xref: /linux/fs/xfs/xfs_inode.c (revision baf44fa5c37a2357a7ae92889f74bc1824f33fd4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans_space.h"
20 #include "xfs_trans.h"
21 #include "xfs_buf_item.h"
22 #include "xfs_inode_item.h"
23 #include "xfs_iunlink_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38 #include "xfs_ag.h"
39 #include "xfs_log_priv.h"
40 #include "xfs_health.h"
41 
42 struct kmem_cache *xfs_inode_cache;
43 
44 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
45 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
46 	struct xfs_inode *);
47 
48 /*
49  * helper function to extract extent size hint from inode
50  */
51 xfs_extlen_t
52 xfs_get_extsz_hint(
53 	struct xfs_inode	*ip)
54 {
55 	/*
56 	 * No point in aligning allocations if we need to COW to actually
57 	 * write to them.
58 	 */
59 	if (xfs_is_always_cow_inode(ip))
60 		return 0;
61 	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
62 		return ip->i_extsize;
63 	if (XFS_IS_REALTIME_INODE(ip))
64 		return ip->i_mount->m_sb.sb_rextsize;
65 	return 0;
66 }
67 
68 /*
69  * Helper function to extract CoW extent size hint from inode.
70  * Between the extent size hint and the CoW extent size hint, we
71  * return the greater of the two.  If the value is zero (automatic),
72  * use the default size.
73  */
74 xfs_extlen_t
75 xfs_get_cowextsz_hint(
76 	struct xfs_inode	*ip)
77 {
78 	xfs_extlen_t		a, b;
79 
80 	a = 0;
81 	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
82 		a = ip->i_cowextsize;
83 	b = xfs_get_extsz_hint(ip);
84 
85 	a = max(a, b);
86 	if (a == 0)
87 		return XFS_DEFAULT_COWEXTSZ_HINT;
88 	return a;
89 }
90 
91 /*
92  * These two are wrapper routines around the xfs_ilock() routine used to
93  * centralize some grungy code.  They are used in places that wish to lock the
94  * inode solely for reading the extents.  The reason these places can't just
95  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
96  * bringing in of the extents from disk for a file in b-tree format.  If the
97  * inode is in b-tree format, then we need to lock the inode exclusively until
98  * the extents are read in.  Locking it exclusively all the time would limit
99  * our parallelism unnecessarily, though.  What we do instead is check to see
100  * if the extents have been read in yet, and only lock the inode exclusively
101  * if they have not.
102  *
103  * The functions return a value which should be given to the corresponding
104  * xfs_iunlock() call.
105  */
106 uint
107 xfs_ilock_data_map_shared(
108 	struct xfs_inode	*ip)
109 {
110 	uint			lock_mode = XFS_ILOCK_SHARED;
111 
112 	if (xfs_need_iread_extents(&ip->i_df))
113 		lock_mode = XFS_ILOCK_EXCL;
114 	xfs_ilock(ip, lock_mode);
115 	return lock_mode;
116 }
117 
118 uint
119 xfs_ilock_attr_map_shared(
120 	struct xfs_inode	*ip)
121 {
122 	uint			lock_mode = XFS_ILOCK_SHARED;
123 
124 	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
125 		lock_mode = XFS_ILOCK_EXCL;
126 	xfs_ilock(ip, lock_mode);
127 	return lock_mode;
128 }
129 
130 /*
131  * You can't set both SHARED and EXCL for the same lock,
132  * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
133  * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
134  * to set in lock_flags.
135  */
136 static inline void
137 xfs_lock_flags_assert(
138 	uint		lock_flags)
139 {
140 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
141 		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
142 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
143 		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
144 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
145 		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
146 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
147 	ASSERT(lock_flags != 0);
148 }
149 
150 /*
151  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
152  * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
153  * various combinations of the locks to be obtained.
154  *
155  * The 3 locks should always be ordered so that the IO lock is obtained first,
156  * the mmap lock second and the ilock last in order to prevent deadlock.
157  *
158  * Basic locking order:
159  *
160  * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
161  *
162  * mmap_lock locking order:
163  *
164  * i_rwsem -> page lock -> mmap_lock
165  * mmap_lock -> invalidate_lock -> page_lock
166  *
167  * The difference in mmap_lock locking order mean that we cannot hold the
168  * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
169  * can fault in pages during copy in/out (for buffered IO) or require the
170  * mmap_lock in get_user_pages() to map the user pages into the kernel address
171  * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
172  * fault because page faults already hold the mmap_lock.
173  *
174  * Hence to serialise fully against both syscall and mmap based IO, we need to
175  * take both the i_rwsem and the invalidate_lock. These locks should *only* be
176  * both taken in places where we need to invalidate the page cache in a race
177  * free manner (e.g. truncate, hole punch and other extent manipulation
178  * functions).
179  */
180 void
181 xfs_ilock(
182 	xfs_inode_t		*ip,
183 	uint			lock_flags)
184 {
185 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
186 
187 	xfs_lock_flags_assert(lock_flags);
188 
189 	if (lock_flags & XFS_IOLOCK_EXCL) {
190 		down_write_nested(&VFS_I(ip)->i_rwsem,
191 				  XFS_IOLOCK_DEP(lock_flags));
192 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
193 		down_read_nested(&VFS_I(ip)->i_rwsem,
194 				 XFS_IOLOCK_DEP(lock_flags));
195 	}
196 
197 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
198 		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
199 				  XFS_MMAPLOCK_DEP(lock_flags));
200 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
201 		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
202 				 XFS_MMAPLOCK_DEP(lock_flags));
203 	}
204 
205 	if (lock_flags & XFS_ILOCK_EXCL)
206 		down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
207 	else if (lock_flags & XFS_ILOCK_SHARED)
208 		down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
209 }
210 
211 /*
212  * This is just like xfs_ilock(), except that the caller
213  * is guaranteed not to sleep.  It returns 1 if it gets
214  * the requested locks and 0 otherwise.  If the IO lock is
215  * obtained but the inode lock cannot be, then the IO lock
216  * is dropped before returning.
217  *
218  * ip -- the inode being locked
219  * lock_flags -- this parameter indicates the inode's locks to be
220  *       to be locked.  See the comment for xfs_ilock() for a list
221  *	 of valid values.
222  */
223 int
224 xfs_ilock_nowait(
225 	xfs_inode_t		*ip,
226 	uint			lock_flags)
227 {
228 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
229 
230 	xfs_lock_flags_assert(lock_flags);
231 
232 	if (lock_flags & XFS_IOLOCK_EXCL) {
233 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
234 			goto out;
235 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
236 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
237 			goto out;
238 	}
239 
240 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
241 		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
242 			goto out_undo_iolock;
243 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
244 		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
245 			goto out_undo_iolock;
246 	}
247 
248 	if (lock_flags & XFS_ILOCK_EXCL) {
249 		if (!down_write_trylock(&ip->i_lock))
250 			goto out_undo_mmaplock;
251 	} else if (lock_flags & XFS_ILOCK_SHARED) {
252 		if (!down_read_trylock(&ip->i_lock))
253 			goto out_undo_mmaplock;
254 	}
255 	return 1;
256 
257 out_undo_mmaplock:
258 	if (lock_flags & XFS_MMAPLOCK_EXCL)
259 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
260 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
261 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
262 out_undo_iolock:
263 	if (lock_flags & XFS_IOLOCK_EXCL)
264 		up_write(&VFS_I(ip)->i_rwsem);
265 	else if (lock_flags & XFS_IOLOCK_SHARED)
266 		up_read(&VFS_I(ip)->i_rwsem);
267 out:
268 	return 0;
269 }
270 
271 /*
272  * xfs_iunlock() is used to drop the inode locks acquired with
273  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
274  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
275  * that we know which locks to drop.
276  *
277  * ip -- the inode being unlocked
278  * lock_flags -- this parameter indicates the inode's locks to be
279  *       to be unlocked.  See the comment for xfs_ilock() for a list
280  *	 of valid values for this parameter.
281  *
282  */
283 void
284 xfs_iunlock(
285 	xfs_inode_t		*ip,
286 	uint			lock_flags)
287 {
288 	xfs_lock_flags_assert(lock_flags);
289 
290 	if (lock_flags & XFS_IOLOCK_EXCL)
291 		up_write(&VFS_I(ip)->i_rwsem);
292 	else if (lock_flags & XFS_IOLOCK_SHARED)
293 		up_read(&VFS_I(ip)->i_rwsem);
294 
295 	if (lock_flags & XFS_MMAPLOCK_EXCL)
296 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
297 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
298 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
299 
300 	if (lock_flags & XFS_ILOCK_EXCL)
301 		up_write(&ip->i_lock);
302 	else if (lock_flags & XFS_ILOCK_SHARED)
303 		up_read(&ip->i_lock);
304 
305 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
306 }
307 
308 /*
309  * give up write locks.  the i/o lock cannot be held nested
310  * if it is being demoted.
311  */
312 void
313 xfs_ilock_demote(
314 	xfs_inode_t		*ip,
315 	uint			lock_flags)
316 {
317 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
318 	ASSERT((lock_flags &
319 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
320 
321 	if (lock_flags & XFS_ILOCK_EXCL)
322 		downgrade_write(&ip->i_lock);
323 	if (lock_flags & XFS_MMAPLOCK_EXCL)
324 		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
325 	if (lock_flags & XFS_IOLOCK_EXCL)
326 		downgrade_write(&VFS_I(ip)->i_rwsem);
327 
328 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
329 }
330 
331 void
332 xfs_assert_ilocked(
333 	struct xfs_inode	*ip,
334 	uint			lock_flags)
335 {
336 	/*
337 	 * Sometimes we assert the ILOCK is held exclusively, but we're in
338 	 * a workqueue, so lockdep doesn't know we're the owner.
339 	 */
340 	if (lock_flags & XFS_ILOCK_SHARED)
341 		rwsem_assert_held(&ip->i_lock);
342 	else if (lock_flags & XFS_ILOCK_EXCL)
343 		rwsem_assert_held_write_nolockdep(&ip->i_lock);
344 
345 	if (lock_flags & XFS_MMAPLOCK_SHARED)
346 		rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
347 	else if (lock_flags & XFS_MMAPLOCK_EXCL)
348 		rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
349 
350 	if (lock_flags & XFS_IOLOCK_SHARED)
351 		rwsem_assert_held(&VFS_I(ip)->i_rwsem);
352 	else if (lock_flags & XFS_IOLOCK_EXCL)
353 		rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
354 }
355 
356 /*
357  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
358  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
359  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
360  * errors and warnings.
361  */
362 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
363 static bool
364 xfs_lockdep_subclass_ok(
365 	int subclass)
366 {
367 	return subclass < MAX_LOCKDEP_SUBCLASSES;
368 }
369 #else
370 #define xfs_lockdep_subclass_ok(subclass)	(true)
371 #endif
372 
373 /*
374  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
375  * value. This can be called for any type of inode lock combination, including
376  * parent locking. Care must be taken to ensure we don't overrun the subclass
377  * storage fields in the class mask we build.
378  */
379 static inline uint
380 xfs_lock_inumorder(
381 	uint	lock_mode,
382 	uint	subclass)
383 {
384 	uint	class = 0;
385 
386 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
387 			      XFS_ILOCK_RTSUM)));
388 	ASSERT(xfs_lockdep_subclass_ok(subclass));
389 
390 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
391 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
392 		class += subclass << XFS_IOLOCK_SHIFT;
393 	}
394 
395 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
396 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
397 		class += subclass << XFS_MMAPLOCK_SHIFT;
398 	}
399 
400 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
401 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
402 		class += subclass << XFS_ILOCK_SHIFT;
403 	}
404 
405 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
406 }
407 
408 /*
409  * The following routine will lock n inodes in exclusive mode.  We assume the
410  * caller calls us with the inodes in i_ino order.
411  *
412  * We need to detect deadlock where an inode that we lock is in the AIL and we
413  * start waiting for another inode that is locked by a thread in a long running
414  * transaction (such as truncate). This can result in deadlock since the long
415  * running trans might need to wait for the inode we just locked in order to
416  * push the tail and free space in the log.
417  *
418  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
419  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
420  * lock more than one at a time, lockdep will report false positives saying we
421  * have violated locking orders.
422  */
423 static void
424 xfs_lock_inodes(
425 	struct xfs_inode	**ips,
426 	int			inodes,
427 	uint			lock_mode)
428 {
429 	int			attempts = 0;
430 	uint			i;
431 	int			j;
432 	bool			try_lock;
433 	struct xfs_log_item	*lp;
434 
435 	/*
436 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
437 	 * support an arbitrary depth of locking here, but absolute limits on
438 	 * inodes depend on the type of locking and the limits placed by
439 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
440 	 * the asserts.
441 	 */
442 	ASSERT(ips && inodes >= 2 && inodes <= 5);
443 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
444 			    XFS_ILOCK_EXCL));
445 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
446 			      XFS_ILOCK_SHARED)));
447 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
448 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
449 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
450 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
451 
452 	if (lock_mode & XFS_IOLOCK_EXCL) {
453 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
454 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
455 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
456 
457 again:
458 	try_lock = false;
459 	i = 0;
460 	for (; i < inodes; i++) {
461 		ASSERT(ips[i]);
462 
463 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
464 			continue;
465 
466 		/*
467 		 * If try_lock is not set yet, make sure all locked inodes are
468 		 * not in the AIL.  If any are, set try_lock to be used later.
469 		 */
470 		if (!try_lock) {
471 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
472 				lp = &ips[j]->i_itemp->ili_item;
473 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
474 					try_lock = true;
475 			}
476 		}
477 
478 		/*
479 		 * If any of the previous locks we have locked is in the AIL,
480 		 * we must TRY to get the second and subsequent locks. If
481 		 * we can't get any, we must release all we have
482 		 * and try again.
483 		 */
484 		if (!try_lock) {
485 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
486 			continue;
487 		}
488 
489 		/* try_lock means we have an inode locked that is in the AIL. */
490 		ASSERT(i != 0);
491 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
492 			continue;
493 
494 		/*
495 		 * Unlock all previous guys and try again.  xfs_iunlock will try
496 		 * to push the tail if the inode is in the AIL.
497 		 */
498 		attempts++;
499 		for (j = i - 1; j >= 0; j--) {
500 			/*
501 			 * Check to see if we've already unlocked this one.  Not
502 			 * the first one going back, and the inode ptr is the
503 			 * same.
504 			 */
505 			if (j != (i - 1) && ips[j] == ips[j + 1])
506 				continue;
507 
508 			xfs_iunlock(ips[j], lock_mode);
509 		}
510 
511 		if ((attempts % 5) == 0) {
512 			delay(1); /* Don't just spin the CPU */
513 		}
514 		goto again;
515 	}
516 }
517 
518 /*
519  * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
520  * mmaplock must be double-locked separately since we use i_rwsem and
521  * invalidate_lock for that. We now support taking one lock EXCL and the
522  * other SHARED.
523  */
524 void
525 xfs_lock_two_inodes(
526 	struct xfs_inode	*ip0,
527 	uint			ip0_mode,
528 	struct xfs_inode	*ip1,
529 	uint			ip1_mode)
530 {
531 	int			attempts = 0;
532 	struct xfs_log_item	*lp;
533 
534 	ASSERT(hweight32(ip0_mode) == 1);
535 	ASSERT(hweight32(ip1_mode) == 1);
536 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
537 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
538 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
539 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
540 	ASSERT(ip0->i_ino != ip1->i_ino);
541 
542 	if (ip0->i_ino > ip1->i_ino) {
543 		swap(ip0, ip1);
544 		swap(ip0_mode, ip1_mode);
545 	}
546 
547  again:
548 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
549 
550 	/*
551 	 * If the first lock we have locked is in the AIL, we must TRY to get
552 	 * the second lock. If we can't get it, we must release the first one
553 	 * and try again.
554 	 */
555 	lp = &ip0->i_itemp->ili_item;
556 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
557 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
558 			xfs_iunlock(ip0, ip0_mode);
559 			if ((++attempts % 5) == 0)
560 				delay(1); /* Don't just spin the CPU */
561 			goto again;
562 		}
563 	} else {
564 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
565 	}
566 }
567 
568 uint
569 xfs_ip2xflags(
570 	struct xfs_inode	*ip)
571 {
572 	uint			flags = 0;
573 
574 	if (ip->i_diflags & XFS_DIFLAG_ANY) {
575 		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
576 			flags |= FS_XFLAG_REALTIME;
577 		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
578 			flags |= FS_XFLAG_PREALLOC;
579 		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
580 			flags |= FS_XFLAG_IMMUTABLE;
581 		if (ip->i_diflags & XFS_DIFLAG_APPEND)
582 			flags |= FS_XFLAG_APPEND;
583 		if (ip->i_diflags & XFS_DIFLAG_SYNC)
584 			flags |= FS_XFLAG_SYNC;
585 		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
586 			flags |= FS_XFLAG_NOATIME;
587 		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
588 			flags |= FS_XFLAG_NODUMP;
589 		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
590 			flags |= FS_XFLAG_RTINHERIT;
591 		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
592 			flags |= FS_XFLAG_PROJINHERIT;
593 		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
594 			flags |= FS_XFLAG_NOSYMLINKS;
595 		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
596 			flags |= FS_XFLAG_EXTSIZE;
597 		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
598 			flags |= FS_XFLAG_EXTSZINHERIT;
599 		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
600 			flags |= FS_XFLAG_NODEFRAG;
601 		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
602 			flags |= FS_XFLAG_FILESTREAM;
603 	}
604 
605 	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
606 		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
607 			flags |= FS_XFLAG_DAX;
608 		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
609 			flags |= FS_XFLAG_COWEXTSIZE;
610 	}
611 
612 	if (xfs_inode_has_attr_fork(ip))
613 		flags |= FS_XFLAG_HASATTR;
614 	return flags;
615 }
616 
617 /*
618  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
619  * is allowed, otherwise it has to be an exact match. If a CI match is found,
620  * ci_name->name will point to a the actual name (caller must free) or
621  * will be set to NULL if an exact match is found.
622  */
623 int
624 xfs_lookup(
625 	struct xfs_inode	*dp,
626 	const struct xfs_name	*name,
627 	struct xfs_inode	**ipp,
628 	struct xfs_name		*ci_name)
629 {
630 	xfs_ino_t		inum;
631 	int			error;
632 
633 	trace_xfs_lookup(dp, name);
634 
635 	if (xfs_is_shutdown(dp->i_mount))
636 		return -EIO;
637 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
638 		return -EIO;
639 
640 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
641 	if (error)
642 		goto out_unlock;
643 
644 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
645 	if (error)
646 		goto out_free_name;
647 
648 	return 0;
649 
650 out_free_name:
651 	if (ci_name)
652 		kfree(ci_name->name);
653 out_unlock:
654 	*ipp = NULL;
655 	return error;
656 }
657 
658 /* Propagate di_flags from a parent inode to a child inode. */
659 static void
660 xfs_inode_inherit_flags(
661 	struct xfs_inode	*ip,
662 	const struct xfs_inode	*pip)
663 {
664 	unsigned int		di_flags = 0;
665 	xfs_failaddr_t		failaddr;
666 	umode_t			mode = VFS_I(ip)->i_mode;
667 
668 	if (S_ISDIR(mode)) {
669 		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
670 			di_flags |= XFS_DIFLAG_RTINHERIT;
671 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
672 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
673 			ip->i_extsize = pip->i_extsize;
674 		}
675 		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
676 			di_flags |= XFS_DIFLAG_PROJINHERIT;
677 	} else if (S_ISREG(mode)) {
678 		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
679 		    xfs_has_realtime(ip->i_mount))
680 			di_flags |= XFS_DIFLAG_REALTIME;
681 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
682 			di_flags |= XFS_DIFLAG_EXTSIZE;
683 			ip->i_extsize = pip->i_extsize;
684 		}
685 	}
686 	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
687 	    xfs_inherit_noatime)
688 		di_flags |= XFS_DIFLAG_NOATIME;
689 	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
690 	    xfs_inherit_nodump)
691 		di_flags |= XFS_DIFLAG_NODUMP;
692 	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
693 	    xfs_inherit_sync)
694 		di_flags |= XFS_DIFLAG_SYNC;
695 	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
696 	    xfs_inherit_nosymlinks)
697 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
698 	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
699 	    xfs_inherit_nodefrag)
700 		di_flags |= XFS_DIFLAG_NODEFRAG;
701 	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
702 		di_flags |= XFS_DIFLAG_FILESTREAM;
703 
704 	ip->i_diflags |= di_flags;
705 
706 	/*
707 	 * Inode verifiers on older kernels only check that the extent size
708 	 * hint is an integer multiple of the rt extent size on realtime files.
709 	 * They did not check the hint alignment on a directory with both
710 	 * rtinherit and extszinherit flags set.  If the misaligned hint is
711 	 * propagated from a directory into a new realtime file, new file
712 	 * allocations will fail due to math errors in the rt allocator and/or
713 	 * trip the verifiers.  Validate the hint settings in the new file so
714 	 * that we don't let broken hints propagate.
715 	 */
716 	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
717 			VFS_I(ip)->i_mode, ip->i_diflags);
718 	if (failaddr) {
719 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
720 				   XFS_DIFLAG_EXTSZINHERIT);
721 		ip->i_extsize = 0;
722 	}
723 }
724 
725 /* Propagate di_flags2 from a parent inode to a child inode. */
726 static void
727 xfs_inode_inherit_flags2(
728 	struct xfs_inode	*ip,
729 	const struct xfs_inode	*pip)
730 {
731 	xfs_failaddr_t		failaddr;
732 
733 	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
734 		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
735 		ip->i_cowextsize = pip->i_cowextsize;
736 	}
737 	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
738 		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
739 
740 	/* Don't let invalid cowextsize hints propagate. */
741 	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
742 			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
743 	if (failaddr) {
744 		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
745 		ip->i_cowextsize = 0;
746 	}
747 }
748 
749 /*
750  * Initialise a newly allocated inode and return the in-core inode to the
751  * caller locked exclusively.
752  */
753 int
754 xfs_init_new_inode(
755 	struct mnt_idmap	*idmap,
756 	struct xfs_trans	*tp,
757 	struct xfs_inode	*pip,
758 	xfs_ino_t		ino,
759 	umode_t			mode,
760 	xfs_nlink_t		nlink,
761 	dev_t			rdev,
762 	prid_t			prid,
763 	bool			init_xattrs,
764 	struct xfs_inode	**ipp)
765 {
766 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
767 	struct xfs_mount	*mp = tp->t_mountp;
768 	struct xfs_inode	*ip;
769 	unsigned int		flags;
770 	int			error;
771 	struct timespec64	tv;
772 	struct inode		*inode;
773 
774 	/*
775 	 * Protect against obviously corrupt allocation btree records. Later
776 	 * xfs_iget checks will catch re-allocation of other active in-memory
777 	 * and on-disk inodes. If we don't catch reallocating the parent inode
778 	 * here we will deadlock in xfs_iget() so we have to do these checks
779 	 * first.
780 	 */
781 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
782 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
783 		xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino),
784 				XFS_SICK_AG_INOBT);
785 		return -EFSCORRUPTED;
786 	}
787 
788 	/*
789 	 * Get the in-core inode with the lock held exclusively to prevent
790 	 * others from looking at until we're done.
791 	 */
792 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
793 	if (error)
794 		return error;
795 
796 	ASSERT(ip != NULL);
797 	inode = VFS_I(ip);
798 	set_nlink(inode, nlink);
799 	inode->i_rdev = rdev;
800 	ip->i_projid = prid;
801 
802 	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
803 		inode_fsuid_set(inode, idmap);
804 		inode->i_gid = dir->i_gid;
805 		inode->i_mode = mode;
806 	} else {
807 		inode_init_owner(idmap, inode, dir, mode);
808 	}
809 
810 	/*
811 	 * If the group ID of the new file does not match the effective group
812 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
813 	 * (and only if the irix_sgid_inherit compatibility variable is set).
814 	 */
815 	if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
816 	    !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode)))
817 		inode->i_mode &= ~S_ISGID;
818 
819 	ip->i_disk_size = 0;
820 	ip->i_df.if_nextents = 0;
821 	ASSERT(ip->i_nblocks == 0);
822 
823 	tv = inode_set_ctime_current(inode);
824 	inode_set_mtime_to_ts(inode, tv);
825 	inode_set_atime_to_ts(inode, tv);
826 
827 	ip->i_extsize = 0;
828 	ip->i_diflags = 0;
829 
830 	if (xfs_has_v3inodes(mp)) {
831 		inode_set_iversion(inode, 1);
832 		ip->i_cowextsize = 0;
833 		ip->i_crtime = tv;
834 	}
835 
836 	flags = XFS_ILOG_CORE;
837 	switch (mode & S_IFMT) {
838 	case S_IFIFO:
839 	case S_IFCHR:
840 	case S_IFBLK:
841 	case S_IFSOCK:
842 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
843 		flags |= XFS_ILOG_DEV;
844 		break;
845 	case S_IFREG:
846 	case S_IFDIR:
847 		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
848 			xfs_inode_inherit_flags(ip, pip);
849 		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
850 			xfs_inode_inherit_flags2(ip, pip);
851 		fallthrough;
852 	case S_IFLNK:
853 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
854 		ip->i_df.if_bytes = 0;
855 		ip->i_df.if_data = NULL;
856 		break;
857 	default:
858 		ASSERT(0);
859 	}
860 
861 	/*
862 	 * If we need to create attributes immediately after allocating the
863 	 * inode, initialise an empty attribute fork right now. We use the
864 	 * default fork offset for attributes here as we don't know exactly what
865 	 * size or how many attributes we might be adding. We can do this
866 	 * safely here because we know the data fork is completely empty and
867 	 * this saves us from needing to run a separate transaction to set the
868 	 * fork offset in the immediate future.
869 	 */
870 	if (init_xattrs && xfs_has_attr(mp)) {
871 		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
872 		xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
873 	}
874 
875 	/*
876 	 * Log the new values stuffed into the inode.
877 	 */
878 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
879 	xfs_trans_log_inode(tp, ip, flags);
880 
881 	/* now that we have an i_mode we can setup the inode structure */
882 	xfs_setup_inode(ip);
883 
884 	*ipp = ip;
885 	return 0;
886 }
887 
888 /*
889  * Decrement the link count on an inode & log the change.  If this causes the
890  * link count to go to zero, move the inode to AGI unlinked list so that it can
891  * be freed when the last active reference goes away via xfs_inactive().
892  */
893 static int			/* error */
894 xfs_droplink(
895 	xfs_trans_t *tp,
896 	xfs_inode_t *ip)
897 {
898 	if (VFS_I(ip)->i_nlink == 0) {
899 		xfs_alert(ip->i_mount,
900 			  "%s: Attempt to drop inode (%llu) with nlink zero.",
901 			  __func__, ip->i_ino);
902 		return -EFSCORRUPTED;
903 	}
904 
905 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
906 
907 	drop_nlink(VFS_I(ip));
908 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
909 
910 	if (VFS_I(ip)->i_nlink)
911 		return 0;
912 
913 	return xfs_iunlink(tp, ip);
914 }
915 
916 /*
917  * Increment the link count on an inode & log the change.
918  */
919 static void
920 xfs_bumplink(
921 	xfs_trans_t *tp,
922 	xfs_inode_t *ip)
923 {
924 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
925 
926 	inc_nlink(VFS_I(ip));
927 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
928 }
929 
930 #ifdef CONFIG_XFS_LIVE_HOOKS
931 /*
932  * Use a static key here to reduce the overhead of directory live update hooks.
933  * If the compiler supports jump labels, the static branch will be replaced by
934  * a nop sled when there are no hook users.  Online fsck is currently the only
935  * caller, so this is a reasonable tradeoff.
936  *
937  * Note: Patching the kernel code requires taking the cpu hotplug lock.  Other
938  * parts of the kernel allocate memory with that lock held, which means that
939  * XFS callers cannot hold any locks that might be used by memory reclaim or
940  * writeback when calling the static_branch_{inc,dec} functions.
941  */
942 DEFINE_STATIC_XFS_HOOK_SWITCH(xfs_dir_hooks_switch);
943 
944 void
945 xfs_dir_hook_disable(void)
946 {
947 	xfs_hooks_switch_off(&xfs_dir_hooks_switch);
948 }
949 
950 void
951 xfs_dir_hook_enable(void)
952 {
953 	xfs_hooks_switch_on(&xfs_dir_hooks_switch);
954 }
955 
956 /* Call hooks for a directory update relating to a child dirent update. */
957 inline void
958 xfs_dir_update_hook(
959 	struct xfs_inode		*dp,
960 	struct xfs_inode		*ip,
961 	int				delta,
962 	const struct xfs_name		*name)
963 {
964 	if (xfs_hooks_switched_on(&xfs_dir_hooks_switch)) {
965 		struct xfs_dir_update_params	p = {
966 			.dp		= dp,
967 			.ip		= ip,
968 			.delta		= delta,
969 			.name		= name,
970 		};
971 		struct xfs_mount	*mp = ip->i_mount;
972 
973 		xfs_hooks_call(&mp->m_dir_update_hooks, 0, &p);
974 	}
975 }
976 
977 /* Call the specified function during a directory update. */
978 int
979 xfs_dir_hook_add(
980 	struct xfs_mount	*mp,
981 	struct xfs_dir_hook	*hook)
982 {
983 	return xfs_hooks_add(&mp->m_dir_update_hooks, &hook->dirent_hook);
984 }
985 
986 /* Stop calling the specified function during a directory update. */
987 void
988 xfs_dir_hook_del(
989 	struct xfs_mount	*mp,
990 	struct xfs_dir_hook	*hook)
991 {
992 	xfs_hooks_del(&mp->m_dir_update_hooks, &hook->dirent_hook);
993 }
994 
995 /* Configure directory update hook functions. */
996 void
997 xfs_dir_hook_setup(
998 	struct xfs_dir_hook	*hook,
999 	notifier_fn_t		mod_fn)
1000 {
1001 	xfs_hook_setup(&hook->dirent_hook, mod_fn);
1002 }
1003 #endif /* CONFIG_XFS_LIVE_HOOKS */
1004 
1005 int
1006 xfs_create(
1007 	struct mnt_idmap	*idmap,
1008 	xfs_inode_t		*dp,
1009 	struct xfs_name		*name,
1010 	umode_t			mode,
1011 	dev_t			rdev,
1012 	bool			init_xattrs,
1013 	xfs_inode_t		**ipp)
1014 {
1015 	int			is_dir = S_ISDIR(mode);
1016 	struct xfs_mount	*mp = dp->i_mount;
1017 	struct xfs_inode	*ip = NULL;
1018 	struct xfs_trans	*tp = NULL;
1019 	int			error;
1020 	bool                    unlock_dp_on_error = false;
1021 	prid_t			prid;
1022 	struct xfs_dquot	*udqp = NULL;
1023 	struct xfs_dquot	*gdqp = NULL;
1024 	struct xfs_dquot	*pdqp = NULL;
1025 	struct xfs_trans_res	*tres;
1026 	uint			resblks;
1027 	xfs_ino_t		ino;
1028 
1029 	trace_xfs_create(dp, name);
1030 
1031 	if (xfs_is_shutdown(mp))
1032 		return -EIO;
1033 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1034 		return -EIO;
1035 
1036 	prid = xfs_get_initial_prid(dp);
1037 
1038 	/*
1039 	 * Make sure that we have allocated dquot(s) on disk.
1040 	 */
1041 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1042 			mapped_fsgid(idmap, &init_user_ns), prid,
1043 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1044 			&udqp, &gdqp, &pdqp);
1045 	if (error)
1046 		return error;
1047 
1048 	if (is_dir) {
1049 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1050 		tres = &M_RES(mp)->tr_mkdir;
1051 	} else {
1052 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1053 		tres = &M_RES(mp)->tr_create;
1054 	}
1055 
1056 	/*
1057 	 * Initially assume that the file does not exist and
1058 	 * reserve the resources for that case.  If that is not
1059 	 * the case we'll drop the one we have and get a more
1060 	 * appropriate transaction later.
1061 	 */
1062 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1063 			&tp);
1064 	if (error == -ENOSPC) {
1065 		/* flush outstanding delalloc blocks and retry */
1066 		xfs_flush_inodes(mp);
1067 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1068 				resblks, &tp);
1069 	}
1070 	if (error)
1071 		goto out_release_dquots;
1072 
1073 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1074 	unlock_dp_on_error = true;
1075 
1076 	/*
1077 	 * A newly created regular or special file just has one directory
1078 	 * entry pointing to them, but a directory also the "." entry
1079 	 * pointing to itself.
1080 	 */
1081 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1082 	if (!error)
1083 		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1084 				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1085 	if (error)
1086 		goto out_trans_cancel;
1087 
1088 	/*
1089 	 * Now we join the directory inode to the transaction.  We do not do it
1090 	 * earlier because xfs_dialloc might commit the previous transaction
1091 	 * (and release all the locks).  An error from here on will result in
1092 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1093 	 * error path.
1094 	 */
1095 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1096 	unlock_dp_on_error = false;
1097 
1098 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1099 					resblks - XFS_IALLOC_SPACE_RES(mp));
1100 	if (error) {
1101 		ASSERT(error != -ENOSPC);
1102 		goto out_trans_cancel;
1103 	}
1104 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1105 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1106 
1107 	if (is_dir) {
1108 		error = xfs_dir_init(tp, ip, dp);
1109 		if (error)
1110 			goto out_trans_cancel;
1111 
1112 		xfs_bumplink(tp, dp);
1113 	}
1114 
1115 	/*
1116 	 * Create ip with a reference from dp, and add '.' and '..' references
1117 	 * if it's a directory.
1118 	 */
1119 	xfs_dir_update_hook(dp, ip, 1, name);
1120 
1121 	/*
1122 	 * If this is a synchronous mount, make sure that the
1123 	 * create transaction goes to disk before returning to
1124 	 * the user.
1125 	 */
1126 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1127 		xfs_trans_set_sync(tp);
1128 
1129 	/*
1130 	 * Attach the dquot(s) to the inodes and modify them incore.
1131 	 * These ids of the inode couldn't have changed since the new
1132 	 * inode has been locked ever since it was created.
1133 	 */
1134 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1135 
1136 	error = xfs_trans_commit(tp);
1137 	if (error)
1138 		goto out_release_inode;
1139 
1140 	xfs_qm_dqrele(udqp);
1141 	xfs_qm_dqrele(gdqp);
1142 	xfs_qm_dqrele(pdqp);
1143 
1144 	*ipp = ip;
1145 	return 0;
1146 
1147  out_trans_cancel:
1148 	xfs_trans_cancel(tp);
1149  out_release_inode:
1150 	/*
1151 	 * Wait until after the current transaction is aborted to finish the
1152 	 * setup of the inode and release the inode.  This prevents recursive
1153 	 * transactions and deadlocks from xfs_inactive.
1154 	 */
1155 	if (ip) {
1156 		xfs_finish_inode_setup(ip);
1157 		xfs_irele(ip);
1158 	}
1159  out_release_dquots:
1160 	xfs_qm_dqrele(udqp);
1161 	xfs_qm_dqrele(gdqp);
1162 	xfs_qm_dqrele(pdqp);
1163 
1164 	if (unlock_dp_on_error)
1165 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1166 	return error;
1167 }
1168 
1169 int
1170 xfs_create_tmpfile(
1171 	struct mnt_idmap	*idmap,
1172 	struct xfs_inode	*dp,
1173 	umode_t			mode,
1174 	struct xfs_inode	**ipp)
1175 {
1176 	struct xfs_mount	*mp = dp->i_mount;
1177 	struct xfs_inode	*ip = NULL;
1178 	struct xfs_trans	*tp = NULL;
1179 	int			error;
1180 	prid_t                  prid;
1181 	struct xfs_dquot	*udqp = NULL;
1182 	struct xfs_dquot	*gdqp = NULL;
1183 	struct xfs_dquot	*pdqp = NULL;
1184 	struct xfs_trans_res	*tres;
1185 	uint			resblks;
1186 	xfs_ino_t		ino;
1187 
1188 	if (xfs_is_shutdown(mp))
1189 		return -EIO;
1190 
1191 	prid = xfs_get_initial_prid(dp);
1192 
1193 	/*
1194 	 * Make sure that we have allocated dquot(s) on disk.
1195 	 */
1196 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1197 			mapped_fsgid(idmap, &init_user_ns), prid,
1198 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1199 			&udqp, &gdqp, &pdqp);
1200 	if (error)
1201 		return error;
1202 
1203 	resblks = XFS_IALLOC_SPACE_RES(mp);
1204 	tres = &M_RES(mp)->tr_create_tmpfile;
1205 
1206 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1207 			&tp);
1208 	if (error)
1209 		goto out_release_dquots;
1210 
1211 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1212 	if (!error)
1213 		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1214 				0, 0, prid, false, &ip);
1215 	if (error)
1216 		goto out_trans_cancel;
1217 
1218 	if (xfs_has_wsync(mp))
1219 		xfs_trans_set_sync(tp);
1220 
1221 	/*
1222 	 * Attach the dquot(s) to the inodes and modify them incore.
1223 	 * These ids of the inode couldn't have changed since the new
1224 	 * inode has been locked ever since it was created.
1225 	 */
1226 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1227 
1228 	error = xfs_iunlink(tp, ip);
1229 	if (error)
1230 		goto out_trans_cancel;
1231 
1232 	error = xfs_trans_commit(tp);
1233 	if (error)
1234 		goto out_release_inode;
1235 
1236 	xfs_qm_dqrele(udqp);
1237 	xfs_qm_dqrele(gdqp);
1238 	xfs_qm_dqrele(pdqp);
1239 
1240 	*ipp = ip;
1241 	return 0;
1242 
1243  out_trans_cancel:
1244 	xfs_trans_cancel(tp);
1245  out_release_inode:
1246 	/*
1247 	 * Wait until after the current transaction is aborted to finish the
1248 	 * setup of the inode and release the inode.  This prevents recursive
1249 	 * transactions and deadlocks from xfs_inactive.
1250 	 */
1251 	if (ip) {
1252 		xfs_finish_inode_setup(ip);
1253 		xfs_irele(ip);
1254 	}
1255  out_release_dquots:
1256 	xfs_qm_dqrele(udqp);
1257 	xfs_qm_dqrele(gdqp);
1258 	xfs_qm_dqrele(pdqp);
1259 
1260 	return error;
1261 }
1262 
1263 int
1264 xfs_link(
1265 	xfs_inode_t		*tdp,
1266 	xfs_inode_t		*sip,
1267 	struct xfs_name		*target_name)
1268 {
1269 	xfs_mount_t		*mp = tdp->i_mount;
1270 	xfs_trans_t		*tp;
1271 	int			error, nospace_error = 0;
1272 	int			resblks;
1273 
1274 	trace_xfs_link(tdp, target_name);
1275 
1276 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1277 
1278 	if (xfs_is_shutdown(mp))
1279 		return -EIO;
1280 	if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
1281 		return -EIO;
1282 
1283 	error = xfs_qm_dqattach(sip);
1284 	if (error)
1285 		goto std_return;
1286 
1287 	error = xfs_qm_dqattach(tdp);
1288 	if (error)
1289 		goto std_return;
1290 
1291 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1292 	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1293 			&tp, &nospace_error);
1294 	if (error)
1295 		goto std_return;
1296 
1297 	/*
1298 	 * If we are using project inheritance, we only allow hard link
1299 	 * creation in our tree when the project IDs are the same; else
1300 	 * the tree quota mechanism could be circumvented.
1301 	 */
1302 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1303 		     tdp->i_projid != sip->i_projid)) {
1304 		error = -EXDEV;
1305 		goto error_return;
1306 	}
1307 
1308 	if (!resblks) {
1309 		error = xfs_dir_canenter(tp, tdp, target_name);
1310 		if (error)
1311 			goto error_return;
1312 	}
1313 
1314 	/*
1315 	 * Handle initial link state of O_TMPFILE inode
1316 	 */
1317 	if (VFS_I(sip)->i_nlink == 0) {
1318 		struct xfs_perag	*pag;
1319 
1320 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1321 		error = xfs_iunlink_remove(tp, pag, sip);
1322 		xfs_perag_put(pag);
1323 		if (error)
1324 			goto error_return;
1325 	}
1326 
1327 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1328 				   resblks);
1329 	if (error)
1330 		goto error_return;
1331 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1332 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1333 
1334 	xfs_bumplink(tp, sip);
1335 	xfs_dir_update_hook(tdp, sip, 1, target_name);
1336 
1337 	/*
1338 	 * If this is a synchronous mount, make sure that the
1339 	 * link transaction goes to disk before returning to
1340 	 * the user.
1341 	 */
1342 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1343 		xfs_trans_set_sync(tp);
1344 
1345 	return xfs_trans_commit(tp);
1346 
1347  error_return:
1348 	xfs_trans_cancel(tp);
1349  std_return:
1350 	if (error == -ENOSPC && nospace_error)
1351 		error = nospace_error;
1352 	return error;
1353 }
1354 
1355 /* Clear the reflink flag and the cowblocks tag if possible. */
1356 static void
1357 xfs_itruncate_clear_reflink_flags(
1358 	struct xfs_inode	*ip)
1359 {
1360 	struct xfs_ifork	*dfork;
1361 	struct xfs_ifork	*cfork;
1362 
1363 	if (!xfs_is_reflink_inode(ip))
1364 		return;
1365 	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1366 	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1367 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1368 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1369 	if (cfork->if_bytes == 0)
1370 		xfs_inode_clear_cowblocks_tag(ip);
1371 }
1372 
1373 /*
1374  * Free up the underlying blocks past new_size.  The new size must be smaller
1375  * than the current size.  This routine can be used both for the attribute and
1376  * data fork, and does not modify the inode size, which is left to the caller.
1377  *
1378  * The transaction passed to this routine must have made a permanent log
1379  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1380  * given transaction and start new ones, so make sure everything involved in
1381  * the transaction is tidy before calling here.  Some transaction will be
1382  * returned to the caller to be committed.  The incoming transaction must
1383  * already include the inode, and both inode locks must be held exclusively.
1384  * The inode must also be "held" within the transaction.  On return the inode
1385  * will be "held" within the returned transaction.  This routine does NOT
1386  * require any disk space to be reserved for it within the transaction.
1387  *
1388  * If we get an error, we must return with the inode locked and linked into the
1389  * current transaction. This keeps things simple for the higher level code,
1390  * because it always knows that the inode is locked and held in the transaction
1391  * that returns to it whether errors occur or not.  We don't mark the inode
1392  * dirty on error so that transactions can be easily aborted if possible.
1393  */
1394 int
1395 xfs_itruncate_extents_flags(
1396 	struct xfs_trans	**tpp,
1397 	struct xfs_inode	*ip,
1398 	int			whichfork,
1399 	xfs_fsize_t		new_size,
1400 	int			flags)
1401 {
1402 	struct xfs_mount	*mp = ip->i_mount;
1403 	struct xfs_trans	*tp = *tpp;
1404 	xfs_fileoff_t		first_unmap_block;
1405 	int			error = 0;
1406 
1407 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1408 	if (atomic_read(&VFS_I(ip)->i_count))
1409 		xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1410 	ASSERT(new_size <= XFS_ISIZE(ip));
1411 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1412 	ASSERT(ip->i_itemp != NULL);
1413 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1414 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1415 
1416 	trace_xfs_itruncate_extents_start(ip, new_size);
1417 
1418 	flags |= xfs_bmapi_aflag(whichfork);
1419 
1420 	/*
1421 	 * Since it is possible for space to become allocated beyond
1422 	 * the end of the file (in a crash where the space is allocated
1423 	 * but the inode size is not yet updated), simply remove any
1424 	 * blocks which show up between the new EOF and the maximum
1425 	 * possible file size.
1426 	 *
1427 	 * We have to free all the blocks to the bmbt maximum offset, even if
1428 	 * the page cache can't scale that far.
1429 	 */
1430 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1431 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1432 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1433 		return 0;
1434 	}
1435 
1436 	error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1437 			XFS_MAX_FILEOFF);
1438 	if (error)
1439 		goto out;
1440 
1441 	if (whichfork == XFS_DATA_FORK) {
1442 		/* Remove all pending CoW reservations. */
1443 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1444 				first_unmap_block, XFS_MAX_FILEOFF, true);
1445 		if (error)
1446 			goto out;
1447 
1448 		xfs_itruncate_clear_reflink_flags(ip);
1449 	}
1450 
1451 	/*
1452 	 * Always re-log the inode so that our permanent transaction can keep
1453 	 * on rolling it forward in the log.
1454 	 */
1455 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1456 
1457 	trace_xfs_itruncate_extents_end(ip, new_size);
1458 
1459 out:
1460 	*tpp = tp;
1461 	return error;
1462 }
1463 
1464 int
1465 xfs_release(
1466 	xfs_inode_t	*ip)
1467 {
1468 	xfs_mount_t	*mp = ip->i_mount;
1469 	int		error = 0;
1470 
1471 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1472 		return 0;
1473 
1474 	/* If this is a read-only mount, don't do this (would generate I/O) */
1475 	if (xfs_is_readonly(mp))
1476 		return 0;
1477 
1478 	if (!xfs_is_shutdown(mp)) {
1479 		int truncated;
1480 
1481 		/*
1482 		 * If we previously truncated this file and removed old data
1483 		 * in the process, we want to initiate "early" writeout on
1484 		 * the last close.  This is an attempt to combat the notorious
1485 		 * NULL files problem which is particularly noticeable from a
1486 		 * truncate down, buffered (re-)write (delalloc), followed by
1487 		 * a crash.  What we are effectively doing here is
1488 		 * significantly reducing the time window where we'd otherwise
1489 		 * be exposed to that problem.
1490 		 */
1491 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1492 		if (truncated) {
1493 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1494 			if (ip->i_delayed_blks > 0) {
1495 				error = filemap_flush(VFS_I(ip)->i_mapping);
1496 				if (error)
1497 					return error;
1498 			}
1499 		}
1500 	}
1501 
1502 	if (VFS_I(ip)->i_nlink == 0)
1503 		return 0;
1504 
1505 	/*
1506 	 * If we can't get the iolock just skip truncating the blocks past EOF
1507 	 * because we could deadlock with the mmap_lock otherwise. We'll get
1508 	 * another chance to drop them once the last reference to the inode is
1509 	 * dropped, so we'll never leak blocks permanently.
1510 	 */
1511 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1512 		return 0;
1513 
1514 	if (xfs_can_free_eofblocks(ip, false)) {
1515 		/*
1516 		 * Check if the inode is being opened, written and closed
1517 		 * frequently and we have delayed allocation blocks outstanding
1518 		 * (e.g. streaming writes from the NFS server), truncating the
1519 		 * blocks past EOF will cause fragmentation to occur.
1520 		 *
1521 		 * In this case don't do the truncation, but we have to be
1522 		 * careful how we detect this case. Blocks beyond EOF show up as
1523 		 * i_delayed_blks even when the inode is clean, so we need to
1524 		 * truncate them away first before checking for a dirty release.
1525 		 * Hence on the first dirty close we will still remove the
1526 		 * speculative allocation, but after that we will leave it in
1527 		 * place.
1528 		 */
1529 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1530 			goto out_unlock;
1531 
1532 		error = xfs_free_eofblocks(ip);
1533 		if (error)
1534 			goto out_unlock;
1535 
1536 		/* delalloc blocks after truncation means it really is dirty */
1537 		if (ip->i_delayed_blks)
1538 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1539 	}
1540 
1541 out_unlock:
1542 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1543 	return error;
1544 }
1545 
1546 /*
1547  * xfs_inactive_truncate
1548  *
1549  * Called to perform a truncate when an inode becomes unlinked.
1550  */
1551 STATIC int
1552 xfs_inactive_truncate(
1553 	struct xfs_inode *ip)
1554 {
1555 	struct xfs_mount	*mp = ip->i_mount;
1556 	struct xfs_trans	*tp;
1557 	int			error;
1558 
1559 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1560 	if (error) {
1561 		ASSERT(xfs_is_shutdown(mp));
1562 		return error;
1563 	}
1564 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1565 	xfs_trans_ijoin(tp, ip, 0);
1566 
1567 	/*
1568 	 * Log the inode size first to prevent stale data exposure in the event
1569 	 * of a system crash before the truncate completes. See the related
1570 	 * comment in xfs_vn_setattr_size() for details.
1571 	 */
1572 	ip->i_disk_size = 0;
1573 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1574 
1575 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1576 	if (error)
1577 		goto error_trans_cancel;
1578 
1579 	ASSERT(ip->i_df.if_nextents == 0);
1580 
1581 	error = xfs_trans_commit(tp);
1582 	if (error)
1583 		goto error_unlock;
1584 
1585 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1586 	return 0;
1587 
1588 error_trans_cancel:
1589 	xfs_trans_cancel(tp);
1590 error_unlock:
1591 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1592 	return error;
1593 }
1594 
1595 /*
1596  * xfs_inactive_ifree()
1597  *
1598  * Perform the inode free when an inode is unlinked.
1599  */
1600 STATIC int
1601 xfs_inactive_ifree(
1602 	struct xfs_inode *ip)
1603 {
1604 	struct xfs_mount	*mp = ip->i_mount;
1605 	struct xfs_trans	*tp;
1606 	int			error;
1607 
1608 	/*
1609 	 * We try to use a per-AG reservation for any block needed by the finobt
1610 	 * tree, but as the finobt feature predates the per-AG reservation
1611 	 * support a degraded file system might not have enough space for the
1612 	 * reservation at mount time.  In that case try to dip into the reserved
1613 	 * pool and pray.
1614 	 *
1615 	 * Send a warning if the reservation does happen to fail, as the inode
1616 	 * now remains allocated and sits on the unlinked list until the fs is
1617 	 * repaired.
1618 	 */
1619 	if (unlikely(mp->m_finobt_nores)) {
1620 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1621 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1622 				&tp);
1623 	} else {
1624 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1625 	}
1626 	if (error) {
1627 		if (error == -ENOSPC) {
1628 			xfs_warn_ratelimited(mp,
1629 			"Failed to remove inode(s) from unlinked list. "
1630 			"Please free space, unmount and run xfs_repair.");
1631 		} else {
1632 			ASSERT(xfs_is_shutdown(mp));
1633 		}
1634 		return error;
1635 	}
1636 
1637 	/*
1638 	 * We do not hold the inode locked across the entire rolling transaction
1639 	 * here. We only need to hold it for the first transaction that
1640 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1641 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1642 	 * here breaks the relationship between cluster buffer invalidation and
1643 	 * stale inode invalidation on cluster buffer item journal commit
1644 	 * completion, and can result in leaving dirty stale inodes hanging
1645 	 * around in memory.
1646 	 *
1647 	 * We have no need for serialising this inode operation against other
1648 	 * operations - we freed the inode and hence reallocation is required
1649 	 * and that will serialise on reallocating the space the deferops need
1650 	 * to free. Hence we can unlock the inode on the first commit of
1651 	 * the transaction rather than roll it right through the deferops. This
1652 	 * avoids relogging the XFS_ISTALE inode.
1653 	 *
1654 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1655 	 * by asserting that the inode is still locked when it returns.
1656 	 */
1657 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1658 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1659 
1660 	error = xfs_ifree(tp, ip);
1661 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1662 	if (error) {
1663 		/*
1664 		 * If we fail to free the inode, shut down.  The cancel
1665 		 * might do that, we need to make sure.  Otherwise the
1666 		 * inode might be lost for a long time or forever.
1667 		 */
1668 		if (!xfs_is_shutdown(mp)) {
1669 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1670 				__func__, error);
1671 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1672 		}
1673 		xfs_trans_cancel(tp);
1674 		return error;
1675 	}
1676 
1677 	/*
1678 	 * Credit the quota account(s). The inode is gone.
1679 	 */
1680 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1681 
1682 	return xfs_trans_commit(tp);
1683 }
1684 
1685 /*
1686  * Returns true if we need to update the on-disk metadata before we can free
1687  * the memory used by this inode.  Updates include freeing post-eof
1688  * preallocations; freeing COW staging extents; and marking the inode free in
1689  * the inobt if it is on the unlinked list.
1690  */
1691 bool
1692 xfs_inode_needs_inactive(
1693 	struct xfs_inode	*ip)
1694 {
1695 	struct xfs_mount	*mp = ip->i_mount;
1696 	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1697 
1698 	/*
1699 	 * If the inode is already free, then there can be nothing
1700 	 * to clean up here.
1701 	 */
1702 	if (VFS_I(ip)->i_mode == 0)
1703 		return false;
1704 
1705 	/*
1706 	 * If this is a read-only mount, don't do this (would generate I/O)
1707 	 * unless we're in log recovery and cleaning the iunlinked list.
1708 	 */
1709 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1710 		return false;
1711 
1712 	/* If the log isn't running, push inodes straight to reclaim. */
1713 	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1714 		return false;
1715 
1716 	/* Metadata inodes require explicit resource cleanup. */
1717 	if (xfs_is_metadata_inode(ip))
1718 		return false;
1719 
1720 	/* Want to clean out the cow blocks if there are any. */
1721 	if (cow_ifp && cow_ifp->if_bytes > 0)
1722 		return true;
1723 
1724 	/* Unlinked files must be freed. */
1725 	if (VFS_I(ip)->i_nlink == 0)
1726 		return true;
1727 
1728 	/*
1729 	 * This file isn't being freed, so check if there are post-eof blocks
1730 	 * to free.  @force is true because we are evicting an inode from the
1731 	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1732 	 * free space accounting.
1733 	 *
1734 	 * Note: don't bother with iolock here since lockdep complains about
1735 	 * acquiring it in reclaim context. We have the only reference to the
1736 	 * inode at this point anyways.
1737 	 */
1738 	return xfs_can_free_eofblocks(ip, true);
1739 }
1740 
1741 /*
1742  * xfs_inactive
1743  *
1744  * This is called when the vnode reference count for the vnode
1745  * goes to zero.  If the file has been unlinked, then it must
1746  * now be truncated.  Also, we clear all of the read-ahead state
1747  * kept for the inode here since the file is now closed.
1748  */
1749 int
1750 xfs_inactive(
1751 	xfs_inode_t	*ip)
1752 {
1753 	struct xfs_mount	*mp;
1754 	int			error = 0;
1755 	int			truncate = 0;
1756 
1757 	/*
1758 	 * If the inode is already free, then there can be nothing
1759 	 * to clean up here.
1760 	 */
1761 	if (VFS_I(ip)->i_mode == 0) {
1762 		ASSERT(ip->i_df.if_broot_bytes == 0);
1763 		goto out;
1764 	}
1765 
1766 	mp = ip->i_mount;
1767 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1768 
1769 	/*
1770 	 * If this is a read-only mount, don't do this (would generate I/O)
1771 	 * unless we're in log recovery and cleaning the iunlinked list.
1772 	 */
1773 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1774 		goto out;
1775 
1776 	/* Metadata inodes require explicit resource cleanup. */
1777 	if (xfs_is_metadata_inode(ip))
1778 		goto out;
1779 
1780 	/* Try to clean out the cow blocks if there are any. */
1781 	if (xfs_inode_has_cow_data(ip))
1782 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1783 
1784 	if (VFS_I(ip)->i_nlink != 0) {
1785 		/*
1786 		 * force is true because we are evicting an inode from the
1787 		 * cache. Post-eof blocks must be freed, lest we end up with
1788 		 * broken free space accounting.
1789 		 *
1790 		 * Note: don't bother with iolock here since lockdep complains
1791 		 * about acquiring it in reclaim context. We have the only
1792 		 * reference to the inode at this point anyways.
1793 		 */
1794 		if (xfs_can_free_eofblocks(ip, true))
1795 			error = xfs_free_eofblocks(ip);
1796 
1797 		goto out;
1798 	}
1799 
1800 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1801 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1802 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1803 		truncate = 1;
1804 
1805 	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1806 		/*
1807 		 * If this inode is being inactivated during a quotacheck and
1808 		 * has not yet been scanned by quotacheck, we /must/ remove
1809 		 * the dquots from the inode before inactivation changes the
1810 		 * block and inode counts.  Most probably this is a result of
1811 		 * reloading the incore iunlinked list to purge unrecovered
1812 		 * unlinked inodes.
1813 		 */
1814 		xfs_qm_dqdetach(ip);
1815 	} else {
1816 		error = xfs_qm_dqattach(ip);
1817 		if (error)
1818 			goto out;
1819 	}
1820 
1821 	if (S_ISLNK(VFS_I(ip)->i_mode))
1822 		error = xfs_inactive_symlink(ip);
1823 	else if (truncate)
1824 		error = xfs_inactive_truncate(ip);
1825 	if (error)
1826 		goto out;
1827 
1828 	/*
1829 	 * If there are attributes associated with the file then blow them away
1830 	 * now.  The code calls a routine that recursively deconstructs the
1831 	 * attribute fork. If also blows away the in-core attribute fork.
1832 	 */
1833 	if (xfs_inode_has_attr_fork(ip)) {
1834 		error = xfs_attr_inactive(ip);
1835 		if (error)
1836 			goto out;
1837 	}
1838 
1839 	ASSERT(ip->i_forkoff == 0);
1840 
1841 	/*
1842 	 * Free the inode.
1843 	 */
1844 	error = xfs_inactive_ifree(ip);
1845 
1846 out:
1847 	/*
1848 	 * We're done making metadata updates for this inode, so we can release
1849 	 * the attached dquots.
1850 	 */
1851 	xfs_qm_dqdetach(ip);
1852 	return error;
1853 }
1854 
1855 /*
1856  * In-Core Unlinked List Lookups
1857  * =============================
1858  *
1859  * Every inode is supposed to be reachable from some other piece of metadata
1860  * with the exception of the root directory.  Inodes with a connection to a
1861  * file descriptor but not linked from anywhere in the on-disk directory tree
1862  * are collectively known as unlinked inodes, though the filesystem itself
1863  * maintains links to these inodes so that on-disk metadata are consistent.
1864  *
1865  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1866  * header contains a number of buckets that point to an inode, and each inode
1867  * record has a pointer to the next inode in the hash chain.  This
1868  * singly-linked list causes scaling problems in the iunlink remove function
1869  * because we must walk that list to find the inode that points to the inode
1870  * being removed from the unlinked hash bucket list.
1871  *
1872  * Hence we keep an in-memory double linked list to link each inode on an
1873  * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1874  * based lists would require having 64 list heads in the perag, one for each
1875  * list. This is expensive in terms of memory (think millions of AGs) and cache
1876  * misses on lookups. Instead, use the fact that inodes on the unlinked list
1877  * must be referenced at the VFS level to keep them on the list and hence we
1878  * have an existence guarantee for inodes on the unlinked list.
1879  *
1880  * Given we have an existence guarantee, we can use lockless inode cache lookups
1881  * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1882  * for the double linked unlinked list, and we don't need any extra locking to
1883  * keep the list safe as all manipulations are done under the AGI buffer lock.
1884  * Keeping the list up to date does not require memory allocation, just finding
1885  * the XFS inode and updating the next/prev unlinked list aginos.
1886  */
1887 
1888 /*
1889  * Find an inode on the unlinked list. This does not take references to the
1890  * inode as we have existence guarantees by holding the AGI buffer lock and that
1891  * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1892  * don't find the inode in cache, then let the caller handle the situation.
1893  */
1894 static struct xfs_inode *
1895 xfs_iunlink_lookup(
1896 	struct xfs_perag	*pag,
1897 	xfs_agino_t		agino)
1898 {
1899 	struct xfs_inode	*ip;
1900 
1901 	rcu_read_lock();
1902 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1903 	if (!ip) {
1904 		/* Caller can handle inode not being in memory. */
1905 		rcu_read_unlock();
1906 		return NULL;
1907 	}
1908 
1909 	/*
1910 	 * Inode in RCU freeing limbo should not happen.  Warn about this and
1911 	 * let the caller handle the failure.
1912 	 */
1913 	if (WARN_ON_ONCE(!ip->i_ino)) {
1914 		rcu_read_unlock();
1915 		return NULL;
1916 	}
1917 	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1918 	rcu_read_unlock();
1919 	return ip;
1920 }
1921 
1922 /*
1923  * Update the prev pointer of the next agino.  Returns -ENOLINK if the inode
1924  * is not in cache.
1925  */
1926 static int
1927 xfs_iunlink_update_backref(
1928 	struct xfs_perag	*pag,
1929 	xfs_agino_t		prev_agino,
1930 	xfs_agino_t		next_agino)
1931 {
1932 	struct xfs_inode	*ip;
1933 
1934 	/* No update necessary if we are at the end of the list. */
1935 	if (next_agino == NULLAGINO)
1936 		return 0;
1937 
1938 	ip = xfs_iunlink_lookup(pag, next_agino);
1939 	if (!ip)
1940 		return -ENOLINK;
1941 
1942 	ip->i_prev_unlinked = prev_agino;
1943 	return 0;
1944 }
1945 
1946 /*
1947  * Point the AGI unlinked bucket at an inode and log the results.  The caller
1948  * is responsible for validating the old value.
1949  */
1950 STATIC int
1951 xfs_iunlink_update_bucket(
1952 	struct xfs_trans	*tp,
1953 	struct xfs_perag	*pag,
1954 	struct xfs_buf		*agibp,
1955 	unsigned int		bucket_index,
1956 	xfs_agino_t		new_agino)
1957 {
1958 	struct xfs_agi		*agi = agibp->b_addr;
1959 	xfs_agino_t		old_value;
1960 	int			offset;
1961 
1962 	ASSERT(xfs_verify_agino_or_null(pag, new_agino));
1963 
1964 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1965 	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1966 			old_value, new_agino);
1967 
1968 	/*
1969 	 * We should never find the head of the list already set to the value
1970 	 * passed in because either we're adding or removing ourselves from the
1971 	 * head of the list.
1972 	 */
1973 	if (old_value == new_agino) {
1974 		xfs_buf_mark_corrupt(agibp);
1975 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1976 		return -EFSCORRUPTED;
1977 	}
1978 
1979 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1980 	offset = offsetof(struct xfs_agi, agi_unlinked) +
1981 			(sizeof(xfs_agino_t) * bucket_index);
1982 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
1983 	return 0;
1984 }
1985 
1986 /*
1987  * Load the inode @next_agino into the cache and set its prev_unlinked pointer
1988  * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
1989  * to the unlinked list.
1990  */
1991 STATIC int
1992 xfs_iunlink_reload_next(
1993 	struct xfs_trans	*tp,
1994 	struct xfs_buf		*agibp,
1995 	xfs_agino_t		prev_agino,
1996 	xfs_agino_t		next_agino)
1997 {
1998 	struct xfs_perag	*pag = agibp->b_pag;
1999 	struct xfs_mount	*mp = pag->pag_mount;
2000 	struct xfs_inode	*next_ip = NULL;
2001 	xfs_ino_t		ino;
2002 	int			error;
2003 
2004 	ASSERT(next_agino != NULLAGINO);
2005 
2006 #ifdef DEBUG
2007 	rcu_read_lock();
2008 	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
2009 	ASSERT(next_ip == NULL);
2010 	rcu_read_unlock();
2011 #endif
2012 
2013 	xfs_info_ratelimited(mp,
2014  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
2015 			next_agino, pag->pag_agno);
2016 
2017 	/*
2018 	 * Use an untrusted lookup just to be cautious in case the AGI has been
2019 	 * corrupted and now points at a free inode.  That shouldn't happen,
2020 	 * but we'd rather shut down now since we're already running in a weird
2021 	 * situation.
2022 	 */
2023 	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino);
2024 	error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip);
2025 	if (error) {
2026 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2027 		return error;
2028 	}
2029 
2030 	/* If this is not an unlinked inode, something is very wrong. */
2031 	if (VFS_I(next_ip)->i_nlink != 0) {
2032 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2033 		error = -EFSCORRUPTED;
2034 		goto rele;
2035 	}
2036 
2037 	next_ip->i_prev_unlinked = prev_agino;
2038 	trace_xfs_iunlink_reload_next(next_ip);
2039 rele:
2040 	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
2041 	if (xfs_is_quotacheck_running(mp) && next_ip)
2042 		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
2043 	xfs_irele(next_ip);
2044 	return error;
2045 }
2046 
2047 static int
2048 xfs_iunlink_insert_inode(
2049 	struct xfs_trans	*tp,
2050 	struct xfs_perag	*pag,
2051 	struct xfs_buf		*agibp,
2052 	struct xfs_inode	*ip)
2053 {
2054 	struct xfs_mount	*mp = tp->t_mountp;
2055 	struct xfs_agi		*agi = agibp->b_addr;
2056 	xfs_agino_t		next_agino;
2057 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2058 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2059 	int			error;
2060 
2061 	/*
2062 	 * Get the index into the agi hash table for the list this inode will
2063 	 * go on.  Make sure the pointer isn't garbage and that this inode
2064 	 * isn't already on the list.
2065 	 */
2066 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2067 	if (next_agino == agino ||
2068 	    !xfs_verify_agino_or_null(pag, next_agino)) {
2069 		xfs_buf_mark_corrupt(agibp);
2070 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2071 		return -EFSCORRUPTED;
2072 	}
2073 
2074 	/*
2075 	 * Update the prev pointer in the next inode to point back to this
2076 	 * inode.
2077 	 */
2078 	error = xfs_iunlink_update_backref(pag, agino, next_agino);
2079 	if (error == -ENOLINK)
2080 		error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino);
2081 	if (error)
2082 		return error;
2083 
2084 	if (next_agino != NULLAGINO) {
2085 		/*
2086 		 * There is already another inode in the bucket, so point this
2087 		 * inode to the current head of the list.
2088 		 */
2089 		error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
2090 		if (error)
2091 			return error;
2092 		ip->i_next_unlinked = next_agino;
2093 	}
2094 
2095 	/* Point the head of the list to point to this inode. */
2096 	ip->i_prev_unlinked = NULLAGINO;
2097 	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2098 }
2099 
2100 /*
2101  * This is called when the inode's link count has gone to 0 or we are creating
2102  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2103  *
2104  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2105  * list when the inode is freed.
2106  */
2107 STATIC int
2108 xfs_iunlink(
2109 	struct xfs_trans	*tp,
2110 	struct xfs_inode	*ip)
2111 {
2112 	struct xfs_mount	*mp = tp->t_mountp;
2113 	struct xfs_perag	*pag;
2114 	struct xfs_buf		*agibp;
2115 	int			error;
2116 
2117 	ASSERT(VFS_I(ip)->i_nlink == 0);
2118 	ASSERT(VFS_I(ip)->i_mode != 0);
2119 	trace_xfs_iunlink(ip);
2120 
2121 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2122 
2123 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2124 	error = xfs_read_agi(pag, tp, &agibp);
2125 	if (error)
2126 		goto out;
2127 
2128 	error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
2129 out:
2130 	xfs_perag_put(pag);
2131 	return error;
2132 }
2133 
2134 static int
2135 xfs_iunlink_remove_inode(
2136 	struct xfs_trans	*tp,
2137 	struct xfs_perag	*pag,
2138 	struct xfs_buf		*agibp,
2139 	struct xfs_inode	*ip)
2140 {
2141 	struct xfs_mount	*mp = tp->t_mountp;
2142 	struct xfs_agi		*agi = agibp->b_addr;
2143 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2144 	xfs_agino_t		head_agino;
2145 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2146 	int			error;
2147 
2148 	trace_xfs_iunlink_remove(ip);
2149 
2150 	/*
2151 	 * Get the index into the agi hash table for the list this inode will
2152 	 * go on.  Make sure the head pointer isn't garbage.
2153 	 */
2154 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2155 	if (!xfs_verify_agino(pag, head_agino)) {
2156 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2157 				agi, sizeof(*agi));
2158 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2159 		return -EFSCORRUPTED;
2160 	}
2161 
2162 	/*
2163 	 * Set our inode's next_unlinked pointer to NULL and then return
2164 	 * the old pointer value so that we can update whatever was previous
2165 	 * to us in the list to point to whatever was next in the list.
2166 	 */
2167 	error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2168 	if (error)
2169 		return error;
2170 
2171 	/*
2172 	 * Update the prev pointer in the next inode to point back to previous
2173 	 * inode in the chain.
2174 	 */
2175 	error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2176 			ip->i_next_unlinked);
2177 	if (error == -ENOLINK)
2178 		error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked,
2179 				ip->i_next_unlinked);
2180 	if (error)
2181 		return error;
2182 
2183 	if (head_agino != agino) {
2184 		struct xfs_inode	*prev_ip;
2185 
2186 		prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2187 		if (!prev_ip) {
2188 			xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
2189 			return -EFSCORRUPTED;
2190 		}
2191 
2192 		error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2193 				ip->i_next_unlinked);
2194 		prev_ip->i_next_unlinked = ip->i_next_unlinked;
2195 	} else {
2196 		/* Point the head of the list to the next unlinked inode. */
2197 		error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2198 				ip->i_next_unlinked);
2199 	}
2200 
2201 	ip->i_next_unlinked = NULLAGINO;
2202 	ip->i_prev_unlinked = 0;
2203 	return error;
2204 }
2205 
2206 /*
2207  * Pull the on-disk inode from the AGI unlinked list.
2208  */
2209 STATIC int
2210 xfs_iunlink_remove(
2211 	struct xfs_trans	*tp,
2212 	struct xfs_perag	*pag,
2213 	struct xfs_inode	*ip)
2214 {
2215 	struct xfs_buf		*agibp;
2216 	int			error;
2217 
2218 	trace_xfs_iunlink_remove(ip);
2219 
2220 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2221 	error = xfs_read_agi(pag, tp, &agibp);
2222 	if (error)
2223 		return error;
2224 
2225 	return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2226 }
2227 
2228 /*
2229  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2230  * mark it stale. We should only find clean inodes in this lookup that aren't
2231  * already stale.
2232  */
2233 static void
2234 xfs_ifree_mark_inode_stale(
2235 	struct xfs_perag	*pag,
2236 	struct xfs_inode	*free_ip,
2237 	xfs_ino_t		inum)
2238 {
2239 	struct xfs_mount	*mp = pag->pag_mount;
2240 	struct xfs_inode_log_item *iip;
2241 	struct xfs_inode	*ip;
2242 
2243 retry:
2244 	rcu_read_lock();
2245 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2246 
2247 	/* Inode not in memory, nothing to do */
2248 	if (!ip) {
2249 		rcu_read_unlock();
2250 		return;
2251 	}
2252 
2253 	/*
2254 	 * because this is an RCU protected lookup, we could find a recently
2255 	 * freed or even reallocated inode during the lookup. We need to check
2256 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2257 	 * valid, the wrong inode or stale.
2258 	 */
2259 	spin_lock(&ip->i_flags_lock);
2260 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2261 		goto out_iflags_unlock;
2262 
2263 	/*
2264 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2265 	 * other inodes that we did not find in the list attached to the buffer
2266 	 * and are not already marked stale. If we can't lock it, back off and
2267 	 * retry.
2268 	 */
2269 	if (ip != free_ip) {
2270 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2271 			spin_unlock(&ip->i_flags_lock);
2272 			rcu_read_unlock();
2273 			delay(1);
2274 			goto retry;
2275 		}
2276 	}
2277 	ip->i_flags |= XFS_ISTALE;
2278 
2279 	/*
2280 	 * If the inode is flushing, it is already attached to the buffer.  All
2281 	 * we needed to do here is mark the inode stale so buffer IO completion
2282 	 * will remove it from the AIL.
2283 	 */
2284 	iip = ip->i_itemp;
2285 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2286 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2287 		ASSERT(iip->ili_last_fields);
2288 		goto out_iunlock;
2289 	}
2290 
2291 	/*
2292 	 * Inodes not attached to the buffer can be released immediately.
2293 	 * Everything else has to go through xfs_iflush_abort() on journal
2294 	 * commit as the flock synchronises removal of the inode from the
2295 	 * cluster buffer against inode reclaim.
2296 	 */
2297 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2298 		goto out_iunlock;
2299 
2300 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2301 	spin_unlock(&ip->i_flags_lock);
2302 	rcu_read_unlock();
2303 
2304 	/* we have a dirty inode in memory that has not yet been flushed. */
2305 	spin_lock(&iip->ili_lock);
2306 	iip->ili_last_fields = iip->ili_fields;
2307 	iip->ili_fields = 0;
2308 	iip->ili_fsync_fields = 0;
2309 	spin_unlock(&iip->ili_lock);
2310 	ASSERT(iip->ili_last_fields);
2311 
2312 	if (ip != free_ip)
2313 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2314 	return;
2315 
2316 out_iunlock:
2317 	if (ip != free_ip)
2318 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2319 out_iflags_unlock:
2320 	spin_unlock(&ip->i_flags_lock);
2321 	rcu_read_unlock();
2322 }
2323 
2324 /*
2325  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2326  * inodes that are in memory - they all must be marked stale and attached to
2327  * the cluster buffer.
2328  */
2329 static int
2330 xfs_ifree_cluster(
2331 	struct xfs_trans	*tp,
2332 	struct xfs_perag	*pag,
2333 	struct xfs_inode	*free_ip,
2334 	struct xfs_icluster	*xic)
2335 {
2336 	struct xfs_mount	*mp = free_ip->i_mount;
2337 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2338 	struct xfs_buf		*bp;
2339 	xfs_daddr_t		blkno;
2340 	xfs_ino_t		inum = xic->first_ino;
2341 	int			nbufs;
2342 	int			i, j;
2343 	int			ioffset;
2344 	int			error;
2345 
2346 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2347 
2348 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2349 		/*
2350 		 * The allocation bitmap tells us which inodes of the chunk were
2351 		 * physically allocated. Skip the cluster if an inode falls into
2352 		 * a sparse region.
2353 		 */
2354 		ioffset = inum - xic->first_ino;
2355 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2356 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2357 			continue;
2358 		}
2359 
2360 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2361 					 XFS_INO_TO_AGBNO(mp, inum));
2362 
2363 		/*
2364 		 * We obtain and lock the backing buffer first in the process
2365 		 * here to ensure dirty inodes attached to the buffer remain in
2366 		 * the flushing state while we mark them stale.
2367 		 *
2368 		 * If we scan the in-memory inodes first, then buffer IO can
2369 		 * complete before we get a lock on it, and hence we may fail
2370 		 * to mark all the active inodes on the buffer stale.
2371 		 */
2372 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2373 				mp->m_bsize * igeo->blocks_per_cluster,
2374 				XBF_UNMAPPED, &bp);
2375 		if (error)
2376 			return error;
2377 
2378 		/*
2379 		 * This buffer may not have been correctly initialised as we
2380 		 * didn't read it from disk. That's not important because we are
2381 		 * only using to mark the buffer as stale in the log, and to
2382 		 * attach stale cached inodes on it. That means it will never be
2383 		 * dispatched for IO. If it is, we want to know about it, and we
2384 		 * want it to fail. We can acheive this by adding a write
2385 		 * verifier to the buffer.
2386 		 */
2387 		bp->b_ops = &xfs_inode_buf_ops;
2388 
2389 		/*
2390 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2391 		 * too. This requires lookups, and will skip inodes that we've
2392 		 * already marked XFS_ISTALE.
2393 		 */
2394 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2395 			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2396 
2397 		xfs_trans_stale_inode_buf(tp, bp);
2398 		xfs_trans_binval(tp, bp);
2399 	}
2400 	return 0;
2401 }
2402 
2403 /*
2404  * This is called to return an inode to the inode free list.  The inode should
2405  * already be truncated to 0 length and have no pages associated with it.  This
2406  * routine also assumes that the inode is already a part of the transaction.
2407  *
2408  * The on-disk copy of the inode will have been added to the list of unlinked
2409  * inodes in the AGI. We need to remove the inode from that list atomically with
2410  * respect to freeing it here.
2411  */
2412 int
2413 xfs_ifree(
2414 	struct xfs_trans	*tp,
2415 	struct xfs_inode	*ip)
2416 {
2417 	struct xfs_mount	*mp = ip->i_mount;
2418 	struct xfs_perag	*pag;
2419 	struct xfs_icluster	xic = { 0 };
2420 	struct xfs_inode_log_item *iip = ip->i_itemp;
2421 	int			error;
2422 
2423 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
2424 	ASSERT(VFS_I(ip)->i_nlink == 0);
2425 	ASSERT(ip->i_df.if_nextents == 0);
2426 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2427 	ASSERT(ip->i_nblocks == 0);
2428 
2429 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2430 
2431 	/*
2432 	 * Free the inode first so that we guarantee that the AGI lock is going
2433 	 * to be taken before we remove the inode from the unlinked list. This
2434 	 * makes the AGI lock -> unlinked list modification order the same as
2435 	 * used in O_TMPFILE creation.
2436 	 */
2437 	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2438 	if (error)
2439 		goto out;
2440 
2441 	error = xfs_iunlink_remove(tp, pag, ip);
2442 	if (error)
2443 		goto out;
2444 
2445 	/*
2446 	 * Free any local-format data sitting around before we reset the
2447 	 * data fork to extents format.  Note that the attr fork data has
2448 	 * already been freed by xfs_attr_inactive.
2449 	 */
2450 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2451 		kfree(ip->i_df.if_data);
2452 		ip->i_df.if_data = NULL;
2453 		ip->i_df.if_bytes = 0;
2454 	}
2455 
2456 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2457 	ip->i_diflags = 0;
2458 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2459 	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2460 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2461 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2462 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2463 
2464 	/* Don't attempt to replay owner changes for a deleted inode */
2465 	spin_lock(&iip->ili_lock);
2466 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2467 	spin_unlock(&iip->ili_lock);
2468 
2469 	/*
2470 	 * Bump the generation count so no one will be confused
2471 	 * by reincarnations of this inode.
2472 	 */
2473 	VFS_I(ip)->i_generation++;
2474 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2475 
2476 	if (xic.deleted)
2477 		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2478 out:
2479 	xfs_perag_put(pag);
2480 	return error;
2481 }
2482 
2483 /*
2484  * This is called to unpin an inode.  The caller must have the inode locked
2485  * in at least shared mode so that the buffer cannot be subsequently pinned
2486  * once someone is waiting for it to be unpinned.
2487  */
2488 static void
2489 xfs_iunpin(
2490 	struct xfs_inode	*ip)
2491 {
2492 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2493 
2494 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2495 
2496 	/* Give the log a push to start the unpinning I/O */
2497 	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2498 
2499 }
2500 
2501 static void
2502 __xfs_iunpin_wait(
2503 	struct xfs_inode	*ip)
2504 {
2505 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2506 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2507 
2508 	xfs_iunpin(ip);
2509 
2510 	do {
2511 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2512 		if (xfs_ipincount(ip))
2513 			io_schedule();
2514 	} while (xfs_ipincount(ip));
2515 	finish_wait(wq, &wait.wq_entry);
2516 }
2517 
2518 void
2519 xfs_iunpin_wait(
2520 	struct xfs_inode	*ip)
2521 {
2522 	if (xfs_ipincount(ip))
2523 		__xfs_iunpin_wait(ip);
2524 }
2525 
2526 /*
2527  * Removing an inode from the namespace involves removing the directory entry
2528  * and dropping the link count on the inode. Removing the directory entry can
2529  * result in locking an AGF (directory blocks were freed) and removing a link
2530  * count can result in placing the inode on an unlinked list which results in
2531  * locking an AGI.
2532  *
2533  * The big problem here is that we have an ordering constraint on AGF and AGI
2534  * locking - inode allocation locks the AGI, then can allocate a new extent for
2535  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2536  * removes the inode from the unlinked list, requiring that we lock the AGI
2537  * first, and then freeing the inode can result in an inode chunk being freed
2538  * and hence freeing disk space requiring that we lock an AGF.
2539  *
2540  * Hence the ordering that is imposed by other parts of the code is AGI before
2541  * AGF. This means we cannot remove the directory entry before we drop the inode
2542  * reference count and put it on the unlinked list as this results in a lock
2543  * order of AGF then AGI, and this can deadlock against inode allocation and
2544  * freeing. Therefore we must drop the link counts before we remove the
2545  * directory entry.
2546  *
2547  * This is still safe from a transactional point of view - it is not until we
2548  * get to xfs_defer_finish() that we have the possibility of multiple
2549  * transactions in this operation. Hence as long as we remove the directory
2550  * entry and drop the link count in the first transaction of the remove
2551  * operation, there are no transactional constraints on the ordering here.
2552  */
2553 int
2554 xfs_remove(
2555 	xfs_inode_t             *dp,
2556 	struct xfs_name		*name,
2557 	xfs_inode_t		*ip)
2558 {
2559 	xfs_mount_t		*mp = dp->i_mount;
2560 	xfs_trans_t             *tp = NULL;
2561 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2562 	int			dontcare;
2563 	int                     error = 0;
2564 	uint			resblks;
2565 
2566 	trace_xfs_remove(dp, name);
2567 
2568 	if (xfs_is_shutdown(mp))
2569 		return -EIO;
2570 	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
2571 		return -EIO;
2572 
2573 	error = xfs_qm_dqattach(dp);
2574 	if (error)
2575 		goto std_return;
2576 
2577 	error = xfs_qm_dqattach(ip);
2578 	if (error)
2579 		goto std_return;
2580 
2581 	/*
2582 	 * We try to get the real space reservation first, allowing for
2583 	 * directory btree deletion(s) implying possible bmap insert(s).  If we
2584 	 * can't get the space reservation then we use 0 instead, and avoid the
2585 	 * bmap btree insert(s) in the directory code by, if the bmap insert
2586 	 * tries to happen, instead trimming the LAST block from the directory.
2587 	 *
2588 	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2589 	 * the directory code can handle a reservationless update and we don't
2590 	 * want to prevent a user from trying to free space by deleting things.
2591 	 */
2592 	resblks = XFS_REMOVE_SPACE_RES(mp);
2593 	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2594 			&tp, &dontcare);
2595 	if (error) {
2596 		ASSERT(error != -ENOSPC);
2597 		goto std_return;
2598 	}
2599 
2600 	/*
2601 	 * If we're removing a directory perform some additional validation.
2602 	 */
2603 	if (is_dir) {
2604 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2605 		if (VFS_I(ip)->i_nlink != 2) {
2606 			error = -ENOTEMPTY;
2607 			goto out_trans_cancel;
2608 		}
2609 		if (!xfs_dir_isempty(ip)) {
2610 			error = -ENOTEMPTY;
2611 			goto out_trans_cancel;
2612 		}
2613 
2614 		/* Drop the link from ip's "..".  */
2615 		error = xfs_droplink(tp, dp);
2616 		if (error)
2617 			goto out_trans_cancel;
2618 
2619 		/* Drop the "." link from ip to self.  */
2620 		error = xfs_droplink(tp, ip);
2621 		if (error)
2622 			goto out_trans_cancel;
2623 
2624 		/*
2625 		 * Point the unlinked child directory's ".." entry to the root
2626 		 * directory to eliminate back-references to inodes that may
2627 		 * get freed before the child directory is closed.  If the fs
2628 		 * gets shrunk, this can lead to dirent inode validation errors.
2629 		 */
2630 		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2631 			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2632 					tp->t_mountp->m_sb.sb_rootino, 0);
2633 			if (error)
2634 				goto out_trans_cancel;
2635 		}
2636 	} else {
2637 		/*
2638 		 * When removing a non-directory we need to log the parent
2639 		 * inode here.  For a directory this is done implicitly
2640 		 * by the xfs_droplink call for the ".." entry.
2641 		 */
2642 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2643 	}
2644 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2645 
2646 	/* Drop the link from dp to ip. */
2647 	error = xfs_droplink(tp, ip);
2648 	if (error)
2649 		goto out_trans_cancel;
2650 
2651 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2652 	if (error) {
2653 		ASSERT(error != -ENOENT);
2654 		goto out_trans_cancel;
2655 	}
2656 
2657 	/*
2658 	 * Drop the link from dp to ip, and if ip was a directory, remove the
2659 	 * '.' and '..' references since we freed the directory.
2660 	 */
2661 	xfs_dir_update_hook(dp, ip, -1, name);
2662 
2663 	/*
2664 	 * If this is a synchronous mount, make sure that the
2665 	 * remove transaction goes to disk before returning to
2666 	 * the user.
2667 	 */
2668 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2669 		xfs_trans_set_sync(tp);
2670 
2671 	error = xfs_trans_commit(tp);
2672 	if (error)
2673 		goto std_return;
2674 
2675 	if (is_dir && xfs_inode_is_filestream(ip))
2676 		xfs_filestream_deassociate(ip);
2677 
2678 	return 0;
2679 
2680  out_trans_cancel:
2681 	xfs_trans_cancel(tp);
2682  std_return:
2683 	return error;
2684 }
2685 
2686 /*
2687  * Enter all inodes for a rename transaction into a sorted array.
2688  */
2689 #define __XFS_SORT_INODES	5
2690 STATIC void
2691 xfs_sort_for_rename(
2692 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2693 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2694 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2695 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2696 	struct xfs_inode	*wip,	/* in: whiteout inode */
2697 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2698 	int			*num_inodes)  /* in/out: inodes in array */
2699 {
2700 	int			i, j;
2701 
2702 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2703 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2704 
2705 	/*
2706 	 * i_tab contains a list of pointers to inodes.  We initialize
2707 	 * the table here & we'll sort it.  We will then use it to
2708 	 * order the acquisition of the inode locks.
2709 	 *
2710 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2711 	 */
2712 	i = 0;
2713 	i_tab[i++] = dp1;
2714 	i_tab[i++] = dp2;
2715 	i_tab[i++] = ip1;
2716 	if (ip2)
2717 		i_tab[i++] = ip2;
2718 	if (wip)
2719 		i_tab[i++] = wip;
2720 	*num_inodes = i;
2721 
2722 	/*
2723 	 * Sort the elements via bubble sort.  (Remember, there are at
2724 	 * most 5 elements to sort, so this is adequate.)
2725 	 */
2726 	for (i = 0; i < *num_inodes; i++) {
2727 		for (j = 1; j < *num_inodes; j++) {
2728 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2729 				struct xfs_inode *temp = i_tab[j];
2730 				i_tab[j] = i_tab[j-1];
2731 				i_tab[j-1] = temp;
2732 			}
2733 		}
2734 	}
2735 }
2736 
2737 static int
2738 xfs_finish_rename(
2739 	struct xfs_trans	*tp)
2740 {
2741 	/*
2742 	 * If this is a synchronous mount, make sure that the rename transaction
2743 	 * goes to disk before returning to the user.
2744 	 */
2745 	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2746 		xfs_trans_set_sync(tp);
2747 
2748 	return xfs_trans_commit(tp);
2749 }
2750 
2751 /*
2752  * xfs_cross_rename()
2753  *
2754  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2755  */
2756 STATIC int
2757 xfs_cross_rename(
2758 	struct xfs_trans	*tp,
2759 	struct xfs_inode	*dp1,
2760 	struct xfs_name		*name1,
2761 	struct xfs_inode	*ip1,
2762 	struct xfs_inode	*dp2,
2763 	struct xfs_name		*name2,
2764 	struct xfs_inode	*ip2,
2765 	int			spaceres)
2766 {
2767 	int		error = 0;
2768 	int		ip1_flags = 0;
2769 	int		ip2_flags = 0;
2770 	int		dp2_flags = 0;
2771 
2772 	/* Swap inode number for dirent in first parent */
2773 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2774 	if (error)
2775 		goto out_trans_abort;
2776 
2777 	/* Swap inode number for dirent in second parent */
2778 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2779 	if (error)
2780 		goto out_trans_abort;
2781 
2782 	/*
2783 	 * If we're renaming one or more directories across different parents,
2784 	 * update the respective ".." entries (and link counts) to match the new
2785 	 * parents.
2786 	 */
2787 	if (dp1 != dp2) {
2788 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2789 
2790 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2791 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2792 						dp1->i_ino, spaceres);
2793 			if (error)
2794 				goto out_trans_abort;
2795 
2796 			/* transfer ip2 ".." reference to dp1 */
2797 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2798 				error = xfs_droplink(tp, dp2);
2799 				if (error)
2800 					goto out_trans_abort;
2801 				xfs_bumplink(tp, dp1);
2802 			}
2803 
2804 			/*
2805 			 * Although ip1 isn't changed here, userspace needs
2806 			 * to be warned about the change, so that applications
2807 			 * relying on it (like backup ones), will properly
2808 			 * notify the change
2809 			 */
2810 			ip1_flags |= XFS_ICHGTIME_CHG;
2811 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2812 		}
2813 
2814 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2815 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2816 						dp2->i_ino, spaceres);
2817 			if (error)
2818 				goto out_trans_abort;
2819 
2820 			/* transfer ip1 ".." reference to dp2 */
2821 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2822 				error = xfs_droplink(tp, dp1);
2823 				if (error)
2824 					goto out_trans_abort;
2825 				xfs_bumplink(tp, dp2);
2826 			}
2827 
2828 			/*
2829 			 * Although ip2 isn't changed here, userspace needs
2830 			 * to be warned about the change, so that applications
2831 			 * relying on it (like backup ones), will properly
2832 			 * notify the change
2833 			 */
2834 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2835 			ip2_flags |= XFS_ICHGTIME_CHG;
2836 		}
2837 	}
2838 
2839 	if (ip1_flags) {
2840 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2841 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2842 	}
2843 	if (ip2_flags) {
2844 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2845 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2846 	}
2847 	if (dp2_flags) {
2848 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2849 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2850 	}
2851 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2852 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2853 
2854 	/*
2855 	 * Inform our hook clients that we've finished an exchange operation as
2856 	 * follows: removed the source and target files from their directories;
2857 	 * added the target to the source directory; and added the source to
2858 	 * the target directory.  All inodes are locked, so it's ok to model a
2859 	 * rename this way so long as we say we deleted entries before we add
2860 	 * new ones.
2861 	 */
2862 	xfs_dir_update_hook(dp1, ip1, -1, name1);
2863 	xfs_dir_update_hook(dp2, ip2, -1, name2);
2864 	xfs_dir_update_hook(dp1, ip2, 1, name1);
2865 	xfs_dir_update_hook(dp2, ip1, 1, name2);
2866 
2867 	return xfs_finish_rename(tp);
2868 
2869 out_trans_abort:
2870 	xfs_trans_cancel(tp);
2871 	return error;
2872 }
2873 
2874 /*
2875  * xfs_rename_alloc_whiteout()
2876  *
2877  * Return a referenced, unlinked, unlocked inode that can be used as a
2878  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2879  * crash between allocating the inode and linking it into the rename transaction
2880  * recovery will free the inode and we won't leak it.
2881  */
2882 static int
2883 xfs_rename_alloc_whiteout(
2884 	struct mnt_idmap	*idmap,
2885 	struct xfs_name		*src_name,
2886 	struct xfs_inode	*dp,
2887 	struct xfs_inode	**wip)
2888 {
2889 	struct xfs_inode	*tmpfile;
2890 	struct qstr		name;
2891 	int			error;
2892 
2893 	error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE,
2894 				   &tmpfile);
2895 	if (error)
2896 		return error;
2897 
2898 	name.name = src_name->name;
2899 	name.len = src_name->len;
2900 	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2901 	if (error) {
2902 		xfs_finish_inode_setup(tmpfile);
2903 		xfs_irele(tmpfile);
2904 		return error;
2905 	}
2906 
2907 	/*
2908 	 * Prepare the tmpfile inode as if it were created through the VFS.
2909 	 * Complete the inode setup and flag it as linkable.  nlink is already
2910 	 * zero, so we can skip the drop_nlink.
2911 	 */
2912 	xfs_setup_iops(tmpfile);
2913 	xfs_finish_inode_setup(tmpfile);
2914 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2915 
2916 	*wip = tmpfile;
2917 	return 0;
2918 }
2919 
2920 /*
2921  * xfs_rename
2922  */
2923 int
2924 xfs_rename(
2925 	struct mnt_idmap	*idmap,
2926 	struct xfs_inode	*src_dp,
2927 	struct xfs_name		*src_name,
2928 	struct xfs_inode	*src_ip,
2929 	struct xfs_inode	*target_dp,
2930 	struct xfs_name		*target_name,
2931 	struct xfs_inode	*target_ip,
2932 	unsigned int		flags)
2933 {
2934 	struct xfs_mount	*mp = src_dp->i_mount;
2935 	struct xfs_trans	*tp;
2936 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2937 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2938 	int			i;
2939 	int			num_inodes = __XFS_SORT_INODES;
2940 	bool			new_parent = (src_dp != target_dp);
2941 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2942 	int			spaceres;
2943 	bool			retried = false;
2944 	int			error, nospace_error = 0;
2945 
2946 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2947 
2948 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2949 		return -EINVAL;
2950 
2951 	/*
2952 	 * If we are doing a whiteout operation, allocate the whiteout inode
2953 	 * we will be placing at the target and ensure the type is set
2954 	 * appropriately.
2955 	 */
2956 	if (flags & RENAME_WHITEOUT) {
2957 		error = xfs_rename_alloc_whiteout(idmap, src_name,
2958 						  target_dp, &wip);
2959 		if (error)
2960 			return error;
2961 
2962 		/* setup target dirent info as whiteout */
2963 		src_name->type = XFS_DIR3_FT_CHRDEV;
2964 	}
2965 
2966 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2967 				inodes, &num_inodes);
2968 
2969 retry:
2970 	nospace_error = 0;
2971 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2972 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2973 	if (error == -ENOSPC) {
2974 		nospace_error = error;
2975 		spaceres = 0;
2976 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2977 				&tp);
2978 	}
2979 	if (error)
2980 		goto out_release_wip;
2981 
2982 	/*
2983 	 * Attach the dquots to the inodes
2984 	 */
2985 	error = xfs_qm_vop_rename_dqattach(inodes);
2986 	if (error)
2987 		goto out_trans_cancel;
2988 
2989 	/*
2990 	 * Lock all the participating inodes. Depending upon whether
2991 	 * the target_name exists in the target directory, and
2992 	 * whether the target directory is the same as the source
2993 	 * directory, we can lock from 2 to 5 inodes.
2994 	 */
2995 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2996 
2997 	/*
2998 	 * Join all the inodes to the transaction. From this point on,
2999 	 * we can rely on either trans_commit or trans_cancel to unlock
3000 	 * them.
3001 	 */
3002 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3003 	if (new_parent)
3004 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3005 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3006 	if (target_ip)
3007 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3008 	if (wip)
3009 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3010 
3011 	/*
3012 	 * If we are using project inheritance, we only allow renames
3013 	 * into our tree when the project IDs are the same; else the
3014 	 * tree quota mechanism would be circumvented.
3015 	 */
3016 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3017 		     target_dp->i_projid != src_ip->i_projid)) {
3018 		error = -EXDEV;
3019 		goto out_trans_cancel;
3020 	}
3021 
3022 	/* RENAME_EXCHANGE is unique from here on. */
3023 	if (flags & RENAME_EXCHANGE)
3024 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3025 					target_dp, target_name, target_ip,
3026 					spaceres);
3027 
3028 	/*
3029 	 * Try to reserve quota to handle an expansion of the target directory.
3030 	 * We'll allow the rename to continue in reservationless mode if we hit
3031 	 * a space usage constraint.  If we trigger reservationless mode, save
3032 	 * the errno if there isn't any free space in the target directory.
3033 	 */
3034 	if (spaceres != 0) {
3035 		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
3036 				0, false);
3037 		if (error == -EDQUOT || error == -ENOSPC) {
3038 			if (!retried) {
3039 				xfs_trans_cancel(tp);
3040 				xfs_blockgc_free_quota(target_dp, 0);
3041 				retried = true;
3042 				goto retry;
3043 			}
3044 
3045 			nospace_error = error;
3046 			spaceres = 0;
3047 			error = 0;
3048 		}
3049 		if (error)
3050 			goto out_trans_cancel;
3051 	}
3052 
3053 	/*
3054 	 * Check for expected errors before we dirty the transaction
3055 	 * so we can return an error without a transaction abort.
3056 	 */
3057 	if (target_ip == NULL) {
3058 		/*
3059 		 * If there's no space reservation, check the entry will
3060 		 * fit before actually inserting it.
3061 		 */
3062 		if (!spaceres) {
3063 			error = xfs_dir_canenter(tp, target_dp, target_name);
3064 			if (error)
3065 				goto out_trans_cancel;
3066 		}
3067 	} else {
3068 		/*
3069 		 * If target exists and it's a directory, check that whether
3070 		 * it can be destroyed.
3071 		 */
3072 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3073 		    (!xfs_dir_isempty(target_ip) ||
3074 		     (VFS_I(target_ip)->i_nlink > 2))) {
3075 			error = -EEXIST;
3076 			goto out_trans_cancel;
3077 		}
3078 	}
3079 
3080 	/*
3081 	 * Lock the AGI buffers we need to handle bumping the nlink of the
3082 	 * whiteout inode off the unlinked list and to handle dropping the
3083 	 * nlink of the target inode.  Per locking order rules, do this in
3084 	 * increasing AG order and before directory block allocation tries to
3085 	 * grab AGFs because we grab AGIs before AGFs.
3086 	 *
3087 	 * The (vfs) caller must ensure that if src is a directory then
3088 	 * target_ip is either null or an empty directory.
3089 	 */
3090 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3091 		if (inodes[i] == wip ||
3092 		    (inodes[i] == target_ip &&
3093 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3094 			struct xfs_perag	*pag;
3095 			struct xfs_buf		*bp;
3096 
3097 			pag = xfs_perag_get(mp,
3098 					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
3099 			error = xfs_read_agi(pag, tp, &bp);
3100 			xfs_perag_put(pag);
3101 			if (error)
3102 				goto out_trans_cancel;
3103 		}
3104 	}
3105 
3106 	/*
3107 	 * Directory entry creation below may acquire the AGF. Remove
3108 	 * the whiteout from the unlinked list first to preserve correct
3109 	 * AGI/AGF locking order. This dirties the transaction so failures
3110 	 * after this point will abort and log recovery will clean up the
3111 	 * mess.
3112 	 *
3113 	 * For whiteouts, we need to bump the link count on the whiteout
3114 	 * inode. After this point, we have a real link, clear the tmpfile
3115 	 * state flag from the inode so it doesn't accidentally get misused
3116 	 * in future.
3117 	 */
3118 	if (wip) {
3119 		struct xfs_perag	*pag;
3120 
3121 		ASSERT(VFS_I(wip)->i_nlink == 0);
3122 
3123 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3124 		error = xfs_iunlink_remove(tp, pag, wip);
3125 		xfs_perag_put(pag);
3126 		if (error)
3127 			goto out_trans_cancel;
3128 
3129 		xfs_bumplink(tp, wip);
3130 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3131 	}
3132 
3133 	/*
3134 	 * Set up the target.
3135 	 */
3136 	if (target_ip == NULL) {
3137 		/*
3138 		 * If target does not exist and the rename crosses
3139 		 * directories, adjust the target directory link count
3140 		 * to account for the ".." reference from the new entry.
3141 		 */
3142 		error = xfs_dir_createname(tp, target_dp, target_name,
3143 					   src_ip->i_ino, spaceres);
3144 		if (error)
3145 			goto out_trans_cancel;
3146 
3147 		xfs_trans_ichgtime(tp, target_dp,
3148 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3149 
3150 		if (new_parent && src_is_directory) {
3151 			xfs_bumplink(tp, target_dp);
3152 		}
3153 	} else { /* target_ip != NULL */
3154 		/*
3155 		 * Link the source inode under the target name.
3156 		 * If the source inode is a directory and we are moving
3157 		 * it across directories, its ".." entry will be
3158 		 * inconsistent until we replace that down below.
3159 		 *
3160 		 * In case there is already an entry with the same
3161 		 * name at the destination directory, remove it first.
3162 		 */
3163 		error = xfs_dir_replace(tp, target_dp, target_name,
3164 					src_ip->i_ino, spaceres);
3165 		if (error)
3166 			goto out_trans_cancel;
3167 
3168 		xfs_trans_ichgtime(tp, target_dp,
3169 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3170 
3171 		/*
3172 		 * Decrement the link count on the target since the target
3173 		 * dir no longer points to it.
3174 		 */
3175 		error = xfs_droplink(tp, target_ip);
3176 		if (error)
3177 			goto out_trans_cancel;
3178 
3179 		if (src_is_directory) {
3180 			/*
3181 			 * Drop the link from the old "." entry.
3182 			 */
3183 			error = xfs_droplink(tp, target_ip);
3184 			if (error)
3185 				goto out_trans_cancel;
3186 		}
3187 	} /* target_ip != NULL */
3188 
3189 	/*
3190 	 * Remove the source.
3191 	 */
3192 	if (new_parent && src_is_directory) {
3193 		/*
3194 		 * Rewrite the ".." entry to point to the new
3195 		 * directory.
3196 		 */
3197 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3198 					target_dp->i_ino, spaceres);
3199 		ASSERT(error != -EEXIST);
3200 		if (error)
3201 			goto out_trans_cancel;
3202 	}
3203 
3204 	/*
3205 	 * We always want to hit the ctime on the source inode.
3206 	 *
3207 	 * This isn't strictly required by the standards since the source
3208 	 * inode isn't really being changed, but old unix file systems did
3209 	 * it and some incremental backup programs won't work without it.
3210 	 */
3211 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3212 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3213 
3214 	/*
3215 	 * Adjust the link count on src_dp.  This is necessary when
3216 	 * renaming a directory, either within one parent when
3217 	 * the target existed, or across two parent directories.
3218 	 */
3219 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3220 
3221 		/*
3222 		 * Decrement link count on src_directory since the
3223 		 * entry that's moved no longer points to it.
3224 		 */
3225 		error = xfs_droplink(tp, src_dp);
3226 		if (error)
3227 			goto out_trans_cancel;
3228 	}
3229 
3230 	/*
3231 	 * For whiteouts, we only need to update the source dirent with the
3232 	 * inode number of the whiteout inode rather than removing it
3233 	 * altogether.
3234 	 */
3235 	if (wip)
3236 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3237 					spaceres);
3238 	else
3239 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3240 					   spaceres);
3241 
3242 	if (error)
3243 		goto out_trans_cancel;
3244 
3245 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3246 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3247 	if (new_parent)
3248 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3249 
3250 	/*
3251 	 * Inform our hook clients that we've finished a rename operation as
3252 	 * follows: removed the source and target files from their directories;
3253 	 * that we've added the source to the target directory; and finally
3254 	 * that we've added the whiteout, if there was one.  All inodes are
3255 	 * locked, so it's ok to model a rename this way so long as we say we
3256 	 * deleted entries before we add new ones.
3257 	 */
3258 	if (target_ip)
3259 		xfs_dir_update_hook(target_dp, target_ip, -1, target_name);
3260 	xfs_dir_update_hook(src_dp, src_ip, -1, src_name);
3261 	xfs_dir_update_hook(target_dp, src_ip, 1, target_name);
3262 	if (wip)
3263 		xfs_dir_update_hook(src_dp, wip, 1, src_name);
3264 
3265 	error = xfs_finish_rename(tp);
3266 	if (wip)
3267 		xfs_irele(wip);
3268 	return error;
3269 
3270 out_trans_cancel:
3271 	xfs_trans_cancel(tp);
3272 out_release_wip:
3273 	if (wip)
3274 		xfs_irele(wip);
3275 	if (error == -ENOSPC && nospace_error)
3276 		error = nospace_error;
3277 	return error;
3278 }
3279 
3280 static int
3281 xfs_iflush(
3282 	struct xfs_inode	*ip,
3283 	struct xfs_buf		*bp)
3284 {
3285 	struct xfs_inode_log_item *iip = ip->i_itemp;
3286 	struct xfs_dinode	*dip;
3287 	struct xfs_mount	*mp = ip->i_mount;
3288 	int			error;
3289 
3290 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
3291 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3292 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3293 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3294 	ASSERT(iip->ili_item.li_buf == bp);
3295 
3296 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3297 
3298 	/*
3299 	 * We don't flush the inode if any of the following checks fail, but we
3300 	 * do still update the log item and attach to the backing buffer as if
3301 	 * the flush happened. This is a formality to facilitate predictable
3302 	 * error handling as the caller will shutdown and fail the buffer.
3303 	 */
3304 	error = -EFSCORRUPTED;
3305 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3306 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3307 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3308 			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
3309 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3310 		goto flush_out;
3311 	}
3312 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3313 		if (XFS_TEST_ERROR(
3314 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3315 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3316 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3317 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3318 				"%s: Bad regular inode %llu, ptr "PTR_FMT,
3319 				__func__, ip->i_ino, ip);
3320 			goto flush_out;
3321 		}
3322 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3323 		if (XFS_TEST_ERROR(
3324 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3325 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3326 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3327 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3328 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3329 				"%s: Bad directory inode %llu, ptr "PTR_FMT,
3330 				__func__, ip->i_ino, ip);
3331 			goto flush_out;
3332 		}
3333 	}
3334 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3335 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3336 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3337 			"%s: detected corrupt incore inode %llu, "
3338 			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3339 			__func__, ip->i_ino,
3340 			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3341 			ip->i_nblocks, ip);
3342 		goto flush_out;
3343 	}
3344 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3345 				mp, XFS_ERRTAG_IFLUSH_6)) {
3346 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3347 			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
3348 			__func__, ip->i_ino, ip->i_forkoff, ip);
3349 		goto flush_out;
3350 	}
3351 
3352 	/*
3353 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3354 	 * count for correct sequencing.  We bump the flush iteration count so
3355 	 * we can detect flushes which postdate a log record during recovery.
3356 	 * This is redundant as we now log every change and hence this can't
3357 	 * happen but we need to still do it to ensure backwards compatibility
3358 	 * with old kernels that predate logging all inode changes.
3359 	 */
3360 	if (!xfs_has_v3inodes(mp))
3361 		ip->i_flushiter++;
3362 
3363 	/*
3364 	 * If there are inline format data / attr forks attached to this inode,
3365 	 * make sure they are not corrupt.
3366 	 */
3367 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3368 	    xfs_ifork_verify_local_data(ip))
3369 		goto flush_out;
3370 	if (xfs_inode_has_attr_fork(ip) &&
3371 	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3372 	    xfs_ifork_verify_local_attr(ip))
3373 		goto flush_out;
3374 
3375 	/*
3376 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3377 	 * copy out the core of the inode, because if the inode is dirty at all
3378 	 * the core must be.
3379 	 */
3380 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3381 
3382 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3383 	if (!xfs_has_v3inodes(mp)) {
3384 		if (ip->i_flushiter == DI_MAX_FLUSH)
3385 			ip->i_flushiter = 0;
3386 	}
3387 
3388 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3389 	if (xfs_inode_has_attr_fork(ip))
3390 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3391 
3392 	/*
3393 	 * We've recorded everything logged in the inode, so we'd like to clear
3394 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3395 	 * However, we can't stop logging all this information until the data
3396 	 * we've copied into the disk buffer is written to disk.  If we did we
3397 	 * might overwrite the copy of the inode in the log with all the data
3398 	 * after re-logging only part of it, and in the face of a crash we
3399 	 * wouldn't have all the data we need to recover.
3400 	 *
3401 	 * What we do is move the bits to the ili_last_fields field.  When
3402 	 * logging the inode, these bits are moved back to the ili_fields field.
3403 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3404 	 * we know that the information those bits represent is permanently on
3405 	 * disk.  As long as the flush completes before the inode is logged
3406 	 * again, then both ili_fields and ili_last_fields will be cleared.
3407 	 */
3408 	error = 0;
3409 flush_out:
3410 	spin_lock(&iip->ili_lock);
3411 	iip->ili_last_fields = iip->ili_fields;
3412 	iip->ili_fields = 0;
3413 	iip->ili_fsync_fields = 0;
3414 	spin_unlock(&iip->ili_lock);
3415 
3416 	/*
3417 	 * Store the current LSN of the inode so that we can tell whether the
3418 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3419 	 */
3420 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3421 				&iip->ili_item.li_lsn);
3422 
3423 	/* generate the checksum. */
3424 	xfs_dinode_calc_crc(mp, dip);
3425 	if (error)
3426 		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
3427 	return error;
3428 }
3429 
3430 /*
3431  * Non-blocking flush of dirty inode metadata into the backing buffer.
3432  *
3433  * The caller must have a reference to the inode and hold the cluster buffer
3434  * locked. The function will walk across all the inodes on the cluster buffer it
3435  * can find and lock without blocking, and flush them to the cluster buffer.
3436  *
3437  * On successful flushing of at least one inode, the caller must write out the
3438  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3439  * the caller needs to release the buffer. On failure, the filesystem will be
3440  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3441  * will be returned.
3442  */
3443 int
3444 xfs_iflush_cluster(
3445 	struct xfs_buf		*bp)
3446 {
3447 	struct xfs_mount	*mp = bp->b_mount;
3448 	struct xfs_log_item	*lip, *n;
3449 	struct xfs_inode	*ip;
3450 	struct xfs_inode_log_item *iip;
3451 	int			clcount = 0;
3452 	int			error = 0;
3453 
3454 	/*
3455 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3456 	 * will remove itself from the list.
3457 	 */
3458 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3459 		iip = (struct xfs_inode_log_item *)lip;
3460 		ip = iip->ili_inode;
3461 
3462 		/*
3463 		 * Quick and dirty check to avoid locks if possible.
3464 		 */
3465 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3466 			continue;
3467 		if (xfs_ipincount(ip))
3468 			continue;
3469 
3470 		/*
3471 		 * The inode is still attached to the buffer, which means it is
3472 		 * dirty but reclaim might try to grab it. Check carefully for
3473 		 * that, and grab the ilock while still holding the i_flags_lock
3474 		 * to guarantee reclaim will not be able to reclaim this inode
3475 		 * once we drop the i_flags_lock.
3476 		 */
3477 		spin_lock(&ip->i_flags_lock);
3478 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3479 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3480 			spin_unlock(&ip->i_flags_lock);
3481 			continue;
3482 		}
3483 
3484 		/*
3485 		 * ILOCK will pin the inode against reclaim and prevent
3486 		 * concurrent transactions modifying the inode while we are
3487 		 * flushing the inode. If we get the lock, set the flushing
3488 		 * state before we drop the i_flags_lock.
3489 		 */
3490 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3491 			spin_unlock(&ip->i_flags_lock);
3492 			continue;
3493 		}
3494 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3495 		spin_unlock(&ip->i_flags_lock);
3496 
3497 		/*
3498 		 * Abort flushing this inode if we are shut down because the
3499 		 * inode may not currently be in the AIL. This can occur when
3500 		 * log I/O failure unpins the inode without inserting into the
3501 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3502 		 * that otherwise looks like it should be flushed.
3503 		 */
3504 		if (xlog_is_shutdown(mp->m_log)) {
3505 			xfs_iunpin_wait(ip);
3506 			xfs_iflush_abort(ip);
3507 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3508 			error = -EIO;
3509 			continue;
3510 		}
3511 
3512 		/* don't block waiting on a log force to unpin dirty inodes */
3513 		if (xfs_ipincount(ip)) {
3514 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3515 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3516 			continue;
3517 		}
3518 
3519 		if (!xfs_inode_clean(ip))
3520 			error = xfs_iflush(ip, bp);
3521 		else
3522 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3523 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3524 		if (error)
3525 			break;
3526 		clcount++;
3527 	}
3528 
3529 	if (error) {
3530 		/*
3531 		 * Shutdown first so we kill the log before we release this
3532 		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3533 		 * of the log, failing it before the _log_ is shut down can
3534 		 * result in the log tail being moved forward in the journal
3535 		 * on disk because log writes can still be taking place. Hence
3536 		 * unpinning the tail will allow the ICREATE intent to be
3537 		 * removed from the log an recovery will fail with uninitialised
3538 		 * inode cluster buffers.
3539 		 */
3540 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3541 		bp->b_flags |= XBF_ASYNC;
3542 		xfs_buf_ioend_fail(bp);
3543 		return error;
3544 	}
3545 
3546 	if (!clcount)
3547 		return -EAGAIN;
3548 
3549 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3550 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3551 	return 0;
3552 
3553 }
3554 
3555 /* Release an inode. */
3556 void
3557 xfs_irele(
3558 	struct xfs_inode	*ip)
3559 {
3560 	trace_xfs_irele(ip, _RET_IP_);
3561 	iput(VFS_I(ip));
3562 }
3563 
3564 /*
3565  * Ensure all commited transactions touching the inode are written to the log.
3566  */
3567 int
3568 xfs_log_force_inode(
3569 	struct xfs_inode	*ip)
3570 {
3571 	xfs_csn_t		seq = 0;
3572 
3573 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3574 	if (xfs_ipincount(ip))
3575 		seq = ip->i_itemp->ili_commit_seq;
3576 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3577 
3578 	if (!seq)
3579 		return 0;
3580 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3581 }
3582 
3583 /*
3584  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3585  * abide vfs locking order (lowest pointer value goes first) and breaking the
3586  * layout leases before proceeding.  The loop is needed because we cannot call
3587  * the blocking break_layout() with the iolocks held, and therefore have to
3588  * back out both locks.
3589  */
3590 static int
3591 xfs_iolock_two_inodes_and_break_layout(
3592 	struct inode		*src,
3593 	struct inode		*dest)
3594 {
3595 	int			error;
3596 
3597 	if (src > dest)
3598 		swap(src, dest);
3599 
3600 retry:
3601 	/* Wait to break both inodes' layouts before we start locking. */
3602 	error = break_layout(src, true);
3603 	if (error)
3604 		return error;
3605 	if (src != dest) {
3606 		error = break_layout(dest, true);
3607 		if (error)
3608 			return error;
3609 	}
3610 
3611 	/* Lock one inode and make sure nobody got in and leased it. */
3612 	inode_lock(src);
3613 	error = break_layout(src, false);
3614 	if (error) {
3615 		inode_unlock(src);
3616 		if (error == -EWOULDBLOCK)
3617 			goto retry;
3618 		return error;
3619 	}
3620 
3621 	if (src == dest)
3622 		return 0;
3623 
3624 	/* Lock the other inode and make sure nobody got in and leased it. */
3625 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3626 	error = break_layout(dest, false);
3627 	if (error) {
3628 		inode_unlock(src);
3629 		inode_unlock(dest);
3630 		if (error == -EWOULDBLOCK)
3631 			goto retry;
3632 		return error;
3633 	}
3634 
3635 	return 0;
3636 }
3637 
3638 static int
3639 xfs_mmaplock_two_inodes_and_break_dax_layout(
3640 	struct xfs_inode	*ip1,
3641 	struct xfs_inode	*ip2)
3642 {
3643 	int			error;
3644 	bool			retry;
3645 	struct page		*page;
3646 
3647 	if (ip1->i_ino > ip2->i_ino)
3648 		swap(ip1, ip2);
3649 
3650 again:
3651 	retry = false;
3652 	/* Lock the first inode */
3653 	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3654 	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3655 	if (error || retry) {
3656 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3657 		if (error == 0 && retry)
3658 			goto again;
3659 		return error;
3660 	}
3661 
3662 	if (ip1 == ip2)
3663 		return 0;
3664 
3665 	/* Nested lock the second inode */
3666 	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3667 	/*
3668 	 * We cannot use xfs_break_dax_layouts() directly here because it may
3669 	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3670 	 * for this nested lock case.
3671 	 */
3672 	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3673 	if (page && page_ref_count(page) != 1) {
3674 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3675 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3676 		goto again;
3677 	}
3678 
3679 	return 0;
3680 }
3681 
3682 /*
3683  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3684  * mmap activity.
3685  */
3686 int
3687 xfs_ilock2_io_mmap(
3688 	struct xfs_inode	*ip1,
3689 	struct xfs_inode	*ip2)
3690 {
3691 	int			ret;
3692 
3693 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3694 	if (ret)
3695 		return ret;
3696 
3697 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3698 		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3699 		if (ret) {
3700 			inode_unlock(VFS_I(ip2));
3701 			if (ip1 != ip2)
3702 				inode_unlock(VFS_I(ip1));
3703 			return ret;
3704 		}
3705 	} else
3706 		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3707 					    VFS_I(ip2)->i_mapping);
3708 
3709 	return 0;
3710 }
3711 
3712 /* Unlock both inodes to allow IO and mmap activity. */
3713 void
3714 xfs_iunlock2_io_mmap(
3715 	struct xfs_inode	*ip1,
3716 	struct xfs_inode	*ip2)
3717 {
3718 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3719 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3720 		if (ip1 != ip2)
3721 			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3722 	} else
3723 		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3724 					      VFS_I(ip2)->i_mapping);
3725 
3726 	inode_unlock(VFS_I(ip2));
3727 	if (ip1 != ip2)
3728 		inode_unlock(VFS_I(ip1));
3729 }
3730 
3731 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
3732 void
3733 xfs_iunlock2_remapping(
3734 	struct xfs_inode	*ip1,
3735 	struct xfs_inode	*ip2)
3736 {
3737 	xfs_iflags_clear(ip1, XFS_IREMAPPING);
3738 
3739 	if (ip1 != ip2)
3740 		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
3741 	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3742 
3743 	if (ip1 != ip2)
3744 		inode_unlock_shared(VFS_I(ip1));
3745 	inode_unlock(VFS_I(ip2));
3746 }
3747 
3748 /*
3749  * Reload the incore inode list for this inode.  Caller should ensure that
3750  * the link count cannot change, either by taking ILOCK_SHARED or otherwise
3751  * preventing other threads from executing.
3752  */
3753 int
3754 xfs_inode_reload_unlinked_bucket(
3755 	struct xfs_trans	*tp,
3756 	struct xfs_inode	*ip)
3757 {
3758 	struct xfs_mount	*mp = tp->t_mountp;
3759 	struct xfs_buf		*agibp;
3760 	struct xfs_agi		*agi;
3761 	struct xfs_perag	*pag;
3762 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
3763 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
3764 	xfs_agino_t		prev_agino, next_agino;
3765 	unsigned int		bucket;
3766 	bool			foundit = false;
3767 	int			error;
3768 
3769 	/* Grab the first inode in the list */
3770 	pag = xfs_perag_get(mp, agno);
3771 	error = xfs_ialloc_read_agi(pag, tp, &agibp);
3772 	xfs_perag_put(pag);
3773 	if (error)
3774 		return error;
3775 
3776 	/*
3777 	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
3778 	 * incore unlinked list pointers for this inode.  Check once more to
3779 	 * see if we raced with anyone else to reload the unlinked list.
3780 	 */
3781 	if (!xfs_inode_unlinked_incomplete(ip)) {
3782 		foundit = true;
3783 		goto out_agibp;
3784 	}
3785 
3786 	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
3787 	agi = agibp->b_addr;
3788 
3789 	trace_xfs_inode_reload_unlinked_bucket(ip);
3790 
3791 	xfs_info_ratelimited(mp,
3792  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
3793 			agino, agno);
3794 
3795 	prev_agino = NULLAGINO;
3796 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3797 	while (next_agino != NULLAGINO) {
3798 		struct xfs_inode	*next_ip = NULL;
3799 
3800 		/* Found this caller's inode, set its backlink. */
3801 		if (next_agino == agino) {
3802 			next_ip = ip;
3803 			next_ip->i_prev_unlinked = prev_agino;
3804 			foundit = true;
3805 			goto next_inode;
3806 		}
3807 
3808 		/* Try in-memory lookup first. */
3809 		next_ip = xfs_iunlink_lookup(pag, next_agino);
3810 		if (next_ip)
3811 			goto next_inode;
3812 
3813 		/* Inode not in memory, try reloading it. */
3814 		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
3815 				next_agino);
3816 		if (error)
3817 			break;
3818 
3819 		/* Grab the reloaded inode. */
3820 		next_ip = xfs_iunlink_lookup(pag, next_agino);
3821 		if (!next_ip) {
3822 			/* No incore inode at all?  We reloaded it... */
3823 			ASSERT(next_ip != NULL);
3824 			error = -EFSCORRUPTED;
3825 			break;
3826 		}
3827 
3828 next_inode:
3829 		prev_agino = next_agino;
3830 		next_agino = next_ip->i_next_unlinked;
3831 	}
3832 
3833 out_agibp:
3834 	xfs_trans_brelse(tp, agibp);
3835 	/* Should have found this inode somewhere in the iunlinked bucket. */
3836 	if (!error && !foundit)
3837 		error = -EFSCORRUPTED;
3838 	return error;
3839 }
3840 
3841 /* Decide if this inode is missing its unlinked list and reload it. */
3842 int
3843 xfs_inode_reload_unlinked(
3844 	struct xfs_inode	*ip)
3845 {
3846 	struct xfs_trans	*tp;
3847 	int			error;
3848 
3849 	error = xfs_trans_alloc_empty(ip->i_mount, &tp);
3850 	if (error)
3851 		return error;
3852 
3853 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3854 	if (xfs_inode_unlinked_incomplete(ip))
3855 		error = xfs_inode_reload_unlinked_bucket(tp, ip);
3856 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3857 	xfs_trans_cancel(tp);
3858 
3859 	return error;
3860 }
3861 
3862 /* Has this inode fork been zapped by repair? */
3863 bool
3864 xfs_ifork_zapped(
3865 	const struct xfs_inode	*ip,
3866 	int			whichfork)
3867 {
3868 	unsigned int		datamask = 0;
3869 
3870 	switch (whichfork) {
3871 	case XFS_DATA_FORK:
3872 		switch (ip->i_vnode.i_mode & S_IFMT) {
3873 		case S_IFDIR:
3874 			datamask = XFS_SICK_INO_DIR_ZAPPED;
3875 			break;
3876 		case S_IFLNK:
3877 			datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
3878 			break;
3879 		}
3880 		return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
3881 	case XFS_ATTR_FORK:
3882 		return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
3883 	default:
3884 		return false;
3885 	}
3886 }
3887 
3888 /* Compute the number of data and realtime blocks used by a file. */
3889 void
3890 xfs_inode_count_blocks(
3891 	struct xfs_trans	*tp,
3892 	struct xfs_inode	*ip,
3893 	xfs_filblks_t		*dblocks,
3894 	xfs_filblks_t		*rblocks)
3895 {
3896 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
3897 
3898 	*rblocks = 0;
3899 	if (XFS_IS_REALTIME_INODE(ip))
3900 		xfs_bmap_count_leaves(ifp, rblocks);
3901 	*dblocks = ip->i_nblocks - *rblocks;
3902 }
3903