_mount *mp = src_dp->i_mount; 2845 struct xfs_trans *tp; 2846 struct xfs_inode *wip = NULL; /* whiteout inode */ 2847 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2848 int i; 2849 int num_inodes = __XFS_SORT_INODES; 2850 bool new_parent = (src_dp != target_dp); 2851 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2852 int spaceres; 2853 bool retried = false; 2854 int error, nospace_error = 0; 2855 2856 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2857 2858 if ((flags & RENAME_EXCHANGE) && !target_ip) 2859 return -EINVAL; 2860 2861 /* 2862 * If we are doing a whiteout operation, allocate the whiteout inode 2863 * we will be placing at the target and ensure the type is set 2864 * appropriately. 2865 */ 2866 if (flags & RENAME_WHITEOUT) { 2867 error = xfs_rename_alloc_whiteout(idmap, src_name, 2868 target_dp, &wip); 2869 if (error) 2870 return error; 2871 2872 /* setup target dirent info as whiteout */ 2873 src_name->type = XFS_DIR3_FT_CHRDEV; 2874 } 2875 2876 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 2877 inodes, &num_inodes); 2878 2879 retry: 2880 nospace_error = 0; 2881 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2882 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 2883 if (error == -ENOSPC) { 2884 nospace_error = error; 2885 spaceres = 0; 2886 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 2887 &tp); 2888 } 2889 if (error) 2890 goto out_release_wip; 2891 2892 /* 2893 * Attach the dquots to the inodes 2894 */ 2895 error = xfs_qm_vop_rename_dqattach(inodes); 2896 if (error) 2897 goto out_trans_cancel; 2898 2899 /* 2900 * Lock all the participating inodes. Depending upon whether 2901 * the target_name exists in the target directory, and 2902 * whether the target directory is the same as the source 2903 * directory, we can lock from 2 to 5 inodes. 2904 */ 2905 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2906 2907 /* 2908 * Join all the inodes to the transaction. From this point on, 2909 * we can rely on either trans_commit or trans_cancel to unlock 2910 * them. 2911 */ 2912 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 2913 if (new_parent) 2914 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 2915 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2916 if (target_ip) 2917 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2918 if (wip) 2919 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 2920 2921 /* 2922 * If we are using project inheritance, we only allow renames 2923 * into our tree when the project IDs are the same; else the 2924 * tree quota mechanism would be circumvented. 2925 */ 2926 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 2927 target_dp->i_projid != src_ip->i_projid)) { 2928 error = -EXDEV; 2929 goto out_trans_cancel; 2930 } 2931 2932 /* RENAME_EXCHANGE is unique from here on. */ 2933 if (flags & RENAME_EXCHANGE) 2934 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 2935 target_dp, target_name, target_ip, 2936 spaceres); 2937 2938 /* 2939 * Try to reserve quota to handle an expansion of the target directory. 2940 * We'll allow the rename to continue in reservationless mode if we hit 2941 * a space usage constraint. If we trigger reservationless mode, save 2942 * the errno if there isn't any free space in the target directory. 2943 */ 2944 if (spaceres != 0) { 2945 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres, 2946 0, false); 2947 if (error == -EDQUOT || error == -ENOSPC) { 2948 if (!retried) { 2949 xfs_trans_cancel(tp); 2950 xfs_blockgc_free_quota(target_dp, 0); 2951 retried = true; 2952 goto retry; 2953 } 2954 2955 nospace_error = error; 2956 spaceres = 0; 2957 error = 0; 2958 } 2959 if (error) 2960 goto out_trans_cancel; 2961 } 2962 2963 /* 2964 * Check for expected errors before we dirty the transaction 2965 * so we can return an error without a transaction abort. 2966 */ 2967 if (target_ip == NULL) { 2968 /* 2969 * If there's no space reservation, check the entry will 2970 * fit before actually inserting it. 2971 */ 2972 if (!spaceres) { 2973 error = xfs_dir_canenter(tp, target_dp, target_name); 2974 if (error) 2975 goto out_trans_cancel; 2976 } 2977 } else { 2978 /* 2979 * If target exists and it's a directory, check that whether 2980 * it can be destroyed. 2981 */ 2982 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 2983 (!xfs_dir_isempty(target_ip) || 2984 (VFS_I(target_ip)->i_nlink > 2))) { 2985 error = -EEXIST; 2986 goto out_trans_cancel; 2987 } 2988 } 2989 2990 /* 2991 * Lock the AGI buffers we need to handle bumping the nlink of the 2992 * whiteout inode off the unlinked list and to handle dropping the 2993 * nlink of the target inode. Per locking order rules, do this in 2994 * increasing AG order and before directory block allocation tries to 2995 * grab AGFs because we grab AGIs before AGFs. 2996 * 2997 * The (vfs) caller must ensure that if src is a directory then 2998 * target_ip is either null or an empty directory. 2999 */ 3000 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 3001 if (inodes[i] == wip || 3002 (inodes[i] == target_ip && 3003 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 3004 struct xfs_perag *pag; 3005 struct xfs_buf *bp; 3006 3007 pag = xfs_perag_get(mp, 3008 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino)); 3009 error = xfs_read_agi(pag, tp, &bp); 3010 xfs_perag_put(pag); 3011 if (error) 3012 goto out_trans_cancel; 3013 } 3014 } 3015 3016 /* 3017 * Directory entry creation below may acquire the AGF. Remove 3018 * the whiteout from the unlinked list first to preserve correct 3019 * AGI/AGF locking order. This dirties the transaction so failures 3020 * after this point will abort and log recovery will clean up the 3021 * mess. 3022 * 3023 * For whiteouts, we need to bump the link count on the whiteout 3024 * inode. After this point, we have a real link, clear the tmpfile 3025 * state flag from the inode so it doesn't accidentally get misused 3026 * in future. 3027 */ 3028 if (wip) { 3029 struct xfs_perag *pag; 3030 3031 ASSERT(VFS_I(wip)->i_nlink == 0); 3032 3033 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino)); 3034 error = xfs_iunlink_remove(tp, pag, wip); 3035 xfs_perag_put(pag); 3036 if (error) 3037 goto out_trans_cancel; 3038 3039 xfs_bumplink(tp, wip); 3040 VFS_I(wip)->i_state &= ~I_LINKABLE; 3041 } 3042 3043 /* 3044 * Set up the target. 3045 */ 3046 if (target_ip == NULL) { 3047 /* 3048 * If target does not exist and the rename crosses 3049 * directories, adjust the target directory link count 3050 * to account for the ".." reference from the new entry. 3051 */ 3052 error = xfs_dir_createname(tp, target_dp, target_name, 3053 src_ip->i_ino, spaceres); 3054 if (error) 3055 goto out_trans_cancel; 3056 3057 xfs_trans_ichgtime(tp, target_dp, 3058 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3059 3060 if (new_parent && src_is_directory) { 3061 xfs_bumplink(tp, target_dp); 3062 } 3063 } else { /* target_ip != NULL */ 3064 /* 3065 * Link the source inode under the target name. 3066 * If the source inode is a directory and we are moving 3067 * it across directories, its ".." entry will be 3068 * inconsistent until we replace that down below. 3069 * 3070 * In case there is already an entry with the same 3071 * name at the destination directory, remove it first. 3072 */ 3073 error = xfs_dir_replace(tp, target_dp, target_name, 3074 src_ip->i_ino, spaceres); 3075 if (error) 3076 goto out_trans_cancel; 3077 3078 xfs_trans_ichgtime(tp, target_dp, 3079 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3080 3081 /* 3082 * Decrement the link count on the target since the target 3083 * dir no longer points to it. 3084 */ 3085 error = xfs_droplink(tp, target_ip); 3086 if (error) 3087 goto out_trans_cancel; 3088 3089 if (src_is_directory) { 3090 /* 3091 * Drop the link from the old "." entry. 3092 */ 3093 error = xfs_droplink(tp, target_ip); 3094 if (error) 3095 goto out_trans_cancel; 3096 } 3097 } /* target_ip != NULL */ 3098 3099 /* 3100 * Remove the source. 3101 */ 3102 if (new_parent && src_is_directory) { 3103 /* 3104 * Rewrite the ".." entry to point to the new 3105 * directory. 3106 */ 3107 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3108 target_dp->i_ino, spaceres); 3109 ASSERT(error != -EEXIST); 3110 if (error) 3111 goto out_trans_cancel; 3112 } 3113 3114 /* 3115 * We always want to hit the ctime on the source inode. 3116 * 3117 * This isn't strictly required by the standards since the source 3118 * inode isn't really being changed, but old unix file systems did 3119 * it and some incremental backup programs won't work without it. 3120 */ 3121 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3122 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3123 3124 /* 3125 * Adjust the link count on src_dp. This is necessary when 3126 * renaming a directory, either within one parent when 3127 * the target existed, or across two parent directories. 3128 */ 3129 if (src_is_directory && (new_parent || target_ip != NULL)) { 3130 3131 /* 3132 * Decrement link count on src_directory since the 3133 * entry that's moved no longer points to it. 3134 */ 3135 error = xfs_droplink(tp, src_dp); 3136 if (error) 3137 goto out_trans_cancel; 3138 } 3139 3140 /* 3141 * For whiteouts, we only need to update the source dirent with the 3142 * inode number of the whiteout inode rather than removing it 3143 * altogether. 3144 */ 3145 if (wip) 3146 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3147 spaceres); 3148 else 3149 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3150 spaceres); 3151 3152 if (error) 3153 goto out_trans_cancel; 3154 3155 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3156 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3157 if (new_parent) 3158 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3159 3160 error = xfs_finish_rename(tp); 3161 if (wip) 3162 xfs_irele(wip); 3163 return error; 3164 3165 out_trans_cancel: 3166 xfs_trans_cancel(tp); 3167 out_release_wip: 3168 if (wip) 3169 xfs_irele(wip); 3170 if (error == -ENOSPC && nospace_error) 3171 error = nospace_error; 3172 return error; 3173 } 3174 3175 static int 3176 xfs_iflush( 3177 struct xfs_inode *ip, 3178 struct xfs_buf *bp) 3179 { 3180 struct xfs_inode_log_item *iip = ip->i_itemp; 3181 struct xfs_dinode *dip; 3182 struct xfs_mount *mp = ip->i_mount; 3183 int error; 3184 3185 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3186 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 3187 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3188 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3189 ASSERT(iip->ili_item.li_buf == bp); 3190 3191 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3192 3193 /* 3194 * We don't flush the inode if any of the following checks fail, but we 3195 * do still update the log item and attach to the backing buffer as if 3196 * the flush happened. This is a formality to facilitate predictable 3197 * error handling as the caller will shutdown and fail the buffer. 3198 */ 3199 error = -EFSCORRUPTED; 3200 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3201 mp, XFS_ERRTAG_IFLUSH_1)) { 3202 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3203 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT, 3204 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3205 goto flush_out; 3206 } 3207 if (S_ISREG(VFS_I(ip)->i_mode)) { 3208 if (XFS_TEST_ERROR( 3209 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3210 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3211 mp, XFS_ERRTAG_IFLUSH_3)) { 3212 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3213 "%s: Bad regular inode %llu, ptr "PTR_FMT, 3214 __func__, ip->i_ino, ip); 3215 goto flush_out; 3216 } 3217 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3218 if (XFS_TEST_ERROR( 3219 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3220 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3221 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3222 mp, XFS_ERRTAG_IFLUSH_4)) { 3223 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3224 "%s: Bad directory inode %llu, ptr "PTR_FMT, 3225 __func__, ip->i_ino, ip); 3226 goto flush_out; 3227 } 3228 } 3229 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) > 3230 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3231 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3232 "%s: detected corrupt incore inode %llu, " 3233 "total extents = %llu nblocks = %lld, ptr "PTR_FMT, 3234 __func__, ip->i_ino, 3235 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af), 3236 ip->i_nblocks, ip); 3237 goto flush_out; 3238 } 3239 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, 3240 mp, XFS_ERRTAG_IFLUSH_6)) { 3241 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3242 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT, 3243 __func__, ip->i_ino, ip->i_forkoff, ip); 3244 goto flush_out; 3245 } 3246 3247 /* 3248 * Inode item log recovery for v2 inodes are dependent on the flushiter 3249 * count for correct sequencing. We bump the flush iteration count so 3250 * we can detect flushes which postdate a log record during recovery. 3251 * This is redundant as we now log every change and hence this can't 3252 * happen but we need to still do it to ensure backwards compatibility 3253 * with old kernels that predate logging all inode changes. 3254 */ 3255 if (!xfs_has_v3inodes(mp)) 3256 ip->i_flushiter++; 3257 3258 /* 3259 * If there are inline format data / attr forks attached to this inode, 3260 * make sure they are not corrupt. 3261 */ 3262 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3263 xfs_ifork_verify_local_data(ip)) 3264 goto flush_out; 3265 if (xfs_inode_has_attr_fork(ip) && 3266 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL && 3267 xfs_ifork_verify_local_attr(ip)) 3268 goto flush_out; 3269 3270 /* 3271 * Copy the dirty parts of the inode into the on-disk inode. We always 3272 * copy out the core of the inode, because if the inode is dirty at all 3273 * the core must be. 3274 */ 3275 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3276 3277 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3278 if (!xfs_has_v3inodes(mp)) { 3279 if (ip->i_flushiter == DI_MAX_FLUSH) 3280 ip->i_flushiter = 0; 3281 } 3282 3283 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3284 if (xfs_inode_has_attr_fork(ip)) 3285 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3286 3287 /* 3288 * We've recorded everything logged in the inode, so we'd like to clear 3289 * the ili_fields bits so we don't log and flush things unnecessarily. 3290 * However, we can't stop logging all this information until the data 3291 * we've copied into the disk buffer is written to disk. If we did we 3292 * might overwrite the copy of the inode in the log with all the data 3293 * after re-logging only part of it, and in the face of a crash we 3294 * wouldn't have all the data we need to recover. 3295 * 3296 * What we do is move the bits to the ili_last_fields field. When 3297 * logging the inode, these bits are moved back to the ili_fields field. 3298 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 3299 * we know that the information those bits represent is permanently on 3300 * disk. As long as the flush completes before the inode is logged 3301 * again, then both ili_fields and ili_last_fields will be cleared. 3302 */ 3303 error = 0; 3304 flush_out: 3305 spin_lock(&iip->ili_lock); 3306 iip->ili_last_fields = iip->ili_fields; 3307 iip->ili_fields = 0; 3308 iip->ili_fsync_fields = 0; 3309 spin_unlock(&iip->ili_lock); 3310 3311 /* 3312 * Store the current LSN of the inode so that we can tell whether the 3313 * item has moved in the AIL from xfs_buf_inode_iodone(). 3314 */ 3315 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3316 &iip->ili_item.li_lsn); 3317 3318 /* generate the checksum. */ 3319 xfs_dinode_calc_crc(mp, dip); 3320 return error; 3321 } 3322 3323 /* 3324 * Non-blocking flush of dirty inode metadata into the backing buffer. 3325 * 3326 * The caller must have a reference to the inode and hold the cluster buffer 3327 * locked. The function will walk across all the inodes on the cluster buffer it 3328 * can find and lock without blocking, and flush them to the cluster buffer. 3329 * 3330 * On successful flushing of at least one inode, the caller must write out the 3331 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3332 * the caller needs to release the buffer. On failure, the filesystem will be 3333 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3334 * will be returned. 3335 */ 3336 int 3337 xfs_iflush_cluster( 3338 struct xfs_buf *bp) 3339 { 3340 struct xfs_mount *mp = bp->b_mount; 3341 struct xfs_log_item *lip, *n; 3342 struct xfs_inode *ip; 3343 struct xfs_inode_log_item *iip; 3344 int clcount = 0; 3345 int error = 0; 3346 3347 /* 3348 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3349 * will remove itself from the list. 3350 */ 3351 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3352 iip = (struct xfs_inode_log_item *)lip; 3353 ip = iip->ili_inode; 3354 3355 /* 3356 * Quick and dirty check to avoid locks if possible. 3357 */ 3358 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 3359 continue; 3360 if (xfs_ipincount(ip)) 3361 continue; 3362 3363 /* 3364 * The inode is still attached to the buffer, which means it is 3365 * dirty but reclaim might try to grab it. Check carefully for 3366 * that, and grab the ilock while still holding the i_flags_lock 3367 * to guarantee reclaim will not be able to reclaim this inode 3368 * once we drop the i_flags_lock. 3369 */ 3370 spin_lock(&ip->i_flags_lock); 3371 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3372 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 3373 spin_unlock(&ip->i_flags_lock); 3374 continue; 3375 } 3376 3377 /* 3378 * ILOCK will pin the inode against reclaim and prevent 3379 * concurrent transactions modifying the inode while we are 3380 * flushing the inode. If we get the lock, set the flushing 3381 * state before we drop the i_flags_lock. 3382 */ 3383 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3384 spin_unlock(&ip->i_flags_lock); 3385 continue; 3386 } 3387 __xfs_iflags_set(ip, XFS_IFLUSHING); 3388 spin_unlock(&ip->i_flags_lock); 3389 3390 /* 3391 * Abort flushing this inode if we are shut down because the 3392 * inode may not currently be in the AIL. This can occur when 3393 * log I/O failure unpins the inode without inserting into the 3394 * AIL, leaving a dirty/unpinned inode attached to the buffer 3395 * that otherwise looks like it should be flushed. 3396 */ 3397 if (xlog_is_shutdown(mp->m_log)) { 3398 xfs_iunpin_wait(ip); 3399 xfs_iflush_abort(ip); 3400 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3401 error = -EIO; 3402 continue; 3403 } 3404 3405 /* don't block waiting on a log force to unpin dirty inodes */ 3406 if (xfs_ipincount(ip)) { 3407 xfs_iflags_clear(ip, XFS_IFLUSHING); 3408 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3409 continue; 3410 } 3411 3412 if (!xfs_inode_clean(ip)) 3413 error = xfs_iflush(ip, bp); 3414 else 3415 xfs_iflags_clear(ip, XFS_IFLUSHING); 3416 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3417 if (error) 3418 break; 3419 clcount++; 3420 } 3421 3422 if (error) { 3423 /* 3424 * Shutdown first so we kill the log before we release this 3425 * buffer. If it is an INODE_ALLOC buffer and pins the tail 3426 * of the log, failing it before the _log_ is shut down can 3427 * result in the log tail being moved forward in the journal 3428 * on disk because log writes can still be taking place. Hence 3429 * unpinning the tail will allow the ICREATE intent to be 3430 * removed from the log an recovery will fail with uninitialised 3431 * inode cluster buffers. 3432 */ 3433 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3434 bp->b_flags |= XBF_ASYNC; 3435 xfs_buf_ioend_fail(bp); 3436 return error; 3437 } 3438 3439 if (!clcount) 3440 return -EAGAIN; 3441 3442 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3443 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3444 return 0; 3445 3446 } 3447 3448 /* Release an inode. */ 3449 void 3450 xfs_irele( 3451 struct xfs_inode *ip) 3452 { 3453 trace_xfs_irele(ip, _RET_IP_); 3454 iput(VFS_I(ip)); 3455 } 3456 3457 /* 3458 * Ensure all commited transactions touching the inode are written to the log. 3459 */ 3460 int 3461 xfs_log_force_inode( 3462 struct xfs_inode *ip) 3463 { 3464 xfs_csn_t seq = 0; 3465 3466 xfs_ilock(ip, XFS_ILOCK_SHARED); 3467 if (xfs_ipincount(ip)) 3468 seq = ip->i_itemp->ili_commit_seq; 3469 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3470 3471 if (!seq) 3472 return 0; 3473 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); 3474 } 3475 3476 /* 3477 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3478 * abide vfs locking order (lowest pointer value goes first) and breaking the 3479 * layout leases before proceeding. The loop is needed because we cannot call 3480 * the blocking break_layout() with the iolocks held, and therefore have to 3481 * back out both locks. 3482 */ 3483 static int 3484 xfs_iolock_two_inodes_and_break_layout( 3485 struct inode *src, 3486 struct inode *dest) 3487 { 3488 int error; 3489 3490 if (src > dest) 3491 swap(src, dest); 3492 3493 retry: 3494 /* Wait to break both inodes' layouts before we start locking. */ 3495 error = break_layout(src, true); 3496 if (error) 3497 return error; 3498 if (src != dest) { 3499 error = break_layout(dest, true); 3500 if (error) 3501 return error; 3502 } 3503 3504 /* Lock one inode and make sure nobody got in and leased it. */ 3505 inode_lock(src); 3506 error = break_layout(src, false); 3507 if (error) { 3508 inode_unlock(src); 3509 if (error == -EWOULDBLOCK) 3510 goto retry; 3511 return error; 3512 } 3513 3514 if (src == dest) 3515 return 0; 3516 3517 /* Lock the other inode and make sure nobody got in and leased it. */ 3518 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3519 error = break_layout(dest, false); 3520 if (error) { 3521 inode_unlock(src); 3522 inode_unlock(dest); 3523 if (error == -EWOULDBLOCK) 3524 goto retry; 3525 return error; 3526 } 3527 3528 return 0; 3529 } 3530 3531 static int 3532 xfs_mmaplock_two_inodes_and_break_dax_layout( 3533 struct xfs_inode *ip1, 3534 struct xfs_inode *ip2) 3535 { 3536 int error; 3537 bool retry; 3538 struct page *page; 3539 3540 if (ip1->i_ino > ip2->i_ino) 3541 swap(ip1, ip2); 3542 3543 again: 3544 retry = false; 3545 /* Lock the first inode */ 3546 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); 3547 error = xfs_break_dax_layouts(VFS_I(ip1), &retry); 3548 if (error || retry) { 3549 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3550 if (error == 0 && retry) 3551 goto again; 3552 return error; 3553 } 3554 3555 if (ip1 == ip2) 3556 return 0; 3557 3558 /* Nested lock the second inode */ 3559 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1)); 3560 /* 3561 * We cannot use xfs_break_dax_layouts() directly here because it may 3562 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable 3563 * for this nested lock case. 3564 */ 3565 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping); 3566 if (page && page_ref_count(page) != 1) { 3567 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3568 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3569 goto again; 3570 } 3571 3572 return 0; 3573 } 3574 3575 /* 3576 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 3577 * mmap activity. 3578 */ 3579 int 3580 xfs_ilock2_io_mmap( 3581 struct xfs_inode *ip1, 3582 struct xfs_inode *ip2) 3583 { 3584 int ret; 3585 3586 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 3587 if (ret) 3588 return ret; 3589 3590 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 3591 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2); 3592 if (ret) { 3593 inode_unlock(VFS_I(ip2)); 3594 if (ip1 != ip2) 3595 inode_unlock(VFS_I(ip1)); 3596 return ret; 3597 } 3598 } else 3599 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, 3600 VFS_I(ip2)->i_mapping); 3601 3602 return 0; 3603 } 3604 3605 /* Unlock both inodes to allow IO and mmap activity. */ 3606 void 3607 xfs_iunlock2_io_mmap( 3608 struct xfs_inode *ip1, 3609 struct xfs_inode *ip2) 3610 { 3611 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 3612 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3613 if (ip1 != ip2) 3614 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3615 } else 3616 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, 3617 VFS_I(ip2)->i_mapping); 3618 3619 inode_unlock(VFS_I(ip2)); 3620 if (ip1 != ip2) 3621 inode_unlock(VFS_I(ip1)); 3622 } 3623 3624 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */ 3625 void 3626 xfs_iunlock2_remapping( 3627 struct xfs_inode *ip1, 3628 struct xfs_inode *ip2) 3629 { 3630 xfs_iflags_clear(ip1, XFS_IREMAPPING); 3631 3632 if (ip1 != ip2) 3633 xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED); 3634 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3635 3636 if (ip1 != ip2) 3637 inode_unlock_shared(VFS_I(ip1)); 3638 inode_unlock(VFS_I(ip2)); 3639 } 3640 3641 /* 3642 * Reload the incore inode list for this inode. Caller should ensure that 3643 * the link count cannot change, either by taking ILOCK_SHARED or otherwise 3644 * preventing other threads from executing. 3645 */ 3646 int 3647 xfs_inode_reload_unlinked_bucket( 3648 struct xfs_trans *tp, 3649 struct xfs_inode *ip) 3650 { 3651 struct xfs_mount *mp = tp->t_mountp; 3652 struct xfs_buf *agibp; 3653 struct xfs_agi *agi; 3654 struct xfs_perag *pag; 3655 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 3656 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 3657 xfs_agino_t prev_agino, next_agino; 3658 unsigned int bucket; 3659 bool foundit = false; 3660 int error; 3661 3662 /* Grab the first inode in the list */ 3663 pag = xfs_perag_get(mp, agno); 3664 error = xfs_ialloc_read_agi(pag, tp, &agibp); 3665 xfs_perag_put(pag); 3666 if (error) 3667 return error; 3668 3669 /* 3670 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the 3671 * incore unlinked list pointers for this inode. Check once more to 3672 * see if we raced with anyone else to reload the unlinked list. 3673 */ 3674 if (!xfs_inode_unlinked_incomplete(ip)) { 3675 foundit = true; 3676 goto out_agibp; 3677 } 3678 3679 bucket = agino % XFS_AGI_UNLINKED_BUCKETS; 3680 agi = agibp->b_addr; 3681 3682 trace_xfs_inode_reload_unlinked_bucket(ip); 3683 3684 xfs_info_ratelimited(mp, 3685 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.", 3686 agino, agno); 3687 3688 prev_agino = NULLAGINO; 3689 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3690 while (next_agino != NULLAGINO) { 3691 struct xfs_inode *next_ip = NULL; 3692 3693 /* Found this caller's inode, set its backlink. */ 3694 if (next_agino == agino) { 3695 next_ip = ip; 3696 next_ip->i_prev_unlinked = prev_agino; 3697 foundit = true; 3698 goto next_inode; 3699 } 3700 3701 /* Try in-memory lookup first. */ 3702 next_ip = xfs_iunlink_lookup(pag, next_agino); 3703 if (next_ip) 3704 goto next_inode; 3705 3706 /* Inode not in memory, try reloading it. */ 3707 error = xfs_iunlink_reload_next(tp, agibp, prev_agino, 3708 next_agino); 3709 if (error) 3710 break; 3711 3712 /* Grab the reloaded inode. */ 3713 next_ip = xfs_iunlink_lookup(pag, next_agino); 3714 if (!next_ip) { 3715 /* No incore inode at all? We reloaded it... */ 3716 ASSERT(next_ip != NULL); 3717 error = -EFSCORRUPTED; 3718 break; 3719 } 3720 3721 next_inode: 3722 prev_agino = next_agino; 3723 next_agino = next_ip->i_next_unlinked; 3724 } 3725 3726 out_agibp: 3727 xfs_trans_brelse(tp, agibp); 3728 /* Should have found this inode somewhere in the iunlinked bucket. */ 3729 if (!error && !foundit) 3730 error = -EFSCORRUPTED; 3731 return error; 3732 } 3733 3734 /* Decide if this inode is missing its unlinked list and reload it. */ 3735 int 3736 xfs_inode_reload_unlinked( 3737 struct xfs_inode *ip) 3738 { 3739 struct xfs_trans *tp; 3740 int error; 3741 3742 error = xfs_trans_alloc_empty(ip->i_mount, &tp); 3743 if (error) 3744 return error; 3745 3746 xfs_ilock(ip, XFS_ILOCK_SHARED); 3747 if (xfs_inode_unlinked_incomplete(ip)) 3748 error = xfs_inode_reload_unlinked_bucket(tp, ip); 3749 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3750 xfs_trans_cancel(tp); 3751 3752 return error; 3753 } 3754 3755 /* Has this inode fork been zapped by repair? */ 3756 bool 3757 xfs_ifork_zapped( 3758 const struct xfs_inode *ip, 3759 int whichfork) 3760 { 3761 unsigned int datamask = 0; 3762 3763 switch (whichfork) { 3764 case XFS_DATA_FORK: 3765 switch (ip->i_vnode.i_mode & S_IFMT) { 3766 case S_IFDIR: 3767 datamask = XFS_SICK_INO_DIR_ZAPPED; 3768 break; 3769 case S_IFLNK: 3770 datamask = XFS_SICK_INO_SYMLINK_ZAPPED; 3771 break; 3772 } 3773 return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask); 3774 case XFS_ATTR_FORK: 3775 return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED; 3776 default: 3777 return false; 3778 } 3779 } 3780