xref: /linux/fs/xfs/xfs_inode.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_bmap.h"
43 #include "xfs_error.h"
44 #include "xfs_utils.h"
45 #include "xfs_quota.h"
46 #include "xfs_filestream.h"
47 #include "xfs_vnodeops.h"
48 #include "xfs_trace.h"
49 
50 kmem_zone_t *xfs_ifork_zone;
51 kmem_zone_t *xfs_inode_zone;
52 
53 /*
54  * Used in xfs_itruncate_extents().  This is the maximum number of extents
55  * freed from a file in a single transaction.
56  */
57 #define	XFS_ITRUNC_MAX_EXTENTS	2
58 
59 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
60 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
61 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
62 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
63 
64 #ifdef DEBUG
65 /*
66  * Make sure that the extents in the given memory buffer
67  * are valid.
68  */
69 STATIC void
70 xfs_validate_extents(
71 	xfs_ifork_t		*ifp,
72 	int			nrecs,
73 	xfs_exntfmt_t		fmt)
74 {
75 	xfs_bmbt_irec_t		irec;
76 	xfs_bmbt_rec_host_t	rec;
77 	int			i;
78 
79 	for (i = 0; i < nrecs; i++) {
80 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
81 		rec.l0 = get_unaligned(&ep->l0);
82 		rec.l1 = get_unaligned(&ep->l1);
83 		xfs_bmbt_get_all(&rec, &irec);
84 		if (fmt == XFS_EXTFMT_NOSTATE)
85 			ASSERT(irec.br_state == XFS_EXT_NORM);
86 	}
87 }
88 #else /* DEBUG */
89 #define xfs_validate_extents(ifp, nrecs, fmt)
90 #endif /* DEBUG */
91 
92 /*
93  * Check that none of the inode's in the buffer have a next
94  * unlinked field of 0.
95  */
96 #if defined(DEBUG)
97 void
98 xfs_inobp_check(
99 	xfs_mount_t	*mp,
100 	xfs_buf_t	*bp)
101 {
102 	int		i;
103 	int		j;
104 	xfs_dinode_t	*dip;
105 
106 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
107 
108 	for (i = 0; i < j; i++) {
109 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
110 					i * mp->m_sb.sb_inodesize);
111 		if (!dip->di_next_unlinked)  {
112 			xfs_alert(mp,
113 	"Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
114 				bp);
115 			ASSERT(dip->di_next_unlinked);
116 		}
117 	}
118 }
119 #endif
120 
121 /*
122  * Find the buffer associated with the given inode map
123  * We do basic validation checks on the buffer once it has been
124  * retrieved from disk.
125  */
126 STATIC int
127 xfs_imap_to_bp(
128 	xfs_mount_t	*mp,
129 	xfs_trans_t	*tp,
130 	struct xfs_imap	*imap,
131 	xfs_buf_t	**bpp,
132 	uint		buf_flags,
133 	uint		iget_flags)
134 {
135 	int		error;
136 	int		i;
137 	int		ni;
138 	xfs_buf_t	*bp;
139 
140 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
141 				   (int)imap->im_len, buf_flags, &bp);
142 	if (error) {
143 		if (error != EAGAIN) {
144 			xfs_warn(mp,
145 				"%s: xfs_trans_read_buf() returned error %d.",
146 				__func__, error);
147 		} else {
148 			ASSERT(buf_flags & XBF_TRYLOCK);
149 		}
150 		return error;
151 	}
152 
153 	/*
154 	 * Validate the magic number and version of every inode in the buffer
155 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
156 	 */
157 #ifdef DEBUG
158 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
159 #else	/* usual case */
160 	ni = 1;
161 #endif
162 
163 	for (i = 0; i < ni; i++) {
164 		int		di_ok;
165 		xfs_dinode_t	*dip;
166 
167 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
168 					(i << mp->m_sb.sb_inodelog));
169 		di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
170 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
171 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
172 						XFS_ERRTAG_ITOBP_INOTOBP,
173 						XFS_RANDOM_ITOBP_INOTOBP))) {
174 			if (iget_flags & XFS_IGET_UNTRUSTED) {
175 				xfs_trans_brelse(tp, bp);
176 				return XFS_ERROR(EINVAL);
177 			}
178 			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
179 						XFS_ERRLEVEL_HIGH, mp, dip);
180 #ifdef DEBUG
181 			xfs_emerg(mp,
182 				"bad inode magic/vsn daddr %lld #%d (magic=%x)",
183 				(unsigned long long)imap->im_blkno, i,
184 				be16_to_cpu(dip->di_magic));
185 			ASSERT(0);
186 #endif
187 			xfs_trans_brelse(tp, bp);
188 			return XFS_ERROR(EFSCORRUPTED);
189 		}
190 	}
191 
192 	xfs_inobp_check(mp, bp);
193 	*bpp = bp;
194 	return 0;
195 }
196 
197 /*
198  * This routine is called to map an inode number within a file
199  * system to the buffer containing the on-disk version of the
200  * inode.  It returns a pointer to the buffer containing the
201  * on-disk inode in the bpp parameter, and in the dip parameter
202  * it returns a pointer to the on-disk inode within that buffer.
203  *
204  * If a non-zero error is returned, then the contents of bpp and
205  * dipp are undefined.
206  *
207  * Use xfs_imap() to determine the size and location of the
208  * buffer to read from disk.
209  */
210 int
211 xfs_inotobp(
212 	xfs_mount_t	*mp,
213 	xfs_trans_t	*tp,
214 	xfs_ino_t	ino,
215 	xfs_dinode_t	**dipp,
216 	xfs_buf_t	**bpp,
217 	int		*offset,
218 	uint		imap_flags)
219 {
220 	struct xfs_imap	imap;
221 	xfs_buf_t	*bp;
222 	int		error;
223 
224 	imap.im_blkno = 0;
225 	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
226 	if (error)
227 		return error;
228 
229 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
230 	if (error)
231 		return error;
232 
233 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
234 	*bpp = bp;
235 	*offset = imap.im_boffset;
236 	return 0;
237 }
238 
239 
240 /*
241  * This routine is called to map an inode to the buffer containing
242  * the on-disk version of the inode.  It returns a pointer to the
243  * buffer containing the on-disk inode in the bpp parameter, and in
244  * the dip parameter it returns a pointer to the on-disk inode within
245  * that buffer.
246  *
247  * If a non-zero error is returned, then the contents of bpp and
248  * dipp are undefined.
249  *
250  * The inode is expected to already been mapped to its buffer and read
251  * in once, thus we can use the mapping information stored in the inode
252  * rather than calling xfs_imap().  This allows us to avoid the overhead
253  * of looking at the inode btree for small block file systems
254  * (see xfs_imap()).
255  */
256 int
257 xfs_itobp(
258 	xfs_mount_t	*mp,
259 	xfs_trans_t	*tp,
260 	xfs_inode_t	*ip,
261 	xfs_dinode_t	**dipp,
262 	xfs_buf_t	**bpp,
263 	uint		buf_flags)
264 {
265 	xfs_buf_t	*bp;
266 	int		error;
267 
268 	ASSERT(ip->i_imap.im_blkno != 0);
269 
270 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
271 	if (error)
272 		return error;
273 
274 	if (!bp) {
275 		ASSERT(buf_flags & XBF_TRYLOCK);
276 		ASSERT(tp == NULL);
277 		*bpp = NULL;
278 		return EAGAIN;
279 	}
280 
281 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
282 	*bpp = bp;
283 	return 0;
284 }
285 
286 /*
287  * Move inode type and inode format specific information from the
288  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
289  * this means set if_rdev to the proper value.  For files, directories,
290  * and symlinks this means to bring in the in-line data or extent
291  * pointers.  For a file in B-tree format, only the root is immediately
292  * brought in-core.  The rest will be in-lined in if_extents when it
293  * is first referenced (see xfs_iread_extents()).
294  */
295 STATIC int
296 xfs_iformat(
297 	xfs_inode_t		*ip,
298 	xfs_dinode_t		*dip)
299 {
300 	xfs_attr_shortform_t	*atp;
301 	int			size;
302 	int			error = 0;
303 	xfs_fsize_t             di_size;
304 
305 	if (unlikely(be32_to_cpu(dip->di_nextents) +
306 		     be16_to_cpu(dip->di_anextents) >
307 		     be64_to_cpu(dip->di_nblocks))) {
308 		xfs_warn(ip->i_mount,
309 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
310 			(unsigned long long)ip->i_ino,
311 			(int)(be32_to_cpu(dip->di_nextents) +
312 			      be16_to_cpu(dip->di_anextents)),
313 			(unsigned long long)
314 				be64_to_cpu(dip->di_nblocks));
315 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
316 				     ip->i_mount, dip);
317 		return XFS_ERROR(EFSCORRUPTED);
318 	}
319 
320 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
321 		xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
322 			(unsigned long long)ip->i_ino,
323 			dip->di_forkoff);
324 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
325 				     ip->i_mount, dip);
326 		return XFS_ERROR(EFSCORRUPTED);
327 	}
328 
329 	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
330 		     !ip->i_mount->m_rtdev_targp)) {
331 		xfs_warn(ip->i_mount,
332 			"corrupt dinode %Lu, has realtime flag set.",
333 			ip->i_ino);
334 		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
335 				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
336 		return XFS_ERROR(EFSCORRUPTED);
337 	}
338 
339 	switch (ip->i_d.di_mode & S_IFMT) {
340 	case S_IFIFO:
341 	case S_IFCHR:
342 	case S_IFBLK:
343 	case S_IFSOCK:
344 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
345 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
346 					      ip->i_mount, dip);
347 			return XFS_ERROR(EFSCORRUPTED);
348 		}
349 		ip->i_d.di_size = 0;
350 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
351 		break;
352 
353 	case S_IFREG:
354 	case S_IFLNK:
355 	case S_IFDIR:
356 		switch (dip->di_format) {
357 		case XFS_DINODE_FMT_LOCAL:
358 			/*
359 			 * no local regular files yet
360 			 */
361 			if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
362 				xfs_warn(ip->i_mount,
363 			"corrupt inode %Lu (local format for regular file).",
364 					(unsigned long long) ip->i_ino);
365 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
366 						     XFS_ERRLEVEL_LOW,
367 						     ip->i_mount, dip);
368 				return XFS_ERROR(EFSCORRUPTED);
369 			}
370 
371 			di_size = be64_to_cpu(dip->di_size);
372 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
373 				xfs_warn(ip->i_mount,
374 			"corrupt inode %Lu (bad size %Ld for local inode).",
375 					(unsigned long long) ip->i_ino,
376 					(long long) di_size);
377 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
378 						     XFS_ERRLEVEL_LOW,
379 						     ip->i_mount, dip);
380 				return XFS_ERROR(EFSCORRUPTED);
381 			}
382 
383 			size = (int)di_size;
384 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
385 			break;
386 		case XFS_DINODE_FMT_EXTENTS:
387 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
388 			break;
389 		case XFS_DINODE_FMT_BTREE:
390 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
391 			break;
392 		default:
393 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
394 					 ip->i_mount);
395 			return XFS_ERROR(EFSCORRUPTED);
396 		}
397 		break;
398 
399 	default:
400 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
401 		return XFS_ERROR(EFSCORRUPTED);
402 	}
403 	if (error) {
404 		return error;
405 	}
406 	if (!XFS_DFORK_Q(dip))
407 		return 0;
408 
409 	ASSERT(ip->i_afp == NULL);
410 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
411 
412 	switch (dip->di_aformat) {
413 	case XFS_DINODE_FMT_LOCAL:
414 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
415 		size = be16_to_cpu(atp->hdr.totsize);
416 
417 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
418 			xfs_warn(ip->i_mount,
419 				"corrupt inode %Lu (bad attr fork size %Ld).",
420 				(unsigned long long) ip->i_ino,
421 				(long long) size);
422 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
423 					     XFS_ERRLEVEL_LOW,
424 					     ip->i_mount, dip);
425 			return XFS_ERROR(EFSCORRUPTED);
426 		}
427 
428 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
429 		break;
430 	case XFS_DINODE_FMT_EXTENTS:
431 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
432 		break;
433 	case XFS_DINODE_FMT_BTREE:
434 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
435 		break;
436 	default:
437 		error = XFS_ERROR(EFSCORRUPTED);
438 		break;
439 	}
440 	if (error) {
441 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
442 		ip->i_afp = NULL;
443 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
444 	}
445 	return error;
446 }
447 
448 /*
449  * The file is in-lined in the on-disk inode.
450  * If it fits into if_inline_data, then copy
451  * it there, otherwise allocate a buffer for it
452  * and copy the data there.  Either way, set
453  * if_data to point at the data.
454  * If we allocate a buffer for the data, make
455  * sure that its size is a multiple of 4 and
456  * record the real size in i_real_bytes.
457  */
458 STATIC int
459 xfs_iformat_local(
460 	xfs_inode_t	*ip,
461 	xfs_dinode_t	*dip,
462 	int		whichfork,
463 	int		size)
464 {
465 	xfs_ifork_t	*ifp;
466 	int		real_size;
467 
468 	/*
469 	 * If the size is unreasonable, then something
470 	 * is wrong and we just bail out rather than crash in
471 	 * kmem_alloc() or memcpy() below.
472 	 */
473 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
474 		xfs_warn(ip->i_mount,
475 	"corrupt inode %Lu (bad size %d for local fork, size = %d).",
476 			(unsigned long long) ip->i_ino, size,
477 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
478 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
479 				     ip->i_mount, dip);
480 		return XFS_ERROR(EFSCORRUPTED);
481 	}
482 	ifp = XFS_IFORK_PTR(ip, whichfork);
483 	real_size = 0;
484 	if (size == 0)
485 		ifp->if_u1.if_data = NULL;
486 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
487 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
488 	else {
489 		real_size = roundup(size, 4);
490 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
491 	}
492 	ifp->if_bytes = size;
493 	ifp->if_real_bytes = real_size;
494 	if (size)
495 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
496 	ifp->if_flags &= ~XFS_IFEXTENTS;
497 	ifp->if_flags |= XFS_IFINLINE;
498 	return 0;
499 }
500 
501 /*
502  * The file consists of a set of extents all
503  * of which fit into the on-disk inode.
504  * If there are few enough extents to fit into
505  * the if_inline_ext, then copy them there.
506  * Otherwise allocate a buffer for them and copy
507  * them into it.  Either way, set if_extents
508  * to point at the extents.
509  */
510 STATIC int
511 xfs_iformat_extents(
512 	xfs_inode_t	*ip,
513 	xfs_dinode_t	*dip,
514 	int		whichfork)
515 {
516 	xfs_bmbt_rec_t	*dp;
517 	xfs_ifork_t	*ifp;
518 	int		nex;
519 	int		size;
520 	int		i;
521 
522 	ifp = XFS_IFORK_PTR(ip, whichfork);
523 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
524 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
525 
526 	/*
527 	 * If the number of extents is unreasonable, then something
528 	 * is wrong and we just bail out rather than crash in
529 	 * kmem_alloc() or memcpy() below.
530 	 */
531 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
532 		xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
533 			(unsigned long long) ip->i_ino, nex);
534 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
535 				     ip->i_mount, dip);
536 		return XFS_ERROR(EFSCORRUPTED);
537 	}
538 
539 	ifp->if_real_bytes = 0;
540 	if (nex == 0)
541 		ifp->if_u1.if_extents = NULL;
542 	else if (nex <= XFS_INLINE_EXTS)
543 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
544 	else
545 		xfs_iext_add(ifp, 0, nex);
546 
547 	ifp->if_bytes = size;
548 	if (size) {
549 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
550 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
551 		for (i = 0; i < nex; i++, dp++) {
552 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
553 			ep->l0 = get_unaligned_be64(&dp->l0);
554 			ep->l1 = get_unaligned_be64(&dp->l1);
555 		}
556 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
557 		if (whichfork != XFS_DATA_FORK ||
558 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
559 				if (unlikely(xfs_check_nostate_extents(
560 				    ifp, 0, nex))) {
561 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
562 							 XFS_ERRLEVEL_LOW,
563 							 ip->i_mount);
564 					return XFS_ERROR(EFSCORRUPTED);
565 				}
566 	}
567 	ifp->if_flags |= XFS_IFEXTENTS;
568 	return 0;
569 }
570 
571 /*
572  * The file has too many extents to fit into
573  * the inode, so they are in B-tree format.
574  * Allocate a buffer for the root of the B-tree
575  * and copy the root into it.  The i_extents
576  * field will remain NULL until all of the
577  * extents are read in (when they are needed).
578  */
579 STATIC int
580 xfs_iformat_btree(
581 	xfs_inode_t		*ip,
582 	xfs_dinode_t		*dip,
583 	int			whichfork)
584 {
585 	xfs_bmdr_block_t	*dfp;
586 	xfs_ifork_t		*ifp;
587 	/* REFERENCED */
588 	int			nrecs;
589 	int			size;
590 
591 	ifp = XFS_IFORK_PTR(ip, whichfork);
592 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
593 	size = XFS_BMAP_BROOT_SPACE(dfp);
594 	nrecs = be16_to_cpu(dfp->bb_numrecs);
595 
596 	/*
597 	 * blow out if -- fork has less extents than can fit in
598 	 * fork (fork shouldn't be a btree format), root btree
599 	 * block has more records than can fit into the fork,
600 	 * or the number of extents is greater than the number of
601 	 * blocks.
602 	 */
603 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
604 			XFS_IFORK_MAXEXT(ip, whichfork) ||
605 		     XFS_BMDR_SPACE_CALC(nrecs) >
606 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) ||
607 		     XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
608 		xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
609 			(unsigned long long) ip->i_ino);
610 		XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
611 				 ip->i_mount, dip);
612 		return XFS_ERROR(EFSCORRUPTED);
613 	}
614 
615 	ifp->if_broot_bytes = size;
616 	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
617 	ASSERT(ifp->if_broot != NULL);
618 	/*
619 	 * Copy and convert from the on-disk structure
620 	 * to the in-memory structure.
621 	 */
622 	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
623 			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
624 			 ifp->if_broot, size);
625 	ifp->if_flags &= ~XFS_IFEXTENTS;
626 	ifp->if_flags |= XFS_IFBROOT;
627 
628 	return 0;
629 }
630 
631 STATIC void
632 xfs_dinode_from_disk(
633 	xfs_icdinode_t		*to,
634 	xfs_dinode_t		*from)
635 {
636 	to->di_magic = be16_to_cpu(from->di_magic);
637 	to->di_mode = be16_to_cpu(from->di_mode);
638 	to->di_version = from ->di_version;
639 	to->di_format = from->di_format;
640 	to->di_onlink = be16_to_cpu(from->di_onlink);
641 	to->di_uid = be32_to_cpu(from->di_uid);
642 	to->di_gid = be32_to_cpu(from->di_gid);
643 	to->di_nlink = be32_to_cpu(from->di_nlink);
644 	to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
645 	to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
646 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
647 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
648 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
649 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
650 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
651 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
652 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
653 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
654 	to->di_size = be64_to_cpu(from->di_size);
655 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
656 	to->di_extsize = be32_to_cpu(from->di_extsize);
657 	to->di_nextents = be32_to_cpu(from->di_nextents);
658 	to->di_anextents = be16_to_cpu(from->di_anextents);
659 	to->di_forkoff = from->di_forkoff;
660 	to->di_aformat	= from->di_aformat;
661 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
662 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
663 	to->di_flags	= be16_to_cpu(from->di_flags);
664 	to->di_gen	= be32_to_cpu(from->di_gen);
665 }
666 
667 void
668 xfs_dinode_to_disk(
669 	xfs_dinode_t		*to,
670 	xfs_icdinode_t		*from)
671 {
672 	to->di_magic = cpu_to_be16(from->di_magic);
673 	to->di_mode = cpu_to_be16(from->di_mode);
674 	to->di_version = from ->di_version;
675 	to->di_format = from->di_format;
676 	to->di_onlink = cpu_to_be16(from->di_onlink);
677 	to->di_uid = cpu_to_be32(from->di_uid);
678 	to->di_gid = cpu_to_be32(from->di_gid);
679 	to->di_nlink = cpu_to_be32(from->di_nlink);
680 	to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
681 	to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
682 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
683 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
684 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
685 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
686 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
687 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
688 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
689 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
690 	to->di_size = cpu_to_be64(from->di_size);
691 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
692 	to->di_extsize = cpu_to_be32(from->di_extsize);
693 	to->di_nextents = cpu_to_be32(from->di_nextents);
694 	to->di_anextents = cpu_to_be16(from->di_anextents);
695 	to->di_forkoff = from->di_forkoff;
696 	to->di_aformat = from->di_aformat;
697 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
698 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
699 	to->di_flags = cpu_to_be16(from->di_flags);
700 	to->di_gen = cpu_to_be32(from->di_gen);
701 }
702 
703 STATIC uint
704 _xfs_dic2xflags(
705 	__uint16_t		di_flags)
706 {
707 	uint			flags = 0;
708 
709 	if (di_flags & XFS_DIFLAG_ANY) {
710 		if (di_flags & XFS_DIFLAG_REALTIME)
711 			flags |= XFS_XFLAG_REALTIME;
712 		if (di_flags & XFS_DIFLAG_PREALLOC)
713 			flags |= XFS_XFLAG_PREALLOC;
714 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
715 			flags |= XFS_XFLAG_IMMUTABLE;
716 		if (di_flags & XFS_DIFLAG_APPEND)
717 			flags |= XFS_XFLAG_APPEND;
718 		if (di_flags & XFS_DIFLAG_SYNC)
719 			flags |= XFS_XFLAG_SYNC;
720 		if (di_flags & XFS_DIFLAG_NOATIME)
721 			flags |= XFS_XFLAG_NOATIME;
722 		if (di_flags & XFS_DIFLAG_NODUMP)
723 			flags |= XFS_XFLAG_NODUMP;
724 		if (di_flags & XFS_DIFLAG_RTINHERIT)
725 			flags |= XFS_XFLAG_RTINHERIT;
726 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
727 			flags |= XFS_XFLAG_PROJINHERIT;
728 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
729 			flags |= XFS_XFLAG_NOSYMLINKS;
730 		if (di_flags & XFS_DIFLAG_EXTSIZE)
731 			flags |= XFS_XFLAG_EXTSIZE;
732 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
733 			flags |= XFS_XFLAG_EXTSZINHERIT;
734 		if (di_flags & XFS_DIFLAG_NODEFRAG)
735 			flags |= XFS_XFLAG_NODEFRAG;
736 		if (di_flags & XFS_DIFLAG_FILESTREAM)
737 			flags |= XFS_XFLAG_FILESTREAM;
738 	}
739 
740 	return flags;
741 }
742 
743 uint
744 xfs_ip2xflags(
745 	xfs_inode_t		*ip)
746 {
747 	xfs_icdinode_t		*dic = &ip->i_d;
748 
749 	return _xfs_dic2xflags(dic->di_flags) |
750 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
751 }
752 
753 uint
754 xfs_dic2xflags(
755 	xfs_dinode_t		*dip)
756 {
757 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
758 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
759 }
760 
761 /*
762  * Read the disk inode attributes into the in-core inode structure.
763  */
764 int
765 xfs_iread(
766 	xfs_mount_t	*mp,
767 	xfs_trans_t	*tp,
768 	xfs_inode_t	*ip,
769 	uint		iget_flags)
770 {
771 	xfs_buf_t	*bp;
772 	xfs_dinode_t	*dip;
773 	int		error;
774 
775 	/*
776 	 * Fill in the location information in the in-core inode.
777 	 */
778 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
779 	if (error)
780 		return error;
781 
782 	/*
783 	 * Get pointers to the on-disk inode and the buffer containing it.
784 	 */
785 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
786 			       XBF_LOCK, iget_flags);
787 	if (error)
788 		return error;
789 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
790 
791 	/*
792 	 * If we got something that isn't an inode it means someone
793 	 * (nfs or dmi) has a stale handle.
794 	 */
795 	if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
796 #ifdef DEBUG
797 		xfs_alert(mp,
798 			"%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
799 			__func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
800 #endif /* DEBUG */
801 		error = XFS_ERROR(EINVAL);
802 		goto out_brelse;
803 	}
804 
805 	/*
806 	 * If the on-disk inode is already linked to a directory
807 	 * entry, copy all of the inode into the in-core inode.
808 	 * xfs_iformat() handles copying in the inode format
809 	 * specific information.
810 	 * Otherwise, just get the truly permanent information.
811 	 */
812 	if (dip->di_mode) {
813 		xfs_dinode_from_disk(&ip->i_d, dip);
814 		error = xfs_iformat(ip, dip);
815 		if (error)  {
816 #ifdef DEBUG
817 			xfs_alert(mp, "%s: xfs_iformat() returned error %d",
818 				__func__, error);
819 #endif /* DEBUG */
820 			goto out_brelse;
821 		}
822 	} else {
823 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
824 		ip->i_d.di_version = dip->di_version;
825 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
826 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
827 		/*
828 		 * Make sure to pull in the mode here as well in
829 		 * case the inode is released without being used.
830 		 * This ensures that xfs_inactive() will see that
831 		 * the inode is already free and not try to mess
832 		 * with the uninitialized part of it.
833 		 */
834 		ip->i_d.di_mode = 0;
835 	}
836 
837 	/*
838 	 * The inode format changed when we moved the link count and
839 	 * made it 32 bits long.  If this is an old format inode,
840 	 * convert it in memory to look like a new one.  If it gets
841 	 * flushed to disk we will convert back before flushing or
842 	 * logging it.  We zero out the new projid field and the old link
843 	 * count field.  We'll handle clearing the pad field (the remains
844 	 * of the old uuid field) when we actually convert the inode to
845 	 * the new format. We don't change the version number so that we
846 	 * can distinguish this from a real new format inode.
847 	 */
848 	if (ip->i_d.di_version == 1) {
849 		ip->i_d.di_nlink = ip->i_d.di_onlink;
850 		ip->i_d.di_onlink = 0;
851 		xfs_set_projid(ip, 0);
852 	}
853 
854 	ip->i_delayed_blks = 0;
855 
856 	/*
857 	 * Mark the buffer containing the inode as something to keep
858 	 * around for a while.  This helps to keep recently accessed
859 	 * meta-data in-core longer.
860 	 */
861 	xfs_buf_set_ref(bp, XFS_INO_REF);
862 
863 	/*
864 	 * Use xfs_trans_brelse() to release the buffer containing the
865 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
866 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
867 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
868 	 * will only release the buffer if it is not dirty within the
869 	 * transaction.  It will be OK to release the buffer in this case,
870 	 * because inodes on disk are never destroyed and we will be
871 	 * locking the new in-core inode before putting it in the hash
872 	 * table where other processes can find it.  Thus we don't have
873 	 * to worry about the inode being changed just because we released
874 	 * the buffer.
875 	 */
876  out_brelse:
877 	xfs_trans_brelse(tp, bp);
878 	return error;
879 }
880 
881 /*
882  * Read in extents from a btree-format inode.
883  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
884  */
885 int
886 xfs_iread_extents(
887 	xfs_trans_t	*tp,
888 	xfs_inode_t	*ip,
889 	int		whichfork)
890 {
891 	int		error;
892 	xfs_ifork_t	*ifp;
893 	xfs_extnum_t	nextents;
894 
895 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
896 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
897 				 ip->i_mount);
898 		return XFS_ERROR(EFSCORRUPTED);
899 	}
900 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
901 	ifp = XFS_IFORK_PTR(ip, whichfork);
902 
903 	/*
904 	 * We know that the size is valid (it's checked in iformat_btree)
905 	 */
906 	ifp->if_bytes = ifp->if_real_bytes = 0;
907 	ifp->if_flags |= XFS_IFEXTENTS;
908 	xfs_iext_add(ifp, 0, nextents);
909 	error = xfs_bmap_read_extents(tp, ip, whichfork);
910 	if (error) {
911 		xfs_iext_destroy(ifp);
912 		ifp->if_flags &= ~XFS_IFEXTENTS;
913 		return error;
914 	}
915 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
916 	return 0;
917 }
918 
919 /*
920  * Allocate an inode on disk and return a copy of its in-core version.
921  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
922  * appropriately within the inode.  The uid and gid for the inode are
923  * set according to the contents of the given cred structure.
924  *
925  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
926  * has a free inode available, call xfs_iget()
927  * to obtain the in-core version of the allocated inode.  Finally,
928  * fill in the inode and log its initial contents.  In this case,
929  * ialloc_context would be set to NULL and call_again set to false.
930  *
931  * If xfs_dialloc() does not have an available inode,
932  * it will replenish its supply by doing an allocation. Since we can
933  * only do one allocation within a transaction without deadlocks, we
934  * must commit the current transaction before returning the inode itself.
935  * In this case, therefore, we will set call_again to true and return.
936  * The caller should then commit the current transaction, start a new
937  * transaction, and call xfs_ialloc() again to actually get the inode.
938  *
939  * To ensure that some other process does not grab the inode that
940  * was allocated during the first call to xfs_ialloc(), this routine
941  * also returns the [locked] bp pointing to the head of the freelist
942  * as ialloc_context.  The caller should hold this buffer across
943  * the commit and pass it back into this routine on the second call.
944  *
945  * If we are allocating quota inodes, we do not have a parent inode
946  * to attach to or associate with (i.e. pip == NULL) because they
947  * are not linked into the directory structure - they are attached
948  * directly to the superblock - and so have no parent.
949  */
950 int
951 xfs_ialloc(
952 	xfs_trans_t	*tp,
953 	xfs_inode_t	*pip,
954 	umode_t		mode,
955 	xfs_nlink_t	nlink,
956 	xfs_dev_t	rdev,
957 	prid_t		prid,
958 	int		okalloc,
959 	xfs_buf_t	**ialloc_context,
960 	boolean_t	*call_again,
961 	xfs_inode_t	**ipp)
962 {
963 	xfs_ino_t	ino;
964 	xfs_inode_t	*ip;
965 	uint		flags;
966 	int		error;
967 	timespec_t	tv;
968 	int		filestreams = 0;
969 
970 	/*
971 	 * Call the space management code to pick
972 	 * the on-disk inode to be allocated.
973 	 */
974 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
975 			    ialloc_context, call_again, &ino);
976 	if (error)
977 		return error;
978 	if (*call_again || ino == NULLFSINO) {
979 		*ipp = NULL;
980 		return 0;
981 	}
982 	ASSERT(*ialloc_context == NULL);
983 
984 	/*
985 	 * Get the in-core inode with the lock held exclusively.
986 	 * This is because we're setting fields here we need
987 	 * to prevent others from looking at until we're done.
988 	 */
989 	error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
990 			 XFS_ILOCK_EXCL, &ip);
991 	if (error)
992 		return error;
993 	ASSERT(ip != NULL);
994 
995 	ip->i_d.di_mode = mode;
996 	ip->i_d.di_onlink = 0;
997 	ip->i_d.di_nlink = nlink;
998 	ASSERT(ip->i_d.di_nlink == nlink);
999 	ip->i_d.di_uid = current_fsuid();
1000 	ip->i_d.di_gid = current_fsgid();
1001 	xfs_set_projid(ip, prid);
1002 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1003 
1004 	/*
1005 	 * If the superblock version is up to where we support new format
1006 	 * inodes and this is currently an old format inode, then change
1007 	 * the inode version number now.  This way we only do the conversion
1008 	 * here rather than here and in the flush/logging code.
1009 	 */
1010 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1011 	    ip->i_d.di_version == 1) {
1012 		ip->i_d.di_version = 2;
1013 		/*
1014 		 * We've already zeroed the old link count, the projid field,
1015 		 * and the pad field.
1016 		 */
1017 	}
1018 
1019 	/*
1020 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1021 	 */
1022 	if ((prid != 0) && (ip->i_d.di_version == 1))
1023 		xfs_bump_ino_vers2(tp, ip);
1024 
1025 	if (pip && XFS_INHERIT_GID(pip)) {
1026 		ip->i_d.di_gid = pip->i_d.di_gid;
1027 		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1028 			ip->i_d.di_mode |= S_ISGID;
1029 		}
1030 	}
1031 
1032 	/*
1033 	 * If the group ID of the new file does not match the effective group
1034 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1035 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1036 	 */
1037 	if ((irix_sgid_inherit) &&
1038 	    (ip->i_d.di_mode & S_ISGID) &&
1039 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1040 		ip->i_d.di_mode &= ~S_ISGID;
1041 	}
1042 
1043 	ip->i_d.di_size = 0;
1044 	ip->i_d.di_nextents = 0;
1045 	ASSERT(ip->i_d.di_nblocks == 0);
1046 
1047 	nanotime(&tv);
1048 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1049 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1050 	ip->i_d.di_atime = ip->i_d.di_mtime;
1051 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1052 
1053 	/*
1054 	 * di_gen will have been taken care of in xfs_iread.
1055 	 */
1056 	ip->i_d.di_extsize = 0;
1057 	ip->i_d.di_dmevmask = 0;
1058 	ip->i_d.di_dmstate = 0;
1059 	ip->i_d.di_flags = 0;
1060 	flags = XFS_ILOG_CORE;
1061 	switch (mode & S_IFMT) {
1062 	case S_IFIFO:
1063 	case S_IFCHR:
1064 	case S_IFBLK:
1065 	case S_IFSOCK:
1066 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1067 		ip->i_df.if_u2.if_rdev = rdev;
1068 		ip->i_df.if_flags = 0;
1069 		flags |= XFS_ILOG_DEV;
1070 		break;
1071 	case S_IFREG:
1072 		/*
1073 		 * we can't set up filestreams until after the VFS inode
1074 		 * is set up properly.
1075 		 */
1076 		if (pip && xfs_inode_is_filestream(pip))
1077 			filestreams = 1;
1078 		/* fall through */
1079 	case S_IFDIR:
1080 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1081 			uint	di_flags = 0;
1082 
1083 			if (S_ISDIR(mode)) {
1084 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1085 					di_flags |= XFS_DIFLAG_RTINHERIT;
1086 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1087 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1088 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1089 				}
1090 			} else if (S_ISREG(mode)) {
1091 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1092 					di_flags |= XFS_DIFLAG_REALTIME;
1093 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1094 					di_flags |= XFS_DIFLAG_EXTSIZE;
1095 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1096 				}
1097 			}
1098 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1099 			    xfs_inherit_noatime)
1100 				di_flags |= XFS_DIFLAG_NOATIME;
1101 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1102 			    xfs_inherit_nodump)
1103 				di_flags |= XFS_DIFLAG_NODUMP;
1104 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1105 			    xfs_inherit_sync)
1106 				di_flags |= XFS_DIFLAG_SYNC;
1107 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1108 			    xfs_inherit_nosymlinks)
1109 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1110 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1111 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1112 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1113 			    xfs_inherit_nodefrag)
1114 				di_flags |= XFS_DIFLAG_NODEFRAG;
1115 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1116 				di_flags |= XFS_DIFLAG_FILESTREAM;
1117 			ip->i_d.di_flags |= di_flags;
1118 		}
1119 		/* FALLTHROUGH */
1120 	case S_IFLNK:
1121 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1122 		ip->i_df.if_flags = XFS_IFEXTENTS;
1123 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1124 		ip->i_df.if_u1.if_extents = NULL;
1125 		break;
1126 	default:
1127 		ASSERT(0);
1128 	}
1129 	/*
1130 	 * Attribute fork settings for new inode.
1131 	 */
1132 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1133 	ip->i_d.di_anextents = 0;
1134 
1135 	/*
1136 	 * Log the new values stuffed into the inode.
1137 	 */
1138 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1139 	xfs_trans_log_inode(tp, ip, flags);
1140 
1141 	/* now that we have an i_mode we can setup inode ops and unlock */
1142 	xfs_setup_inode(ip);
1143 
1144 	/* now we have set up the vfs inode we can associate the filestream */
1145 	if (filestreams) {
1146 		error = xfs_filestream_associate(pip, ip);
1147 		if (error < 0)
1148 			return -error;
1149 		if (!error)
1150 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1151 	}
1152 
1153 	*ipp = ip;
1154 	return 0;
1155 }
1156 
1157 /*
1158  * Free up the underlying blocks past new_size.  The new size must be smaller
1159  * than the current size.  This routine can be used both for the attribute and
1160  * data fork, and does not modify the inode size, which is left to the caller.
1161  *
1162  * The transaction passed to this routine must have made a permanent log
1163  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1164  * given transaction and start new ones, so make sure everything involved in
1165  * the transaction is tidy before calling here.  Some transaction will be
1166  * returned to the caller to be committed.  The incoming transaction must
1167  * already include the inode, and both inode locks must be held exclusively.
1168  * The inode must also be "held" within the transaction.  On return the inode
1169  * will be "held" within the returned transaction.  This routine does NOT
1170  * require any disk space to be reserved for it within the transaction.
1171  *
1172  * If we get an error, we must return with the inode locked and linked into the
1173  * current transaction. This keeps things simple for the higher level code,
1174  * because it always knows that the inode is locked and held in the transaction
1175  * that returns to it whether errors occur or not.  We don't mark the inode
1176  * dirty on error so that transactions can be easily aborted if possible.
1177  */
1178 int
1179 xfs_itruncate_extents(
1180 	struct xfs_trans	**tpp,
1181 	struct xfs_inode	*ip,
1182 	int			whichfork,
1183 	xfs_fsize_t		new_size)
1184 {
1185 	struct xfs_mount	*mp = ip->i_mount;
1186 	struct xfs_trans	*tp = *tpp;
1187 	struct xfs_trans	*ntp;
1188 	xfs_bmap_free_t		free_list;
1189 	xfs_fsblock_t		first_block;
1190 	xfs_fileoff_t		first_unmap_block;
1191 	xfs_fileoff_t		last_block;
1192 	xfs_filblks_t		unmap_len;
1193 	int			committed;
1194 	int			error = 0;
1195 	int			done = 0;
1196 
1197 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1198 	ASSERT(new_size <= XFS_ISIZE(ip));
1199 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1200 	ASSERT(ip->i_itemp != NULL);
1201 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1202 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1203 
1204 	trace_xfs_itruncate_extents_start(ip, new_size);
1205 
1206 	/*
1207 	 * Since it is possible for space to become allocated beyond
1208 	 * the end of the file (in a crash where the space is allocated
1209 	 * but the inode size is not yet updated), simply remove any
1210 	 * blocks which show up between the new EOF and the maximum
1211 	 * possible file size.  If the first block to be removed is
1212 	 * beyond the maximum file size (ie it is the same as last_block),
1213 	 * then there is nothing to do.
1214 	 */
1215 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1216 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1217 	if (first_unmap_block == last_block)
1218 		return 0;
1219 
1220 	ASSERT(first_unmap_block < last_block);
1221 	unmap_len = last_block - first_unmap_block + 1;
1222 	while (!done) {
1223 		xfs_bmap_init(&free_list, &first_block);
1224 		error = xfs_bunmapi(tp, ip,
1225 				    first_unmap_block, unmap_len,
1226 				    xfs_bmapi_aflag(whichfork),
1227 				    XFS_ITRUNC_MAX_EXTENTS,
1228 				    &first_block, &free_list,
1229 				    &done);
1230 		if (error)
1231 			goto out_bmap_cancel;
1232 
1233 		/*
1234 		 * Duplicate the transaction that has the permanent
1235 		 * reservation and commit the old transaction.
1236 		 */
1237 		error = xfs_bmap_finish(&tp, &free_list, &committed);
1238 		if (committed)
1239 			xfs_trans_ijoin(tp, ip, 0);
1240 		if (error)
1241 			goto out_bmap_cancel;
1242 
1243 		if (committed) {
1244 			/*
1245 			 * Mark the inode dirty so it will be logged and
1246 			 * moved forward in the log as part of every commit.
1247 			 */
1248 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1249 		}
1250 
1251 		ntp = xfs_trans_dup(tp);
1252 		error = xfs_trans_commit(tp, 0);
1253 		tp = ntp;
1254 
1255 		xfs_trans_ijoin(tp, ip, 0);
1256 
1257 		if (error)
1258 			goto out;
1259 
1260 		/*
1261 		 * Transaction commit worked ok so we can drop the extra ticket
1262 		 * reference that we gained in xfs_trans_dup()
1263 		 */
1264 		xfs_log_ticket_put(tp->t_ticket);
1265 		error = xfs_trans_reserve(tp, 0,
1266 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1267 					XFS_TRANS_PERM_LOG_RES,
1268 					XFS_ITRUNCATE_LOG_COUNT);
1269 		if (error)
1270 			goto out;
1271 	}
1272 
1273 	/*
1274 	 * Always re-log the inode so that our permanent transaction can keep
1275 	 * on rolling it forward in the log.
1276 	 */
1277 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1278 
1279 	trace_xfs_itruncate_extents_end(ip, new_size);
1280 
1281 out:
1282 	*tpp = tp;
1283 	return error;
1284 out_bmap_cancel:
1285 	/*
1286 	 * If the bunmapi call encounters an error, return to the caller where
1287 	 * the transaction can be properly aborted.  We just need to make sure
1288 	 * we're not holding any resources that we were not when we came in.
1289 	 */
1290 	xfs_bmap_cancel(&free_list);
1291 	goto out;
1292 }
1293 
1294 /*
1295  * This is called when the inode's link count goes to 0.
1296  * We place the on-disk inode on a list in the AGI.  It
1297  * will be pulled from this list when the inode is freed.
1298  */
1299 int
1300 xfs_iunlink(
1301 	xfs_trans_t	*tp,
1302 	xfs_inode_t	*ip)
1303 {
1304 	xfs_mount_t	*mp;
1305 	xfs_agi_t	*agi;
1306 	xfs_dinode_t	*dip;
1307 	xfs_buf_t	*agibp;
1308 	xfs_buf_t	*ibp;
1309 	xfs_agino_t	agino;
1310 	short		bucket_index;
1311 	int		offset;
1312 	int		error;
1313 
1314 	ASSERT(ip->i_d.di_nlink == 0);
1315 	ASSERT(ip->i_d.di_mode != 0);
1316 
1317 	mp = tp->t_mountp;
1318 
1319 	/*
1320 	 * Get the agi buffer first.  It ensures lock ordering
1321 	 * on the list.
1322 	 */
1323 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1324 	if (error)
1325 		return error;
1326 	agi = XFS_BUF_TO_AGI(agibp);
1327 
1328 	/*
1329 	 * Get the index into the agi hash table for the
1330 	 * list this inode will go on.
1331 	 */
1332 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1333 	ASSERT(agino != 0);
1334 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1335 	ASSERT(agi->agi_unlinked[bucket_index]);
1336 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1337 
1338 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1339 		/*
1340 		 * There is already another inode in the bucket we need
1341 		 * to add ourselves to.  Add us at the front of the list.
1342 		 * Here we put the head pointer into our next pointer,
1343 		 * and then we fall through to point the head at us.
1344 		 */
1345 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1346 		if (error)
1347 			return error;
1348 
1349 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1350 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1351 		offset = ip->i_imap.im_boffset +
1352 			offsetof(xfs_dinode_t, di_next_unlinked);
1353 		xfs_trans_inode_buf(tp, ibp);
1354 		xfs_trans_log_buf(tp, ibp, offset,
1355 				  (offset + sizeof(xfs_agino_t) - 1));
1356 		xfs_inobp_check(mp, ibp);
1357 	}
1358 
1359 	/*
1360 	 * Point the bucket head pointer at the inode being inserted.
1361 	 */
1362 	ASSERT(agino != 0);
1363 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1364 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1365 		(sizeof(xfs_agino_t) * bucket_index);
1366 	xfs_trans_log_buf(tp, agibp, offset,
1367 			  (offset + sizeof(xfs_agino_t) - 1));
1368 	return 0;
1369 }
1370 
1371 /*
1372  * Pull the on-disk inode from the AGI unlinked list.
1373  */
1374 STATIC int
1375 xfs_iunlink_remove(
1376 	xfs_trans_t	*tp,
1377 	xfs_inode_t	*ip)
1378 {
1379 	xfs_ino_t	next_ino;
1380 	xfs_mount_t	*mp;
1381 	xfs_agi_t	*agi;
1382 	xfs_dinode_t	*dip;
1383 	xfs_buf_t	*agibp;
1384 	xfs_buf_t	*ibp;
1385 	xfs_agnumber_t	agno;
1386 	xfs_agino_t	agino;
1387 	xfs_agino_t	next_agino;
1388 	xfs_buf_t	*last_ibp;
1389 	xfs_dinode_t	*last_dip = NULL;
1390 	short		bucket_index;
1391 	int		offset, last_offset = 0;
1392 	int		error;
1393 
1394 	mp = tp->t_mountp;
1395 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1396 
1397 	/*
1398 	 * Get the agi buffer first.  It ensures lock ordering
1399 	 * on the list.
1400 	 */
1401 	error = xfs_read_agi(mp, tp, agno, &agibp);
1402 	if (error)
1403 		return error;
1404 
1405 	agi = XFS_BUF_TO_AGI(agibp);
1406 
1407 	/*
1408 	 * Get the index into the agi hash table for the
1409 	 * list this inode will go on.
1410 	 */
1411 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1412 	ASSERT(agino != 0);
1413 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1414 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1415 	ASSERT(agi->agi_unlinked[bucket_index]);
1416 
1417 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1418 		/*
1419 		 * We're at the head of the list.  Get the inode's
1420 		 * on-disk buffer to see if there is anyone after us
1421 		 * on the list.  Only modify our next pointer if it
1422 		 * is not already NULLAGINO.  This saves us the overhead
1423 		 * of dealing with the buffer when there is no need to
1424 		 * change it.
1425 		 */
1426 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1427 		if (error) {
1428 			xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
1429 				__func__, error);
1430 			return error;
1431 		}
1432 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1433 		ASSERT(next_agino != 0);
1434 		if (next_agino != NULLAGINO) {
1435 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1436 			offset = ip->i_imap.im_boffset +
1437 				offsetof(xfs_dinode_t, di_next_unlinked);
1438 			xfs_trans_inode_buf(tp, ibp);
1439 			xfs_trans_log_buf(tp, ibp, offset,
1440 					  (offset + sizeof(xfs_agino_t) - 1));
1441 			xfs_inobp_check(mp, ibp);
1442 		} else {
1443 			xfs_trans_brelse(tp, ibp);
1444 		}
1445 		/*
1446 		 * Point the bucket head pointer at the next inode.
1447 		 */
1448 		ASSERT(next_agino != 0);
1449 		ASSERT(next_agino != agino);
1450 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1451 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1452 			(sizeof(xfs_agino_t) * bucket_index);
1453 		xfs_trans_log_buf(tp, agibp, offset,
1454 				  (offset + sizeof(xfs_agino_t) - 1));
1455 	} else {
1456 		/*
1457 		 * We need to search the list for the inode being freed.
1458 		 */
1459 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1460 		last_ibp = NULL;
1461 		while (next_agino != agino) {
1462 			/*
1463 			 * If the last inode wasn't the one pointing to
1464 			 * us, then release its buffer since we're not
1465 			 * going to do anything with it.
1466 			 */
1467 			if (last_ibp != NULL) {
1468 				xfs_trans_brelse(tp, last_ibp);
1469 			}
1470 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1471 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1472 					    &last_ibp, &last_offset, 0);
1473 			if (error) {
1474 				xfs_warn(mp,
1475 					"%s: xfs_inotobp() returned error %d.",
1476 					__func__, error);
1477 				return error;
1478 			}
1479 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1480 			ASSERT(next_agino != NULLAGINO);
1481 			ASSERT(next_agino != 0);
1482 		}
1483 		/*
1484 		 * Now last_ibp points to the buffer previous to us on
1485 		 * the unlinked list.  Pull us from the list.
1486 		 */
1487 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1488 		if (error) {
1489 			xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
1490 				__func__, error);
1491 			return error;
1492 		}
1493 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1494 		ASSERT(next_agino != 0);
1495 		ASSERT(next_agino != agino);
1496 		if (next_agino != NULLAGINO) {
1497 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1498 			offset = ip->i_imap.im_boffset +
1499 				offsetof(xfs_dinode_t, di_next_unlinked);
1500 			xfs_trans_inode_buf(tp, ibp);
1501 			xfs_trans_log_buf(tp, ibp, offset,
1502 					  (offset + sizeof(xfs_agino_t) - 1));
1503 			xfs_inobp_check(mp, ibp);
1504 		} else {
1505 			xfs_trans_brelse(tp, ibp);
1506 		}
1507 		/*
1508 		 * Point the previous inode on the list to the next inode.
1509 		 */
1510 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1511 		ASSERT(next_agino != 0);
1512 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1513 		xfs_trans_inode_buf(tp, last_ibp);
1514 		xfs_trans_log_buf(tp, last_ibp, offset,
1515 				  (offset + sizeof(xfs_agino_t) - 1));
1516 		xfs_inobp_check(mp, last_ibp);
1517 	}
1518 	return 0;
1519 }
1520 
1521 /*
1522  * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1523  * inodes that are in memory - they all must be marked stale and attached to
1524  * the cluster buffer.
1525  */
1526 STATIC int
1527 xfs_ifree_cluster(
1528 	xfs_inode_t	*free_ip,
1529 	xfs_trans_t	*tp,
1530 	xfs_ino_t	inum)
1531 {
1532 	xfs_mount_t		*mp = free_ip->i_mount;
1533 	int			blks_per_cluster;
1534 	int			nbufs;
1535 	int			ninodes;
1536 	int			i, j;
1537 	xfs_daddr_t		blkno;
1538 	xfs_buf_t		*bp;
1539 	xfs_inode_t		*ip;
1540 	xfs_inode_log_item_t	*iip;
1541 	xfs_log_item_t		*lip;
1542 	struct xfs_perag	*pag;
1543 
1544 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1545 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1546 		blks_per_cluster = 1;
1547 		ninodes = mp->m_sb.sb_inopblock;
1548 		nbufs = XFS_IALLOC_BLOCKS(mp);
1549 	} else {
1550 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1551 					mp->m_sb.sb_blocksize;
1552 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1553 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1554 	}
1555 
1556 	for (j = 0; j < nbufs; j++, inum += ninodes) {
1557 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1558 					 XFS_INO_TO_AGBNO(mp, inum));
1559 
1560 		/*
1561 		 * We obtain and lock the backing buffer first in the process
1562 		 * here, as we have to ensure that any dirty inode that we
1563 		 * can't get the flush lock on is attached to the buffer.
1564 		 * If we scan the in-memory inodes first, then buffer IO can
1565 		 * complete before we get a lock on it, and hence we may fail
1566 		 * to mark all the active inodes on the buffer stale.
1567 		 */
1568 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1569 					mp->m_bsize * blks_per_cluster,
1570 					XBF_LOCK);
1571 
1572 		if (!bp)
1573 			return ENOMEM;
1574 		/*
1575 		 * Walk the inodes already attached to the buffer and mark them
1576 		 * stale. These will all have the flush locks held, so an
1577 		 * in-memory inode walk can't lock them. By marking them all
1578 		 * stale first, we will not attempt to lock them in the loop
1579 		 * below as the XFS_ISTALE flag will be set.
1580 		 */
1581 		lip = bp->b_fspriv;
1582 		while (lip) {
1583 			if (lip->li_type == XFS_LI_INODE) {
1584 				iip = (xfs_inode_log_item_t *)lip;
1585 				ASSERT(iip->ili_logged == 1);
1586 				lip->li_cb = xfs_istale_done;
1587 				xfs_trans_ail_copy_lsn(mp->m_ail,
1588 							&iip->ili_flush_lsn,
1589 							&iip->ili_item.li_lsn);
1590 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1591 			}
1592 			lip = lip->li_bio_list;
1593 		}
1594 
1595 
1596 		/*
1597 		 * For each inode in memory attempt to add it to the inode
1598 		 * buffer and set it up for being staled on buffer IO
1599 		 * completion.  This is safe as we've locked out tail pushing
1600 		 * and flushing by locking the buffer.
1601 		 *
1602 		 * We have already marked every inode that was part of a
1603 		 * transaction stale above, which means there is no point in
1604 		 * even trying to lock them.
1605 		 */
1606 		for (i = 0; i < ninodes; i++) {
1607 retry:
1608 			rcu_read_lock();
1609 			ip = radix_tree_lookup(&pag->pag_ici_root,
1610 					XFS_INO_TO_AGINO(mp, (inum + i)));
1611 
1612 			/* Inode not in memory, nothing to do */
1613 			if (!ip) {
1614 				rcu_read_unlock();
1615 				continue;
1616 			}
1617 
1618 			/*
1619 			 * because this is an RCU protected lookup, we could
1620 			 * find a recently freed or even reallocated inode
1621 			 * during the lookup. We need to check under the
1622 			 * i_flags_lock for a valid inode here. Skip it if it
1623 			 * is not valid, the wrong inode or stale.
1624 			 */
1625 			spin_lock(&ip->i_flags_lock);
1626 			if (ip->i_ino != inum + i ||
1627 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
1628 				spin_unlock(&ip->i_flags_lock);
1629 				rcu_read_unlock();
1630 				continue;
1631 			}
1632 			spin_unlock(&ip->i_flags_lock);
1633 
1634 			/*
1635 			 * Don't try to lock/unlock the current inode, but we
1636 			 * _cannot_ skip the other inodes that we did not find
1637 			 * in the list attached to the buffer and are not
1638 			 * already marked stale. If we can't lock it, back off
1639 			 * and retry.
1640 			 */
1641 			if (ip != free_ip &&
1642 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1643 				rcu_read_unlock();
1644 				delay(1);
1645 				goto retry;
1646 			}
1647 			rcu_read_unlock();
1648 
1649 			xfs_iflock(ip);
1650 			xfs_iflags_set(ip, XFS_ISTALE);
1651 
1652 			/*
1653 			 * we don't need to attach clean inodes or those only
1654 			 * with unlogged changes (which we throw away, anyway).
1655 			 */
1656 			iip = ip->i_itemp;
1657 			if (!iip || xfs_inode_clean(ip)) {
1658 				ASSERT(ip != free_ip);
1659 				ip->i_update_core = 0;
1660 				xfs_ifunlock(ip);
1661 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1662 				continue;
1663 			}
1664 
1665 			iip->ili_last_fields = iip->ili_format.ilf_fields;
1666 			iip->ili_format.ilf_fields = 0;
1667 			iip->ili_logged = 1;
1668 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1669 						&iip->ili_item.li_lsn);
1670 
1671 			xfs_buf_attach_iodone(bp, xfs_istale_done,
1672 						  &iip->ili_item);
1673 
1674 			if (ip != free_ip)
1675 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1676 		}
1677 
1678 		xfs_trans_stale_inode_buf(tp, bp);
1679 		xfs_trans_binval(tp, bp);
1680 	}
1681 
1682 	xfs_perag_put(pag);
1683 	return 0;
1684 }
1685 
1686 /*
1687  * This is called to return an inode to the inode free list.
1688  * The inode should already be truncated to 0 length and have
1689  * no pages associated with it.  This routine also assumes that
1690  * the inode is already a part of the transaction.
1691  *
1692  * The on-disk copy of the inode will have been added to the list
1693  * of unlinked inodes in the AGI. We need to remove the inode from
1694  * that list atomically with respect to freeing it here.
1695  */
1696 int
1697 xfs_ifree(
1698 	xfs_trans_t	*tp,
1699 	xfs_inode_t	*ip,
1700 	xfs_bmap_free_t	*flist)
1701 {
1702 	int			error;
1703 	int			delete;
1704 	xfs_ino_t		first_ino;
1705 	xfs_dinode_t    	*dip;
1706 	xfs_buf_t       	*ibp;
1707 
1708 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1709 	ASSERT(ip->i_d.di_nlink == 0);
1710 	ASSERT(ip->i_d.di_nextents == 0);
1711 	ASSERT(ip->i_d.di_anextents == 0);
1712 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1713 	ASSERT(ip->i_d.di_nblocks == 0);
1714 
1715 	/*
1716 	 * Pull the on-disk inode from the AGI unlinked list.
1717 	 */
1718 	error = xfs_iunlink_remove(tp, ip);
1719 	if (error != 0) {
1720 		return error;
1721 	}
1722 
1723 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1724 	if (error != 0) {
1725 		return error;
1726 	}
1727 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
1728 	ip->i_d.di_flags = 0;
1729 	ip->i_d.di_dmevmask = 0;
1730 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
1731 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1732 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1733 	/*
1734 	 * Bump the generation count so no one will be confused
1735 	 * by reincarnations of this inode.
1736 	 */
1737 	ip->i_d.di_gen++;
1738 
1739 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1740 
1741 	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
1742 	if (error)
1743 		return error;
1744 
1745         /*
1746 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1747 	* from picking up this inode when it is reclaimed (its incore state
1748 	* initialzed but not flushed to disk yet). The in-core di_mode is
1749 	* already cleared  and a corresponding transaction logged.
1750 	* The hack here just synchronizes the in-core to on-disk
1751 	* di_mode value in advance before the actual inode sync to disk.
1752 	* This is OK because the inode is already unlinked and would never
1753 	* change its di_mode again for this inode generation.
1754 	* This is a temporary hack that would require a proper fix
1755 	* in the future.
1756 	*/
1757 	dip->di_mode = 0;
1758 
1759 	if (delete) {
1760 		error = xfs_ifree_cluster(ip, tp, first_ino);
1761 	}
1762 
1763 	return error;
1764 }
1765 
1766 /*
1767  * Reallocate the space for if_broot based on the number of records
1768  * being added or deleted as indicated in rec_diff.  Move the records
1769  * and pointers in if_broot to fit the new size.  When shrinking this
1770  * will eliminate holes between the records and pointers created by
1771  * the caller.  When growing this will create holes to be filled in
1772  * by the caller.
1773  *
1774  * The caller must not request to add more records than would fit in
1775  * the on-disk inode root.  If the if_broot is currently NULL, then
1776  * if we adding records one will be allocated.  The caller must also
1777  * not request that the number of records go below zero, although
1778  * it can go to zero.
1779  *
1780  * ip -- the inode whose if_broot area is changing
1781  * ext_diff -- the change in the number of records, positive or negative,
1782  *	 requested for the if_broot array.
1783  */
1784 void
1785 xfs_iroot_realloc(
1786 	xfs_inode_t		*ip,
1787 	int			rec_diff,
1788 	int			whichfork)
1789 {
1790 	struct xfs_mount	*mp = ip->i_mount;
1791 	int			cur_max;
1792 	xfs_ifork_t		*ifp;
1793 	struct xfs_btree_block	*new_broot;
1794 	int			new_max;
1795 	size_t			new_size;
1796 	char			*np;
1797 	char			*op;
1798 
1799 	/*
1800 	 * Handle the degenerate case quietly.
1801 	 */
1802 	if (rec_diff == 0) {
1803 		return;
1804 	}
1805 
1806 	ifp = XFS_IFORK_PTR(ip, whichfork);
1807 	if (rec_diff > 0) {
1808 		/*
1809 		 * If there wasn't any memory allocated before, just
1810 		 * allocate it now and get out.
1811 		 */
1812 		if (ifp->if_broot_bytes == 0) {
1813 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
1814 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1815 			ifp->if_broot_bytes = (int)new_size;
1816 			return;
1817 		}
1818 
1819 		/*
1820 		 * If there is already an existing if_broot, then we need
1821 		 * to realloc() it and shift the pointers to their new
1822 		 * location.  The records don't change location because
1823 		 * they are kept butted up against the btree block header.
1824 		 */
1825 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1826 		new_max = cur_max + rec_diff;
1827 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1828 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1829 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
1830 				KM_SLEEP | KM_NOFS);
1831 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1832 						     ifp->if_broot_bytes);
1833 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1834 						     (int)new_size);
1835 		ifp->if_broot_bytes = (int)new_size;
1836 		ASSERT(ifp->if_broot_bytes <=
1837 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1838 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
1839 		return;
1840 	}
1841 
1842 	/*
1843 	 * rec_diff is less than 0.  In this case, we are shrinking the
1844 	 * if_broot buffer.  It must already exist.  If we go to zero
1845 	 * records, just get rid of the root and clear the status bit.
1846 	 */
1847 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
1848 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1849 	new_max = cur_max + rec_diff;
1850 	ASSERT(new_max >= 0);
1851 	if (new_max > 0)
1852 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1853 	else
1854 		new_size = 0;
1855 	if (new_size > 0) {
1856 		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1857 		/*
1858 		 * First copy over the btree block header.
1859 		 */
1860 		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1861 	} else {
1862 		new_broot = NULL;
1863 		ifp->if_flags &= ~XFS_IFBROOT;
1864 	}
1865 
1866 	/*
1867 	 * Only copy the records and pointers if there are any.
1868 	 */
1869 	if (new_max > 0) {
1870 		/*
1871 		 * First copy the records.
1872 		 */
1873 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
1874 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1875 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
1876 
1877 		/*
1878 		 * Then copy the pointers.
1879 		 */
1880 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1881 						     ifp->if_broot_bytes);
1882 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1883 						     (int)new_size);
1884 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
1885 	}
1886 	kmem_free(ifp->if_broot);
1887 	ifp->if_broot = new_broot;
1888 	ifp->if_broot_bytes = (int)new_size;
1889 	ASSERT(ifp->if_broot_bytes <=
1890 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1891 	return;
1892 }
1893 
1894 
1895 /*
1896  * This is called when the amount of space needed for if_data
1897  * is increased or decreased.  The change in size is indicated by
1898  * the number of bytes that need to be added or deleted in the
1899  * byte_diff parameter.
1900  *
1901  * If the amount of space needed has decreased below the size of the
1902  * inline buffer, then switch to using the inline buffer.  Otherwise,
1903  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
1904  * to what is needed.
1905  *
1906  * ip -- the inode whose if_data area is changing
1907  * byte_diff -- the change in the number of bytes, positive or negative,
1908  *	 requested for the if_data array.
1909  */
1910 void
1911 xfs_idata_realloc(
1912 	xfs_inode_t	*ip,
1913 	int		byte_diff,
1914 	int		whichfork)
1915 {
1916 	xfs_ifork_t	*ifp;
1917 	int		new_size;
1918 	int		real_size;
1919 
1920 	if (byte_diff == 0) {
1921 		return;
1922 	}
1923 
1924 	ifp = XFS_IFORK_PTR(ip, whichfork);
1925 	new_size = (int)ifp->if_bytes + byte_diff;
1926 	ASSERT(new_size >= 0);
1927 
1928 	if (new_size == 0) {
1929 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1930 			kmem_free(ifp->if_u1.if_data);
1931 		}
1932 		ifp->if_u1.if_data = NULL;
1933 		real_size = 0;
1934 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
1935 		/*
1936 		 * If the valid extents/data can fit in if_inline_ext/data,
1937 		 * copy them from the malloc'd vector and free it.
1938 		 */
1939 		if (ifp->if_u1.if_data == NULL) {
1940 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1941 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1942 			ASSERT(ifp->if_real_bytes != 0);
1943 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
1944 			      new_size);
1945 			kmem_free(ifp->if_u1.if_data);
1946 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1947 		}
1948 		real_size = 0;
1949 	} else {
1950 		/*
1951 		 * Stuck with malloc/realloc.
1952 		 * For inline data, the underlying buffer must be
1953 		 * a multiple of 4 bytes in size so that it can be
1954 		 * logged and stay on word boundaries.  We enforce
1955 		 * that here.
1956 		 */
1957 		real_size = roundup(new_size, 4);
1958 		if (ifp->if_u1.if_data == NULL) {
1959 			ASSERT(ifp->if_real_bytes == 0);
1960 			ifp->if_u1.if_data = kmem_alloc(real_size,
1961 							KM_SLEEP | KM_NOFS);
1962 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1963 			/*
1964 			 * Only do the realloc if the underlying size
1965 			 * is really changing.
1966 			 */
1967 			if (ifp->if_real_bytes != real_size) {
1968 				ifp->if_u1.if_data =
1969 					kmem_realloc(ifp->if_u1.if_data,
1970 							real_size,
1971 							ifp->if_real_bytes,
1972 							KM_SLEEP | KM_NOFS);
1973 			}
1974 		} else {
1975 			ASSERT(ifp->if_real_bytes == 0);
1976 			ifp->if_u1.if_data = kmem_alloc(real_size,
1977 							KM_SLEEP | KM_NOFS);
1978 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
1979 				ifp->if_bytes);
1980 		}
1981 	}
1982 	ifp->if_real_bytes = real_size;
1983 	ifp->if_bytes = new_size;
1984 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
1985 }
1986 
1987 void
1988 xfs_idestroy_fork(
1989 	xfs_inode_t	*ip,
1990 	int		whichfork)
1991 {
1992 	xfs_ifork_t	*ifp;
1993 
1994 	ifp = XFS_IFORK_PTR(ip, whichfork);
1995 	if (ifp->if_broot != NULL) {
1996 		kmem_free(ifp->if_broot);
1997 		ifp->if_broot = NULL;
1998 	}
1999 
2000 	/*
2001 	 * If the format is local, then we can't have an extents
2002 	 * array so just look for an inline data array.  If we're
2003 	 * not local then we may or may not have an extents list,
2004 	 * so check and free it up if we do.
2005 	 */
2006 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2007 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2008 		    (ifp->if_u1.if_data != NULL)) {
2009 			ASSERT(ifp->if_real_bytes != 0);
2010 			kmem_free(ifp->if_u1.if_data);
2011 			ifp->if_u1.if_data = NULL;
2012 			ifp->if_real_bytes = 0;
2013 		}
2014 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2015 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2016 		    ((ifp->if_u1.if_extents != NULL) &&
2017 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2018 		ASSERT(ifp->if_real_bytes != 0);
2019 		xfs_iext_destroy(ifp);
2020 	}
2021 	ASSERT(ifp->if_u1.if_extents == NULL ||
2022 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2023 	ASSERT(ifp->if_real_bytes == 0);
2024 	if (whichfork == XFS_ATTR_FORK) {
2025 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2026 		ip->i_afp = NULL;
2027 	}
2028 }
2029 
2030 /*
2031  * This is called to unpin an inode.  The caller must have the inode locked
2032  * in at least shared mode so that the buffer cannot be subsequently pinned
2033  * once someone is waiting for it to be unpinned.
2034  */
2035 static void
2036 xfs_iunpin(
2037 	struct xfs_inode	*ip)
2038 {
2039 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2040 
2041 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2042 
2043 	/* Give the log a push to start the unpinning I/O */
2044 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2045 
2046 }
2047 
2048 static void
2049 __xfs_iunpin_wait(
2050 	struct xfs_inode	*ip)
2051 {
2052 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2053 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2054 
2055 	xfs_iunpin(ip);
2056 
2057 	do {
2058 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2059 		if (xfs_ipincount(ip))
2060 			io_schedule();
2061 	} while (xfs_ipincount(ip));
2062 	finish_wait(wq, &wait.wait);
2063 }
2064 
2065 void
2066 xfs_iunpin_wait(
2067 	struct xfs_inode	*ip)
2068 {
2069 	if (xfs_ipincount(ip))
2070 		__xfs_iunpin_wait(ip);
2071 }
2072 
2073 /*
2074  * xfs_iextents_copy()
2075  *
2076  * This is called to copy the REAL extents (as opposed to the delayed
2077  * allocation extents) from the inode into the given buffer.  It
2078  * returns the number of bytes copied into the buffer.
2079  *
2080  * If there are no delayed allocation extents, then we can just
2081  * memcpy() the extents into the buffer.  Otherwise, we need to
2082  * examine each extent in turn and skip those which are delayed.
2083  */
2084 int
2085 xfs_iextents_copy(
2086 	xfs_inode_t		*ip,
2087 	xfs_bmbt_rec_t		*dp,
2088 	int			whichfork)
2089 {
2090 	int			copied;
2091 	int			i;
2092 	xfs_ifork_t		*ifp;
2093 	int			nrecs;
2094 	xfs_fsblock_t		start_block;
2095 
2096 	ifp = XFS_IFORK_PTR(ip, whichfork);
2097 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2098 	ASSERT(ifp->if_bytes > 0);
2099 
2100 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2101 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2102 	ASSERT(nrecs > 0);
2103 
2104 	/*
2105 	 * There are some delayed allocation extents in the
2106 	 * inode, so copy the extents one at a time and skip
2107 	 * the delayed ones.  There must be at least one
2108 	 * non-delayed extent.
2109 	 */
2110 	copied = 0;
2111 	for (i = 0; i < nrecs; i++) {
2112 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2113 		start_block = xfs_bmbt_get_startblock(ep);
2114 		if (isnullstartblock(start_block)) {
2115 			/*
2116 			 * It's a delayed allocation extent, so skip it.
2117 			 */
2118 			continue;
2119 		}
2120 
2121 		/* Translate to on disk format */
2122 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2123 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2124 		dp++;
2125 		copied++;
2126 	}
2127 	ASSERT(copied != 0);
2128 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2129 
2130 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2131 }
2132 
2133 /*
2134  * Each of the following cases stores data into the same region
2135  * of the on-disk inode, so only one of them can be valid at
2136  * any given time. While it is possible to have conflicting formats
2137  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2138  * in EXTENTS format, this can only happen when the fork has
2139  * changed formats after being modified but before being flushed.
2140  * In these cases, the format always takes precedence, because the
2141  * format indicates the current state of the fork.
2142  */
2143 /*ARGSUSED*/
2144 STATIC void
2145 xfs_iflush_fork(
2146 	xfs_inode_t		*ip,
2147 	xfs_dinode_t		*dip,
2148 	xfs_inode_log_item_t	*iip,
2149 	int			whichfork,
2150 	xfs_buf_t		*bp)
2151 {
2152 	char			*cp;
2153 	xfs_ifork_t		*ifp;
2154 	xfs_mount_t		*mp;
2155 #ifdef XFS_TRANS_DEBUG
2156 	int			first;
2157 #endif
2158 	static const short	brootflag[2] =
2159 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2160 	static const short	dataflag[2] =
2161 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2162 	static const short	extflag[2] =
2163 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2164 
2165 	if (!iip)
2166 		return;
2167 	ifp = XFS_IFORK_PTR(ip, whichfork);
2168 	/*
2169 	 * This can happen if we gave up in iformat in an error path,
2170 	 * for the attribute fork.
2171 	 */
2172 	if (!ifp) {
2173 		ASSERT(whichfork == XFS_ATTR_FORK);
2174 		return;
2175 	}
2176 	cp = XFS_DFORK_PTR(dip, whichfork);
2177 	mp = ip->i_mount;
2178 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2179 	case XFS_DINODE_FMT_LOCAL:
2180 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2181 		    (ifp->if_bytes > 0)) {
2182 			ASSERT(ifp->if_u1.if_data != NULL);
2183 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2184 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2185 		}
2186 		break;
2187 
2188 	case XFS_DINODE_FMT_EXTENTS:
2189 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2190 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2191 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2192 		    (ifp->if_bytes > 0)) {
2193 			ASSERT(xfs_iext_get_ext(ifp, 0));
2194 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2195 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2196 				whichfork);
2197 		}
2198 		break;
2199 
2200 	case XFS_DINODE_FMT_BTREE:
2201 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2202 		    (ifp->if_broot_bytes > 0)) {
2203 			ASSERT(ifp->if_broot != NULL);
2204 			ASSERT(ifp->if_broot_bytes <=
2205 			       (XFS_IFORK_SIZE(ip, whichfork) +
2206 				XFS_BROOT_SIZE_ADJ));
2207 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2208 				(xfs_bmdr_block_t *)cp,
2209 				XFS_DFORK_SIZE(dip, mp, whichfork));
2210 		}
2211 		break;
2212 
2213 	case XFS_DINODE_FMT_DEV:
2214 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2215 			ASSERT(whichfork == XFS_DATA_FORK);
2216 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2217 		}
2218 		break;
2219 
2220 	case XFS_DINODE_FMT_UUID:
2221 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2222 			ASSERT(whichfork == XFS_DATA_FORK);
2223 			memcpy(XFS_DFORK_DPTR(dip),
2224 			       &ip->i_df.if_u2.if_uuid,
2225 			       sizeof(uuid_t));
2226 		}
2227 		break;
2228 
2229 	default:
2230 		ASSERT(0);
2231 		break;
2232 	}
2233 }
2234 
2235 STATIC int
2236 xfs_iflush_cluster(
2237 	xfs_inode_t	*ip,
2238 	xfs_buf_t	*bp)
2239 {
2240 	xfs_mount_t		*mp = ip->i_mount;
2241 	struct xfs_perag	*pag;
2242 	unsigned long		first_index, mask;
2243 	unsigned long		inodes_per_cluster;
2244 	int			ilist_size;
2245 	xfs_inode_t		**ilist;
2246 	xfs_inode_t		*iq;
2247 	int			nr_found;
2248 	int			clcount = 0;
2249 	int			bufwasdelwri;
2250 	int			i;
2251 
2252 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2253 
2254 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2255 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2256 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2257 	if (!ilist)
2258 		goto out_put;
2259 
2260 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2261 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2262 	rcu_read_lock();
2263 	/* really need a gang lookup range call here */
2264 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2265 					first_index, inodes_per_cluster);
2266 	if (nr_found == 0)
2267 		goto out_free;
2268 
2269 	for (i = 0; i < nr_found; i++) {
2270 		iq = ilist[i];
2271 		if (iq == ip)
2272 			continue;
2273 
2274 		/*
2275 		 * because this is an RCU protected lookup, we could find a
2276 		 * recently freed or even reallocated inode during the lookup.
2277 		 * We need to check under the i_flags_lock for a valid inode
2278 		 * here. Skip it if it is not valid or the wrong inode.
2279 		 */
2280 		spin_lock(&ip->i_flags_lock);
2281 		if (!ip->i_ino ||
2282 		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2283 			spin_unlock(&ip->i_flags_lock);
2284 			continue;
2285 		}
2286 		spin_unlock(&ip->i_flags_lock);
2287 
2288 		/*
2289 		 * Do an un-protected check to see if the inode is dirty and
2290 		 * is a candidate for flushing.  These checks will be repeated
2291 		 * later after the appropriate locks are acquired.
2292 		 */
2293 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2294 			continue;
2295 
2296 		/*
2297 		 * Try to get locks.  If any are unavailable or it is pinned,
2298 		 * then this inode cannot be flushed and is skipped.
2299 		 */
2300 
2301 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2302 			continue;
2303 		if (!xfs_iflock_nowait(iq)) {
2304 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2305 			continue;
2306 		}
2307 		if (xfs_ipincount(iq)) {
2308 			xfs_ifunlock(iq);
2309 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2310 			continue;
2311 		}
2312 
2313 		/*
2314 		 * arriving here means that this inode can be flushed.  First
2315 		 * re-check that it's dirty before flushing.
2316 		 */
2317 		if (!xfs_inode_clean(iq)) {
2318 			int	error;
2319 			error = xfs_iflush_int(iq, bp);
2320 			if (error) {
2321 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2322 				goto cluster_corrupt_out;
2323 			}
2324 			clcount++;
2325 		} else {
2326 			xfs_ifunlock(iq);
2327 		}
2328 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2329 	}
2330 
2331 	if (clcount) {
2332 		XFS_STATS_INC(xs_icluster_flushcnt);
2333 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2334 	}
2335 
2336 out_free:
2337 	rcu_read_unlock();
2338 	kmem_free(ilist);
2339 out_put:
2340 	xfs_perag_put(pag);
2341 	return 0;
2342 
2343 
2344 cluster_corrupt_out:
2345 	/*
2346 	 * Corruption detected in the clustering loop.  Invalidate the
2347 	 * inode buffer and shut down the filesystem.
2348 	 */
2349 	rcu_read_unlock();
2350 	/*
2351 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
2352 	 * brelse can handle it with no problems.  If not, shut down the
2353 	 * filesystem before releasing the buffer.
2354 	 */
2355 	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2356 	if (bufwasdelwri)
2357 		xfs_buf_relse(bp);
2358 
2359 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2360 
2361 	if (!bufwasdelwri) {
2362 		/*
2363 		 * Just like incore_relse: if we have b_iodone functions,
2364 		 * mark the buffer as an error and call them.  Otherwise
2365 		 * mark it as stale and brelse.
2366 		 */
2367 		if (bp->b_iodone) {
2368 			XFS_BUF_UNDONE(bp);
2369 			xfs_buf_stale(bp);
2370 			xfs_buf_ioerror(bp, EIO);
2371 			xfs_buf_ioend(bp, 0);
2372 		} else {
2373 			xfs_buf_stale(bp);
2374 			xfs_buf_relse(bp);
2375 		}
2376 	}
2377 
2378 	/*
2379 	 * Unlocks the flush lock
2380 	 */
2381 	xfs_iflush_abort(iq);
2382 	kmem_free(ilist);
2383 	xfs_perag_put(pag);
2384 	return XFS_ERROR(EFSCORRUPTED);
2385 }
2386 
2387 /*
2388  * xfs_iflush() will write a modified inode's changes out to the
2389  * inode's on disk home.  The caller must have the inode lock held
2390  * in at least shared mode and the inode flush completion must be
2391  * active as well.  The inode lock will still be held upon return from
2392  * the call and the caller is free to unlock it.
2393  * The inode flush will be completed when the inode reaches the disk.
2394  * The flags indicate how the inode's buffer should be written out.
2395  */
2396 int
2397 xfs_iflush(
2398 	xfs_inode_t		*ip,
2399 	uint			flags)
2400 {
2401 	xfs_inode_log_item_t	*iip;
2402 	xfs_buf_t		*bp;
2403 	xfs_dinode_t		*dip;
2404 	xfs_mount_t		*mp;
2405 	int			error;
2406 
2407 	XFS_STATS_INC(xs_iflush_count);
2408 
2409 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2410 	ASSERT(xfs_isiflocked(ip));
2411 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2412 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2413 
2414 	iip = ip->i_itemp;
2415 	mp = ip->i_mount;
2416 
2417 	/*
2418 	 * We can't flush the inode until it is unpinned, so wait for it if we
2419 	 * are allowed to block.  We know no one new can pin it, because we are
2420 	 * holding the inode lock shared and you need to hold it exclusively to
2421 	 * pin the inode.
2422 	 *
2423 	 * If we are not allowed to block, force the log out asynchronously so
2424 	 * that when we come back the inode will be unpinned. If other inodes
2425 	 * in the same cluster are dirty, they will probably write the inode
2426 	 * out for us if they occur after the log force completes.
2427 	 */
2428 	if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2429 		xfs_iunpin(ip);
2430 		xfs_ifunlock(ip);
2431 		return EAGAIN;
2432 	}
2433 	xfs_iunpin_wait(ip);
2434 
2435 	/*
2436 	 * For stale inodes we cannot rely on the backing buffer remaining
2437 	 * stale in cache for the remaining life of the stale inode and so
2438 	 * xfs_itobp() below may give us a buffer that no longer contains
2439 	 * inodes below. We have to check this after ensuring the inode is
2440 	 * unpinned so that it is safe to reclaim the stale inode after the
2441 	 * flush call.
2442 	 */
2443 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2444 		xfs_ifunlock(ip);
2445 		return 0;
2446 	}
2447 
2448 	/*
2449 	 * This may have been unpinned because the filesystem is shutting
2450 	 * down forcibly. If that's the case we must not write this inode
2451 	 * to disk, because the log record didn't make it to disk!
2452 	 */
2453 	if (XFS_FORCED_SHUTDOWN(mp)) {
2454 		ip->i_update_core = 0;
2455 		if (iip)
2456 			iip->ili_format.ilf_fields = 0;
2457 		xfs_ifunlock(ip);
2458 		return XFS_ERROR(EIO);
2459 	}
2460 
2461 	/*
2462 	 * Get the buffer containing the on-disk inode.
2463 	 */
2464 	error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2465 				(flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
2466 	if (error || !bp) {
2467 		xfs_ifunlock(ip);
2468 		return error;
2469 	}
2470 
2471 	/*
2472 	 * First flush out the inode that xfs_iflush was called with.
2473 	 */
2474 	error = xfs_iflush_int(ip, bp);
2475 	if (error)
2476 		goto corrupt_out;
2477 
2478 	/*
2479 	 * If the buffer is pinned then push on the log now so we won't
2480 	 * get stuck waiting in the write for too long.
2481 	 */
2482 	if (xfs_buf_ispinned(bp))
2483 		xfs_log_force(mp, 0);
2484 
2485 	/*
2486 	 * inode clustering:
2487 	 * see if other inodes can be gathered into this write
2488 	 */
2489 	error = xfs_iflush_cluster(ip, bp);
2490 	if (error)
2491 		goto cluster_corrupt_out;
2492 
2493 	if (flags & SYNC_WAIT)
2494 		error = xfs_bwrite(bp);
2495 	else
2496 		xfs_buf_delwri_queue(bp);
2497 
2498 	xfs_buf_relse(bp);
2499 	return error;
2500 
2501 corrupt_out:
2502 	xfs_buf_relse(bp);
2503 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2504 cluster_corrupt_out:
2505 	/*
2506 	 * Unlocks the flush lock
2507 	 */
2508 	xfs_iflush_abort(ip);
2509 	return XFS_ERROR(EFSCORRUPTED);
2510 }
2511 
2512 
2513 STATIC int
2514 xfs_iflush_int(
2515 	xfs_inode_t		*ip,
2516 	xfs_buf_t		*bp)
2517 {
2518 	xfs_inode_log_item_t	*iip;
2519 	xfs_dinode_t		*dip;
2520 	xfs_mount_t		*mp;
2521 #ifdef XFS_TRANS_DEBUG
2522 	int			first;
2523 #endif
2524 
2525 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2526 	ASSERT(xfs_isiflocked(ip));
2527 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2528 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2529 
2530 	iip = ip->i_itemp;
2531 	mp = ip->i_mount;
2532 
2533 	/* set *dip = inode's place in the buffer */
2534 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2535 
2536 	/*
2537 	 * Clear i_update_core before copying out the data.
2538 	 * This is for coordination with our timestamp updates
2539 	 * that don't hold the inode lock. They will always
2540 	 * update the timestamps BEFORE setting i_update_core,
2541 	 * so if we clear i_update_core after they set it we
2542 	 * are guaranteed to see their updates to the timestamps.
2543 	 * I believe that this depends on strongly ordered memory
2544 	 * semantics, but we have that.  We use the SYNCHRONIZE
2545 	 * macro to make sure that the compiler does not reorder
2546 	 * the i_update_core access below the data copy below.
2547 	 */
2548 	ip->i_update_core = 0;
2549 	SYNCHRONIZE();
2550 
2551 	/*
2552 	 * Make sure to get the latest timestamps from the Linux inode.
2553 	 */
2554 	xfs_synchronize_times(ip);
2555 
2556 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2557 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2558 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2559 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2560 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2561 		goto corrupt_out;
2562 	}
2563 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2564 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2565 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2566 			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2567 			__func__, ip->i_ino, ip, ip->i_d.di_magic);
2568 		goto corrupt_out;
2569 	}
2570 	if (S_ISREG(ip->i_d.di_mode)) {
2571 		if (XFS_TEST_ERROR(
2572 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2573 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2574 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2575 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2576 				"%s: Bad regular inode %Lu, ptr 0x%p",
2577 				__func__, ip->i_ino, ip);
2578 			goto corrupt_out;
2579 		}
2580 	} else if (S_ISDIR(ip->i_d.di_mode)) {
2581 		if (XFS_TEST_ERROR(
2582 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2583 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2584 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2585 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2586 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2587 				"%s: Bad directory inode %Lu, ptr 0x%p",
2588 				__func__, ip->i_ino, ip);
2589 			goto corrupt_out;
2590 		}
2591 	}
2592 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2593 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2594 				XFS_RANDOM_IFLUSH_5)) {
2595 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2596 			"%s: detected corrupt incore inode %Lu, "
2597 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
2598 			__func__, ip->i_ino,
2599 			ip->i_d.di_nextents + ip->i_d.di_anextents,
2600 			ip->i_d.di_nblocks, ip);
2601 		goto corrupt_out;
2602 	}
2603 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2604 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2605 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2606 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2607 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2608 		goto corrupt_out;
2609 	}
2610 	/*
2611 	 * bump the flush iteration count, used to detect flushes which
2612 	 * postdate a log record during recovery.
2613 	 */
2614 
2615 	ip->i_d.di_flushiter++;
2616 
2617 	/*
2618 	 * Copy the dirty parts of the inode into the on-disk
2619 	 * inode.  We always copy out the core of the inode,
2620 	 * because if the inode is dirty at all the core must
2621 	 * be.
2622 	 */
2623 	xfs_dinode_to_disk(dip, &ip->i_d);
2624 
2625 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2626 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2627 		ip->i_d.di_flushiter = 0;
2628 
2629 	/*
2630 	 * If this is really an old format inode and the superblock version
2631 	 * has not been updated to support only new format inodes, then
2632 	 * convert back to the old inode format.  If the superblock version
2633 	 * has been updated, then make the conversion permanent.
2634 	 */
2635 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2636 	if (ip->i_d.di_version == 1) {
2637 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2638 			/*
2639 			 * Convert it back.
2640 			 */
2641 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2642 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2643 		} else {
2644 			/*
2645 			 * The superblock version has already been bumped,
2646 			 * so just make the conversion to the new inode
2647 			 * format permanent.
2648 			 */
2649 			ip->i_d.di_version = 2;
2650 			dip->di_version = 2;
2651 			ip->i_d.di_onlink = 0;
2652 			dip->di_onlink = 0;
2653 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
2654 			memset(&(dip->di_pad[0]), 0,
2655 			      sizeof(dip->di_pad));
2656 			ASSERT(xfs_get_projid(ip) == 0);
2657 		}
2658 	}
2659 
2660 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2661 	if (XFS_IFORK_Q(ip))
2662 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
2663 	xfs_inobp_check(mp, bp);
2664 
2665 	/*
2666 	 * We've recorded everything logged in the inode, so we'd
2667 	 * like to clear the ilf_fields bits so we don't log and
2668 	 * flush things unnecessarily.  However, we can't stop
2669 	 * logging all this information until the data we've copied
2670 	 * into the disk buffer is written to disk.  If we did we might
2671 	 * overwrite the copy of the inode in the log with all the
2672 	 * data after re-logging only part of it, and in the face of
2673 	 * a crash we wouldn't have all the data we need to recover.
2674 	 *
2675 	 * What we do is move the bits to the ili_last_fields field.
2676 	 * When logging the inode, these bits are moved back to the
2677 	 * ilf_fields field.  In the xfs_iflush_done() routine we
2678 	 * clear ili_last_fields, since we know that the information
2679 	 * those bits represent is permanently on disk.  As long as
2680 	 * the flush completes before the inode is logged again, then
2681 	 * both ilf_fields and ili_last_fields will be cleared.
2682 	 *
2683 	 * We can play with the ilf_fields bits here, because the inode
2684 	 * lock must be held exclusively in order to set bits there
2685 	 * and the flush lock protects the ili_last_fields bits.
2686 	 * Set ili_logged so the flush done
2687 	 * routine can tell whether or not to look in the AIL.
2688 	 * Also, store the current LSN of the inode so that we can tell
2689 	 * whether the item has moved in the AIL from xfs_iflush_done().
2690 	 * In order to read the lsn we need the AIL lock, because
2691 	 * it is a 64 bit value that cannot be read atomically.
2692 	 */
2693 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
2694 		iip->ili_last_fields = iip->ili_format.ilf_fields;
2695 		iip->ili_format.ilf_fields = 0;
2696 		iip->ili_logged = 1;
2697 
2698 		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2699 					&iip->ili_item.li_lsn);
2700 
2701 		/*
2702 		 * Attach the function xfs_iflush_done to the inode's
2703 		 * buffer.  This will remove the inode from the AIL
2704 		 * and unlock the inode's flush lock when the inode is
2705 		 * completely written to disk.
2706 		 */
2707 		xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
2708 
2709 		ASSERT(bp->b_fspriv != NULL);
2710 		ASSERT(bp->b_iodone != NULL);
2711 	} else {
2712 		/*
2713 		 * We're flushing an inode which is not in the AIL and has
2714 		 * not been logged but has i_update_core set.  For this
2715 		 * case we can use a B_DELWRI flush and immediately drop
2716 		 * the inode flush lock because we can avoid the whole
2717 		 * AIL state thing.  It's OK to drop the flush lock now,
2718 		 * because we've already locked the buffer and to do anything
2719 		 * you really need both.
2720 		 */
2721 		if (iip != NULL) {
2722 			ASSERT(iip->ili_logged == 0);
2723 			ASSERT(iip->ili_last_fields == 0);
2724 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2725 		}
2726 		xfs_ifunlock(ip);
2727 	}
2728 
2729 	return 0;
2730 
2731 corrupt_out:
2732 	return XFS_ERROR(EFSCORRUPTED);
2733 }
2734 
2735 void
2736 xfs_promote_inode(
2737 	struct xfs_inode	*ip)
2738 {
2739 	struct xfs_buf		*bp;
2740 
2741 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2742 
2743 	bp = xfs_incore(ip->i_mount->m_ddev_targp, ip->i_imap.im_blkno,
2744 			ip->i_imap.im_len, XBF_TRYLOCK);
2745 	if (!bp)
2746 		return;
2747 
2748 	if (XFS_BUF_ISDELAYWRITE(bp)) {
2749 		xfs_buf_delwri_promote(bp);
2750 		wake_up_process(ip->i_mount->m_ddev_targp->bt_task);
2751 	}
2752 
2753 	xfs_buf_relse(bp);
2754 }
2755 
2756 /*
2757  * Return a pointer to the extent record at file index idx.
2758  */
2759 xfs_bmbt_rec_host_t *
2760 xfs_iext_get_ext(
2761 	xfs_ifork_t	*ifp,		/* inode fork pointer */
2762 	xfs_extnum_t	idx)		/* index of target extent */
2763 {
2764 	ASSERT(idx >= 0);
2765 	ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2766 
2767 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2768 		return ifp->if_u1.if_ext_irec->er_extbuf;
2769 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
2770 		xfs_ext_irec_t	*erp;		/* irec pointer */
2771 		int		erp_idx = 0;	/* irec index */
2772 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
2773 
2774 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2775 		return &erp->er_extbuf[page_idx];
2776 	} else if (ifp->if_bytes) {
2777 		return &ifp->if_u1.if_extents[idx];
2778 	} else {
2779 		return NULL;
2780 	}
2781 }
2782 
2783 /*
2784  * Insert new item(s) into the extent records for incore inode
2785  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
2786  */
2787 void
2788 xfs_iext_insert(
2789 	xfs_inode_t	*ip,		/* incore inode pointer */
2790 	xfs_extnum_t	idx,		/* starting index of new items */
2791 	xfs_extnum_t	count,		/* number of inserted items */
2792 	xfs_bmbt_irec_t	*new,		/* items to insert */
2793 	int		state)		/* type of extent conversion */
2794 {
2795 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2796 	xfs_extnum_t	i;		/* extent record index */
2797 
2798 	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2799 
2800 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2801 	xfs_iext_add(ifp, idx, count);
2802 	for (i = idx; i < idx + count; i++, new++)
2803 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
2804 }
2805 
2806 /*
2807  * This is called when the amount of space required for incore file
2808  * extents needs to be increased. The ext_diff parameter stores the
2809  * number of new extents being added and the idx parameter contains
2810  * the extent index where the new extents will be added. If the new
2811  * extents are being appended, then we just need to (re)allocate and
2812  * initialize the space. Otherwise, if the new extents are being
2813  * inserted into the middle of the existing entries, a bit more work
2814  * is required to make room for the new extents to be inserted. The
2815  * caller is responsible for filling in the new extent entries upon
2816  * return.
2817  */
2818 void
2819 xfs_iext_add(
2820 	xfs_ifork_t	*ifp,		/* inode fork pointer */
2821 	xfs_extnum_t	idx,		/* index to begin adding exts */
2822 	int		ext_diff)	/* number of extents to add */
2823 {
2824 	int		byte_diff;	/* new bytes being added */
2825 	int		new_size;	/* size of extents after adding */
2826 	xfs_extnum_t	nextents;	/* number of extents in file */
2827 
2828 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2829 	ASSERT((idx >= 0) && (idx <= nextents));
2830 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2831 	new_size = ifp->if_bytes + byte_diff;
2832 	/*
2833 	 * If the new number of extents (nextents + ext_diff)
2834 	 * fits inside the inode, then continue to use the inline
2835 	 * extent buffer.
2836 	 */
2837 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2838 		if (idx < nextents) {
2839 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2840 				&ifp->if_u2.if_inline_ext[idx],
2841 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
2842 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2843 		}
2844 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2845 		ifp->if_real_bytes = 0;
2846 	}
2847 	/*
2848 	 * Otherwise use a linear (direct) extent list.
2849 	 * If the extents are currently inside the inode,
2850 	 * xfs_iext_realloc_direct will switch us from
2851 	 * inline to direct extent allocation mode.
2852 	 */
2853 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
2854 		xfs_iext_realloc_direct(ifp, new_size);
2855 		if (idx < nextents) {
2856 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
2857 				&ifp->if_u1.if_extents[idx],
2858 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
2859 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
2860 		}
2861 	}
2862 	/* Indirection array */
2863 	else {
2864 		xfs_ext_irec_t	*erp;
2865 		int		erp_idx = 0;
2866 		int		page_idx = idx;
2867 
2868 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
2869 		if (ifp->if_flags & XFS_IFEXTIREC) {
2870 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
2871 		} else {
2872 			xfs_iext_irec_init(ifp);
2873 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2874 			erp = ifp->if_u1.if_ext_irec;
2875 		}
2876 		/* Extents fit in target extent page */
2877 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
2878 			if (page_idx < erp->er_extcount) {
2879 				memmove(&erp->er_extbuf[page_idx + ext_diff],
2880 					&erp->er_extbuf[page_idx],
2881 					(erp->er_extcount - page_idx) *
2882 					sizeof(xfs_bmbt_rec_t));
2883 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
2884 			}
2885 			erp->er_extcount += ext_diff;
2886 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2887 		}
2888 		/* Insert a new extent page */
2889 		else if (erp) {
2890 			xfs_iext_add_indirect_multi(ifp,
2891 				erp_idx, page_idx, ext_diff);
2892 		}
2893 		/*
2894 		 * If extent(s) are being appended to the last page in
2895 		 * the indirection array and the new extent(s) don't fit
2896 		 * in the page, then erp is NULL and erp_idx is set to
2897 		 * the next index needed in the indirection array.
2898 		 */
2899 		else {
2900 			int	count = ext_diff;
2901 
2902 			while (count) {
2903 				erp = xfs_iext_irec_new(ifp, erp_idx);
2904 				erp->er_extcount = count;
2905 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
2906 				if (count) {
2907 					erp_idx++;
2908 				}
2909 			}
2910 		}
2911 	}
2912 	ifp->if_bytes = new_size;
2913 }
2914 
2915 /*
2916  * This is called when incore extents are being added to the indirection
2917  * array and the new extents do not fit in the target extent list. The
2918  * erp_idx parameter contains the irec index for the target extent list
2919  * in the indirection array, and the idx parameter contains the extent
2920  * index within the list. The number of extents being added is stored
2921  * in the count parameter.
2922  *
2923  *    |-------|   |-------|
2924  *    |       |   |       |    idx - number of extents before idx
2925  *    |  idx  |   | count |
2926  *    |       |   |       |    count - number of extents being inserted at idx
2927  *    |-------|   |-------|
2928  *    | count |   | nex2  |    nex2 - number of extents after idx + count
2929  *    |-------|   |-------|
2930  */
2931 void
2932 xfs_iext_add_indirect_multi(
2933 	xfs_ifork_t	*ifp,			/* inode fork pointer */
2934 	int		erp_idx,		/* target extent irec index */
2935 	xfs_extnum_t	idx,			/* index within target list */
2936 	int		count)			/* new extents being added */
2937 {
2938 	int		byte_diff;		/* new bytes being added */
2939 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
2940 	xfs_extnum_t	ext_diff;		/* number of extents to add */
2941 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
2942 	xfs_extnum_t	nex2;			/* extents after idx + count */
2943 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
2944 	int		nlists;			/* number of irec's (lists) */
2945 
2946 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2947 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
2948 	nex2 = erp->er_extcount - idx;
2949 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
2950 
2951 	/*
2952 	 * Save second part of target extent list
2953 	 * (all extents past */
2954 	if (nex2) {
2955 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2956 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
2957 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
2958 		erp->er_extcount -= nex2;
2959 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
2960 		memset(&erp->er_extbuf[idx], 0, byte_diff);
2961 	}
2962 
2963 	/*
2964 	 * Add the new extents to the end of the target
2965 	 * list, then allocate new irec record(s) and
2966 	 * extent buffer(s) as needed to store the rest
2967 	 * of the new extents.
2968 	 */
2969 	ext_cnt = count;
2970 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
2971 	if (ext_diff) {
2972 		erp->er_extcount += ext_diff;
2973 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2974 		ext_cnt -= ext_diff;
2975 	}
2976 	while (ext_cnt) {
2977 		erp_idx++;
2978 		erp = xfs_iext_irec_new(ifp, erp_idx);
2979 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
2980 		erp->er_extcount = ext_diff;
2981 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2982 		ext_cnt -= ext_diff;
2983 	}
2984 
2985 	/* Add nex2 extents back to indirection array */
2986 	if (nex2) {
2987 		xfs_extnum_t	ext_avail;
2988 		int		i;
2989 
2990 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2991 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
2992 		i = 0;
2993 		/*
2994 		 * If nex2 extents fit in the current page, append
2995 		 * nex2_ep after the new extents.
2996 		 */
2997 		if (nex2 <= ext_avail) {
2998 			i = erp->er_extcount;
2999 		}
3000 		/*
3001 		 * Otherwise, check if space is available in the
3002 		 * next page.
3003 		 */
3004 		else if ((erp_idx < nlists - 1) &&
3005 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3006 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3007 			erp_idx++;
3008 			erp++;
3009 			/* Create a hole for nex2 extents */
3010 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3011 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3012 		}
3013 		/*
3014 		 * Final choice, create a new extent page for
3015 		 * nex2 extents.
3016 		 */
3017 		else {
3018 			erp_idx++;
3019 			erp = xfs_iext_irec_new(ifp, erp_idx);
3020 		}
3021 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3022 		kmem_free(nex2_ep);
3023 		erp->er_extcount += nex2;
3024 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3025 	}
3026 }
3027 
3028 /*
3029  * This is called when the amount of space required for incore file
3030  * extents needs to be decreased. The ext_diff parameter stores the
3031  * number of extents to be removed and the idx parameter contains
3032  * the extent index where the extents will be removed from.
3033  *
3034  * If the amount of space needed has decreased below the linear
3035  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3036  * extent array.  Otherwise, use kmem_realloc() to adjust the
3037  * size to what is needed.
3038  */
3039 void
3040 xfs_iext_remove(
3041 	xfs_inode_t	*ip,		/* incore inode pointer */
3042 	xfs_extnum_t	idx,		/* index to begin removing exts */
3043 	int		ext_diff,	/* number of extents to remove */
3044 	int		state)		/* type of extent conversion */
3045 {
3046 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3047 	xfs_extnum_t	nextents;	/* number of extents in file */
3048 	int		new_size;	/* size of extents after removal */
3049 
3050 	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3051 
3052 	ASSERT(ext_diff > 0);
3053 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3054 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3055 
3056 	if (new_size == 0) {
3057 		xfs_iext_destroy(ifp);
3058 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3059 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3060 	} else if (ifp->if_real_bytes) {
3061 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3062 	} else {
3063 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3064 	}
3065 	ifp->if_bytes = new_size;
3066 }
3067 
3068 /*
3069  * This removes ext_diff extents from the inline buffer, beginning
3070  * at extent index idx.
3071  */
3072 void
3073 xfs_iext_remove_inline(
3074 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3075 	xfs_extnum_t	idx,		/* index to begin removing exts */
3076 	int		ext_diff)	/* number of extents to remove */
3077 {
3078 	int		nextents;	/* number of extents in file */
3079 
3080 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3081 	ASSERT(idx < XFS_INLINE_EXTS);
3082 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3083 	ASSERT(((nextents - ext_diff) > 0) &&
3084 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3085 
3086 	if (idx + ext_diff < nextents) {
3087 		memmove(&ifp->if_u2.if_inline_ext[idx],
3088 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3089 			(nextents - (idx + ext_diff)) *
3090 			 sizeof(xfs_bmbt_rec_t));
3091 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3092 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3093 	} else {
3094 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3095 			ext_diff * sizeof(xfs_bmbt_rec_t));
3096 	}
3097 }
3098 
3099 /*
3100  * This removes ext_diff extents from a linear (direct) extent list,
3101  * beginning at extent index idx. If the extents are being removed
3102  * from the end of the list (ie. truncate) then we just need to re-
3103  * allocate the list to remove the extra space. Otherwise, if the
3104  * extents are being removed from the middle of the existing extent
3105  * entries, then we first need to move the extent records beginning
3106  * at idx + ext_diff up in the list to overwrite the records being
3107  * removed, then remove the extra space via kmem_realloc.
3108  */
3109 void
3110 xfs_iext_remove_direct(
3111 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3112 	xfs_extnum_t	idx,		/* index to begin removing exts */
3113 	int		ext_diff)	/* number of extents to remove */
3114 {
3115 	xfs_extnum_t	nextents;	/* number of extents in file */
3116 	int		new_size;	/* size of extents after removal */
3117 
3118 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3119 	new_size = ifp->if_bytes -
3120 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3121 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3122 
3123 	if (new_size == 0) {
3124 		xfs_iext_destroy(ifp);
3125 		return;
3126 	}
3127 	/* Move extents up in the list (if needed) */
3128 	if (idx + ext_diff < nextents) {
3129 		memmove(&ifp->if_u1.if_extents[idx],
3130 			&ifp->if_u1.if_extents[idx + ext_diff],
3131 			(nextents - (idx + ext_diff)) *
3132 			 sizeof(xfs_bmbt_rec_t));
3133 	}
3134 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3135 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3136 	/*
3137 	 * Reallocate the direct extent list. If the extents
3138 	 * will fit inside the inode then xfs_iext_realloc_direct
3139 	 * will switch from direct to inline extent allocation
3140 	 * mode for us.
3141 	 */
3142 	xfs_iext_realloc_direct(ifp, new_size);
3143 	ifp->if_bytes = new_size;
3144 }
3145 
3146 /*
3147  * This is called when incore extents are being removed from the
3148  * indirection array and the extents being removed span multiple extent
3149  * buffers. The idx parameter contains the file extent index where we
3150  * want to begin removing extents, and the count parameter contains
3151  * how many extents need to be removed.
3152  *
3153  *    |-------|   |-------|
3154  *    | nex1  |   |       |    nex1 - number of extents before idx
3155  *    |-------|   | count |
3156  *    |       |   |       |    count - number of extents being removed at idx
3157  *    | count |   |-------|
3158  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3159  *    |-------|   |-------|
3160  */
3161 void
3162 xfs_iext_remove_indirect(
3163 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3164 	xfs_extnum_t	idx,		/* index to begin removing extents */
3165 	int		count)		/* number of extents to remove */
3166 {
3167 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3168 	int		erp_idx = 0;	/* indirection array index */
3169 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3170 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3171 	xfs_extnum_t	nex1;		/* number of extents before idx */
3172 	xfs_extnum_t	nex2;		/* extents after idx + count */
3173 	int		page_idx = idx;	/* index in target extent list */
3174 
3175 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3176 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3177 	ASSERT(erp != NULL);
3178 	nex1 = page_idx;
3179 	ext_cnt = count;
3180 	while (ext_cnt) {
3181 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3182 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3183 		/*
3184 		 * Check for deletion of entire list;
3185 		 * xfs_iext_irec_remove() updates extent offsets.
3186 		 */
3187 		if (ext_diff == erp->er_extcount) {
3188 			xfs_iext_irec_remove(ifp, erp_idx);
3189 			ext_cnt -= ext_diff;
3190 			nex1 = 0;
3191 			if (ext_cnt) {
3192 				ASSERT(erp_idx < ifp->if_real_bytes /
3193 					XFS_IEXT_BUFSZ);
3194 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3195 				nex1 = 0;
3196 				continue;
3197 			} else {
3198 				break;
3199 			}
3200 		}
3201 		/* Move extents up (if needed) */
3202 		if (nex2) {
3203 			memmove(&erp->er_extbuf[nex1],
3204 				&erp->er_extbuf[nex1 + ext_diff],
3205 				nex2 * sizeof(xfs_bmbt_rec_t));
3206 		}
3207 		/* Zero out rest of page */
3208 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3209 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3210 		/* Update remaining counters */
3211 		erp->er_extcount -= ext_diff;
3212 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3213 		ext_cnt -= ext_diff;
3214 		nex1 = 0;
3215 		erp_idx++;
3216 		erp++;
3217 	}
3218 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3219 	xfs_iext_irec_compact(ifp);
3220 }
3221 
3222 /*
3223  * Create, destroy, or resize a linear (direct) block of extents.
3224  */
3225 void
3226 xfs_iext_realloc_direct(
3227 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3228 	int		new_size)	/* new size of extents */
3229 {
3230 	int		rnew_size;	/* real new size of extents */
3231 
3232 	rnew_size = new_size;
3233 
3234 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3235 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3236 		 (new_size != ifp->if_real_bytes)));
3237 
3238 	/* Free extent records */
3239 	if (new_size == 0) {
3240 		xfs_iext_destroy(ifp);
3241 	}
3242 	/* Resize direct extent list and zero any new bytes */
3243 	else if (ifp->if_real_bytes) {
3244 		/* Check if extents will fit inside the inode */
3245 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3246 			xfs_iext_direct_to_inline(ifp, new_size /
3247 				(uint)sizeof(xfs_bmbt_rec_t));
3248 			ifp->if_bytes = new_size;
3249 			return;
3250 		}
3251 		if (!is_power_of_2(new_size)){
3252 			rnew_size = roundup_pow_of_two(new_size);
3253 		}
3254 		if (rnew_size != ifp->if_real_bytes) {
3255 			ifp->if_u1.if_extents =
3256 				kmem_realloc(ifp->if_u1.if_extents,
3257 						rnew_size,
3258 						ifp->if_real_bytes, KM_NOFS);
3259 		}
3260 		if (rnew_size > ifp->if_real_bytes) {
3261 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3262 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3263 				rnew_size - ifp->if_real_bytes);
3264 		}
3265 	}
3266 	/*
3267 	 * Switch from the inline extent buffer to a direct
3268 	 * extent list. Be sure to include the inline extent
3269 	 * bytes in new_size.
3270 	 */
3271 	else {
3272 		new_size += ifp->if_bytes;
3273 		if (!is_power_of_2(new_size)) {
3274 			rnew_size = roundup_pow_of_two(new_size);
3275 		}
3276 		xfs_iext_inline_to_direct(ifp, rnew_size);
3277 	}
3278 	ifp->if_real_bytes = rnew_size;
3279 	ifp->if_bytes = new_size;
3280 }
3281 
3282 /*
3283  * Switch from linear (direct) extent records to inline buffer.
3284  */
3285 void
3286 xfs_iext_direct_to_inline(
3287 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3288 	xfs_extnum_t	nextents)	/* number of extents in file */
3289 {
3290 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3291 	ASSERT(nextents <= XFS_INLINE_EXTS);
3292 	/*
3293 	 * The inline buffer was zeroed when we switched
3294 	 * from inline to direct extent allocation mode,
3295 	 * so we don't need to clear it here.
3296 	 */
3297 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3298 		nextents * sizeof(xfs_bmbt_rec_t));
3299 	kmem_free(ifp->if_u1.if_extents);
3300 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3301 	ifp->if_real_bytes = 0;
3302 }
3303 
3304 /*
3305  * Switch from inline buffer to linear (direct) extent records.
3306  * new_size should already be rounded up to the next power of 2
3307  * by the caller (when appropriate), so use new_size as it is.
3308  * However, since new_size may be rounded up, we can't update
3309  * if_bytes here. It is the caller's responsibility to update
3310  * if_bytes upon return.
3311  */
3312 void
3313 xfs_iext_inline_to_direct(
3314 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3315 	int		new_size)	/* number of extents in file */
3316 {
3317 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3318 	memset(ifp->if_u1.if_extents, 0, new_size);
3319 	if (ifp->if_bytes) {
3320 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3321 			ifp->if_bytes);
3322 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3323 			sizeof(xfs_bmbt_rec_t));
3324 	}
3325 	ifp->if_real_bytes = new_size;
3326 }
3327 
3328 /*
3329  * Resize an extent indirection array to new_size bytes.
3330  */
3331 STATIC void
3332 xfs_iext_realloc_indirect(
3333 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3334 	int		new_size)	/* new indirection array size */
3335 {
3336 	int		nlists;		/* number of irec's (ex lists) */
3337 	int		size;		/* current indirection array size */
3338 
3339 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3340 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3341 	size = nlists * sizeof(xfs_ext_irec_t);
3342 	ASSERT(ifp->if_real_bytes);
3343 	ASSERT((new_size >= 0) && (new_size != size));
3344 	if (new_size == 0) {
3345 		xfs_iext_destroy(ifp);
3346 	} else {
3347 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3348 			kmem_realloc(ifp->if_u1.if_ext_irec,
3349 				new_size, size, KM_NOFS);
3350 	}
3351 }
3352 
3353 /*
3354  * Switch from indirection array to linear (direct) extent allocations.
3355  */
3356 STATIC void
3357 xfs_iext_indirect_to_direct(
3358 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3359 {
3360 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3361 	xfs_extnum_t	nextents;	/* number of extents in file */
3362 	int		size;		/* size of file extents */
3363 
3364 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3365 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3366 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3367 	size = nextents * sizeof(xfs_bmbt_rec_t);
3368 
3369 	xfs_iext_irec_compact_pages(ifp);
3370 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3371 
3372 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3373 	kmem_free(ifp->if_u1.if_ext_irec);
3374 	ifp->if_flags &= ~XFS_IFEXTIREC;
3375 	ifp->if_u1.if_extents = ep;
3376 	ifp->if_bytes = size;
3377 	if (nextents < XFS_LINEAR_EXTS) {
3378 		xfs_iext_realloc_direct(ifp, size);
3379 	}
3380 }
3381 
3382 /*
3383  * Free incore file extents.
3384  */
3385 void
3386 xfs_iext_destroy(
3387 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3388 {
3389 	if (ifp->if_flags & XFS_IFEXTIREC) {
3390 		int	erp_idx;
3391 		int	nlists;
3392 
3393 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3394 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3395 			xfs_iext_irec_remove(ifp, erp_idx);
3396 		}
3397 		ifp->if_flags &= ~XFS_IFEXTIREC;
3398 	} else if (ifp->if_real_bytes) {
3399 		kmem_free(ifp->if_u1.if_extents);
3400 	} else if (ifp->if_bytes) {
3401 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3402 			sizeof(xfs_bmbt_rec_t));
3403 	}
3404 	ifp->if_u1.if_extents = NULL;
3405 	ifp->if_real_bytes = 0;
3406 	ifp->if_bytes = 0;
3407 }
3408 
3409 /*
3410  * Return a pointer to the extent record for file system block bno.
3411  */
3412 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3413 xfs_iext_bno_to_ext(
3414 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3415 	xfs_fileoff_t	bno,		/* block number to search for */
3416 	xfs_extnum_t	*idxp)		/* index of target extent */
3417 {
3418 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3419 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3420 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3421 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3422 	int		high;		/* upper boundary in search */
3423 	xfs_extnum_t	idx = 0;	/* index of target extent */
3424 	int		low;		/* lower boundary in search */
3425 	xfs_extnum_t	nextents;	/* number of file extents */
3426 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3427 
3428 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3429 	if (nextents == 0) {
3430 		*idxp = 0;
3431 		return NULL;
3432 	}
3433 	low = 0;
3434 	if (ifp->if_flags & XFS_IFEXTIREC) {
3435 		/* Find target extent list */
3436 		int	erp_idx = 0;
3437 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3438 		base = erp->er_extbuf;
3439 		high = erp->er_extcount - 1;
3440 	} else {
3441 		base = ifp->if_u1.if_extents;
3442 		high = nextents - 1;
3443 	}
3444 	/* Binary search extent records */
3445 	while (low <= high) {
3446 		idx = (low + high) >> 1;
3447 		ep = base + idx;
3448 		startoff = xfs_bmbt_get_startoff(ep);
3449 		blockcount = xfs_bmbt_get_blockcount(ep);
3450 		if (bno < startoff) {
3451 			high = idx - 1;
3452 		} else if (bno >= startoff + blockcount) {
3453 			low = idx + 1;
3454 		} else {
3455 			/* Convert back to file-based extent index */
3456 			if (ifp->if_flags & XFS_IFEXTIREC) {
3457 				idx += erp->er_extoff;
3458 			}
3459 			*idxp = idx;
3460 			return ep;
3461 		}
3462 	}
3463 	/* Convert back to file-based extent index */
3464 	if (ifp->if_flags & XFS_IFEXTIREC) {
3465 		idx += erp->er_extoff;
3466 	}
3467 	if (bno >= startoff + blockcount) {
3468 		if (++idx == nextents) {
3469 			ep = NULL;
3470 		} else {
3471 			ep = xfs_iext_get_ext(ifp, idx);
3472 		}
3473 	}
3474 	*idxp = idx;
3475 	return ep;
3476 }
3477 
3478 /*
3479  * Return a pointer to the indirection array entry containing the
3480  * extent record for filesystem block bno. Store the index of the
3481  * target irec in *erp_idxp.
3482  */
3483 xfs_ext_irec_t *			/* pointer to found extent record */
3484 xfs_iext_bno_to_irec(
3485 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3486 	xfs_fileoff_t	bno,		/* block number to search for */
3487 	int		*erp_idxp)	/* irec index of target ext list */
3488 {
3489 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3490 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3491 	int		erp_idx;	/* indirection array index */
3492 	int		nlists;		/* number of extent irec's (lists) */
3493 	int		high;		/* binary search upper limit */
3494 	int		low;		/* binary search lower limit */
3495 
3496 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3497 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3498 	erp_idx = 0;
3499 	low = 0;
3500 	high = nlists - 1;
3501 	while (low <= high) {
3502 		erp_idx = (low + high) >> 1;
3503 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3504 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3505 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3506 			high = erp_idx - 1;
3507 		} else if (erp_next && bno >=
3508 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3509 			low = erp_idx + 1;
3510 		} else {
3511 			break;
3512 		}
3513 	}
3514 	*erp_idxp = erp_idx;
3515 	return erp;
3516 }
3517 
3518 /*
3519  * Return a pointer to the indirection array entry containing the
3520  * extent record at file extent index *idxp. Store the index of the
3521  * target irec in *erp_idxp and store the page index of the target
3522  * extent record in *idxp.
3523  */
3524 xfs_ext_irec_t *
3525 xfs_iext_idx_to_irec(
3526 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3527 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3528 	int		*erp_idxp,	/* pointer to target irec */
3529 	int		realloc)	/* new bytes were just added */
3530 {
3531 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3532 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3533 	int		erp_idx;	/* indirection array index */
3534 	int		nlists;		/* number of irec's (ex lists) */
3535 	int		high;		/* binary search upper limit */
3536 	int		low;		/* binary search lower limit */
3537 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3538 
3539 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3540 	ASSERT(page_idx >= 0);
3541 	ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3542 	ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3543 
3544 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3545 	erp_idx = 0;
3546 	low = 0;
3547 	high = nlists - 1;
3548 
3549 	/* Binary search extent irec's */
3550 	while (low <= high) {
3551 		erp_idx = (low + high) >> 1;
3552 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3553 		prev = erp_idx > 0 ? erp - 1 : NULL;
3554 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3555 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3556 			high = erp_idx - 1;
3557 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3558 			   (page_idx == erp->er_extoff + erp->er_extcount &&
3559 			    !realloc)) {
3560 			low = erp_idx + 1;
3561 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3562 			   erp->er_extcount == XFS_LINEAR_EXTS) {
3563 			ASSERT(realloc);
3564 			page_idx = 0;
3565 			erp_idx++;
3566 			erp = erp_idx < nlists ? erp + 1 : NULL;
3567 			break;
3568 		} else {
3569 			page_idx -= erp->er_extoff;
3570 			break;
3571 		}
3572 	}
3573 	*idxp = page_idx;
3574 	*erp_idxp = erp_idx;
3575 	return(erp);
3576 }
3577 
3578 /*
3579  * Allocate and initialize an indirection array once the space needed
3580  * for incore extents increases above XFS_IEXT_BUFSZ.
3581  */
3582 void
3583 xfs_iext_irec_init(
3584 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3585 {
3586 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3587 	xfs_extnum_t	nextents;	/* number of extents in file */
3588 
3589 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3590 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3591 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3592 
3593 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3594 
3595 	if (nextents == 0) {
3596 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3597 	} else if (!ifp->if_real_bytes) {
3598 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3599 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3600 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3601 	}
3602 	erp->er_extbuf = ifp->if_u1.if_extents;
3603 	erp->er_extcount = nextents;
3604 	erp->er_extoff = 0;
3605 
3606 	ifp->if_flags |= XFS_IFEXTIREC;
3607 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3608 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3609 	ifp->if_u1.if_ext_irec = erp;
3610 
3611 	return;
3612 }
3613 
3614 /*
3615  * Allocate and initialize a new entry in the indirection array.
3616  */
3617 xfs_ext_irec_t *
3618 xfs_iext_irec_new(
3619 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3620 	int		erp_idx)	/* index for new irec */
3621 {
3622 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3623 	int		i;		/* loop counter */
3624 	int		nlists;		/* number of irec's (ex lists) */
3625 
3626 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3627 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3628 
3629 	/* Resize indirection array */
3630 	xfs_iext_realloc_indirect(ifp, ++nlists *
3631 				  sizeof(xfs_ext_irec_t));
3632 	/*
3633 	 * Move records down in the array so the
3634 	 * new page can use erp_idx.
3635 	 */
3636 	erp = ifp->if_u1.if_ext_irec;
3637 	for (i = nlists - 1; i > erp_idx; i--) {
3638 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3639 	}
3640 	ASSERT(i == erp_idx);
3641 
3642 	/* Initialize new extent record */
3643 	erp = ifp->if_u1.if_ext_irec;
3644 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3645 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3646 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3647 	erp[erp_idx].er_extcount = 0;
3648 	erp[erp_idx].er_extoff = erp_idx > 0 ?
3649 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3650 	return (&erp[erp_idx]);
3651 }
3652 
3653 /*
3654  * Remove a record from the indirection array.
3655  */
3656 void
3657 xfs_iext_irec_remove(
3658 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3659 	int		erp_idx)	/* irec index to remove */
3660 {
3661 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3662 	int		i;		/* loop counter */
3663 	int		nlists;		/* number of irec's (ex lists) */
3664 
3665 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3666 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3667 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3668 	if (erp->er_extbuf) {
3669 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3670 			-erp->er_extcount);
3671 		kmem_free(erp->er_extbuf);
3672 	}
3673 	/* Compact extent records */
3674 	erp = ifp->if_u1.if_ext_irec;
3675 	for (i = erp_idx; i < nlists - 1; i++) {
3676 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3677 	}
3678 	/*
3679 	 * Manually free the last extent record from the indirection
3680 	 * array.  A call to xfs_iext_realloc_indirect() with a size
3681 	 * of zero would result in a call to xfs_iext_destroy() which
3682 	 * would in turn call this function again, creating a nasty
3683 	 * infinite loop.
3684 	 */
3685 	if (--nlists) {
3686 		xfs_iext_realloc_indirect(ifp,
3687 			nlists * sizeof(xfs_ext_irec_t));
3688 	} else {
3689 		kmem_free(ifp->if_u1.if_ext_irec);
3690 	}
3691 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3692 }
3693 
3694 /*
3695  * This is called to clean up large amounts of unused memory allocated
3696  * by the indirection array.  Before compacting anything though, verify
3697  * that the indirection array is still needed and switch back to the
3698  * linear extent list (or even the inline buffer) if possible.  The
3699  * compaction policy is as follows:
3700  *
3701  *    Full Compaction: Extents fit into a single page (or inline buffer)
3702  * Partial Compaction: Extents occupy less than 50% of allocated space
3703  *      No Compaction: Extents occupy at least 50% of allocated space
3704  */
3705 void
3706 xfs_iext_irec_compact(
3707 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3708 {
3709 	xfs_extnum_t	nextents;	/* number of extents in file */
3710 	int		nlists;		/* number of irec's (ex lists) */
3711 
3712 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3713 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3714 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3715 
3716 	if (nextents == 0) {
3717 		xfs_iext_destroy(ifp);
3718 	} else if (nextents <= XFS_INLINE_EXTS) {
3719 		xfs_iext_indirect_to_direct(ifp);
3720 		xfs_iext_direct_to_inline(ifp, nextents);
3721 	} else if (nextents <= XFS_LINEAR_EXTS) {
3722 		xfs_iext_indirect_to_direct(ifp);
3723 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3724 		xfs_iext_irec_compact_pages(ifp);
3725 	}
3726 }
3727 
3728 /*
3729  * Combine extents from neighboring extent pages.
3730  */
3731 void
3732 xfs_iext_irec_compact_pages(
3733 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3734 {
3735 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
3736 	int		erp_idx = 0;	/* indirection array index */
3737 	int		nlists;		/* number of irec's (ex lists) */
3738 
3739 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3740 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3741 	while (erp_idx < nlists - 1) {
3742 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3743 		erp_next = erp + 1;
3744 		if (erp_next->er_extcount <=
3745 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
3746 			memcpy(&erp->er_extbuf[erp->er_extcount],
3747 				erp_next->er_extbuf, erp_next->er_extcount *
3748 				sizeof(xfs_bmbt_rec_t));
3749 			erp->er_extcount += erp_next->er_extcount;
3750 			/*
3751 			 * Free page before removing extent record
3752 			 * so er_extoffs don't get modified in
3753 			 * xfs_iext_irec_remove.
3754 			 */
3755 			kmem_free(erp_next->er_extbuf);
3756 			erp_next->er_extbuf = NULL;
3757 			xfs_iext_irec_remove(ifp, erp_idx + 1);
3758 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3759 		} else {
3760 			erp_idx++;
3761 		}
3762 	}
3763 }
3764 
3765 /*
3766  * This is called to update the er_extoff field in the indirection
3767  * array when extents have been added or removed from one of the
3768  * extent lists. erp_idx contains the irec index to begin updating
3769  * at and ext_diff contains the number of extents that were added
3770  * or removed.
3771  */
3772 void
3773 xfs_iext_irec_update_extoffs(
3774 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3775 	int		erp_idx,	/* irec index to update */
3776 	int		ext_diff)	/* number of new extents */
3777 {
3778 	int		i;		/* loop counter */
3779 	int		nlists;		/* number of irec's (ex lists */
3780 
3781 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3782 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3783 	for (i = erp_idx; i < nlists; i++) {
3784 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
3785 	}
3786 }
3787