1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_types.h" 23 #include "xfs_bit.h" 24 #include "xfs_log.h" 25 #include "xfs_inum.h" 26 #include "xfs_trans.h" 27 #include "xfs_trans_priv.h" 28 #include "xfs_sb.h" 29 #include "xfs_ag.h" 30 #include "xfs_mount.h" 31 #include "xfs_bmap_btree.h" 32 #include "xfs_alloc_btree.h" 33 #include "xfs_ialloc_btree.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_dinode.h" 36 #include "xfs_inode.h" 37 #include "xfs_buf_item.h" 38 #include "xfs_inode_item.h" 39 #include "xfs_btree.h" 40 #include "xfs_alloc.h" 41 #include "xfs_ialloc.h" 42 #include "xfs_bmap.h" 43 #include "xfs_error.h" 44 #include "xfs_utils.h" 45 #include "xfs_quota.h" 46 #include "xfs_filestream.h" 47 #include "xfs_vnodeops.h" 48 #include "xfs_trace.h" 49 50 kmem_zone_t *xfs_ifork_zone; 51 kmem_zone_t *xfs_inode_zone; 52 53 /* 54 * Used in xfs_itruncate_extents(). This is the maximum number of extents 55 * freed from a file in a single transaction. 56 */ 57 #define XFS_ITRUNC_MAX_EXTENTS 2 58 59 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 60 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 61 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 62 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 63 64 #ifdef DEBUG 65 /* 66 * Make sure that the extents in the given memory buffer 67 * are valid. 68 */ 69 STATIC void 70 xfs_validate_extents( 71 xfs_ifork_t *ifp, 72 int nrecs, 73 xfs_exntfmt_t fmt) 74 { 75 xfs_bmbt_irec_t irec; 76 xfs_bmbt_rec_host_t rec; 77 int i; 78 79 for (i = 0; i < nrecs; i++) { 80 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 81 rec.l0 = get_unaligned(&ep->l0); 82 rec.l1 = get_unaligned(&ep->l1); 83 xfs_bmbt_get_all(&rec, &irec); 84 if (fmt == XFS_EXTFMT_NOSTATE) 85 ASSERT(irec.br_state == XFS_EXT_NORM); 86 } 87 } 88 #else /* DEBUG */ 89 #define xfs_validate_extents(ifp, nrecs, fmt) 90 #endif /* DEBUG */ 91 92 /* 93 * Check that none of the inode's in the buffer have a next 94 * unlinked field of 0. 95 */ 96 #if defined(DEBUG) 97 void 98 xfs_inobp_check( 99 xfs_mount_t *mp, 100 xfs_buf_t *bp) 101 { 102 int i; 103 int j; 104 xfs_dinode_t *dip; 105 106 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 107 108 for (i = 0; i < j; i++) { 109 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 110 i * mp->m_sb.sb_inodesize); 111 if (!dip->di_next_unlinked) { 112 xfs_alert(mp, 113 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.", 114 bp); 115 ASSERT(dip->di_next_unlinked); 116 } 117 } 118 } 119 #endif 120 121 /* 122 * Find the buffer associated with the given inode map 123 * We do basic validation checks on the buffer once it has been 124 * retrieved from disk. 125 */ 126 STATIC int 127 xfs_imap_to_bp( 128 xfs_mount_t *mp, 129 xfs_trans_t *tp, 130 struct xfs_imap *imap, 131 xfs_buf_t **bpp, 132 uint buf_flags, 133 uint iget_flags) 134 { 135 int error; 136 int i; 137 int ni; 138 xfs_buf_t *bp; 139 140 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, 141 (int)imap->im_len, buf_flags, &bp); 142 if (error) { 143 if (error != EAGAIN) { 144 xfs_warn(mp, 145 "%s: xfs_trans_read_buf() returned error %d.", 146 __func__, error); 147 } else { 148 ASSERT(buf_flags & XBF_TRYLOCK); 149 } 150 return error; 151 } 152 153 /* 154 * Validate the magic number and version of every inode in the buffer 155 * (if DEBUG kernel) or the first inode in the buffer, otherwise. 156 */ 157 #ifdef DEBUG 158 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog; 159 #else /* usual case */ 160 ni = 1; 161 #endif 162 163 for (i = 0; i < ni; i++) { 164 int di_ok; 165 xfs_dinode_t *dip; 166 167 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 168 (i << mp->m_sb.sb_inodelog)); 169 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) && 170 XFS_DINODE_GOOD_VERSION(dip->di_version); 171 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, 172 XFS_ERRTAG_ITOBP_INOTOBP, 173 XFS_RANDOM_ITOBP_INOTOBP))) { 174 if (iget_flags & XFS_IGET_UNTRUSTED) { 175 xfs_trans_brelse(tp, bp); 176 return XFS_ERROR(EINVAL); 177 } 178 XFS_CORRUPTION_ERROR("xfs_imap_to_bp", 179 XFS_ERRLEVEL_HIGH, mp, dip); 180 #ifdef DEBUG 181 xfs_emerg(mp, 182 "bad inode magic/vsn daddr %lld #%d (magic=%x)", 183 (unsigned long long)imap->im_blkno, i, 184 be16_to_cpu(dip->di_magic)); 185 ASSERT(0); 186 #endif 187 xfs_trans_brelse(tp, bp); 188 return XFS_ERROR(EFSCORRUPTED); 189 } 190 } 191 192 xfs_inobp_check(mp, bp); 193 *bpp = bp; 194 return 0; 195 } 196 197 /* 198 * This routine is called to map an inode number within a file 199 * system to the buffer containing the on-disk version of the 200 * inode. It returns a pointer to the buffer containing the 201 * on-disk inode in the bpp parameter, and in the dip parameter 202 * it returns a pointer to the on-disk inode within that buffer. 203 * 204 * If a non-zero error is returned, then the contents of bpp and 205 * dipp are undefined. 206 * 207 * Use xfs_imap() to determine the size and location of the 208 * buffer to read from disk. 209 */ 210 int 211 xfs_inotobp( 212 xfs_mount_t *mp, 213 xfs_trans_t *tp, 214 xfs_ino_t ino, 215 xfs_dinode_t **dipp, 216 xfs_buf_t **bpp, 217 int *offset, 218 uint imap_flags) 219 { 220 struct xfs_imap imap; 221 xfs_buf_t *bp; 222 int error; 223 224 imap.im_blkno = 0; 225 error = xfs_imap(mp, tp, ino, &imap, imap_flags); 226 if (error) 227 return error; 228 229 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags); 230 if (error) 231 return error; 232 233 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 234 *bpp = bp; 235 *offset = imap.im_boffset; 236 return 0; 237 } 238 239 240 /* 241 * This routine is called to map an inode to the buffer containing 242 * the on-disk version of the inode. It returns a pointer to the 243 * buffer containing the on-disk inode in the bpp parameter, and in 244 * the dip parameter it returns a pointer to the on-disk inode within 245 * that buffer. 246 * 247 * If a non-zero error is returned, then the contents of bpp and 248 * dipp are undefined. 249 * 250 * The inode is expected to already been mapped to its buffer and read 251 * in once, thus we can use the mapping information stored in the inode 252 * rather than calling xfs_imap(). This allows us to avoid the overhead 253 * of looking at the inode btree for small block file systems 254 * (see xfs_imap()). 255 */ 256 int 257 xfs_itobp( 258 xfs_mount_t *mp, 259 xfs_trans_t *tp, 260 xfs_inode_t *ip, 261 xfs_dinode_t **dipp, 262 xfs_buf_t **bpp, 263 uint buf_flags) 264 { 265 xfs_buf_t *bp; 266 int error; 267 268 ASSERT(ip->i_imap.im_blkno != 0); 269 270 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0); 271 if (error) 272 return error; 273 274 if (!bp) { 275 ASSERT(buf_flags & XBF_TRYLOCK); 276 ASSERT(tp == NULL); 277 *bpp = NULL; 278 return EAGAIN; 279 } 280 281 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 282 *bpp = bp; 283 return 0; 284 } 285 286 /* 287 * Move inode type and inode format specific information from the 288 * on-disk inode to the in-core inode. For fifos, devs, and sockets 289 * this means set if_rdev to the proper value. For files, directories, 290 * and symlinks this means to bring in the in-line data or extent 291 * pointers. For a file in B-tree format, only the root is immediately 292 * brought in-core. The rest will be in-lined in if_extents when it 293 * is first referenced (see xfs_iread_extents()). 294 */ 295 STATIC int 296 xfs_iformat( 297 xfs_inode_t *ip, 298 xfs_dinode_t *dip) 299 { 300 xfs_attr_shortform_t *atp; 301 int size; 302 int error = 0; 303 xfs_fsize_t di_size; 304 305 if (unlikely(be32_to_cpu(dip->di_nextents) + 306 be16_to_cpu(dip->di_anextents) > 307 be64_to_cpu(dip->di_nblocks))) { 308 xfs_warn(ip->i_mount, 309 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", 310 (unsigned long long)ip->i_ino, 311 (int)(be32_to_cpu(dip->di_nextents) + 312 be16_to_cpu(dip->di_anextents)), 313 (unsigned long long) 314 be64_to_cpu(dip->di_nblocks)); 315 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 316 ip->i_mount, dip); 317 return XFS_ERROR(EFSCORRUPTED); 318 } 319 320 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) { 321 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.", 322 (unsigned long long)ip->i_ino, 323 dip->di_forkoff); 324 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 325 ip->i_mount, dip); 326 return XFS_ERROR(EFSCORRUPTED); 327 } 328 329 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) && 330 !ip->i_mount->m_rtdev_targp)) { 331 xfs_warn(ip->i_mount, 332 "corrupt dinode %Lu, has realtime flag set.", 333 ip->i_ino); 334 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)", 335 XFS_ERRLEVEL_LOW, ip->i_mount, dip); 336 return XFS_ERROR(EFSCORRUPTED); 337 } 338 339 switch (ip->i_d.di_mode & S_IFMT) { 340 case S_IFIFO: 341 case S_IFCHR: 342 case S_IFBLK: 343 case S_IFSOCK: 344 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) { 345 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 346 ip->i_mount, dip); 347 return XFS_ERROR(EFSCORRUPTED); 348 } 349 ip->i_d.di_size = 0; 350 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip); 351 break; 352 353 case S_IFREG: 354 case S_IFLNK: 355 case S_IFDIR: 356 switch (dip->di_format) { 357 case XFS_DINODE_FMT_LOCAL: 358 /* 359 * no local regular files yet 360 */ 361 if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) { 362 xfs_warn(ip->i_mount, 363 "corrupt inode %Lu (local format for regular file).", 364 (unsigned long long) ip->i_ino); 365 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 366 XFS_ERRLEVEL_LOW, 367 ip->i_mount, dip); 368 return XFS_ERROR(EFSCORRUPTED); 369 } 370 371 di_size = be64_to_cpu(dip->di_size); 372 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 373 xfs_warn(ip->i_mount, 374 "corrupt inode %Lu (bad size %Ld for local inode).", 375 (unsigned long long) ip->i_ino, 376 (long long) di_size); 377 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 378 XFS_ERRLEVEL_LOW, 379 ip->i_mount, dip); 380 return XFS_ERROR(EFSCORRUPTED); 381 } 382 383 size = (int)di_size; 384 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 385 break; 386 case XFS_DINODE_FMT_EXTENTS: 387 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 388 break; 389 case XFS_DINODE_FMT_BTREE: 390 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 391 break; 392 default: 393 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 394 ip->i_mount); 395 return XFS_ERROR(EFSCORRUPTED); 396 } 397 break; 398 399 default: 400 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 401 return XFS_ERROR(EFSCORRUPTED); 402 } 403 if (error) { 404 return error; 405 } 406 if (!XFS_DFORK_Q(dip)) 407 return 0; 408 409 ASSERT(ip->i_afp == NULL); 410 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS); 411 412 switch (dip->di_aformat) { 413 case XFS_DINODE_FMT_LOCAL: 414 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 415 size = be16_to_cpu(atp->hdr.totsize); 416 417 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) { 418 xfs_warn(ip->i_mount, 419 "corrupt inode %Lu (bad attr fork size %Ld).", 420 (unsigned long long) ip->i_ino, 421 (long long) size); 422 XFS_CORRUPTION_ERROR("xfs_iformat(8)", 423 XFS_ERRLEVEL_LOW, 424 ip->i_mount, dip); 425 return XFS_ERROR(EFSCORRUPTED); 426 } 427 428 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 429 break; 430 case XFS_DINODE_FMT_EXTENTS: 431 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 432 break; 433 case XFS_DINODE_FMT_BTREE: 434 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 435 break; 436 default: 437 error = XFS_ERROR(EFSCORRUPTED); 438 break; 439 } 440 if (error) { 441 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 442 ip->i_afp = NULL; 443 xfs_idestroy_fork(ip, XFS_DATA_FORK); 444 } 445 return error; 446 } 447 448 /* 449 * The file is in-lined in the on-disk inode. 450 * If it fits into if_inline_data, then copy 451 * it there, otherwise allocate a buffer for it 452 * and copy the data there. Either way, set 453 * if_data to point at the data. 454 * If we allocate a buffer for the data, make 455 * sure that its size is a multiple of 4 and 456 * record the real size in i_real_bytes. 457 */ 458 STATIC int 459 xfs_iformat_local( 460 xfs_inode_t *ip, 461 xfs_dinode_t *dip, 462 int whichfork, 463 int size) 464 { 465 xfs_ifork_t *ifp; 466 int real_size; 467 468 /* 469 * If the size is unreasonable, then something 470 * is wrong and we just bail out rather than crash in 471 * kmem_alloc() or memcpy() below. 472 */ 473 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 474 xfs_warn(ip->i_mount, 475 "corrupt inode %Lu (bad size %d for local fork, size = %d).", 476 (unsigned long long) ip->i_ino, size, 477 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 478 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 479 ip->i_mount, dip); 480 return XFS_ERROR(EFSCORRUPTED); 481 } 482 ifp = XFS_IFORK_PTR(ip, whichfork); 483 real_size = 0; 484 if (size == 0) 485 ifp->if_u1.if_data = NULL; 486 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 487 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 488 else { 489 real_size = roundup(size, 4); 490 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS); 491 } 492 ifp->if_bytes = size; 493 ifp->if_real_bytes = real_size; 494 if (size) 495 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 496 ifp->if_flags &= ~XFS_IFEXTENTS; 497 ifp->if_flags |= XFS_IFINLINE; 498 return 0; 499 } 500 501 /* 502 * The file consists of a set of extents all 503 * of which fit into the on-disk inode. 504 * If there are few enough extents to fit into 505 * the if_inline_ext, then copy them there. 506 * Otherwise allocate a buffer for them and copy 507 * them into it. Either way, set if_extents 508 * to point at the extents. 509 */ 510 STATIC int 511 xfs_iformat_extents( 512 xfs_inode_t *ip, 513 xfs_dinode_t *dip, 514 int whichfork) 515 { 516 xfs_bmbt_rec_t *dp; 517 xfs_ifork_t *ifp; 518 int nex; 519 int size; 520 int i; 521 522 ifp = XFS_IFORK_PTR(ip, whichfork); 523 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 524 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 525 526 /* 527 * If the number of extents is unreasonable, then something 528 * is wrong and we just bail out rather than crash in 529 * kmem_alloc() or memcpy() below. 530 */ 531 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 532 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).", 533 (unsigned long long) ip->i_ino, nex); 534 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 535 ip->i_mount, dip); 536 return XFS_ERROR(EFSCORRUPTED); 537 } 538 539 ifp->if_real_bytes = 0; 540 if (nex == 0) 541 ifp->if_u1.if_extents = NULL; 542 else if (nex <= XFS_INLINE_EXTS) 543 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 544 else 545 xfs_iext_add(ifp, 0, nex); 546 547 ifp->if_bytes = size; 548 if (size) { 549 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 550 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip)); 551 for (i = 0; i < nex; i++, dp++) { 552 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 553 ep->l0 = get_unaligned_be64(&dp->l0); 554 ep->l1 = get_unaligned_be64(&dp->l1); 555 } 556 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork); 557 if (whichfork != XFS_DATA_FORK || 558 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 559 if (unlikely(xfs_check_nostate_extents( 560 ifp, 0, nex))) { 561 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 562 XFS_ERRLEVEL_LOW, 563 ip->i_mount); 564 return XFS_ERROR(EFSCORRUPTED); 565 } 566 } 567 ifp->if_flags |= XFS_IFEXTENTS; 568 return 0; 569 } 570 571 /* 572 * The file has too many extents to fit into 573 * the inode, so they are in B-tree format. 574 * Allocate a buffer for the root of the B-tree 575 * and copy the root into it. The i_extents 576 * field will remain NULL until all of the 577 * extents are read in (when they are needed). 578 */ 579 STATIC int 580 xfs_iformat_btree( 581 xfs_inode_t *ip, 582 xfs_dinode_t *dip, 583 int whichfork) 584 { 585 xfs_bmdr_block_t *dfp; 586 xfs_ifork_t *ifp; 587 /* REFERENCED */ 588 int nrecs; 589 int size; 590 591 ifp = XFS_IFORK_PTR(ip, whichfork); 592 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 593 size = XFS_BMAP_BROOT_SPACE(dfp); 594 nrecs = be16_to_cpu(dfp->bb_numrecs); 595 596 /* 597 * blow out if -- fork has less extents than can fit in 598 * fork (fork shouldn't be a btree format), root btree 599 * block has more records than can fit into the fork, 600 * or the number of extents is greater than the number of 601 * blocks. 602 */ 603 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= 604 XFS_IFORK_MAXEXT(ip, whichfork) || 605 XFS_BMDR_SPACE_CALC(nrecs) > 606 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) || 607 XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 608 xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).", 609 (unsigned long long) ip->i_ino); 610 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 611 ip->i_mount, dip); 612 return XFS_ERROR(EFSCORRUPTED); 613 } 614 615 ifp->if_broot_bytes = size; 616 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS); 617 ASSERT(ifp->if_broot != NULL); 618 /* 619 * Copy and convert from the on-disk structure 620 * to the in-memory structure. 621 */ 622 xfs_bmdr_to_bmbt(ip->i_mount, dfp, 623 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 624 ifp->if_broot, size); 625 ifp->if_flags &= ~XFS_IFEXTENTS; 626 ifp->if_flags |= XFS_IFBROOT; 627 628 return 0; 629 } 630 631 STATIC void 632 xfs_dinode_from_disk( 633 xfs_icdinode_t *to, 634 xfs_dinode_t *from) 635 { 636 to->di_magic = be16_to_cpu(from->di_magic); 637 to->di_mode = be16_to_cpu(from->di_mode); 638 to->di_version = from ->di_version; 639 to->di_format = from->di_format; 640 to->di_onlink = be16_to_cpu(from->di_onlink); 641 to->di_uid = be32_to_cpu(from->di_uid); 642 to->di_gid = be32_to_cpu(from->di_gid); 643 to->di_nlink = be32_to_cpu(from->di_nlink); 644 to->di_projid_lo = be16_to_cpu(from->di_projid_lo); 645 to->di_projid_hi = be16_to_cpu(from->di_projid_hi); 646 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 647 to->di_flushiter = be16_to_cpu(from->di_flushiter); 648 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec); 649 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec); 650 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec); 651 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec); 652 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec); 653 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec); 654 to->di_size = be64_to_cpu(from->di_size); 655 to->di_nblocks = be64_to_cpu(from->di_nblocks); 656 to->di_extsize = be32_to_cpu(from->di_extsize); 657 to->di_nextents = be32_to_cpu(from->di_nextents); 658 to->di_anextents = be16_to_cpu(from->di_anextents); 659 to->di_forkoff = from->di_forkoff; 660 to->di_aformat = from->di_aformat; 661 to->di_dmevmask = be32_to_cpu(from->di_dmevmask); 662 to->di_dmstate = be16_to_cpu(from->di_dmstate); 663 to->di_flags = be16_to_cpu(from->di_flags); 664 to->di_gen = be32_to_cpu(from->di_gen); 665 } 666 667 void 668 xfs_dinode_to_disk( 669 xfs_dinode_t *to, 670 xfs_icdinode_t *from) 671 { 672 to->di_magic = cpu_to_be16(from->di_magic); 673 to->di_mode = cpu_to_be16(from->di_mode); 674 to->di_version = from ->di_version; 675 to->di_format = from->di_format; 676 to->di_onlink = cpu_to_be16(from->di_onlink); 677 to->di_uid = cpu_to_be32(from->di_uid); 678 to->di_gid = cpu_to_be32(from->di_gid); 679 to->di_nlink = cpu_to_be32(from->di_nlink); 680 to->di_projid_lo = cpu_to_be16(from->di_projid_lo); 681 to->di_projid_hi = cpu_to_be16(from->di_projid_hi); 682 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 683 to->di_flushiter = cpu_to_be16(from->di_flushiter); 684 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec); 685 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec); 686 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec); 687 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec); 688 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec); 689 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec); 690 to->di_size = cpu_to_be64(from->di_size); 691 to->di_nblocks = cpu_to_be64(from->di_nblocks); 692 to->di_extsize = cpu_to_be32(from->di_extsize); 693 to->di_nextents = cpu_to_be32(from->di_nextents); 694 to->di_anextents = cpu_to_be16(from->di_anextents); 695 to->di_forkoff = from->di_forkoff; 696 to->di_aformat = from->di_aformat; 697 to->di_dmevmask = cpu_to_be32(from->di_dmevmask); 698 to->di_dmstate = cpu_to_be16(from->di_dmstate); 699 to->di_flags = cpu_to_be16(from->di_flags); 700 to->di_gen = cpu_to_be32(from->di_gen); 701 } 702 703 STATIC uint 704 _xfs_dic2xflags( 705 __uint16_t di_flags) 706 { 707 uint flags = 0; 708 709 if (di_flags & XFS_DIFLAG_ANY) { 710 if (di_flags & XFS_DIFLAG_REALTIME) 711 flags |= XFS_XFLAG_REALTIME; 712 if (di_flags & XFS_DIFLAG_PREALLOC) 713 flags |= XFS_XFLAG_PREALLOC; 714 if (di_flags & XFS_DIFLAG_IMMUTABLE) 715 flags |= XFS_XFLAG_IMMUTABLE; 716 if (di_flags & XFS_DIFLAG_APPEND) 717 flags |= XFS_XFLAG_APPEND; 718 if (di_flags & XFS_DIFLAG_SYNC) 719 flags |= XFS_XFLAG_SYNC; 720 if (di_flags & XFS_DIFLAG_NOATIME) 721 flags |= XFS_XFLAG_NOATIME; 722 if (di_flags & XFS_DIFLAG_NODUMP) 723 flags |= XFS_XFLAG_NODUMP; 724 if (di_flags & XFS_DIFLAG_RTINHERIT) 725 flags |= XFS_XFLAG_RTINHERIT; 726 if (di_flags & XFS_DIFLAG_PROJINHERIT) 727 flags |= XFS_XFLAG_PROJINHERIT; 728 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 729 flags |= XFS_XFLAG_NOSYMLINKS; 730 if (di_flags & XFS_DIFLAG_EXTSIZE) 731 flags |= XFS_XFLAG_EXTSIZE; 732 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 733 flags |= XFS_XFLAG_EXTSZINHERIT; 734 if (di_flags & XFS_DIFLAG_NODEFRAG) 735 flags |= XFS_XFLAG_NODEFRAG; 736 if (di_flags & XFS_DIFLAG_FILESTREAM) 737 flags |= XFS_XFLAG_FILESTREAM; 738 } 739 740 return flags; 741 } 742 743 uint 744 xfs_ip2xflags( 745 xfs_inode_t *ip) 746 { 747 xfs_icdinode_t *dic = &ip->i_d; 748 749 return _xfs_dic2xflags(dic->di_flags) | 750 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 751 } 752 753 uint 754 xfs_dic2xflags( 755 xfs_dinode_t *dip) 756 { 757 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 758 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 759 } 760 761 /* 762 * Read the disk inode attributes into the in-core inode structure. 763 */ 764 int 765 xfs_iread( 766 xfs_mount_t *mp, 767 xfs_trans_t *tp, 768 xfs_inode_t *ip, 769 uint iget_flags) 770 { 771 xfs_buf_t *bp; 772 xfs_dinode_t *dip; 773 int error; 774 775 /* 776 * Fill in the location information in the in-core inode. 777 */ 778 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags); 779 if (error) 780 return error; 781 782 /* 783 * Get pointers to the on-disk inode and the buffer containing it. 784 */ 785 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, 786 XBF_LOCK, iget_flags); 787 if (error) 788 return error; 789 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 790 791 /* 792 * If we got something that isn't an inode it means someone 793 * (nfs or dmi) has a stale handle. 794 */ 795 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) { 796 #ifdef DEBUG 797 xfs_alert(mp, 798 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)", 799 __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC); 800 #endif /* DEBUG */ 801 error = XFS_ERROR(EINVAL); 802 goto out_brelse; 803 } 804 805 /* 806 * If the on-disk inode is already linked to a directory 807 * entry, copy all of the inode into the in-core inode. 808 * xfs_iformat() handles copying in the inode format 809 * specific information. 810 * Otherwise, just get the truly permanent information. 811 */ 812 if (dip->di_mode) { 813 xfs_dinode_from_disk(&ip->i_d, dip); 814 error = xfs_iformat(ip, dip); 815 if (error) { 816 #ifdef DEBUG 817 xfs_alert(mp, "%s: xfs_iformat() returned error %d", 818 __func__, error); 819 #endif /* DEBUG */ 820 goto out_brelse; 821 } 822 } else { 823 ip->i_d.di_magic = be16_to_cpu(dip->di_magic); 824 ip->i_d.di_version = dip->di_version; 825 ip->i_d.di_gen = be32_to_cpu(dip->di_gen); 826 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter); 827 /* 828 * Make sure to pull in the mode here as well in 829 * case the inode is released without being used. 830 * This ensures that xfs_inactive() will see that 831 * the inode is already free and not try to mess 832 * with the uninitialized part of it. 833 */ 834 ip->i_d.di_mode = 0; 835 } 836 837 /* 838 * The inode format changed when we moved the link count and 839 * made it 32 bits long. If this is an old format inode, 840 * convert it in memory to look like a new one. If it gets 841 * flushed to disk we will convert back before flushing or 842 * logging it. We zero out the new projid field and the old link 843 * count field. We'll handle clearing the pad field (the remains 844 * of the old uuid field) when we actually convert the inode to 845 * the new format. We don't change the version number so that we 846 * can distinguish this from a real new format inode. 847 */ 848 if (ip->i_d.di_version == 1) { 849 ip->i_d.di_nlink = ip->i_d.di_onlink; 850 ip->i_d.di_onlink = 0; 851 xfs_set_projid(ip, 0); 852 } 853 854 ip->i_delayed_blks = 0; 855 856 /* 857 * Mark the buffer containing the inode as something to keep 858 * around for a while. This helps to keep recently accessed 859 * meta-data in-core longer. 860 */ 861 xfs_buf_set_ref(bp, XFS_INO_REF); 862 863 /* 864 * Use xfs_trans_brelse() to release the buffer containing the 865 * on-disk inode, because it was acquired with xfs_trans_read_buf() 866 * in xfs_itobp() above. If tp is NULL, this is just a normal 867 * brelse(). If we're within a transaction, then xfs_trans_brelse() 868 * will only release the buffer if it is not dirty within the 869 * transaction. It will be OK to release the buffer in this case, 870 * because inodes on disk are never destroyed and we will be 871 * locking the new in-core inode before putting it in the hash 872 * table where other processes can find it. Thus we don't have 873 * to worry about the inode being changed just because we released 874 * the buffer. 875 */ 876 out_brelse: 877 xfs_trans_brelse(tp, bp); 878 return error; 879 } 880 881 /* 882 * Read in extents from a btree-format inode. 883 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 884 */ 885 int 886 xfs_iread_extents( 887 xfs_trans_t *tp, 888 xfs_inode_t *ip, 889 int whichfork) 890 { 891 int error; 892 xfs_ifork_t *ifp; 893 xfs_extnum_t nextents; 894 895 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 896 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 897 ip->i_mount); 898 return XFS_ERROR(EFSCORRUPTED); 899 } 900 nextents = XFS_IFORK_NEXTENTS(ip, whichfork); 901 ifp = XFS_IFORK_PTR(ip, whichfork); 902 903 /* 904 * We know that the size is valid (it's checked in iformat_btree) 905 */ 906 ifp->if_bytes = ifp->if_real_bytes = 0; 907 ifp->if_flags |= XFS_IFEXTENTS; 908 xfs_iext_add(ifp, 0, nextents); 909 error = xfs_bmap_read_extents(tp, ip, whichfork); 910 if (error) { 911 xfs_iext_destroy(ifp); 912 ifp->if_flags &= ~XFS_IFEXTENTS; 913 return error; 914 } 915 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip)); 916 return 0; 917 } 918 919 /* 920 * Allocate an inode on disk and return a copy of its in-core version. 921 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 922 * appropriately within the inode. The uid and gid for the inode are 923 * set according to the contents of the given cred structure. 924 * 925 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 926 * has a free inode available, call xfs_iget() 927 * to obtain the in-core version of the allocated inode. Finally, 928 * fill in the inode and log its initial contents. In this case, 929 * ialloc_context would be set to NULL and call_again set to false. 930 * 931 * If xfs_dialloc() does not have an available inode, 932 * it will replenish its supply by doing an allocation. Since we can 933 * only do one allocation within a transaction without deadlocks, we 934 * must commit the current transaction before returning the inode itself. 935 * In this case, therefore, we will set call_again to true and return. 936 * The caller should then commit the current transaction, start a new 937 * transaction, and call xfs_ialloc() again to actually get the inode. 938 * 939 * To ensure that some other process does not grab the inode that 940 * was allocated during the first call to xfs_ialloc(), this routine 941 * also returns the [locked] bp pointing to the head of the freelist 942 * as ialloc_context. The caller should hold this buffer across 943 * the commit and pass it back into this routine on the second call. 944 * 945 * If we are allocating quota inodes, we do not have a parent inode 946 * to attach to or associate with (i.e. pip == NULL) because they 947 * are not linked into the directory structure - they are attached 948 * directly to the superblock - and so have no parent. 949 */ 950 int 951 xfs_ialloc( 952 xfs_trans_t *tp, 953 xfs_inode_t *pip, 954 umode_t mode, 955 xfs_nlink_t nlink, 956 xfs_dev_t rdev, 957 prid_t prid, 958 int okalloc, 959 xfs_buf_t **ialloc_context, 960 boolean_t *call_again, 961 xfs_inode_t **ipp) 962 { 963 xfs_ino_t ino; 964 xfs_inode_t *ip; 965 uint flags; 966 int error; 967 timespec_t tv; 968 int filestreams = 0; 969 970 /* 971 * Call the space management code to pick 972 * the on-disk inode to be allocated. 973 */ 974 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 975 ialloc_context, call_again, &ino); 976 if (error) 977 return error; 978 if (*call_again || ino == NULLFSINO) { 979 *ipp = NULL; 980 return 0; 981 } 982 ASSERT(*ialloc_context == NULL); 983 984 /* 985 * Get the in-core inode with the lock held exclusively. 986 * This is because we're setting fields here we need 987 * to prevent others from looking at until we're done. 988 */ 989 error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE, 990 XFS_ILOCK_EXCL, &ip); 991 if (error) 992 return error; 993 ASSERT(ip != NULL); 994 995 ip->i_d.di_mode = mode; 996 ip->i_d.di_onlink = 0; 997 ip->i_d.di_nlink = nlink; 998 ASSERT(ip->i_d.di_nlink == nlink); 999 ip->i_d.di_uid = current_fsuid(); 1000 ip->i_d.di_gid = current_fsgid(); 1001 xfs_set_projid(ip, prid); 1002 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1003 1004 /* 1005 * If the superblock version is up to where we support new format 1006 * inodes and this is currently an old format inode, then change 1007 * the inode version number now. This way we only do the conversion 1008 * here rather than here and in the flush/logging code. 1009 */ 1010 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) && 1011 ip->i_d.di_version == 1) { 1012 ip->i_d.di_version = 2; 1013 /* 1014 * We've already zeroed the old link count, the projid field, 1015 * and the pad field. 1016 */ 1017 } 1018 1019 /* 1020 * Project ids won't be stored on disk if we are using a version 1 inode. 1021 */ 1022 if ((prid != 0) && (ip->i_d.di_version == 1)) 1023 xfs_bump_ino_vers2(tp, ip); 1024 1025 if (pip && XFS_INHERIT_GID(pip)) { 1026 ip->i_d.di_gid = pip->i_d.di_gid; 1027 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) { 1028 ip->i_d.di_mode |= S_ISGID; 1029 } 1030 } 1031 1032 /* 1033 * If the group ID of the new file does not match the effective group 1034 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1035 * (and only if the irix_sgid_inherit compatibility variable is set). 1036 */ 1037 if ((irix_sgid_inherit) && 1038 (ip->i_d.di_mode & S_ISGID) && 1039 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1040 ip->i_d.di_mode &= ~S_ISGID; 1041 } 1042 1043 ip->i_d.di_size = 0; 1044 ip->i_d.di_nextents = 0; 1045 ASSERT(ip->i_d.di_nblocks == 0); 1046 1047 nanotime(&tv); 1048 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 1049 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 1050 ip->i_d.di_atime = ip->i_d.di_mtime; 1051 ip->i_d.di_ctime = ip->i_d.di_mtime; 1052 1053 /* 1054 * di_gen will have been taken care of in xfs_iread. 1055 */ 1056 ip->i_d.di_extsize = 0; 1057 ip->i_d.di_dmevmask = 0; 1058 ip->i_d.di_dmstate = 0; 1059 ip->i_d.di_flags = 0; 1060 flags = XFS_ILOG_CORE; 1061 switch (mode & S_IFMT) { 1062 case S_IFIFO: 1063 case S_IFCHR: 1064 case S_IFBLK: 1065 case S_IFSOCK: 1066 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1067 ip->i_df.if_u2.if_rdev = rdev; 1068 ip->i_df.if_flags = 0; 1069 flags |= XFS_ILOG_DEV; 1070 break; 1071 case S_IFREG: 1072 /* 1073 * we can't set up filestreams until after the VFS inode 1074 * is set up properly. 1075 */ 1076 if (pip && xfs_inode_is_filestream(pip)) 1077 filestreams = 1; 1078 /* fall through */ 1079 case S_IFDIR: 1080 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1081 uint di_flags = 0; 1082 1083 if (S_ISDIR(mode)) { 1084 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1085 di_flags |= XFS_DIFLAG_RTINHERIT; 1086 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1087 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 1088 ip->i_d.di_extsize = pip->i_d.di_extsize; 1089 } 1090 } else if (S_ISREG(mode)) { 1091 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1092 di_flags |= XFS_DIFLAG_REALTIME; 1093 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1094 di_flags |= XFS_DIFLAG_EXTSIZE; 1095 ip->i_d.di_extsize = pip->i_d.di_extsize; 1096 } 1097 } 1098 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1099 xfs_inherit_noatime) 1100 di_flags |= XFS_DIFLAG_NOATIME; 1101 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1102 xfs_inherit_nodump) 1103 di_flags |= XFS_DIFLAG_NODUMP; 1104 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1105 xfs_inherit_sync) 1106 di_flags |= XFS_DIFLAG_SYNC; 1107 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1108 xfs_inherit_nosymlinks) 1109 di_flags |= XFS_DIFLAG_NOSYMLINKS; 1110 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1111 di_flags |= XFS_DIFLAG_PROJINHERIT; 1112 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 1113 xfs_inherit_nodefrag) 1114 di_flags |= XFS_DIFLAG_NODEFRAG; 1115 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 1116 di_flags |= XFS_DIFLAG_FILESTREAM; 1117 ip->i_d.di_flags |= di_flags; 1118 } 1119 /* FALLTHROUGH */ 1120 case S_IFLNK: 1121 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1122 ip->i_df.if_flags = XFS_IFEXTENTS; 1123 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1124 ip->i_df.if_u1.if_extents = NULL; 1125 break; 1126 default: 1127 ASSERT(0); 1128 } 1129 /* 1130 * Attribute fork settings for new inode. 1131 */ 1132 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1133 ip->i_d.di_anextents = 0; 1134 1135 /* 1136 * Log the new values stuffed into the inode. 1137 */ 1138 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1139 xfs_trans_log_inode(tp, ip, flags); 1140 1141 /* now that we have an i_mode we can setup inode ops and unlock */ 1142 xfs_setup_inode(ip); 1143 1144 /* now we have set up the vfs inode we can associate the filestream */ 1145 if (filestreams) { 1146 error = xfs_filestream_associate(pip, ip); 1147 if (error < 0) 1148 return -error; 1149 if (!error) 1150 xfs_iflags_set(ip, XFS_IFILESTREAM); 1151 } 1152 1153 *ipp = ip; 1154 return 0; 1155 } 1156 1157 /* 1158 * Free up the underlying blocks past new_size. The new size must be smaller 1159 * than the current size. This routine can be used both for the attribute and 1160 * data fork, and does not modify the inode size, which is left to the caller. 1161 * 1162 * The transaction passed to this routine must have made a permanent log 1163 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1164 * given transaction and start new ones, so make sure everything involved in 1165 * the transaction is tidy before calling here. Some transaction will be 1166 * returned to the caller to be committed. The incoming transaction must 1167 * already include the inode, and both inode locks must be held exclusively. 1168 * The inode must also be "held" within the transaction. On return the inode 1169 * will be "held" within the returned transaction. This routine does NOT 1170 * require any disk space to be reserved for it within the transaction. 1171 * 1172 * If we get an error, we must return with the inode locked and linked into the 1173 * current transaction. This keeps things simple for the higher level code, 1174 * because it always knows that the inode is locked and held in the transaction 1175 * that returns to it whether errors occur or not. We don't mark the inode 1176 * dirty on error so that transactions can be easily aborted if possible. 1177 */ 1178 int 1179 xfs_itruncate_extents( 1180 struct xfs_trans **tpp, 1181 struct xfs_inode *ip, 1182 int whichfork, 1183 xfs_fsize_t new_size) 1184 { 1185 struct xfs_mount *mp = ip->i_mount; 1186 struct xfs_trans *tp = *tpp; 1187 struct xfs_trans *ntp; 1188 xfs_bmap_free_t free_list; 1189 xfs_fsblock_t first_block; 1190 xfs_fileoff_t first_unmap_block; 1191 xfs_fileoff_t last_block; 1192 xfs_filblks_t unmap_len; 1193 int committed; 1194 int error = 0; 1195 int done = 0; 1196 1197 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); 1198 ASSERT(new_size <= XFS_ISIZE(ip)); 1199 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1200 ASSERT(ip->i_itemp != NULL); 1201 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1202 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1203 1204 trace_xfs_itruncate_extents_start(ip, new_size); 1205 1206 /* 1207 * Since it is possible for space to become allocated beyond 1208 * the end of the file (in a crash where the space is allocated 1209 * but the inode size is not yet updated), simply remove any 1210 * blocks which show up between the new EOF and the maximum 1211 * possible file size. If the first block to be removed is 1212 * beyond the maximum file size (ie it is the same as last_block), 1213 * then there is nothing to do. 1214 */ 1215 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1216 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); 1217 if (first_unmap_block == last_block) 1218 return 0; 1219 1220 ASSERT(first_unmap_block < last_block); 1221 unmap_len = last_block - first_unmap_block + 1; 1222 while (!done) { 1223 xfs_bmap_init(&free_list, &first_block); 1224 error = xfs_bunmapi(tp, ip, 1225 first_unmap_block, unmap_len, 1226 xfs_bmapi_aflag(whichfork), 1227 XFS_ITRUNC_MAX_EXTENTS, 1228 &first_block, &free_list, 1229 &done); 1230 if (error) 1231 goto out_bmap_cancel; 1232 1233 /* 1234 * Duplicate the transaction that has the permanent 1235 * reservation and commit the old transaction. 1236 */ 1237 error = xfs_bmap_finish(&tp, &free_list, &committed); 1238 if (committed) 1239 xfs_trans_ijoin(tp, ip, 0); 1240 if (error) 1241 goto out_bmap_cancel; 1242 1243 if (committed) { 1244 /* 1245 * Mark the inode dirty so it will be logged and 1246 * moved forward in the log as part of every commit. 1247 */ 1248 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1249 } 1250 1251 ntp = xfs_trans_dup(tp); 1252 error = xfs_trans_commit(tp, 0); 1253 tp = ntp; 1254 1255 xfs_trans_ijoin(tp, ip, 0); 1256 1257 if (error) 1258 goto out; 1259 1260 /* 1261 * Transaction commit worked ok so we can drop the extra ticket 1262 * reference that we gained in xfs_trans_dup() 1263 */ 1264 xfs_log_ticket_put(tp->t_ticket); 1265 error = xfs_trans_reserve(tp, 0, 1266 XFS_ITRUNCATE_LOG_RES(mp), 0, 1267 XFS_TRANS_PERM_LOG_RES, 1268 XFS_ITRUNCATE_LOG_COUNT); 1269 if (error) 1270 goto out; 1271 } 1272 1273 /* 1274 * Always re-log the inode so that our permanent transaction can keep 1275 * on rolling it forward in the log. 1276 */ 1277 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1278 1279 trace_xfs_itruncate_extents_end(ip, new_size); 1280 1281 out: 1282 *tpp = tp; 1283 return error; 1284 out_bmap_cancel: 1285 /* 1286 * If the bunmapi call encounters an error, return to the caller where 1287 * the transaction can be properly aborted. We just need to make sure 1288 * we're not holding any resources that we were not when we came in. 1289 */ 1290 xfs_bmap_cancel(&free_list); 1291 goto out; 1292 } 1293 1294 /* 1295 * This is called when the inode's link count goes to 0. 1296 * We place the on-disk inode on a list in the AGI. It 1297 * will be pulled from this list when the inode is freed. 1298 */ 1299 int 1300 xfs_iunlink( 1301 xfs_trans_t *tp, 1302 xfs_inode_t *ip) 1303 { 1304 xfs_mount_t *mp; 1305 xfs_agi_t *agi; 1306 xfs_dinode_t *dip; 1307 xfs_buf_t *agibp; 1308 xfs_buf_t *ibp; 1309 xfs_agino_t agino; 1310 short bucket_index; 1311 int offset; 1312 int error; 1313 1314 ASSERT(ip->i_d.di_nlink == 0); 1315 ASSERT(ip->i_d.di_mode != 0); 1316 1317 mp = tp->t_mountp; 1318 1319 /* 1320 * Get the agi buffer first. It ensures lock ordering 1321 * on the list. 1322 */ 1323 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1324 if (error) 1325 return error; 1326 agi = XFS_BUF_TO_AGI(agibp); 1327 1328 /* 1329 * Get the index into the agi hash table for the 1330 * list this inode will go on. 1331 */ 1332 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1333 ASSERT(agino != 0); 1334 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1335 ASSERT(agi->agi_unlinked[bucket_index]); 1336 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1337 1338 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 1339 /* 1340 * There is already another inode in the bucket we need 1341 * to add ourselves to. Add us at the front of the list. 1342 * Here we put the head pointer into our next pointer, 1343 * and then we fall through to point the head at us. 1344 */ 1345 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK); 1346 if (error) 1347 return error; 1348 1349 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 1350 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1351 offset = ip->i_imap.im_boffset + 1352 offsetof(xfs_dinode_t, di_next_unlinked); 1353 xfs_trans_inode_buf(tp, ibp); 1354 xfs_trans_log_buf(tp, ibp, offset, 1355 (offset + sizeof(xfs_agino_t) - 1)); 1356 xfs_inobp_check(mp, ibp); 1357 } 1358 1359 /* 1360 * Point the bucket head pointer at the inode being inserted. 1361 */ 1362 ASSERT(agino != 0); 1363 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1364 offset = offsetof(xfs_agi_t, agi_unlinked) + 1365 (sizeof(xfs_agino_t) * bucket_index); 1366 xfs_trans_log_buf(tp, agibp, offset, 1367 (offset + sizeof(xfs_agino_t) - 1)); 1368 return 0; 1369 } 1370 1371 /* 1372 * Pull the on-disk inode from the AGI unlinked list. 1373 */ 1374 STATIC int 1375 xfs_iunlink_remove( 1376 xfs_trans_t *tp, 1377 xfs_inode_t *ip) 1378 { 1379 xfs_ino_t next_ino; 1380 xfs_mount_t *mp; 1381 xfs_agi_t *agi; 1382 xfs_dinode_t *dip; 1383 xfs_buf_t *agibp; 1384 xfs_buf_t *ibp; 1385 xfs_agnumber_t agno; 1386 xfs_agino_t agino; 1387 xfs_agino_t next_agino; 1388 xfs_buf_t *last_ibp; 1389 xfs_dinode_t *last_dip = NULL; 1390 short bucket_index; 1391 int offset, last_offset = 0; 1392 int error; 1393 1394 mp = tp->t_mountp; 1395 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1396 1397 /* 1398 * Get the agi buffer first. It ensures lock ordering 1399 * on the list. 1400 */ 1401 error = xfs_read_agi(mp, tp, agno, &agibp); 1402 if (error) 1403 return error; 1404 1405 agi = XFS_BUF_TO_AGI(agibp); 1406 1407 /* 1408 * Get the index into the agi hash table for the 1409 * list this inode will go on. 1410 */ 1411 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1412 ASSERT(agino != 0); 1413 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1414 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 1415 ASSERT(agi->agi_unlinked[bucket_index]); 1416 1417 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 1418 /* 1419 * We're at the head of the list. Get the inode's 1420 * on-disk buffer to see if there is anyone after us 1421 * on the list. Only modify our next pointer if it 1422 * is not already NULLAGINO. This saves us the overhead 1423 * of dealing with the buffer when there is no need to 1424 * change it. 1425 */ 1426 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK); 1427 if (error) { 1428 xfs_warn(mp, "%s: xfs_itobp() returned error %d.", 1429 __func__, error); 1430 return error; 1431 } 1432 next_agino = be32_to_cpu(dip->di_next_unlinked); 1433 ASSERT(next_agino != 0); 1434 if (next_agino != NULLAGINO) { 1435 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1436 offset = ip->i_imap.im_boffset + 1437 offsetof(xfs_dinode_t, di_next_unlinked); 1438 xfs_trans_inode_buf(tp, ibp); 1439 xfs_trans_log_buf(tp, ibp, offset, 1440 (offset + sizeof(xfs_agino_t) - 1)); 1441 xfs_inobp_check(mp, ibp); 1442 } else { 1443 xfs_trans_brelse(tp, ibp); 1444 } 1445 /* 1446 * Point the bucket head pointer at the next inode. 1447 */ 1448 ASSERT(next_agino != 0); 1449 ASSERT(next_agino != agino); 1450 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 1451 offset = offsetof(xfs_agi_t, agi_unlinked) + 1452 (sizeof(xfs_agino_t) * bucket_index); 1453 xfs_trans_log_buf(tp, agibp, offset, 1454 (offset + sizeof(xfs_agino_t) - 1)); 1455 } else { 1456 /* 1457 * We need to search the list for the inode being freed. 1458 */ 1459 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1460 last_ibp = NULL; 1461 while (next_agino != agino) { 1462 /* 1463 * If the last inode wasn't the one pointing to 1464 * us, then release its buffer since we're not 1465 * going to do anything with it. 1466 */ 1467 if (last_ibp != NULL) { 1468 xfs_trans_brelse(tp, last_ibp); 1469 } 1470 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 1471 error = xfs_inotobp(mp, tp, next_ino, &last_dip, 1472 &last_ibp, &last_offset, 0); 1473 if (error) { 1474 xfs_warn(mp, 1475 "%s: xfs_inotobp() returned error %d.", 1476 __func__, error); 1477 return error; 1478 } 1479 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 1480 ASSERT(next_agino != NULLAGINO); 1481 ASSERT(next_agino != 0); 1482 } 1483 /* 1484 * Now last_ibp points to the buffer previous to us on 1485 * the unlinked list. Pull us from the list. 1486 */ 1487 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK); 1488 if (error) { 1489 xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.", 1490 __func__, error); 1491 return error; 1492 } 1493 next_agino = be32_to_cpu(dip->di_next_unlinked); 1494 ASSERT(next_agino != 0); 1495 ASSERT(next_agino != agino); 1496 if (next_agino != NULLAGINO) { 1497 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1498 offset = ip->i_imap.im_boffset + 1499 offsetof(xfs_dinode_t, di_next_unlinked); 1500 xfs_trans_inode_buf(tp, ibp); 1501 xfs_trans_log_buf(tp, ibp, offset, 1502 (offset + sizeof(xfs_agino_t) - 1)); 1503 xfs_inobp_check(mp, ibp); 1504 } else { 1505 xfs_trans_brelse(tp, ibp); 1506 } 1507 /* 1508 * Point the previous inode on the list to the next inode. 1509 */ 1510 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 1511 ASSERT(next_agino != 0); 1512 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 1513 xfs_trans_inode_buf(tp, last_ibp); 1514 xfs_trans_log_buf(tp, last_ibp, offset, 1515 (offset + sizeof(xfs_agino_t) - 1)); 1516 xfs_inobp_check(mp, last_ibp); 1517 } 1518 return 0; 1519 } 1520 1521 /* 1522 * A big issue when freeing the inode cluster is is that we _cannot_ skip any 1523 * inodes that are in memory - they all must be marked stale and attached to 1524 * the cluster buffer. 1525 */ 1526 STATIC int 1527 xfs_ifree_cluster( 1528 xfs_inode_t *free_ip, 1529 xfs_trans_t *tp, 1530 xfs_ino_t inum) 1531 { 1532 xfs_mount_t *mp = free_ip->i_mount; 1533 int blks_per_cluster; 1534 int nbufs; 1535 int ninodes; 1536 int i, j; 1537 xfs_daddr_t blkno; 1538 xfs_buf_t *bp; 1539 xfs_inode_t *ip; 1540 xfs_inode_log_item_t *iip; 1541 xfs_log_item_t *lip; 1542 struct xfs_perag *pag; 1543 1544 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 1545 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 1546 blks_per_cluster = 1; 1547 ninodes = mp->m_sb.sb_inopblock; 1548 nbufs = XFS_IALLOC_BLOCKS(mp); 1549 } else { 1550 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 1551 mp->m_sb.sb_blocksize; 1552 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 1553 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 1554 } 1555 1556 for (j = 0; j < nbufs; j++, inum += ninodes) { 1557 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 1558 XFS_INO_TO_AGBNO(mp, inum)); 1559 1560 /* 1561 * We obtain and lock the backing buffer first in the process 1562 * here, as we have to ensure that any dirty inode that we 1563 * can't get the flush lock on is attached to the buffer. 1564 * If we scan the in-memory inodes first, then buffer IO can 1565 * complete before we get a lock on it, and hence we may fail 1566 * to mark all the active inodes on the buffer stale. 1567 */ 1568 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 1569 mp->m_bsize * blks_per_cluster, 1570 XBF_LOCK); 1571 1572 if (!bp) 1573 return ENOMEM; 1574 /* 1575 * Walk the inodes already attached to the buffer and mark them 1576 * stale. These will all have the flush locks held, so an 1577 * in-memory inode walk can't lock them. By marking them all 1578 * stale first, we will not attempt to lock them in the loop 1579 * below as the XFS_ISTALE flag will be set. 1580 */ 1581 lip = bp->b_fspriv; 1582 while (lip) { 1583 if (lip->li_type == XFS_LI_INODE) { 1584 iip = (xfs_inode_log_item_t *)lip; 1585 ASSERT(iip->ili_logged == 1); 1586 lip->li_cb = xfs_istale_done; 1587 xfs_trans_ail_copy_lsn(mp->m_ail, 1588 &iip->ili_flush_lsn, 1589 &iip->ili_item.li_lsn); 1590 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 1591 } 1592 lip = lip->li_bio_list; 1593 } 1594 1595 1596 /* 1597 * For each inode in memory attempt to add it to the inode 1598 * buffer and set it up for being staled on buffer IO 1599 * completion. This is safe as we've locked out tail pushing 1600 * and flushing by locking the buffer. 1601 * 1602 * We have already marked every inode that was part of a 1603 * transaction stale above, which means there is no point in 1604 * even trying to lock them. 1605 */ 1606 for (i = 0; i < ninodes; i++) { 1607 retry: 1608 rcu_read_lock(); 1609 ip = radix_tree_lookup(&pag->pag_ici_root, 1610 XFS_INO_TO_AGINO(mp, (inum + i))); 1611 1612 /* Inode not in memory, nothing to do */ 1613 if (!ip) { 1614 rcu_read_unlock(); 1615 continue; 1616 } 1617 1618 /* 1619 * because this is an RCU protected lookup, we could 1620 * find a recently freed or even reallocated inode 1621 * during the lookup. We need to check under the 1622 * i_flags_lock for a valid inode here. Skip it if it 1623 * is not valid, the wrong inode or stale. 1624 */ 1625 spin_lock(&ip->i_flags_lock); 1626 if (ip->i_ino != inum + i || 1627 __xfs_iflags_test(ip, XFS_ISTALE)) { 1628 spin_unlock(&ip->i_flags_lock); 1629 rcu_read_unlock(); 1630 continue; 1631 } 1632 spin_unlock(&ip->i_flags_lock); 1633 1634 /* 1635 * Don't try to lock/unlock the current inode, but we 1636 * _cannot_ skip the other inodes that we did not find 1637 * in the list attached to the buffer and are not 1638 * already marked stale. If we can't lock it, back off 1639 * and retry. 1640 */ 1641 if (ip != free_ip && 1642 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 1643 rcu_read_unlock(); 1644 delay(1); 1645 goto retry; 1646 } 1647 rcu_read_unlock(); 1648 1649 xfs_iflock(ip); 1650 xfs_iflags_set(ip, XFS_ISTALE); 1651 1652 /* 1653 * we don't need to attach clean inodes or those only 1654 * with unlogged changes (which we throw away, anyway). 1655 */ 1656 iip = ip->i_itemp; 1657 if (!iip || xfs_inode_clean(ip)) { 1658 ASSERT(ip != free_ip); 1659 ip->i_update_core = 0; 1660 xfs_ifunlock(ip); 1661 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1662 continue; 1663 } 1664 1665 iip->ili_last_fields = iip->ili_format.ilf_fields; 1666 iip->ili_format.ilf_fields = 0; 1667 iip->ili_logged = 1; 1668 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 1669 &iip->ili_item.li_lsn); 1670 1671 xfs_buf_attach_iodone(bp, xfs_istale_done, 1672 &iip->ili_item); 1673 1674 if (ip != free_ip) 1675 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1676 } 1677 1678 xfs_trans_stale_inode_buf(tp, bp); 1679 xfs_trans_binval(tp, bp); 1680 } 1681 1682 xfs_perag_put(pag); 1683 return 0; 1684 } 1685 1686 /* 1687 * This is called to return an inode to the inode free list. 1688 * The inode should already be truncated to 0 length and have 1689 * no pages associated with it. This routine also assumes that 1690 * the inode is already a part of the transaction. 1691 * 1692 * The on-disk copy of the inode will have been added to the list 1693 * of unlinked inodes in the AGI. We need to remove the inode from 1694 * that list atomically with respect to freeing it here. 1695 */ 1696 int 1697 xfs_ifree( 1698 xfs_trans_t *tp, 1699 xfs_inode_t *ip, 1700 xfs_bmap_free_t *flist) 1701 { 1702 int error; 1703 int delete; 1704 xfs_ino_t first_ino; 1705 xfs_dinode_t *dip; 1706 xfs_buf_t *ibp; 1707 1708 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1709 ASSERT(ip->i_d.di_nlink == 0); 1710 ASSERT(ip->i_d.di_nextents == 0); 1711 ASSERT(ip->i_d.di_anextents == 0); 1712 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode)); 1713 ASSERT(ip->i_d.di_nblocks == 0); 1714 1715 /* 1716 * Pull the on-disk inode from the AGI unlinked list. 1717 */ 1718 error = xfs_iunlink_remove(tp, ip); 1719 if (error != 0) { 1720 return error; 1721 } 1722 1723 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 1724 if (error != 0) { 1725 return error; 1726 } 1727 ip->i_d.di_mode = 0; /* mark incore inode as free */ 1728 ip->i_d.di_flags = 0; 1729 ip->i_d.di_dmevmask = 0; 1730 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 1731 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1732 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1733 /* 1734 * Bump the generation count so no one will be confused 1735 * by reincarnations of this inode. 1736 */ 1737 ip->i_d.di_gen++; 1738 1739 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1740 1741 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK); 1742 if (error) 1743 return error; 1744 1745 /* 1746 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat 1747 * from picking up this inode when it is reclaimed (its incore state 1748 * initialzed but not flushed to disk yet). The in-core di_mode is 1749 * already cleared and a corresponding transaction logged. 1750 * The hack here just synchronizes the in-core to on-disk 1751 * di_mode value in advance before the actual inode sync to disk. 1752 * This is OK because the inode is already unlinked and would never 1753 * change its di_mode again for this inode generation. 1754 * This is a temporary hack that would require a proper fix 1755 * in the future. 1756 */ 1757 dip->di_mode = 0; 1758 1759 if (delete) { 1760 error = xfs_ifree_cluster(ip, tp, first_ino); 1761 } 1762 1763 return error; 1764 } 1765 1766 /* 1767 * Reallocate the space for if_broot based on the number of records 1768 * being added or deleted as indicated in rec_diff. Move the records 1769 * and pointers in if_broot to fit the new size. When shrinking this 1770 * will eliminate holes between the records and pointers created by 1771 * the caller. When growing this will create holes to be filled in 1772 * by the caller. 1773 * 1774 * The caller must not request to add more records than would fit in 1775 * the on-disk inode root. If the if_broot is currently NULL, then 1776 * if we adding records one will be allocated. The caller must also 1777 * not request that the number of records go below zero, although 1778 * it can go to zero. 1779 * 1780 * ip -- the inode whose if_broot area is changing 1781 * ext_diff -- the change in the number of records, positive or negative, 1782 * requested for the if_broot array. 1783 */ 1784 void 1785 xfs_iroot_realloc( 1786 xfs_inode_t *ip, 1787 int rec_diff, 1788 int whichfork) 1789 { 1790 struct xfs_mount *mp = ip->i_mount; 1791 int cur_max; 1792 xfs_ifork_t *ifp; 1793 struct xfs_btree_block *new_broot; 1794 int new_max; 1795 size_t new_size; 1796 char *np; 1797 char *op; 1798 1799 /* 1800 * Handle the degenerate case quietly. 1801 */ 1802 if (rec_diff == 0) { 1803 return; 1804 } 1805 1806 ifp = XFS_IFORK_PTR(ip, whichfork); 1807 if (rec_diff > 0) { 1808 /* 1809 * If there wasn't any memory allocated before, just 1810 * allocate it now and get out. 1811 */ 1812 if (ifp->if_broot_bytes == 0) { 1813 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); 1814 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 1815 ifp->if_broot_bytes = (int)new_size; 1816 return; 1817 } 1818 1819 /* 1820 * If there is already an existing if_broot, then we need 1821 * to realloc() it and shift the pointers to their new 1822 * location. The records don't change location because 1823 * they are kept butted up against the btree block header. 1824 */ 1825 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 1826 new_max = cur_max + rec_diff; 1827 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 1828 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, 1829 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ 1830 KM_SLEEP | KM_NOFS); 1831 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 1832 ifp->if_broot_bytes); 1833 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 1834 (int)new_size); 1835 ifp->if_broot_bytes = (int)new_size; 1836 ASSERT(ifp->if_broot_bytes <= 1837 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 1838 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 1839 return; 1840 } 1841 1842 /* 1843 * rec_diff is less than 0. In this case, we are shrinking the 1844 * if_broot buffer. It must already exist. If we go to zero 1845 * records, just get rid of the root and clear the status bit. 1846 */ 1847 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 1848 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 1849 new_max = cur_max + rec_diff; 1850 ASSERT(new_max >= 0); 1851 if (new_max > 0) 1852 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 1853 else 1854 new_size = 0; 1855 if (new_size > 0) { 1856 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 1857 /* 1858 * First copy over the btree block header. 1859 */ 1860 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN); 1861 } else { 1862 new_broot = NULL; 1863 ifp->if_flags &= ~XFS_IFBROOT; 1864 } 1865 1866 /* 1867 * Only copy the records and pointers if there are any. 1868 */ 1869 if (new_max > 0) { 1870 /* 1871 * First copy the records. 1872 */ 1873 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 1874 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 1875 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 1876 1877 /* 1878 * Then copy the pointers. 1879 */ 1880 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 1881 ifp->if_broot_bytes); 1882 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 1883 (int)new_size); 1884 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 1885 } 1886 kmem_free(ifp->if_broot); 1887 ifp->if_broot = new_broot; 1888 ifp->if_broot_bytes = (int)new_size; 1889 ASSERT(ifp->if_broot_bytes <= 1890 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 1891 return; 1892 } 1893 1894 1895 /* 1896 * This is called when the amount of space needed for if_data 1897 * is increased or decreased. The change in size is indicated by 1898 * the number of bytes that need to be added or deleted in the 1899 * byte_diff parameter. 1900 * 1901 * If the amount of space needed has decreased below the size of the 1902 * inline buffer, then switch to using the inline buffer. Otherwise, 1903 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 1904 * to what is needed. 1905 * 1906 * ip -- the inode whose if_data area is changing 1907 * byte_diff -- the change in the number of bytes, positive or negative, 1908 * requested for the if_data array. 1909 */ 1910 void 1911 xfs_idata_realloc( 1912 xfs_inode_t *ip, 1913 int byte_diff, 1914 int whichfork) 1915 { 1916 xfs_ifork_t *ifp; 1917 int new_size; 1918 int real_size; 1919 1920 if (byte_diff == 0) { 1921 return; 1922 } 1923 1924 ifp = XFS_IFORK_PTR(ip, whichfork); 1925 new_size = (int)ifp->if_bytes + byte_diff; 1926 ASSERT(new_size >= 0); 1927 1928 if (new_size == 0) { 1929 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 1930 kmem_free(ifp->if_u1.if_data); 1931 } 1932 ifp->if_u1.if_data = NULL; 1933 real_size = 0; 1934 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 1935 /* 1936 * If the valid extents/data can fit in if_inline_ext/data, 1937 * copy them from the malloc'd vector and free it. 1938 */ 1939 if (ifp->if_u1.if_data == NULL) { 1940 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 1941 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 1942 ASSERT(ifp->if_real_bytes != 0); 1943 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 1944 new_size); 1945 kmem_free(ifp->if_u1.if_data); 1946 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 1947 } 1948 real_size = 0; 1949 } else { 1950 /* 1951 * Stuck with malloc/realloc. 1952 * For inline data, the underlying buffer must be 1953 * a multiple of 4 bytes in size so that it can be 1954 * logged and stay on word boundaries. We enforce 1955 * that here. 1956 */ 1957 real_size = roundup(new_size, 4); 1958 if (ifp->if_u1.if_data == NULL) { 1959 ASSERT(ifp->if_real_bytes == 0); 1960 ifp->if_u1.if_data = kmem_alloc(real_size, 1961 KM_SLEEP | KM_NOFS); 1962 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 1963 /* 1964 * Only do the realloc if the underlying size 1965 * is really changing. 1966 */ 1967 if (ifp->if_real_bytes != real_size) { 1968 ifp->if_u1.if_data = 1969 kmem_realloc(ifp->if_u1.if_data, 1970 real_size, 1971 ifp->if_real_bytes, 1972 KM_SLEEP | KM_NOFS); 1973 } 1974 } else { 1975 ASSERT(ifp->if_real_bytes == 0); 1976 ifp->if_u1.if_data = kmem_alloc(real_size, 1977 KM_SLEEP | KM_NOFS); 1978 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 1979 ifp->if_bytes); 1980 } 1981 } 1982 ifp->if_real_bytes = real_size; 1983 ifp->if_bytes = new_size; 1984 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 1985 } 1986 1987 void 1988 xfs_idestroy_fork( 1989 xfs_inode_t *ip, 1990 int whichfork) 1991 { 1992 xfs_ifork_t *ifp; 1993 1994 ifp = XFS_IFORK_PTR(ip, whichfork); 1995 if (ifp->if_broot != NULL) { 1996 kmem_free(ifp->if_broot); 1997 ifp->if_broot = NULL; 1998 } 1999 2000 /* 2001 * If the format is local, then we can't have an extents 2002 * array so just look for an inline data array. If we're 2003 * not local then we may or may not have an extents list, 2004 * so check and free it up if we do. 2005 */ 2006 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2007 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2008 (ifp->if_u1.if_data != NULL)) { 2009 ASSERT(ifp->if_real_bytes != 0); 2010 kmem_free(ifp->if_u1.if_data); 2011 ifp->if_u1.if_data = NULL; 2012 ifp->if_real_bytes = 0; 2013 } 2014 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2015 ((ifp->if_flags & XFS_IFEXTIREC) || 2016 ((ifp->if_u1.if_extents != NULL) && 2017 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { 2018 ASSERT(ifp->if_real_bytes != 0); 2019 xfs_iext_destroy(ifp); 2020 } 2021 ASSERT(ifp->if_u1.if_extents == NULL || 2022 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2023 ASSERT(ifp->if_real_bytes == 0); 2024 if (whichfork == XFS_ATTR_FORK) { 2025 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2026 ip->i_afp = NULL; 2027 } 2028 } 2029 2030 /* 2031 * This is called to unpin an inode. The caller must have the inode locked 2032 * in at least shared mode so that the buffer cannot be subsequently pinned 2033 * once someone is waiting for it to be unpinned. 2034 */ 2035 static void 2036 xfs_iunpin( 2037 struct xfs_inode *ip) 2038 { 2039 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2040 2041 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2042 2043 /* Give the log a push to start the unpinning I/O */ 2044 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2045 2046 } 2047 2048 static void 2049 __xfs_iunpin_wait( 2050 struct xfs_inode *ip) 2051 { 2052 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2053 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2054 2055 xfs_iunpin(ip); 2056 2057 do { 2058 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2059 if (xfs_ipincount(ip)) 2060 io_schedule(); 2061 } while (xfs_ipincount(ip)); 2062 finish_wait(wq, &wait.wait); 2063 } 2064 2065 void 2066 xfs_iunpin_wait( 2067 struct xfs_inode *ip) 2068 { 2069 if (xfs_ipincount(ip)) 2070 __xfs_iunpin_wait(ip); 2071 } 2072 2073 /* 2074 * xfs_iextents_copy() 2075 * 2076 * This is called to copy the REAL extents (as opposed to the delayed 2077 * allocation extents) from the inode into the given buffer. It 2078 * returns the number of bytes copied into the buffer. 2079 * 2080 * If there are no delayed allocation extents, then we can just 2081 * memcpy() the extents into the buffer. Otherwise, we need to 2082 * examine each extent in turn and skip those which are delayed. 2083 */ 2084 int 2085 xfs_iextents_copy( 2086 xfs_inode_t *ip, 2087 xfs_bmbt_rec_t *dp, 2088 int whichfork) 2089 { 2090 int copied; 2091 int i; 2092 xfs_ifork_t *ifp; 2093 int nrecs; 2094 xfs_fsblock_t start_block; 2095 2096 ifp = XFS_IFORK_PTR(ip, whichfork); 2097 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2098 ASSERT(ifp->if_bytes > 0); 2099 2100 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2101 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork); 2102 ASSERT(nrecs > 0); 2103 2104 /* 2105 * There are some delayed allocation extents in the 2106 * inode, so copy the extents one at a time and skip 2107 * the delayed ones. There must be at least one 2108 * non-delayed extent. 2109 */ 2110 copied = 0; 2111 for (i = 0; i < nrecs; i++) { 2112 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 2113 start_block = xfs_bmbt_get_startblock(ep); 2114 if (isnullstartblock(start_block)) { 2115 /* 2116 * It's a delayed allocation extent, so skip it. 2117 */ 2118 continue; 2119 } 2120 2121 /* Translate to on disk format */ 2122 put_unaligned(cpu_to_be64(ep->l0), &dp->l0); 2123 put_unaligned(cpu_to_be64(ep->l1), &dp->l1); 2124 dp++; 2125 copied++; 2126 } 2127 ASSERT(copied != 0); 2128 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip)); 2129 2130 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2131 } 2132 2133 /* 2134 * Each of the following cases stores data into the same region 2135 * of the on-disk inode, so only one of them can be valid at 2136 * any given time. While it is possible to have conflicting formats 2137 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2138 * in EXTENTS format, this can only happen when the fork has 2139 * changed formats after being modified but before being flushed. 2140 * In these cases, the format always takes precedence, because the 2141 * format indicates the current state of the fork. 2142 */ 2143 /*ARGSUSED*/ 2144 STATIC void 2145 xfs_iflush_fork( 2146 xfs_inode_t *ip, 2147 xfs_dinode_t *dip, 2148 xfs_inode_log_item_t *iip, 2149 int whichfork, 2150 xfs_buf_t *bp) 2151 { 2152 char *cp; 2153 xfs_ifork_t *ifp; 2154 xfs_mount_t *mp; 2155 #ifdef XFS_TRANS_DEBUG 2156 int first; 2157 #endif 2158 static const short brootflag[2] = 2159 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 2160 static const short dataflag[2] = 2161 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 2162 static const short extflag[2] = 2163 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 2164 2165 if (!iip) 2166 return; 2167 ifp = XFS_IFORK_PTR(ip, whichfork); 2168 /* 2169 * This can happen if we gave up in iformat in an error path, 2170 * for the attribute fork. 2171 */ 2172 if (!ifp) { 2173 ASSERT(whichfork == XFS_ATTR_FORK); 2174 return; 2175 } 2176 cp = XFS_DFORK_PTR(dip, whichfork); 2177 mp = ip->i_mount; 2178 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 2179 case XFS_DINODE_FMT_LOCAL: 2180 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && 2181 (ifp->if_bytes > 0)) { 2182 ASSERT(ifp->if_u1.if_data != NULL); 2183 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2184 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 2185 } 2186 break; 2187 2188 case XFS_DINODE_FMT_EXTENTS: 2189 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 2190 !(iip->ili_format.ilf_fields & extflag[whichfork])); 2191 if ((iip->ili_format.ilf_fields & extflag[whichfork]) && 2192 (ifp->if_bytes > 0)) { 2193 ASSERT(xfs_iext_get_ext(ifp, 0)); 2194 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 2195 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 2196 whichfork); 2197 } 2198 break; 2199 2200 case XFS_DINODE_FMT_BTREE: 2201 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && 2202 (ifp->if_broot_bytes > 0)) { 2203 ASSERT(ifp->if_broot != NULL); 2204 ASSERT(ifp->if_broot_bytes <= 2205 (XFS_IFORK_SIZE(ip, whichfork) + 2206 XFS_BROOT_SIZE_ADJ)); 2207 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 2208 (xfs_bmdr_block_t *)cp, 2209 XFS_DFORK_SIZE(dip, mp, whichfork)); 2210 } 2211 break; 2212 2213 case XFS_DINODE_FMT_DEV: 2214 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 2215 ASSERT(whichfork == XFS_DATA_FORK); 2216 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev); 2217 } 2218 break; 2219 2220 case XFS_DINODE_FMT_UUID: 2221 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 2222 ASSERT(whichfork == XFS_DATA_FORK); 2223 memcpy(XFS_DFORK_DPTR(dip), 2224 &ip->i_df.if_u2.if_uuid, 2225 sizeof(uuid_t)); 2226 } 2227 break; 2228 2229 default: 2230 ASSERT(0); 2231 break; 2232 } 2233 } 2234 2235 STATIC int 2236 xfs_iflush_cluster( 2237 xfs_inode_t *ip, 2238 xfs_buf_t *bp) 2239 { 2240 xfs_mount_t *mp = ip->i_mount; 2241 struct xfs_perag *pag; 2242 unsigned long first_index, mask; 2243 unsigned long inodes_per_cluster; 2244 int ilist_size; 2245 xfs_inode_t **ilist; 2246 xfs_inode_t *iq; 2247 int nr_found; 2248 int clcount = 0; 2249 int bufwasdelwri; 2250 int i; 2251 2252 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2253 2254 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog; 2255 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 2256 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 2257 if (!ilist) 2258 goto out_put; 2259 2260 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1); 2261 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 2262 rcu_read_lock(); 2263 /* really need a gang lookup range call here */ 2264 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 2265 first_index, inodes_per_cluster); 2266 if (nr_found == 0) 2267 goto out_free; 2268 2269 for (i = 0; i < nr_found; i++) { 2270 iq = ilist[i]; 2271 if (iq == ip) 2272 continue; 2273 2274 /* 2275 * because this is an RCU protected lookup, we could find a 2276 * recently freed or even reallocated inode during the lookup. 2277 * We need to check under the i_flags_lock for a valid inode 2278 * here. Skip it if it is not valid or the wrong inode. 2279 */ 2280 spin_lock(&ip->i_flags_lock); 2281 if (!ip->i_ino || 2282 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) { 2283 spin_unlock(&ip->i_flags_lock); 2284 continue; 2285 } 2286 spin_unlock(&ip->i_flags_lock); 2287 2288 /* 2289 * Do an un-protected check to see if the inode is dirty and 2290 * is a candidate for flushing. These checks will be repeated 2291 * later after the appropriate locks are acquired. 2292 */ 2293 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 2294 continue; 2295 2296 /* 2297 * Try to get locks. If any are unavailable or it is pinned, 2298 * then this inode cannot be flushed and is skipped. 2299 */ 2300 2301 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 2302 continue; 2303 if (!xfs_iflock_nowait(iq)) { 2304 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2305 continue; 2306 } 2307 if (xfs_ipincount(iq)) { 2308 xfs_ifunlock(iq); 2309 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2310 continue; 2311 } 2312 2313 /* 2314 * arriving here means that this inode can be flushed. First 2315 * re-check that it's dirty before flushing. 2316 */ 2317 if (!xfs_inode_clean(iq)) { 2318 int error; 2319 error = xfs_iflush_int(iq, bp); 2320 if (error) { 2321 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2322 goto cluster_corrupt_out; 2323 } 2324 clcount++; 2325 } else { 2326 xfs_ifunlock(iq); 2327 } 2328 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2329 } 2330 2331 if (clcount) { 2332 XFS_STATS_INC(xs_icluster_flushcnt); 2333 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 2334 } 2335 2336 out_free: 2337 rcu_read_unlock(); 2338 kmem_free(ilist); 2339 out_put: 2340 xfs_perag_put(pag); 2341 return 0; 2342 2343 2344 cluster_corrupt_out: 2345 /* 2346 * Corruption detected in the clustering loop. Invalidate the 2347 * inode buffer and shut down the filesystem. 2348 */ 2349 rcu_read_unlock(); 2350 /* 2351 * Clean up the buffer. If it was B_DELWRI, just release it -- 2352 * brelse can handle it with no problems. If not, shut down the 2353 * filesystem before releasing the buffer. 2354 */ 2355 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp); 2356 if (bufwasdelwri) 2357 xfs_buf_relse(bp); 2358 2359 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2360 2361 if (!bufwasdelwri) { 2362 /* 2363 * Just like incore_relse: if we have b_iodone functions, 2364 * mark the buffer as an error and call them. Otherwise 2365 * mark it as stale and brelse. 2366 */ 2367 if (bp->b_iodone) { 2368 XFS_BUF_UNDONE(bp); 2369 xfs_buf_stale(bp); 2370 xfs_buf_ioerror(bp, EIO); 2371 xfs_buf_ioend(bp, 0); 2372 } else { 2373 xfs_buf_stale(bp); 2374 xfs_buf_relse(bp); 2375 } 2376 } 2377 2378 /* 2379 * Unlocks the flush lock 2380 */ 2381 xfs_iflush_abort(iq); 2382 kmem_free(ilist); 2383 xfs_perag_put(pag); 2384 return XFS_ERROR(EFSCORRUPTED); 2385 } 2386 2387 /* 2388 * xfs_iflush() will write a modified inode's changes out to the 2389 * inode's on disk home. The caller must have the inode lock held 2390 * in at least shared mode and the inode flush completion must be 2391 * active as well. The inode lock will still be held upon return from 2392 * the call and the caller is free to unlock it. 2393 * The inode flush will be completed when the inode reaches the disk. 2394 * The flags indicate how the inode's buffer should be written out. 2395 */ 2396 int 2397 xfs_iflush( 2398 xfs_inode_t *ip, 2399 uint flags) 2400 { 2401 xfs_inode_log_item_t *iip; 2402 xfs_buf_t *bp; 2403 xfs_dinode_t *dip; 2404 xfs_mount_t *mp; 2405 int error; 2406 2407 XFS_STATS_INC(xs_iflush_count); 2408 2409 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2410 ASSERT(xfs_isiflocked(ip)); 2411 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 2412 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 2413 2414 iip = ip->i_itemp; 2415 mp = ip->i_mount; 2416 2417 /* 2418 * We can't flush the inode until it is unpinned, so wait for it if we 2419 * are allowed to block. We know no one new can pin it, because we are 2420 * holding the inode lock shared and you need to hold it exclusively to 2421 * pin the inode. 2422 * 2423 * If we are not allowed to block, force the log out asynchronously so 2424 * that when we come back the inode will be unpinned. If other inodes 2425 * in the same cluster are dirty, they will probably write the inode 2426 * out for us if they occur after the log force completes. 2427 */ 2428 if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) { 2429 xfs_iunpin(ip); 2430 xfs_ifunlock(ip); 2431 return EAGAIN; 2432 } 2433 xfs_iunpin_wait(ip); 2434 2435 /* 2436 * For stale inodes we cannot rely on the backing buffer remaining 2437 * stale in cache for the remaining life of the stale inode and so 2438 * xfs_itobp() below may give us a buffer that no longer contains 2439 * inodes below. We have to check this after ensuring the inode is 2440 * unpinned so that it is safe to reclaim the stale inode after the 2441 * flush call. 2442 */ 2443 if (xfs_iflags_test(ip, XFS_ISTALE)) { 2444 xfs_ifunlock(ip); 2445 return 0; 2446 } 2447 2448 /* 2449 * This may have been unpinned because the filesystem is shutting 2450 * down forcibly. If that's the case we must not write this inode 2451 * to disk, because the log record didn't make it to disk! 2452 */ 2453 if (XFS_FORCED_SHUTDOWN(mp)) { 2454 ip->i_update_core = 0; 2455 if (iip) 2456 iip->ili_format.ilf_fields = 0; 2457 xfs_ifunlock(ip); 2458 return XFS_ERROR(EIO); 2459 } 2460 2461 /* 2462 * Get the buffer containing the on-disk inode. 2463 */ 2464 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 2465 (flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK); 2466 if (error || !bp) { 2467 xfs_ifunlock(ip); 2468 return error; 2469 } 2470 2471 /* 2472 * First flush out the inode that xfs_iflush was called with. 2473 */ 2474 error = xfs_iflush_int(ip, bp); 2475 if (error) 2476 goto corrupt_out; 2477 2478 /* 2479 * If the buffer is pinned then push on the log now so we won't 2480 * get stuck waiting in the write for too long. 2481 */ 2482 if (xfs_buf_ispinned(bp)) 2483 xfs_log_force(mp, 0); 2484 2485 /* 2486 * inode clustering: 2487 * see if other inodes can be gathered into this write 2488 */ 2489 error = xfs_iflush_cluster(ip, bp); 2490 if (error) 2491 goto cluster_corrupt_out; 2492 2493 if (flags & SYNC_WAIT) 2494 error = xfs_bwrite(bp); 2495 else 2496 xfs_buf_delwri_queue(bp); 2497 2498 xfs_buf_relse(bp); 2499 return error; 2500 2501 corrupt_out: 2502 xfs_buf_relse(bp); 2503 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2504 cluster_corrupt_out: 2505 /* 2506 * Unlocks the flush lock 2507 */ 2508 xfs_iflush_abort(ip); 2509 return XFS_ERROR(EFSCORRUPTED); 2510 } 2511 2512 2513 STATIC int 2514 xfs_iflush_int( 2515 xfs_inode_t *ip, 2516 xfs_buf_t *bp) 2517 { 2518 xfs_inode_log_item_t *iip; 2519 xfs_dinode_t *dip; 2520 xfs_mount_t *mp; 2521 #ifdef XFS_TRANS_DEBUG 2522 int first; 2523 #endif 2524 2525 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2526 ASSERT(xfs_isiflocked(ip)); 2527 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 2528 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 2529 2530 iip = ip->i_itemp; 2531 mp = ip->i_mount; 2532 2533 /* set *dip = inode's place in the buffer */ 2534 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 2535 2536 /* 2537 * Clear i_update_core before copying out the data. 2538 * This is for coordination with our timestamp updates 2539 * that don't hold the inode lock. They will always 2540 * update the timestamps BEFORE setting i_update_core, 2541 * so if we clear i_update_core after they set it we 2542 * are guaranteed to see their updates to the timestamps. 2543 * I believe that this depends on strongly ordered memory 2544 * semantics, but we have that. We use the SYNCHRONIZE 2545 * macro to make sure that the compiler does not reorder 2546 * the i_update_core access below the data copy below. 2547 */ 2548 ip->i_update_core = 0; 2549 SYNCHRONIZE(); 2550 2551 /* 2552 * Make sure to get the latest timestamps from the Linux inode. 2553 */ 2554 xfs_synchronize_times(ip); 2555 2556 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 2557 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 2558 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2559 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 2560 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 2561 goto corrupt_out; 2562 } 2563 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 2564 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 2565 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2566 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 2567 __func__, ip->i_ino, ip, ip->i_d.di_magic); 2568 goto corrupt_out; 2569 } 2570 if (S_ISREG(ip->i_d.di_mode)) { 2571 if (XFS_TEST_ERROR( 2572 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 2573 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 2574 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 2575 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2576 "%s: Bad regular inode %Lu, ptr 0x%p", 2577 __func__, ip->i_ino, ip); 2578 goto corrupt_out; 2579 } 2580 } else if (S_ISDIR(ip->i_d.di_mode)) { 2581 if (XFS_TEST_ERROR( 2582 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 2583 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 2584 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 2585 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 2586 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2587 "%s: Bad directory inode %Lu, ptr 0x%p", 2588 __func__, ip->i_ino, ip); 2589 goto corrupt_out; 2590 } 2591 } 2592 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 2593 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 2594 XFS_RANDOM_IFLUSH_5)) { 2595 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2596 "%s: detected corrupt incore inode %Lu, " 2597 "total extents = %d, nblocks = %Ld, ptr 0x%p", 2598 __func__, ip->i_ino, 2599 ip->i_d.di_nextents + ip->i_d.di_anextents, 2600 ip->i_d.di_nblocks, ip); 2601 goto corrupt_out; 2602 } 2603 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 2604 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 2605 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2606 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 2607 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 2608 goto corrupt_out; 2609 } 2610 /* 2611 * bump the flush iteration count, used to detect flushes which 2612 * postdate a log record during recovery. 2613 */ 2614 2615 ip->i_d.di_flushiter++; 2616 2617 /* 2618 * Copy the dirty parts of the inode into the on-disk 2619 * inode. We always copy out the core of the inode, 2620 * because if the inode is dirty at all the core must 2621 * be. 2622 */ 2623 xfs_dinode_to_disk(dip, &ip->i_d); 2624 2625 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 2626 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 2627 ip->i_d.di_flushiter = 0; 2628 2629 /* 2630 * If this is really an old format inode and the superblock version 2631 * has not been updated to support only new format inodes, then 2632 * convert back to the old inode format. If the superblock version 2633 * has been updated, then make the conversion permanent. 2634 */ 2635 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 2636 if (ip->i_d.di_version == 1) { 2637 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 2638 /* 2639 * Convert it back. 2640 */ 2641 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 2642 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink); 2643 } else { 2644 /* 2645 * The superblock version has already been bumped, 2646 * so just make the conversion to the new inode 2647 * format permanent. 2648 */ 2649 ip->i_d.di_version = 2; 2650 dip->di_version = 2; 2651 ip->i_d.di_onlink = 0; 2652 dip->di_onlink = 0; 2653 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 2654 memset(&(dip->di_pad[0]), 0, 2655 sizeof(dip->di_pad)); 2656 ASSERT(xfs_get_projid(ip) == 0); 2657 } 2658 } 2659 2660 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp); 2661 if (XFS_IFORK_Q(ip)) 2662 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 2663 xfs_inobp_check(mp, bp); 2664 2665 /* 2666 * We've recorded everything logged in the inode, so we'd 2667 * like to clear the ilf_fields bits so we don't log and 2668 * flush things unnecessarily. However, we can't stop 2669 * logging all this information until the data we've copied 2670 * into the disk buffer is written to disk. If we did we might 2671 * overwrite the copy of the inode in the log with all the 2672 * data after re-logging only part of it, and in the face of 2673 * a crash we wouldn't have all the data we need to recover. 2674 * 2675 * What we do is move the bits to the ili_last_fields field. 2676 * When logging the inode, these bits are moved back to the 2677 * ilf_fields field. In the xfs_iflush_done() routine we 2678 * clear ili_last_fields, since we know that the information 2679 * those bits represent is permanently on disk. As long as 2680 * the flush completes before the inode is logged again, then 2681 * both ilf_fields and ili_last_fields will be cleared. 2682 * 2683 * We can play with the ilf_fields bits here, because the inode 2684 * lock must be held exclusively in order to set bits there 2685 * and the flush lock protects the ili_last_fields bits. 2686 * Set ili_logged so the flush done 2687 * routine can tell whether or not to look in the AIL. 2688 * Also, store the current LSN of the inode so that we can tell 2689 * whether the item has moved in the AIL from xfs_iflush_done(). 2690 * In order to read the lsn we need the AIL lock, because 2691 * it is a 64 bit value that cannot be read atomically. 2692 */ 2693 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 2694 iip->ili_last_fields = iip->ili_format.ilf_fields; 2695 iip->ili_format.ilf_fields = 0; 2696 iip->ili_logged = 1; 2697 2698 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2699 &iip->ili_item.li_lsn); 2700 2701 /* 2702 * Attach the function xfs_iflush_done to the inode's 2703 * buffer. This will remove the inode from the AIL 2704 * and unlock the inode's flush lock when the inode is 2705 * completely written to disk. 2706 */ 2707 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 2708 2709 ASSERT(bp->b_fspriv != NULL); 2710 ASSERT(bp->b_iodone != NULL); 2711 } else { 2712 /* 2713 * We're flushing an inode which is not in the AIL and has 2714 * not been logged but has i_update_core set. For this 2715 * case we can use a B_DELWRI flush and immediately drop 2716 * the inode flush lock because we can avoid the whole 2717 * AIL state thing. It's OK to drop the flush lock now, 2718 * because we've already locked the buffer and to do anything 2719 * you really need both. 2720 */ 2721 if (iip != NULL) { 2722 ASSERT(iip->ili_logged == 0); 2723 ASSERT(iip->ili_last_fields == 0); 2724 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); 2725 } 2726 xfs_ifunlock(ip); 2727 } 2728 2729 return 0; 2730 2731 corrupt_out: 2732 return XFS_ERROR(EFSCORRUPTED); 2733 } 2734 2735 void 2736 xfs_promote_inode( 2737 struct xfs_inode *ip) 2738 { 2739 struct xfs_buf *bp; 2740 2741 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2742 2743 bp = xfs_incore(ip->i_mount->m_ddev_targp, ip->i_imap.im_blkno, 2744 ip->i_imap.im_len, XBF_TRYLOCK); 2745 if (!bp) 2746 return; 2747 2748 if (XFS_BUF_ISDELAYWRITE(bp)) { 2749 xfs_buf_delwri_promote(bp); 2750 wake_up_process(ip->i_mount->m_ddev_targp->bt_task); 2751 } 2752 2753 xfs_buf_relse(bp); 2754 } 2755 2756 /* 2757 * Return a pointer to the extent record at file index idx. 2758 */ 2759 xfs_bmbt_rec_host_t * 2760 xfs_iext_get_ext( 2761 xfs_ifork_t *ifp, /* inode fork pointer */ 2762 xfs_extnum_t idx) /* index of target extent */ 2763 { 2764 ASSERT(idx >= 0); 2765 ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t)); 2766 2767 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { 2768 return ifp->if_u1.if_ext_irec->er_extbuf; 2769 } else if (ifp->if_flags & XFS_IFEXTIREC) { 2770 xfs_ext_irec_t *erp; /* irec pointer */ 2771 int erp_idx = 0; /* irec index */ 2772 xfs_extnum_t page_idx = idx; /* ext index in target list */ 2773 2774 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 2775 return &erp->er_extbuf[page_idx]; 2776 } else if (ifp->if_bytes) { 2777 return &ifp->if_u1.if_extents[idx]; 2778 } else { 2779 return NULL; 2780 } 2781 } 2782 2783 /* 2784 * Insert new item(s) into the extent records for incore inode 2785 * fork 'ifp'. 'count' new items are inserted at index 'idx'. 2786 */ 2787 void 2788 xfs_iext_insert( 2789 xfs_inode_t *ip, /* incore inode pointer */ 2790 xfs_extnum_t idx, /* starting index of new items */ 2791 xfs_extnum_t count, /* number of inserted items */ 2792 xfs_bmbt_irec_t *new, /* items to insert */ 2793 int state) /* type of extent conversion */ 2794 { 2795 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; 2796 xfs_extnum_t i; /* extent record index */ 2797 2798 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_); 2799 2800 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 2801 xfs_iext_add(ifp, idx, count); 2802 for (i = idx; i < idx + count; i++, new++) 2803 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new); 2804 } 2805 2806 /* 2807 * This is called when the amount of space required for incore file 2808 * extents needs to be increased. The ext_diff parameter stores the 2809 * number of new extents being added and the idx parameter contains 2810 * the extent index where the new extents will be added. If the new 2811 * extents are being appended, then we just need to (re)allocate and 2812 * initialize the space. Otherwise, if the new extents are being 2813 * inserted into the middle of the existing entries, a bit more work 2814 * is required to make room for the new extents to be inserted. The 2815 * caller is responsible for filling in the new extent entries upon 2816 * return. 2817 */ 2818 void 2819 xfs_iext_add( 2820 xfs_ifork_t *ifp, /* inode fork pointer */ 2821 xfs_extnum_t idx, /* index to begin adding exts */ 2822 int ext_diff) /* number of extents to add */ 2823 { 2824 int byte_diff; /* new bytes being added */ 2825 int new_size; /* size of extents after adding */ 2826 xfs_extnum_t nextents; /* number of extents in file */ 2827 2828 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2829 ASSERT((idx >= 0) && (idx <= nextents)); 2830 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); 2831 new_size = ifp->if_bytes + byte_diff; 2832 /* 2833 * If the new number of extents (nextents + ext_diff) 2834 * fits inside the inode, then continue to use the inline 2835 * extent buffer. 2836 */ 2837 if (nextents + ext_diff <= XFS_INLINE_EXTS) { 2838 if (idx < nextents) { 2839 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], 2840 &ifp->if_u2.if_inline_ext[idx], 2841 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 2842 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); 2843 } 2844 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 2845 ifp->if_real_bytes = 0; 2846 } 2847 /* 2848 * Otherwise use a linear (direct) extent list. 2849 * If the extents are currently inside the inode, 2850 * xfs_iext_realloc_direct will switch us from 2851 * inline to direct extent allocation mode. 2852 */ 2853 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { 2854 xfs_iext_realloc_direct(ifp, new_size); 2855 if (idx < nextents) { 2856 memmove(&ifp->if_u1.if_extents[idx + ext_diff], 2857 &ifp->if_u1.if_extents[idx], 2858 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 2859 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); 2860 } 2861 } 2862 /* Indirection array */ 2863 else { 2864 xfs_ext_irec_t *erp; 2865 int erp_idx = 0; 2866 int page_idx = idx; 2867 2868 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); 2869 if (ifp->if_flags & XFS_IFEXTIREC) { 2870 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); 2871 } else { 2872 xfs_iext_irec_init(ifp); 2873 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 2874 erp = ifp->if_u1.if_ext_irec; 2875 } 2876 /* Extents fit in target extent page */ 2877 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { 2878 if (page_idx < erp->er_extcount) { 2879 memmove(&erp->er_extbuf[page_idx + ext_diff], 2880 &erp->er_extbuf[page_idx], 2881 (erp->er_extcount - page_idx) * 2882 sizeof(xfs_bmbt_rec_t)); 2883 memset(&erp->er_extbuf[page_idx], 0, byte_diff); 2884 } 2885 erp->er_extcount += ext_diff; 2886 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 2887 } 2888 /* Insert a new extent page */ 2889 else if (erp) { 2890 xfs_iext_add_indirect_multi(ifp, 2891 erp_idx, page_idx, ext_diff); 2892 } 2893 /* 2894 * If extent(s) are being appended to the last page in 2895 * the indirection array and the new extent(s) don't fit 2896 * in the page, then erp is NULL and erp_idx is set to 2897 * the next index needed in the indirection array. 2898 */ 2899 else { 2900 int count = ext_diff; 2901 2902 while (count) { 2903 erp = xfs_iext_irec_new(ifp, erp_idx); 2904 erp->er_extcount = count; 2905 count -= MIN(count, (int)XFS_LINEAR_EXTS); 2906 if (count) { 2907 erp_idx++; 2908 } 2909 } 2910 } 2911 } 2912 ifp->if_bytes = new_size; 2913 } 2914 2915 /* 2916 * This is called when incore extents are being added to the indirection 2917 * array and the new extents do not fit in the target extent list. The 2918 * erp_idx parameter contains the irec index for the target extent list 2919 * in the indirection array, and the idx parameter contains the extent 2920 * index within the list. The number of extents being added is stored 2921 * in the count parameter. 2922 * 2923 * |-------| |-------| 2924 * | | | | idx - number of extents before idx 2925 * | idx | | count | 2926 * | | | | count - number of extents being inserted at idx 2927 * |-------| |-------| 2928 * | count | | nex2 | nex2 - number of extents after idx + count 2929 * |-------| |-------| 2930 */ 2931 void 2932 xfs_iext_add_indirect_multi( 2933 xfs_ifork_t *ifp, /* inode fork pointer */ 2934 int erp_idx, /* target extent irec index */ 2935 xfs_extnum_t idx, /* index within target list */ 2936 int count) /* new extents being added */ 2937 { 2938 int byte_diff; /* new bytes being added */ 2939 xfs_ext_irec_t *erp; /* pointer to irec entry */ 2940 xfs_extnum_t ext_diff; /* number of extents to add */ 2941 xfs_extnum_t ext_cnt; /* new extents still needed */ 2942 xfs_extnum_t nex2; /* extents after idx + count */ 2943 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ 2944 int nlists; /* number of irec's (lists) */ 2945 2946 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 2947 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 2948 nex2 = erp->er_extcount - idx; 2949 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 2950 2951 /* 2952 * Save second part of target extent list 2953 * (all extents past */ 2954 if (nex2) { 2955 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 2956 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS); 2957 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); 2958 erp->er_extcount -= nex2; 2959 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); 2960 memset(&erp->er_extbuf[idx], 0, byte_diff); 2961 } 2962 2963 /* 2964 * Add the new extents to the end of the target 2965 * list, then allocate new irec record(s) and 2966 * extent buffer(s) as needed to store the rest 2967 * of the new extents. 2968 */ 2969 ext_cnt = count; 2970 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); 2971 if (ext_diff) { 2972 erp->er_extcount += ext_diff; 2973 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 2974 ext_cnt -= ext_diff; 2975 } 2976 while (ext_cnt) { 2977 erp_idx++; 2978 erp = xfs_iext_irec_new(ifp, erp_idx); 2979 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); 2980 erp->er_extcount = ext_diff; 2981 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 2982 ext_cnt -= ext_diff; 2983 } 2984 2985 /* Add nex2 extents back to indirection array */ 2986 if (nex2) { 2987 xfs_extnum_t ext_avail; 2988 int i; 2989 2990 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 2991 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 2992 i = 0; 2993 /* 2994 * If nex2 extents fit in the current page, append 2995 * nex2_ep after the new extents. 2996 */ 2997 if (nex2 <= ext_avail) { 2998 i = erp->er_extcount; 2999 } 3000 /* 3001 * Otherwise, check if space is available in the 3002 * next page. 3003 */ 3004 else if ((erp_idx < nlists - 1) && 3005 (nex2 <= (ext_avail = XFS_LINEAR_EXTS - 3006 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { 3007 erp_idx++; 3008 erp++; 3009 /* Create a hole for nex2 extents */ 3010 memmove(&erp->er_extbuf[nex2], erp->er_extbuf, 3011 erp->er_extcount * sizeof(xfs_bmbt_rec_t)); 3012 } 3013 /* 3014 * Final choice, create a new extent page for 3015 * nex2 extents. 3016 */ 3017 else { 3018 erp_idx++; 3019 erp = xfs_iext_irec_new(ifp, erp_idx); 3020 } 3021 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); 3022 kmem_free(nex2_ep); 3023 erp->er_extcount += nex2; 3024 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); 3025 } 3026 } 3027 3028 /* 3029 * This is called when the amount of space required for incore file 3030 * extents needs to be decreased. The ext_diff parameter stores the 3031 * number of extents to be removed and the idx parameter contains 3032 * the extent index where the extents will be removed from. 3033 * 3034 * If the amount of space needed has decreased below the linear 3035 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous 3036 * extent array. Otherwise, use kmem_realloc() to adjust the 3037 * size to what is needed. 3038 */ 3039 void 3040 xfs_iext_remove( 3041 xfs_inode_t *ip, /* incore inode pointer */ 3042 xfs_extnum_t idx, /* index to begin removing exts */ 3043 int ext_diff, /* number of extents to remove */ 3044 int state) /* type of extent conversion */ 3045 { 3046 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; 3047 xfs_extnum_t nextents; /* number of extents in file */ 3048 int new_size; /* size of extents after removal */ 3049 3050 trace_xfs_iext_remove(ip, idx, state, _RET_IP_); 3051 3052 ASSERT(ext_diff > 0); 3053 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3054 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); 3055 3056 if (new_size == 0) { 3057 xfs_iext_destroy(ifp); 3058 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3059 xfs_iext_remove_indirect(ifp, idx, ext_diff); 3060 } else if (ifp->if_real_bytes) { 3061 xfs_iext_remove_direct(ifp, idx, ext_diff); 3062 } else { 3063 xfs_iext_remove_inline(ifp, idx, ext_diff); 3064 } 3065 ifp->if_bytes = new_size; 3066 } 3067 3068 /* 3069 * This removes ext_diff extents from the inline buffer, beginning 3070 * at extent index idx. 3071 */ 3072 void 3073 xfs_iext_remove_inline( 3074 xfs_ifork_t *ifp, /* inode fork pointer */ 3075 xfs_extnum_t idx, /* index to begin removing exts */ 3076 int ext_diff) /* number of extents to remove */ 3077 { 3078 int nextents; /* number of extents in file */ 3079 3080 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3081 ASSERT(idx < XFS_INLINE_EXTS); 3082 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3083 ASSERT(((nextents - ext_diff) > 0) && 3084 (nextents - ext_diff) < XFS_INLINE_EXTS); 3085 3086 if (idx + ext_diff < nextents) { 3087 memmove(&ifp->if_u2.if_inline_ext[idx], 3088 &ifp->if_u2.if_inline_ext[idx + ext_diff], 3089 (nextents - (idx + ext_diff)) * 3090 sizeof(xfs_bmbt_rec_t)); 3091 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], 3092 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3093 } else { 3094 memset(&ifp->if_u2.if_inline_ext[idx], 0, 3095 ext_diff * sizeof(xfs_bmbt_rec_t)); 3096 } 3097 } 3098 3099 /* 3100 * This removes ext_diff extents from a linear (direct) extent list, 3101 * beginning at extent index idx. If the extents are being removed 3102 * from the end of the list (ie. truncate) then we just need to re- 3103 * allocate the list to remove the extra space. Otherwise, if the 3104 * extents are being removed from the middle of the existing extent 3105 * entries, then we first need to move the extent records beginning 3106 * at idx + ext_diff up in the list to overwrite the records being 3107 * removed, then remove the extra space via kmem_realloc. 3108 */ 3109 void 3110 xfs_iext_remove_direct( 3111 xfs_ifork_t *ifp, /* inode fork pointer */ 3112 xfs_extnum_t idx, /* index to begin removing exts */ 3113 int ext_diff) /* number of extents to remove */ 3114 { 3115 xfs_extnum_t nextents; /* number of extents in file */ 3116 int new_size; /* size of extents after removal */ 3117 3118 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3119 new_size = ifp->if_bytes - 3120 (ext_diff * sizeof(xfs_bmbt_rec_t)); 3121 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3122 3123 if (new_size == 0) { 3124 xfs_iext_destroy(ifp); 3125 return; 3126 } 3127 /* Move extents up in the list (if needed) */ 3128 if (idx + ext_diff < nextents) { 3129 memmove(&ifp->if_u1.if_extents[idx], 3130 &ifp->if_u1.if_extents[idx + ext_diff], 3131 (nextents - (idx + ext_diff)) * 3132 sizeof(xfs_bmbt_rec_t)); 3133 } 3134 memset(&ifp->if_u1.if_extents[nextents - ext_diff], 3135 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3136 /* 3137 * Reallocate the direct extent list. If the extents 3138 * will fit inside the inode then xfs_iext_realloc_direct 3139 * will switch from direct to inline extent allocation 3140 * mode for us. 3141 */ 3142 xfs_iext_realloc_direct(ifp, new_size); 3143 ifp->if_bytes = new_size; 3144 } 3145 3146 /* 3147 * This is called when incore extents are being removed from the 3148 * indirection array and the extents being removed span multiple extent 3149 * buffers. The idx parameter contains the file extent index where we 3150 * want to begin removing extents, and the count parameter contains 3151 * how many extents need to be removed. 3152 * 3153 * |-------| |-------| 3154 * | nex1 | | | nex1 - number of extents before idx 3155 * |-------| | count | 3156 * | | | | count - number of extents being removed at idx 3157 * | count | |-------| 3158 * | | | nex2 | nex2 - number of extents after idx + count 3159 * |-------| |-------| 3160 */ 3161 void 3162 xfs_iext_remove_indirect( 3163 xfs_ifork_t *ifp, /* inode fork pointer */ 3164 xfs_extnum_t idx, /* index to begin removing extents */ 3165 int count) /* number of extents to remove */ 3166 { 3167 xfs_ext_irec_t *erp; /* indirection array pointer */ 3168 int erp_idx = 0; /* indirection array index */ 3169 xfs_extnum_t ext_cnt; /* extents left to remove */ 3170 xfs_extnum_t ext_diff; /* extents to remove in current list */ 3171 xfs_extnum_t nex1; /* number of extents before idx */ 3172 xfs_extnum_t nex2; /* extents after idx + count */ 3173 int page_idx = idx; /* index in target extent list */ 3174 3175 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3176 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3177 ASSERT(erp != NULL); 3178 nex1 = page_idx; 3179 ext_cnt = count; 3180 while (ext_cnt) { 3181 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); 3182 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); 3183 /* 3184 * Check for deletion of entire list; 3185 * xfs_iext_irec_remove() updates extent offsets. 3186 */ 3187 if (ext_diff == erp->er_extcount) { 3188 xfs_iext_irec_remove(ifp, erp_idx); 3189 ext_cnt -= ext_diff; 3190 nex1 = 0; 3191 if (ext_cnt) { 3192 ASSERT(erp_idx < ifp->if_real_bytes / 3193 XFS_IEXT_BUFSZ); 3194 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3195 nex1 = 0; 3196 continue; 3197 } else { 3198 break; 3199 } 3200 } 3201 /* Move extents up (if needed) */ 3202 if (nex2) { 3203 memmove(&erp->er_extbuf[nex1], 3204 &erp->er_extbuf[nex1 + ext_diff], 3205 nex2 * sizeof(xfs_bmbt_rec_t)); 3206 } 3207 /* Zero out rest of page */ 3208 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - 3209 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); 3210 /* Update remaining counters */ 3211 erp->er_extcount -= ext_diff; 3212 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); 3213 ext_cnt -= ext_diff; 3214 nex1 = 0; 3215 erp_idx++; 3216 erp++; 3217 } 3218 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); 3219 xfs_iext_irec_compact(ifp); 3220 } 3221 3222 /* 3223 * Create, destroy, or resize a linear (direct) block of extents. 3224 */ 3225 void 3226 xfs_iext_realloc_direct( 3227 xfs_ifork_t *ifp, /* inode fork pointer */ 3228 int new_size) /* new size of extents */ 3229 { 3230 int rnew_size; /* real new size of extents */ 3231 3232 rnew_size = new_size; 3233 3234 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || 3235 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && 3236 (new_size != ifp->if_real_bytes))); 3237 3238 /* Free extent records */ 3239 if (new_size == 0) { 3240 xfs_iext_destroy(ifp); 3241 } 3242 /* Resize direct extent list and zero any new bytes */ 3243 else if (ifp->if_real_bytes) { 3244 /* Check if extents will fit inside the inode */ 3245 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { 3246 xfs_iext_direct_to_inline(ifp, new_size / 3247 (uint)sizeof(xfs_bmbt_rec_t)); 3248 ifp->if_bytes = new_size; 3249 return; 3250 } 3251 if (!is_power_of_2(new_size)){ 3252 rnew_size = roundup_pow_of_two(new_size); 3253 } 3254 if (rnew_size != ifp->if_real_bytes) { 3255 ifp->if_u1.if_extents = 3256 kmem_realloc(ifp->if_u1.if_extents, 3257 rnew_size, 3258 ifp->if_real_bytes, KM_NOFS); 3259 } 3260 if (rnew_size > ifp->if_real_bytes) { 3261 memset(&ifp->if_u1.if_extents[ifp->if_bytes / 3262 (uint)sizeof(xfs_bmbt_rec_t)], 0, 3263 rnew_size - ifp->if_real_bytes); 3264 } 3265 } 3266 /* 3267 * Switch from the inline extent buffer to a direct 3268 * extent list. Be sure to include the inline extent 3269 * bytes in new_size. 3270 */ 3271 else { 3272 new_size += ifp->if_bytes; 3273 if (!is_power_of_2(new_size)) { 3274 rnew_size = roundup_pow_of_two(new_size); 3275 } 3276 xfs_iext_inline_to_direct(ifp, rnew_size); 3277 } 3278 ifp->if_real_bytes = rnew_size; 3279 ifp->if_bytes = new_size; 3280 } 3281 3282 /* 3283 * Switch from linear (direct) extent records to inline buffer. 3284 */ 3285 void 3286 xfs_iext_direct_to_inline( 3287 xfs_ifork_t *ifp, /* inode fork pointer */ 3288 xfs_extnum_t nextents) /* number of extents in file */ 3289 { 3290 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3291 ASSERT(nextents <= XFS_INLINE_EXTS); 3292 /* 3293 * The inline buffer was zeroed when we switched 3294 * from inline to direct extent allocation mode, 3295 * so we don't need to clear it here. 3296 */ 3297 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, 3298 nextents * sizeof(xfs_bmbt_rec_t)); 3299 kmem_free(ifp->if_u1.if_extents); 3300 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3301 ifp->if_real_bytes = 0; 3302 } 3303 3304 /* 3305 * Switch from inline buffer to linear (direct) extent records. 3306 * new_size should already be rounded up to the next power of 2 3307 * by the caller (when appropriate), so use new_size as it is. 3308 * However, since new_size may be rounded up, we can't update 3309 * if_bytes here. It is the caller's responsibility to update 3310 * if_bytes upon return. 3311 */ 3312 void 3313 xfs_iext_inline_to_direct( 3314 xfs_ifork_t *ifp, /* inode fork pointer */ 3315 int new_size) /* number of extents in file */ 3316 { 3317 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS); 3318 memset(ifp->if_u1.if_extents, 0, new_size); 3319 if (ifp->if_bytes) { 3320 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 3321 ifp->if_bytes); 3322 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3323 sizeof(xfs_bmbt_rec_t)); 3324 } 3325 ifp->if_real_bytes = new_size; 3326 } 3327 3328 /* 3329 * Resize an extent indirection array to new_size bytes. 3330 */ 3331 STATIC void 3332 xfs_iext_realloc_indirect( 3333 xfs_ifork_t *ifp, /* inode fork pointer */ 3334 int new_size) /* new indirection array size */ 3335 { 3336 int nlists; /* number of irec's (ex lists) */ 3337 int size; /* current indirection array size */ 3338 3339 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3340 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3341 size = nlists * sizeof(xfs_ext_irec_t); 3342 ASSERT(ifp->if_real_bytes); 3343 ASSERT((new_size >= 0) && (new_size != size)); 3344 if (new_size == 0) { 3345 xfs_iext_destroy(ifp); 3346 } else { 3347 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) 3348 kmem_realloc(ifp->if_u1.if_ext_irec, 3349 new_size, size, KM_NOFS); 3350 } 3351 } 3352 3353 /* 3354 * Switch from indirection array to linear (direct) extent allocations. 3355 */ 3356 STATIC void 3357 xfs_iext_indirect_to_direct( 3358 xfs_ifork_t *ifp) /* inode fork pointer */ 3359 { 3360 xfs_bmbt_rec_host_t *ep; /* extent record pointer */ 3361 xfs_extnum_t nextents; /* number of extents in file */ 3362 int size; /* size of file extents */ 3363 3364 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3365 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3366 ASSERT(nextents <= XFS_LINEAR_EXTS); 3367 size = nextents * sizeof(xfs_bmbt_rec_t); 3368 3369 xfs_iext_irec_compact_pages(ifp); 3370 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); 3371 3372 ep = ifp->if_u1.if_ext_irec->er_extbuf; 3373 kmem_free(ifp->if_u1.if_ext_irec); 3374 ifp->if_flags &= ~XFS_IFEXTIREC; 3375 ifp->if_u1.if_extents = ep; 3376 ifp->if_bytes = size; 3377 if (nextents < XFS_LINEAR_EXTS) { 3378 xfs_iext_realloc_direct(ifp, size); 3379 } 3380 } 3381 3382 /* 3383 * Free incore file extents. 3384 */ 3385 void 3386 xfs_iext_destroy( 3387 xfs_ifork_t *ifp) /* inode fork pointer */ 3388 { 3389 if (ifp->if_flags & XFS_IFEXTIREC) { 3390 int erp_idx; 3391 int nlists; 3392 3393 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3394 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { 3395 xfs_iext_irec_remove(ifp, erp_idx); 3396 } 3397 ifp->if_flags &= ~XFS_IFEXTIREC; 3398 } else if (ifp->if_real_bytes) { 3399 kmem_free(ifp->if_u1.if_extents); 3400 } else if (ifp->if_bytes) { 3401 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3402 sizeof(xfs_bmbt_rec_t)); 3403 } 3404 ifp->if_u1.if_extents = NULL; 3405 ifp->if_real_bytes = 0; 3406 ifp->if_bytes = 0; 3407 } 3408 3409 /* 3410 * Return a pointer to the extent record for file system block bno. 3411 */ 3412 xfs_bmbt_rec_host_t * /* pointer to found extent record */ 3413 xfs_iext_bno_to_ext( 3414 xfs_ifork_t *ifp, /* inode fork pointer */ 3415 xfs_fileoff_t bno, /* block number to search for */ 3416 xfs_extnum_t *idxp) /* index of target extent */ 3417 { 3418 xfs_bmbt_rec_host_t *base; /* pointer to first extent */ 3419 xfs_filblks_t blockcount = 0; /* number of blocks in extent */ 3420 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */ 3421 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 3422 int high; /* upper boundary in search */ 3423 xfs_extnum_t idx = 0; /* index of target extent */ 3424 int low; /* lower boundary in search */ 3425 xfs_extnum_t nextents; /* number of file extents */ 3426 xfs_fileoff_t startoff = 0; /* start offset of extent */ 3427 3428 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3429 if (nextents == 0) { 3430 *idxp = 0; 3431 return NULL; 3432 } 3433 low = 0; 3434 if (ifp->if_flags & XFS_IFEXTIREC) { 3435 /* Find target extent list */ 3436 int erp_idx = 0; 3437 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); 3438 base = erp->er_extbuf; 3439 high = erp->er_extcount - 1; 3440 } else { 3441 base = ifp->if_u1.if_extents; 3442 high = nextents - 1; 3443 } 3444 /* Binary search extent records */ 3445 while (low <= high) { 3446 idx = (low + high) >> 1; 3447 ep = base + idx; 3448 startoff = xfs_bmbt_get_startoff(ep); 3449 blockcount = xfs_bmbt_get_blockcount(ep); 3450 if (bno < startoff) { 3451 high = idx - 1; 3452 } else if (bno >= startoff + blockcount) { 3453 low = idx + 1; 3454 } else { 3455 /* Convert back to file-based extent index */ 3456 if (ifp->if_flags & XFS_IFEXTIREC) { 3457 idx += erp->er_extoff; 3458 } 3459 *idxp = idx; 3460 return ep; 3461 } 3462 } 3463 /* Convert back to file-based extent index */ 3464 if (ifp->if_flags & XFS_IFEXTIREC) { 3465 idx += erp->er_extoff; 3466 } 3467 if (bno >= startoff + blockcount) { 3468 if (++idx == nextents) { 3469 ep = NULL; 3470 } else { 3471 ep = xfs_iext_get_ext(ifp, idx); 3472 } 3473 } 3474 *idxp = idx; 3475 return ep; 3476 } 3477 3478 /* 3479 * Return a pointer to the indirection array entry containing the 3480 * extent record for filesystem block bno. Store the index of the 3481 * target irec in *erp_idxp. 3482 */ 3483 xfs_ext_irec_t * /* pointer to found extent record */ 3484 xfs_iext_bno_to_irec( 3485 xfs_ifork_t *ifp, /* inode fork pointer */ 3486 xfs_fileoff_t bno, /* block number to search for */ 3487 int *erp_idxp) /* irec index of target ext list */ 3488 { 3489 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 3490 xfs_ext_irec_t *erp_next; /* next indirection array entry */ 3491 int erp_idx; /* indirection array index */ 3492 int nlists; /* number of extent irec's (lists) */ 3493 int high; /* binary search upper limit */ 3494 int low; /* binary search lower limit */ 3495 3496 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3497 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3498 erp_idx = 0; 3499 low = 0; 3500 high = nlists - 1; 3501 while (low <= high) { 3502 erp_idx = (low + high) >> 1; 3503 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3504 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; 3505 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { 3506 high = erp_idx - 1; 3507 } else if (erp_next && bno >= 3508 xfs_bmbt_get_startoff(erp_next->er_extbuf)) { 3509 low = erp_idx + 1; 3510 } else { 3511 break; 3512 } 3513 } 3514 *erp_idxp = erp_idx; 3515 return erp; 3516 } 3517 3518 /* 3519 * Return a pointer to the indirection array entry containing the 3520 * extent record at file extent index *idxp. Store the index of the 3521 * target irec in *erp_idxp and store the page index of the target 3522 * extent record in *idxp. 3523 */ 3524 xfs_ext_irec_t * 3525 xfs_iext_idx_to_irec( 3526 xfs_ifork_t *ifp, /* inode fork pointer */ 3527 xfs_extnum_t *idxp, /* extent index (file -> page) */ 3528 int *erp_idxp, /* pointer to target irec */ 3529 int realloc) /* new bytes were just added */ 3530 { 3531 xfs_ext_irec_t *prev; /* pointer to previous irec */ 3532 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ 3533 int erp_idx; /* indirection array index */ 3534 int nlists; /* number of irec's (ex lists) */ 3535 int high; /* binary search upper limit */ 3536 int low; /* binary search lower limit */ 3537 xfs_extnum_t page_idx = *idxp; /* extent index in target list */ 3538 3539 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3540 ASSERT(page_idx >= 0); 3541 ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t)); 3542 ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc); 3543 3544 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3545 erp_idx = 0; 3546 low = 0; 3547 high = nlists - 1; 3548 3549 /* Binary search extent irec's */ 3550 while (low <= high) { 3551 erp_idx = (low + high) >> 1; 3552 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3553 prev = erp_idx > 0 ? erp - 1 : NULL; 3554 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && 3555 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { 3556 high = erp_idx - 1; 3557 } else if (page_idx > erp->er_extoff + erp->er_extcount || 3558 (page_idx == erp->er_extoff + erp->er_extcount && 3559 !realloc)) { 3560 low = erp_idx + 1; 3561 } else if (page_idx == erp->er_extoff + erp->er_extcount && 3562 erp->er_extcount == XFS_LINEAR_EXTS) { 3563 ASSERT(realloc); 3564 page_idx = 0; 3565 erp_idx++; 3566 erp = erp_idx < nlists ? erp + 1 : NULL; 3567 break; 3568 } else { 3569 page_idx -= erp->er_extoff; 3570 break; 3571 } 3572 } 3573 *idxp = page_idx; 3574 *erp_idxp = erp_idx; 3575 return(erp); 3576 } 3577 3578 /* 3579 * Allocate and initialize an indirection array once the space needed 3580 * for incore extents increases above XFS_IEXT_BUFSZ. 3581 */ 3582 void 3583 xfs_iext_irec_init( 3584 xfs_ifork_t *ifp) /* inode fork pointer */ 3585 { 3586 xfs_ext_irec_t *erp; /* indirection array pointer */ 3587 xfs_extnum_t nextents; /* number of extents in file */ 3588 3589 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3590 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3591 ASSERT(nextents <= XFS_LINEAR_EXTS); 3592 3593 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS); 3594 3595 if (nextents == 0) { 3596 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 3597 } else if (!ifp->if_real_bytes) { 3598 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); 3599 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { 3600 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); 3601 } 3602 erp->er_extbuf = ifp->if_u1.if_extents; 3603 erp->er_extcount = nextents; 3604 erp->er_extoff = 0; 3605 3606 ifp->if_flags |= XFS_IFEXTIREC; 3607 ifp->if_real_bytes = XFS_IEXT_BUFSZ; 3608 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); 3609 ifp->if_u1.if_ext_irec = erp; 3610 3611 return; 3612 } 3613 3614 /* 3615 * Allocate and initialize a new entry in the indirection array. 3616 */ 3617 xfs_ext_irec_t * 3618 xfs_iext_irec_new( 3619 xfs_ifork_t *ifp, /* inode fork pointer */ 3620 int erp_idx) /* index for new irec */ 3621 { 3622 xfs_ext_irec_t *erp; /* indirection array pointer */ 3623 int i; /* loop counter */ 3624 int nlists; /* number of irec's (ex lists) */ 3625 3626 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3627 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3628 3629 /* Resize indirection array */ 3630 xfs_iext_realloc_indirect(ifp, ++nlists * 3631 sizeof(xfs_ext_irec_t)); 3632 /* 3633 * Move records down in the array so the 3634 * new page can use erp_idx. 3635 */ 3636 erp = ifp->if_u1.if_ext_irec; 3637 for (i = nlists - 1; i > erp_idx; i--) { 3638 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); 3639 } 3640 ASSERT(i == erp_idx); 3641 3642 /* Initialize new extent record */ 3643 erp = ifp->if_u1.if_ext_irec; 3644 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 3645 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 3646 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); 3647 erp[erp_idx].er_extcount = 0; 3648 erp[erp_idx].er_extoff = erp_idx > 0 ? 3649 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; 3650 return (&erp[erp_idx]); 3651 } 3652 3653 /* 3654 * Remove a record from the indirection array. 3655 */ 3656 void 3657 xfs_iext_irec_remove( 3658 xfs_ifork_t *ifp, /* inode fork pointer */ 3659 int erp_idx) /* irec index to remove */ 3660 { 3661 xfs_ext_irec_t *erp; /* indirection array pointer */ 3662 int i; /* loop counter */ 3663 int nlists; /* number of irec's (ex lists) */ 3664 3665 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3666 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3667 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3668 if (erp->er_extbuf) { 3669 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, 3670 -erp->er_extcount); 3671 kmem_free(erp->er_extbuf); 3672 } 3673 /* Compact extent records */ 3674 erp = ifp->if_u1.if_ext_irec; 3675 for (i = erp_idx; i < nlists - 1; i++) { 3676 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); 3677 } 3678 /* 3679 * Manually free the last extent record from the indirection 3680 * array. A call to xfs_iext_realloc_indirect() with a size 3681 * of zero would result in a call to xfs_iext_destroy() which 3682 * would in turn call this function again, creating a nasty 3683 * infinite loop. 3684 */ 3685 if (--nlists) { 3686 xfs_iext_realloc_indirect(ifp, 3687 nlists * sizeof(xfs_ext_irec_t)); 3688 } else { 3689 kmem_free(ifp->if_u1.if_ext_irec); 3690 } 3691 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 3692 } 3693 3694 /* 3695 * This is called to clean up large amounts of unused memory allocated 3696 * by the indirection array. Before compacting anything though, verify 3697 * that the indirection array is still needed and switch back to the 3698 * linear extent list (or even the inline buffer) if possible. The 3699 * compaction policy is as follows: 3700 * 3701 * Full Compaction: Extents fit into a single page (or inline buffer) 3702 * Partial Compaction: Extents occupy less than 50% of allocated space 3703 * No Compaction: Extents occupy at least 50% of allocated space 3704 */ 3705 void 3706 xfs_iext_irec_compact( 3707 xfs_ifork_t *ifp) /* inode fork pointer */ 3708 { 3709 xfs_extnum_t nextents; /* number of extents in file */ 3710 int nlists; /* number of irec's (ex lists) */ 3711 3712 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3713 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3714 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3715 3716 if (nextents == 0) { 3717 xfs_iext_destroy(ifp); 3718 } else if (nextents <= XFS_INLINE_EXTS) { 3719 xfs_iext_indirect_to_direct(ifp); 3720 xfs_iext_direct_to_inline(ifp, nextents); 3721 } else if (nextents <= XFS_LINEAR_EXTS) { 3722 xfs_iext_indirect_to_direct(ifp); 3723 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { 3724 xfs_iext_irec_compact_pages(ifp); 3725 } 3726 } 3727 3728 /* 3729 * Combine extents from neighboring extent pages. 3730 */ 3731 void 3732 xfs_iext_irec_compact_pages( 3733 xfs_ifork_t *ifp) /* inode fork pointer */ 3734 { 3735 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ 3736 int erp_idx = 0; /* indirection array index */ 3737 int nlists; /* number of irec's (ex lists) */ 3738 3739 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3740 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3741 while (erp_idx < nlists - 1) { 3742 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3743 erp_next = erp + 1; 3744 if (erp_next->er_extcount <= 3745 (XFS_LINEAR_EXTS - erp->er_extcount)) { 3746 memcpy(&erp->er_extbuf[erp->er_extcount], 3747 erp_next->er_extbuf, erp_next->er_extcount * 3748 sizeof(xfs_bmbt_rec_t)); 3749 erp->er_extcount += erp_next->er_extcount; 3750 /* 3751 * Free page before removing extent record 3752 * so er_extoffs don't get modified in 3753 * xfs_iext_irec_remove. 3754 */ 3755 kmem_free(erp_next->er_extbuf); 3756 erp_next->er_extbuf = NULL; 3757 xfs_iext_irec_remove(ifp, erp_idx + 1); 3758 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3759 } else { 3760 erp_idx++; 3761 } 3762 } 3763 } 3764 3765 /* 3766 * This is called to update the er_extoff field in the indirection 3767 * array when extents have been added or removed from one of the 3768 * extent lists. erp_idx contains the irec index to begin updating 3769 * at and ext_diff contains the number of extents that were added 3770 * or removed. 3771 */ 3772 void 3773 xfs_iext_irec_update_extoffs( 3774 xfs_ifork_t *ifp, /* inode fork pointer */ 3775 int erp_idx, /* irec index to update */ 3776 int ext_diff) /* number of new extents */ 3777 { 3778 int i; /* loop counter */ 3779 int nlists; /* number of irec's (ex lists */ 3780 3781 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3782 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3783 for (i = erp_idx; i < nlists; i++) { 3784 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; 3785 } 3786 } 3787