1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_dir2.h" 18 #include "xfs_attr.h" 19 #include "xfs_bit.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_trans.h" 22 #include "xfs_buf_item.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_iunlink_item.h" 25 #include "xfs_ialloc.h" 26 #include "xfs_bmap.h" 27 #include "xfs_bmap_util.h" 28 #include "xfs_errortag.h" 29 #include "xfs_error.h" 30 #include "xfs_quota.h" 31 #include "xfs_filestream.h" 32 #include "xfs_trace.h" 33 #include "xfs_icache.h" 34 #include "xfs_symlink.h" 35 #include "xfs_trans_priv.h" 36 #include "xfs_log.h" 37 #include "xfs_bmap_btree.h" 38 #include "xfs_reflink.h" 39 #include "xfs_ag.h" 40 #include "xfs_log_priv.h" 41 #include "xfs_health.h" 42 #include "xfs_pnfs.h" 43 #include "xfs_parent.h" 44 #include "xfs_xattr.h" 45 #include "xfs_sb.h" 46 47 struct kmem_cache *xfs_inode_cache; 48 49 /* 50 * helper function to extract extent size hint from inode 51 */ 52 xfs_extlen_t 53 xfs_get_extsz_hint( 54 struct xfs_inode *ip) 55 { 56 /* 57 * No point in aligning allocations if we need to COW to actually 58 * write to them. 59 */ 60 if (xfs_is_always_cow_inode(ip)) 61 return 0; 62 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize) 63 return ip->i_extsize; 64 if (XFS_IS_REALTIME_INODE(ip) && 65 ip->i_mount->m_sb.sb_rextsize > 1) 66 return ip->i_mount->m_sb.sb_rextsize; 67 return 0; 68 } 69 70 /* 71 * Helper function to extract CoW extent size hint from inode. 72 * Between the extent size hint and the CoW extent size hint, we 73 * return the greater of the two. If the value is zero (automatic), 74 * use the default size. 75 */ 76 xfs_extlen_t 77 xfs_get_cowextsz_hint( 78 struct xfs_inode *ip) 79 { 80 xfs_extlen_t a, b; 81 82 a = 0; 83 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 84 a = ip->i_cowextsize; 85 b = xfs_get_extsz_hint(ip); 86 87 a = max(a, b); 88 if (a == 0) 89 return XFS_DEFAULT_COWEXTSZ_HINT; 90 return a; 91 } 92 93 /* 94 * These two are wrapper routines around the xfs_ilock() routine used to 95 * centralize some grungy code. They are used in places that wish to lock the 96 * inode solely for reading the extents. The reason these places can't just 97 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 98 * bringing in of the extents from disk for a file in b-tree format. If the 99 * inode is in b-tree format, then we need to lock the inode exclusively until 100 * the extents are read in. Locking it exclusively all the time would limit 101 * our parallelism unnecessarily, though. What we do instead is check to see 102 * if the extents have been read in yet, and only lock the inode exclusively 103 * if they have not. 104 * 105 * The functions return a value which should be given to the corresponding 106 * xfs_iunlock() call. 107 */ 108 uint 109 xfs_ilock_data_map_shared( 110 struct xfs_inode *ip) 111 { 112 uint lock_mode = XFS_ILOCK_SHARED; 113 114 if (xfs_need_iread_extents(&ip->i_df)) 115 lock_mode = XFS_ILOCK_EXCL; 116 xfs_ilock(ip, lock_mode); 117 return lock_mode; 118 } 119 120 uint 121 xfs_ilock_attr_map_shared( 122 struct xfs_inode *ip) 123 { 124 uint lock_mode = XFS_ILOCK_SHARED; 125 126 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) 127 lock_mode = XFS_ILOCK_EXCL; 128 xfs_ilock(ip, lock_mode); 129 return lock_mode; 130 } 131 132 /* 133 * You can't set both SHARED and EXCL for the same lock, 134 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED, 135 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values 136 * to set in lock_flags. 137 */ 138 static inline void 139 xfs_lock_flags_assert( 140 uint lock_flags) 141 { 142 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 143 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 144 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 145 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 146 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 147 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 148 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 149 ASSERT(lock_flags != 0); 150 } 151 152 /* 153 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 154 * multi-reader locks: invalidate_lock and the i_lock. This routine allows 155 * various combinations of the locks to be obtained. 156 * 157 * The 3 locks should always be ordered so that the IO lock is obtained first, 158 * the mmap lock second and the ilock last in order to prevent deadlock. 159 * 160 * Basic locking order: 161 * 162 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock 163 * 164 * mmap_lock locking order: 165 * 166 * i_rwsem -> page lock -> mmap_lock 167 * mmap_lock -> invalidate_lock -> page_lock 168 * 169 * The difference in mmap_lock locking order mean that we cannot hold the 170 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths 171 * can fault in pages during copy in/out (for buffered IO) or require the 172 * mmap_lock in get_user_pages() to map the user pages into the kernel address 173 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page 174 * fault because page faults already hold the mmap_lock. 175 * 176 * Hence to serialise fully against both syscall and mmap based IO, we need to 177 * take both the i_rwsem and the invalidate_lock. These locks should *only* be 178 * both taken in places where we need to invalidate the page cache in a race 179 * free manner (e.g. truncate, hole punch and other extent manipulation 180 * functions). 181 */ 182 void 183 xfs_ilock( 184 xfs_inode_t *ip, 185 uint lock_flags) 186 { 187 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 188 189 xfs_lock_flags_assert(lock_flags); 190 191 if (lock_flags & XFS_IOLOCK_EXCL) { 192 down_write_nested(&VFS_I(ip)->i_rwsem, 193 XFS_IOLOCK_DEP(lock_flags)); 194 } else if (lock_flags & XFS_IOLOCK_SHARED) { 195 down_read_nested(&VFS_I(ip)->i_rwsem, 196 XFS_IOLOCK_DEP(lock_flags)); 197 } 198 199 if (lock_flags & XFS_MMAPLOCK_EXCL) { 200 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 201 XFS_MMAPLOCK_DEP(lock_flags)); 202 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 203 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 204 XFS_MMAPLOCK_DEP(lock_flags)); 205 } 206 207 if (lock_flags & XFS_ILOCK_EXCL) 208 down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 209 else if (lock_flags & XFS_ILOCK_SHARED) 210 down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 211 } 212 213 /* 214 * This is just like xfs_ilock(), except that the caller 215 * is guaranteed not to sleep. It returns 1 if it gets 216 * the requested locks and 0 otherwise. If the IO lock is 217 * obtained but the inode lock cannot be, then the IO lock 218 * is dropped before returning. 219 * 220 * ip -- the inode being locked 221 * lock_flags -- this parameter indicates the inode's locks to be 222 * to be locked. See the comment for xfs_ilock() for a list 223 * of valid values. 224 */ 225 int 226 xfs_ilock_nowait( 227 xfs_inode_t *ip, 228 uint lock_flags) 229 { 230 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 231 232 xfs_lock_flags_assert(lock_flags); 233 234 if (lock_flags & XFS_IOLOCK_EXCL) { 235 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 236 goto out; 237 } else if (lock_flags & XFS_IOLOCK_SHARED) { 238 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 239 goto out; 240 } 241 242 if (lock_flags & XFS_MMAPLOCK_EXCL) { 243 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 244 goto out_undo_iolock; 245 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 246 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 247 goto out_undo_iolock; 248 } 249 250 if (lock_flags & XFS_ILOCK_EXCL) { 251 if (!down_write_trylock(&ip->i_lock)) 252 goto out_undo_mmaplock; 253 } else if (lock_flags & XFS_ILOCK_SHARED) { 254 if (!down_read_trylock(&ip->i_lock)) 255 goto out_undo_mmaplock; 256 } 257 return 1; 258 259 out_undo_mmaplock: 260 if (lock_flags & XFS_MMAPLOCK_EXCL) 261 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 262 else if (lock_flags & XFS_MMAPLOCK_SHARED) 263 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 264 out_undo_iolock: 265 if (lock_flags & XFS_IOLOCK_EXCL) 266 up_write(&VFS_I(ip)->i_rwsem); 267 else if (lock_flags & XFS_IOLOCK_SHARED) 268 up_read(&VFS_I(ip)->i_rwsem); 269 out: 270 return 0; 271 } 272 273 /* 274 * xfs_iunlock() is used to drop the inode locks acquired with 275 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 276 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 277 * that we know which locks to drop. 278 * 279 * ip -- the inode being unlocked 280 * lock_flags -- this parameter indicates the inode's locks to be 281 * to be unlocked. See the comment for xfs_ilock() for a list 282 * of valid values for this parameter. 283 * 284 */ 285 void 286 xfs_iunlock( 287 xfs_inode_t *ip, 288 uint lock_flags) 289 { 290 xfs_lock_flags_assert(lock_flags); 291 292 if (lock_flags & XFS_IOLOCK_EXCL) 293 up_write(&VFS_I(ip)->i_rwsem); 294 else if (lock_flags & XFS_IOLOCK_SHARED) 295 up_read(&VFS_I(ip)->i_rwsem); 296 297 if (lock_flags & XFS_MMAPLOCK_EXCL) 298 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 299 else if (lock_flags & XFS_MMAPLOCK_SHARED) 300 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 301 302 if (lock_flags & XFS_ILOCK_EXCL) 303 up_write(&ip->i_lock); 304 else if (lock_flags & XFS_ILOCK_SHARED) 305 up_read(&ip->i_lock); 306 307 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 308 } 309 310 /* 311 * give up write locks. the i/o lock cannot be held nested 312 * if it is being demoted. 313 */ 314 void 315 xfs_ilock_demote( 316 xfs_inode_t *ip, 317 uint lock_flags) 318 { 319 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 320 ASSERT((lock_flags & 321 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 322 323 if (lock_flags & XFS_ILOCK_EXCL) 324 downgrade_write(&ip->i_lock); 325 if (lock_flags & XFS_MMAPLOCK_EXCL) 326 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); 327 if (lock_flags & XFS_IOLOCK_EXCL) 328 downgrade_write(&VFS_I(ip)->i_rwsem); 329 330 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 331 } 332 333 void 334 xfs_assert_ilocked( 335 struct xfs_inode *ip, 336 uint lock_flags) 337 { 338 /* 339 * Sometimes we assert the ILOCK is held exclusively, but we're in 340 * a workqueue, so lockdep doesn't know we're the owner. 341 */ 342 if (lock_flags & XFS_ILOCK_SHARED) 343 rwsem_assert_held(&ip->i_lock); 344 else if (lock_flags & XFS_ILOCK_EXCL) 345 rwsem_assert_held_write_nolockdep(&ip->i_lock); 346 347 if (lock_flags & XFS_MMAPLOCK_SHARED) 348 rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock); 349 else if (lock_flags & XFS_MMAPLOCK_EXCL) 350 rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock); 351 352 if (lock_flags & XFS_IOLOCK_SHARED) 353 rwsem_assert_held(&VFS_I(ip)->i_rwsem); 354 else if (lock_flags & XFS_IOLOCK_EXCL) 355 rwsem_assert_held_write(&VFS_I(ip)->i_rwsem); 356 } 357 358 /* 359 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 360 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 361 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 362 * errors and warnings. 363 */ 364 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 365 static bool 366 xfs_lockdep_subclass_ok( 367 int subclass) 368 { 369 return subclass < MAX_LOCKDEP_SUBCLASSES; 370 } 371 #else 372 #define xfs_lockdep_subclass_ok(subclass) (true) 373 #endif 374 375 /* 376 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 377 * value. This can be called for any type of inode lock combination, including 378 * parent locking. Care must be taken to ensure we don't overrun the subclass 379 * storage fields in the class mask we build. 380 */ 381 static inline uint 382 xfs_lock_inumorder( 383 uint lock_mode, 384 uint subclass) 385 { 386 uint class = 0; 387 388 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 389 XFS_ILOCK_RTSUM))); 390 ASSERT(xfs_lockdep_subclass_ok(subclass)); 391 392 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 393 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 394 class += subclass << XFS_IOLOCK_SHIFT; 395 } 396 397 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 398 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 399 class += subclass << XFS_MMAPLOCK_SHIFT; 400 } 401 402 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 403 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 404 class += subclass << XFS_ILOCK_SHIFT; 405 } 406 407 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 408 } 409 410 /* 411 * The following routine will lock n inodes in exclusive mode. We assume the 412 * caller calls us with the inodes in i_ino order. 413 * 414 * We need to detect deadlock where an inode that we lock is in the AIL and we 415 * start waiting for another inode that is locked by a thread in a long running 416 * transaction (such as truncate). This can result in deadlock since the long 417 * running trans might need to wait for the inode we just locked in order to 418 * push the tail and free space in the log. 419 * 420 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 421 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 422 * lock more than one at a time, lockdep will report false positives saying we 423 * have violated locking orders. 424 */ 425 void 426 xfs_lock_inodes( 427 struct xfs_inode **ips, 428 int inodes, 429 uint lock_mode) 430 { 431 int attempts = 0; 432 uint i; 433 int j; 434 bool try_lock; 435 struct xfs_log_item *lp; 436 437 /* 438 * Currently supports between 2 and 5 inodes with exclusive locking. We 439 * support an arbitrary depth of locking here, but absolute limits on 440 * inodes depend on the type of locking and the limits placed by 441 * lockdep annotations in xfs_lock_inumorder. These are all checked by 442 * the asserts. 443 */ 444 ASSERT(ips && inodes >= 2 && inodes <= 5); 445 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 446 XFS_ILOCK_EXCL)); 447 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 448 XFS_ILOCK_SHARED))); 449 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 450 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 451 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 452 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 453 454 if (lock_mode & XFS_IOLOCK_EXCL) { 455 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 456 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 457 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 458 459 again: 460 try_lock = false; 461 i = 0; 462 for (; i < inodes; i++) { 463 ASSERT(ips[i]); 464 465 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 466 continue; 467 468 /* 469 * If try_lock is not set yet, make sure all locked inodes are 470 * not in the AIL. If any are, set try_lock to be used later. 471 */ 472 if (!try_lock) { 473 for (j = (i - 1); j >= 0 && !try_lock; j--) { 474 lp = &ips[j]->i_itemp->ili_item; 475 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 476 try_lock = true; 477 } 478 } 479 480 /* 481 * If any of the previous locks we have locked is in the AIL, 482 * we must TRY to get the second and subsequent locks. If 483 * we can't get any, we must release all we have 484 * and try again. 485 */ 486 if (!try_lock) { 487 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 488 continue; 489 } 490 491 /* try_lock means we have an inode locked that is in the AIL. */ 492 ASSERT(i != 0); 493 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 494 continue; 495 496 /* 497 * Unlock all previous guys and try again. xfs_iunlock will try 498 * to push the tail if the inode is in the AIL. 499 */ 500 attempts++; 501 for (j = i - 1; j >= 0; j--) { 502 /* 503 * Check to see if we've already unlocked this one. Not 504 * the first one going back, and the inode ptr is the 505 * same. 506 */ 507 if (j != (i - 1) && ips[j] == ips[j + 1]) 508 continue; 509 510 xfs_iunlock(ips[j], lock_mode); 511 } 512 513 if ((attempts % 5) == 0) { 514 delay(1); /* Don't just spin the CPU */ 515 } 516 goto again; 517 } 518 } 519 520 /* 521 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and 522 * mmaplock must be double-locked separately since we use i_rwsem and 523 * invalidate_lock for that. We now support taking one lock EXCL and the 524 * other SHARED. 525 */ 526 void 527 xfs_lock_two_inodes( 528 struct xfs_inode *ip0, 529 uint ip0_mode, 530 struct xfs_inode *ip1, 531 uint ip1_mode) 532 { 533 int attempts = 0; 534 struct xfs_log_item *lp; 535 536 ASSERT(hweight32(ip0_mode) == 1); 537 ASSERT(hweight32(ip1_mode) == 1); 538 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 539 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 540 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 541 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 542 ASSERT(ip0->i_ino != ip1->i_ino); 543 544 if (ip0->i_ino > ip1->i_ino) { 545 swap(ip0, ip1); 546 swap(ip0_mode, ip1_mode); 547 } 548 549 again: 550 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 551 552 /* 553 * If the first lock we have locked is in the AIL, we must TRY to get 554 * the second lock. If we can't get it, we must release the first one 555 * and try again. 556 */ 557 lp = &ip0->i_itemp->ili_item; 558 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 559 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 560 xfs_iunlock(ip0, ip0_mode); 561 if ((++attempts % 5) == 0) 562 delay(1); /* Don't just spin the CPU */ 563 goto again; 564 } 565 } else { 566 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 567 } 568 } 569 570 uint 571 xfs_ip2xflags( 572 struct xfs_inode *ip) 573 { 574 uint flags = 0; 575 576 if (ip->i_diflags & XFS_DIFLAG_ANY) { 577 if (ip->i_diflags & XFS_DIFLAG_REALTIME) 578 flags |= FS_XFLAG_REALTIME; 579 if (ip->i_diflags & XFS_DIFLAG_PREALLOC) 580 flags |= FS_XFLAG_PREALLOC; 581 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 582 flags |= FS_XFLAG_IMMUTABLE; 583 if (ip->i_diflags & XFS_DIFLAG_APPEND) 584 flags |= FS_XFLAG_APPEND; 585 if (ip->i_diflags & XFS_DIFLAG_SYNC) 586 flags |= FS_XFLAG_SYNC; 587 if (ip->i_diflags & XFS_DIFLAG_NOATIME) 588 flags |= FS_XFLAG_NOATIME; 589 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 590 flags |= FS_XFLAG_NODUMP; 591 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) 592 flags |= FS_XFLAG_RTINHERIT; 593 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT) 594 flags |= FS_XFLAG_PROJINHERIT; 595 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS) 596 flags |= FS_XFLAG_NOSYMLINKS; 597 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE) 598 flags |= FS_XFLAG_EXTSIZE; 599 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) 600 flags |= FS_XFLAG_EXTSZINHERIT; 601 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG) 602 flags |= FS_XFLAG_NODEFRAG; 603 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM) 604 flags |= FS_XFLAG_FILESTREAM; 605 } 606 607 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) { 608 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 609 flags |= FS_XFLAG_DAX; 610 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 611 flags |= FS_XFLAG_COWEXTSIZE; 612 } 613 614 if (xfs_inode_has_attr_fork(ip)) 615 flags |= FS_XFLAG_HASATTR; 616 return flags; 617 } 618 619 /* 620 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 621 * is allowed, otherwise it has to be an exact match. If a CI match is found, 622 * ci_name->name will point to a the actual name (caller must free) or 623 * will be set to NULL if an exact match is found. 624 */ 625 int 626 xfs_lookup( 627 struct xfs_inode *dp, 628 const struct xfs_name *name, 629 struct xfs_inode **ipp, 630 struct xfs_name *ci_name) 631 { 632 xfs_ino_t inum; 633 int error; 634 635 trace_xfs_lookup(dp, name); 636 637 if (xfs_is_shutdown(dp->i_mount)) 638 return -EIO; 639 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 640 return -EIO; 641 642 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 643 if (error) 644 goto out_unlock; 645 646 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 647 if (error) 648 goto out_free_name; 649 650 return 0; 651 652 out_free_name: 653 if (ci_name) 654 kfree(ci_name->name); 655 out_unlock: 656 *ipp = NULL; 657 return error; 658 } 659 660 /* Propagate di_flags from a parent inode to a child inode. */ 661 static void 662 xfs_inode_inherit_flags( 663 struct xfs_inode *ip, 664 const struct xfs_inode *pip) 665 { 666 unsigned int di_flags = 0; 667 xfs_failaddr_t failaddr; 668 umode_t mode = VFS_I(ip)->i_mode; 669 670 if (S_ISDIR(mode)) { 671 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT) 672 di_flags |= XFS_DIFLAG_RTINHERIT; 673 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 674 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 675 ip->i_extsize = pip->i_extsize; 676 } 677 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT) 678 di_flags |= XFS_DIFLAG_PROJINHERIT; 679 } else if (S_ISREG(mode)) { 680 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) && 681 xfs_has_realtime(ip->i_mount)) 682 di_flags |= XFS_DIFLAG_REALTIME; 683 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 684 di_flags |= XFS_DIFLAG_EXTSIZE; 685 ip->i_extsize = pip->i_extsize; 686 } 687 } 688 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) && 689 xfs_inherit_noatime) 690 di_flags |= XFS_DIFLAG_NOATIME; 691 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) && 692 xfs_inherit_nodump) 693 di_flags |= XFS_DIFLAG_NODUMP; 694 if ((pip->i_diflags & XFS_DIFLAG_SYNC) && 695 xfs_inherit_sync) 696 di_flags |= XFS_DIFLAG_SYNC; 697 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) && 698 xfs_inherit_nosymlinks) 699 di_flags |= XFS_DIFLAG_NOSYMLINKS; 700 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) && 701 xfs_inherit_nodefrag) 702 di_flags |= XFS_DIFLAG_NODEFRAG; 703 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM) 704 di_flags |= XFS_DIFLAG_FILESTREAM; 705 706 ip->i_diflags |= di_flags; 707 708 /* 709 * Inode verifiers on older kernels only check that the extent size 710 * hint is an integer multiple of the rt extent size on realtime files. 711 * They did not check the hint alignment on a directory with both 712 * rtinherit and extszinherit flags set. If the misaligned hint is 713 * propagated from a directory into a new realtime file, new file 714 * allocations will fail due to math errors in the rt allocator and/or 715 * trip the verifiers. Validate the hint settings in the new file so 716 * that we don't let broken hints propagate. 717 */ 718 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize, 719 VFS_I(ip)->i_mode, ip->i_diflags); 720 if (failaddr) { 721 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 722 XFS_DIFLAG_EXTSZINHERIT); 723 ip->i_extsize = 0; 724 } 725 } 726 727 /* Propagate di_flags2 from a parent inode to a child inode. */ 728 static void 729 xfs_inode_inherit_flags2( 730 struct xfs_inode *ip, 731 const struct xfs_inode *pip) 732 { 733 xfs_failaddr_t failaddr; 734 735 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) { 736 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 737 ip->i_cowextsize = pip->i_cowextsize; 738 } 739 if (pip->i_diflags2 & XFS_DIFLAG2_DAX) 740 ip->i_diflags2 |= XFS_DIFLAG2_DAX; 741 742 /* Don't let invalid cowextsize hints propagate. */ 743 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize, 744 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2); 745 if (failaddr) { 746 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE; 747 ip->i_cowextsize = 0; 748 } 749 } 750 751 /* 752 * Initialise a newly allocated inode and return the in-core inode to the 753 * caller locked exclusively. 754 * 755 * Caller is responsible for unlocking the inode manually upon return 756 */ 757 int 758 xfs_init_new_inode( 759 struct mnt_idmap *idmap, 760 struct xfs_trans *tp, 761 struct xfs_inode *pip, 762 xfs_ino_t ino, 763 umode_t mode, 764 xfs_nlink_t nlink, 765 dev_t rdev, 766 prid_t prid, 767 bool init_xattrs, 768 struct xfs_inode **ipp) 769 { 770 struct inode *dir = pip ? VFS_I(pip) : NULL; 771 struct xfs_mount *mp = tp->t_mountp; 772 struct xfs_inode *ip; 773 unsigned int flags; 774 int error; 775 struct timespec64 tv; 776 struct inode *inode; 777 778 /* 779 * Protect against obviously corrupt allocation btree records. Later 780 * xfs_iget checks will catch re-allocation of other active in-memory 781 * and on-disk inodes. If we don't catch reallocating the parent inode 782 * here we will deadlock in xfs_iget() so we have to do these checks 783 * first. 784 */ 785 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 786 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 787 xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino), 788 XFS_SICK_AG_INOBT); 789 return -EFSCORRUPTED; 790 } 791 792 /* 793 * Get the in-core inode with the lock held exclusively to prevent 794 * others from looking at until we're done. 795 */ 796 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 797 if (error) 798 return error; 799 800 ASSERT(ip != NULL); 801 inode = VFS_I(ip); 802 set_nlink(inode, nlink); 803 inode->i_rdev = rdev; 804 ip->i_projid = prid; 805 806 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) { 807 inode_fsuid_set(inode, idmap); 808 inode->i_gid = dir->i_gid; 809 inode->i_mode = mode; 810 } else { 811 inode_init_owner(idmap, inode, dir, mode); 812 } 813 814 /* 815 * If the group ID of the new file does not match the effective group 816 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 817 * (and only if the irix_sgid_inherit compatibility variable is set). 818 */ 819 if (irix_sgid_inherit && (inode->i_mode & S_ISGID) && 820 !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode))) 821 inode->i_mode &= ~S_ISGID; 822 823 ip->i_disk_size = 0; 824 ip->i_df.if_nextents = 0; 825 ASSERT(ip->i_nblocks == 0); 826 827 tv = inode_set_ctime_current(inode); 828 inode_set_mtime_to_ts(inode, tv); 829 inode_set_atime_to_ts(inode, tv); 830 831 ip->i_extsize = 0; 832 ip->i_diflags = 0; 833 834 if (xfs_has_v3inodes(mp)) { 835 inode_set_iversion(inode, 1); 836 ip->i_cowextsize = 0; 837 ip->i_crtime = tv; 838 } 839 840 flags = XFS_ILOG_CORE; 841 switch (mode & S_IFMT) { 842 case S_IFIFO: 843 case S_IFCHR: 844 case S_IFBLK: 845 case S_IFSOCK: 846 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 847 flags |= XFS_ILOG_DEV; 848 break; 849 case S_IFREG: 850 case S_IFDIR: 851 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY)) 852 xfs_inode_inherit_flags(ip, pip); 853 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY)) 854 xfs_inode_inherit_flags2(ip, pip); 855 fallthrough; 856 case S_IFLNK: 857 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 858 ip->i_df.if_bytes = 0; 859 ip->i_df.if_data = NULL; 860 break; 861 default: 862 ASSERT(0); 863 } 864 865 /* 866 * If we need to create attributes immediately after allocating the 867 * inode, initialise an empty attribute fork right now. We use the 868 * default fork offset for attributes here as we don't know exactly what 869 * size or how many attributes we might be adding. We can do this 870 * safely here because we know the data fork is completely empty and 871 * this saves us from needing to run a separate transaction to set the 872 * fork offset in the immediate future. 873 */ 874 if (init_xattrs) { 875 ip->i_forkoff = xfs_default_attroffset(ip) >> 3; 876 xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0); 877 878 if (!xfs_has_attr(mp)) { 879 spin_lock(&mp->m_sb_lock); 880 xfs_add_attr(mp); 881 spin_unlock(&mp->m_sb_lock); 882 xfs_log_sb(tp); 883 } 884 } 885 886 /* 887 * Log the new values stuffed into the inode. 888 */ 889 xfs_trans_ijoin(tp, ip, 0); 890 xfs_trans_log_inode(tp, ip, flags); 891 892 /* now that we have an i_mode we can setup the inode structure */ 893 xfs_setup_inode(ip); 894 895 *ipp = ip; 896 return 0; 897 } 898 899 /* 900 * Decrement the link count on an inode & log the change. If this causes the 901 * link count to go to zero, move the inode to AGI unlinked list so that it can 902 * be freed when the last active reference goes away via xfs_inactive(). 903 */ 904 int 905 xfs_droplink( 906 struct xfs_trans *tp, 907 struct xfs_inode *ip) 908 { 909 struct inode *inode = VFS_I(ip); 910 911 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 912 913 if (inode->i_nlink == 0) { 914 xfs_info_ratelimited(tp->t_mountp, 915 "Inode 0x%llx link count dropped below zero. Pinning link count.", 916 ip->i_ino); 917 set_nlink(inode, XFS_NLINK_PINNED); 918 } 919 if (inode->i_nlink != XFS_NLINK_PINNED) 920 drop_nlink(inode); 921 922 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 923 924 if (inode->i_nlink) 925 return 0; 926 927 return xfs_iunlink(tp, ip); 928 } 929 930 /* 931 * Increment the link count on an inode & log the change. 932 */ 933 void 934 xfs_bumplink( 935 struct xfs_trans *tp, 936 struct xfs_inode *ip) 937 { 938 struct inode *inode = VFS_I(ip); 939 940 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 941 942 if (inode->i_nlink == XFS_NLINK_PINNED - 1) 943 xfs_info_ratelimited(tp->t_mountp, 944 "Inode 0x%llx link count exceeded maximum. Pinning link count.", 945 ip->i_ino); 946 if (inode->i_nlink != XFS_NLINK_PINNED) 947 inc_nlink(inode); 948 949 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 950 } 951 952 #ifdef CONFIG_XFS_LIVE_HOOKS 953 /* 954 * Use a static key here to reduce the overhead of directory live update hooks. 955 * If the compiler supports jump labels, the static branch will be replaced by 956 * a nop sled when there are no hook users. Online fsck is currently the only 957 * caller, so this is a reasonable tradeoff. 958 * 959 * Note: Patching the kernel code requires taking the cpu hotplug lock. Other 960 * parts of the kernel allocate memory with that lock held, which means that 961 * XFS callers cannot hold any locks that might be used by memory reclaim or 962 * writeback when calling the static_branch_{inc,dec} functions. 963 */ 964 DEFINE_STATIC_XFS_HOOK_SWITCH(xfs_dir_hooks_switch); 965 966 void 967 xfs_dir_hook_disable(void) 968 { 969 xfs_hooks_switch_off(&xfs_dir_hooks_switch); 970 } 971 972 void 973 xfs_dir_hook_enable(void) 974 { 975 xfs_hooks_switch_on(&xfs_dir_hooks_switch); 976 } 977 978 /* Call hooks for a directory update relating to a child dirent update. */ 979 inline void 980 xfs_dir_update_hook( 981 struct xfs_inode *dp, 982 struct xfs_inode *ip, 983 int delta, 984 const struct xfs_name *name) 985 { 986 if (xfs_hooks_switched_on(&xfs_dir_hooks_switch)) { 987 struct xfs_dir_update_params p = { 988 .dp = dp, 989 .ip = ip, 990 .delta = delta, 991 .name = name, 992 }; 993 struct xfs_mount *mp = ip->i_mount; 994 995 xfs_hooks_call(&mp->m_dir_update_hooks, 0, &p); 996 } 997 } 998 999 /* Call the specified function during a directory update. */ 1000 int 1001 xfs_dir_hook_add( 1002 struct xfs_mount *mp, 1003 struct xfs_dir_hook *hook) 1004 { 1005 return xfs_hooks_add(&mp->m_dir_update_hooks, &hook->dirent_hook); 1006 } 1007 1008 /* Stop calling the specified function during a directory update. */ 1009 void 1010 xfs_dir_hook_del( 1011 struct xfs_mount *mp, 1012 struct xfs_dir_hook *hook) 1013 { 1014 xfs_hooks_del(&mp->m_dir_update_hooks, &hook->dirent_hook); 1015 } 1016 1017 /* Configure directory update hook functions. */ 1018 void 1019 xfs_dir_hook_setup( 1020 struct xfs_dir_hook *hook, 1021 notifier_fn_t mod_fn) 1022 { 1023 xfs_hook_setup(&hook->dirent_hook, mod_fn); 1024 } 1025 #endif /* CONFIG_XFS_LIVE_HOOKS */ 1026 1027 int 1028 xfs_create( 1029 struct mnt_idmap *idmap, 1030 struct xfs_inode *dp, 1031 struct xfs_name *name, 1032 umode_t mode, 1033 dev_t rdev, 1034 bool init_xattrs, 1035 xfs_inode_t **ipp) 1036 { 1037 int is_dir = S_ISDIR(mode); 1038 struct xfs_mount *mp = dp->i_mount; 1039 struct xfs_inode *ip = NULL; 1040 struct xfs_trans *tp = NULL; 1041 int error; 1042 bool unlock_dp_on_error = false; 1043 prid_t prid; 1044 struct xfs_dquot *udqp = NULL; 1045 struct xfs_dquot *gdqp = NULL; 1046 struct xfs_dquot *pdqp = NULL; 1047 struct xfs_trans_res *tres; 1048 uint resblks; 1049 xfs_ino_t ino; 1050 struct xfs_parent_args *ppargs; 1051 1052 trace_xfs_create(dp, name); 1053 1054 if (xfs_is_shutdown(mp)) 1055 return -EIO; 1056 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 1057 return -EIO; 1058 1059 prid = xfs_get_initial_prid(dp); 1060 1061 /* 1062 * Make sure that we have allocated dquot(s) on disk. 1063 */ 1064 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns), 1065 mapped_fsgid(idmap, &init_user_ns), prid, 1066 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1067 &udqp, &gdqp, &pdqp); 1068 if (error) 1069 return error; 1070 1071 if (is_dir) { 1072 resblks = xfs_mkdir_space_res(mp, name->len); 1073 tres = &M_RES(mp)->tr_mkdir; 1074 } else { 1075 resblks = xfs_create_space_res(mp, name->len); 1076 tres = &M_RES(mp)->tr_create; 1077 } 1078 1079 error = xfs_parent_start(mp, &ppargs); 1080 if (error) 1081 goto out_release_dquots; 1082 1083 /* 1084 * Initially assume that the file does not exist and 1085 * reserve the resources for that case. If that is not 1086 * the case we'll drop the one we have and get a more 1087 * appropriate transaction later. 1088 */ 1089 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1090 &tp); 1091 if (error == -ENOSPC) { 1092 /* flush outstanding delalloc blocks and retry */ 1093 xfs_flush_inodes(mp); 1094 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 1095 resblks, &tp); 1096 } 1097 if (error) 1098 goto out_parent; 1099 1100 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1101 unlock_dp_on_error = true; 1102 1103 /* 1104 * A newly created regular or special file just has one directory 1105 * entry pointing to them, but a directory also the "." entry 1106 * pointing to itself. 1107 */ 1108 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1109 if (!error) 1110 error = xfs_init_new_inode(idmap, tp, dp, ino, mode, 1111 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip); 1112 if (error) 1113 goto out_trans_cancel; 1114 1115 /* 1116 * Now we join the directory inode to the transaction. We do not do it 1117 * earlier because xfs_dialloc might commit the previous transaction 1118 * (and release all the locks). An error from here on will result in 1119 * the transaction cancel unlocking dp so don't do it explicitly in the 1120 * error path. 1121 */ 1122 xfs_trans_ijoin(tp, dp, 0); 1123 1124 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1125 resblks - XFS_IALLOC_SPACE_RES(mp)); 1126 if (error) { 1127 ASSERT(error != -ENOSPC); 1128 goto out_trans_cancel; 1129 } 1130 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1131 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1132 1133 if (is_dir) { 1134 error = xfs_dir_init(tp, ip, dp); 1135 if (error) 1136 goto out_trans_cancel; 1137 1138 xfs_bumplink(tp, dp); 1139 } 1140 1141 /* 1142 * If we have parent pointers, we need to add the attribute containing 1143 * the parent information now. 1144 */ 1145 if (ppargs) { 1146 error = xfs_parent_addname(tp, ppargs, dp, name, ip); 1147 if (error) 1148 goto out_trans_cancel; 1149 } 1150 1151 /* 1152 * Create ip with a reference from dp, and add '.' and '..' references 1153 * if it's a directory. 1154 */ 1155 xfs_dir_update_hook(dp, ip, 1, name); 1156 1157 /* 1158 * If this is a synchronous mount, make sure that the 1159 * create transaction goes to disk before returning to 1160 * the user. 1161 */ 1162 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1163 xfs_trans_set_sync(tp); 1164 1165 /* 1166 * Attach the dquot(s) to the inodes and modify them incore. 1167 * These ids of the inode couldn't have changed since the new 1168 * inode has been locked ever since it was created. 1169 */ 1170 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1171 1172 error = xfs_trans_commit(tp); 1173 if (error) 1174 goto out_release_inode; 1175 1176 xfs_qm_dqrele(udqp); 1177 xfs_qm_dqrele(gdqp); 1178 xfs_qm_dqrele(pdqp); 1179 1180 *ipp = ip; 1181 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1182 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1183 xfs_parent_finish(mp, ppargs); 1184 return 0; 1185 1186 out_trans_cancel: 1187 xfs_trans_cancel(tp); 1188 out_release_inode: 1189 /* 1190 * Wait until after the current transaction is aborted to finish the 1191 * setup of the inode and release the inode. This prevents recursive 1192 * transactions and deadlocks from xfs_inactive. 1193 */ 1194 if (ip) { 1195 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1196 xfs_finish_inode_setup(ip); 1197 xfs_irele(ip); 1198 } 1199 out_parent: 1200 xfs_parent_finish(mp, ppargs); 1201 out_release_dquots: 1202 xfs_qm_dqrele(udqp); 1203 xfs_qm_dqrele(gdqp); 1204 xfs_qm_dqrele(pdqp); 1205 1206 if (unlock_dp_on_error) 1207 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1208 return error; 1209 } 1210 1211 int 1212 xfs_create_tmpfile( 1213 struct mnt_idmap *idmap, 1214 struct xfs_inode *dp, 1215 umode_t mode, 1216 bool init_xattrs, 1217 struct xfs_inode **ipp) 1218 { 1219 struct xfs_mount *mp = dp->i_mount; 1220 struct xfs_inode *ip = NULL; 1221 struct xfs_trans *tp = NULL; 1222 int error; 1223 prid_t prid; 1224 struct xfs_dquot *udqp = NULL; 1225 struct xfs_dquot *gdqp = NULL; 1226 struct xfs_dquot *pdqp = NULL; 1227 struct xfs_trans_res *tres; 1228 uint resblks; 1229 xfs_ino_t ino; 1230 1231 if (xfs_is_shutdown(mp)) 1232 return -EIO; 1233 1234 prid = xfs_get_initial_prid(dp); 1235 1236 /* 1237 * Make sure that we have allocated dquot(s) on disk. 1238 */ 1239 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns), 1240 mapped_fsgid(idmap, &init_user_ns), prid, 1241 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1242 &udqp, &gdqp, &pdqp); 1243 if (error) 1244 return error; 1245 1246 resblks = XFS_IALLOC_SPACE_RES(mp); 1247 tres = &M_RES(mp)->tr_create_tmpfile; 1248 1249 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1250 &tp); 1251 if (error) 1252 goto out_release_dquots; 1253 1254 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1255 if (!error) 1256 error = xfs_init_new_inode(idmap, tp, dp, ino, mode, 1257 0, 0, prid, init_xattrs, &ip); 1258 if (error) 1259 goto out_trans_cancel; 1260 1261 if (xfs_has_wsync(mp)) 1262 xfs_trans_set_sync(tp); 1263 1264 /* 1265 * Attach the dquot(s) to the inodes and modify them incore. 1266 * These ids of the inode couldn't have changed since the new 1267 * inode has been locked ever since it was created. 1268 */ 1269 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1270 1271 error = xfs_iunlink(tp, ip); 1272 if (error) 1273 goto out_trans_cancel; 1274 1275 error = xfs_trans_commit(tp); 1276 if (error) 1277 goto out_release_inode; 1278 1279 xfs_qm_dqrele(udqp); 1280 xfs_qm_dqrele(gdqp); 1281 xfs_qm_dqrele(pdqp); 1282 1283 *ipp = ip; 1284 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1285 return 0; 1286 1287 out_trans_cancel: 1288 xfs_trans_cancel(tp); 1289 out_release_inode: 1290 /* 1291 * Wait until after the current transaction is aborted to finish the 1292 * setup of the inode and release the inode. This prevents recursive 1293 * transactions and deadlocks from xfs_inactive. 1294 */ 1295 if (ip) { 1296 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1297 xfs_finish_inode_setup(ip); 1298 xfs_irele(ip); 1299 } 1300 out_release_dquots: 1301 xfs_qm_dqrele(udqp); 1302 xfs_qm_dqrele(gdqp); 1303 xfs_qm_dqrele(pdqp); 1304 1305 return error; 1306 } 1307 1308 int 1309 xfs_link( 1310 struct xfs_inode *tdp, 1311 struct xfs_inode *sip, 1312 struct xfs_name *target_name) 1313 { 1314 struct xfs_mount *mp = tdp->i_mount; 1315 struct xfs_trans *tp; 1316 int error, nospace_error = 0; 1317 int resblks; 1318 struct xfs_parent_args *ppargs; 1319 1320 trace_xfs_link(tdp, target_name); 1321 1322 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1323 1324 if (xfs_is_shutdown(mp)) 1325 return -EIO; 1326 if (xfs_ifork_zapped(tdp, XFS_DATA_FORK)) 1327 return -EIO; 1328 1329 error = xfs_qm_dqattach(sip); 1330 if (error) 1331 goto std_return; 1332 1333 error = xfs_qm_dqattach(tdp); 1334 if (error) 1335 goto std_return; 1336 1337 error = xfs_parent_start(mp, &ppargs); 1338 if (error) 1339 goto std_return; 1340 1341 resblks = xfs_link_space_res(mp, target_name->len); 1342 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks, 1343 &tp, &nospace_error); 1344 if (error) 1345 goto out_parent; 1346 1347 /* 1348 * We don't allow reservationless or quotaless hardlinking when parent 1349 * pointers are enabled because we can't back out if the xattrs must 1350 * grow. 1351 */ 1352 if (ppargs && nospace_error) { 1353 error = nospace_error; 1354 goto error_return; 1355 } 1356 1357 /* 1358 * If we are using project inheritance, we only allow hard link 1359 * creation in our tree when the project IDs are the same; else 1360 * the tree quota mechanism could be circumvented. 1361 */ 1362 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 1363 tdp->i_projid != sip->i_projid)) { 1364 /* 1365 * Project quota setup skips special files which can 1366 * leave inodes in a PROJINHERIT directory without a 1367 * project ID set. We need to allow links to be made 1368 * to these "project-less" inodes because userspace 1369 * expects them to succeed after project ID setup, 1370 * but everything else should be rejected. 1371 */ 1372 if (!special_file(VFS_I(sip)->i_mode) || 1373 sip->i_projid != 0) { 1374 error = -EXDEV; 1375 goto error_return; 1376 } 1377 } 1378 1379 if (!resblks) { 1380 error = xfs_dir_canenter(tp, tdp, target_name); 1381 if (error) 1382 goto error_return; 1383 } 1384 1385 /* 1386 * Handle initial link state of O_TMPFILE inode 1387 */ 1388 if (VFS_I(sip)->i_nlink == 0) { 1389 struct xfs_perag *pag; 1390 1391 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino)); 1392 error = xfs_iunlink_remove(tp, pag, sip); 1393 xfs_perag_put(pag); 1394 if (error) 1395 goto error_return; 1396 } 1397 1398 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1399 resblks); 1400 if (error) 1401 goto error_return; 1402 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1403 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1404 1405 xfs_bumplink(tp, sip); 1406 1407 /* 1408 * If we have parent pointers, we now need to add the parent record to 1409 * the attribute fork of the inode. If this is the initial parent 1410 * attribute, we need to create it correctly, otherwise we can just add 1411 * the parent to the inode. 1412 */ 1413 if (ppargs) { 1414 error = xfs_parent_addname(tp, ppargs, tdp, target_name, sip); 1415 if (error) 1416 goto error_return; 1417 } 1418 1419 xfs_dir_update_hook(tdp, sip, 1, target_name); 1420 1421 /* 1422 * If this is a synchronous mount, make sure that the 1423 * link transaction goes to disk before returning to 1424 * the user. 1425 */ 1426 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1427 xfs_trans_set_sync(tp); 1428 1429 error = xfs_trans_commit(tp); 1430 xfs_iunlock(tdp, XFS_ILOCK_EXCL); 1431 xfs_iunlock(sip, XFS_ILOCK_EXCL); 1432 xfs_parent_finish(mp, ppargs); 1433 return error; 1434 1435 error_return: 1436 xfs_trans_cancel(tp); 1437 xfs_iunlock(tdp, XFS_ILOCK_EXCL); 1438 xfs_iunlock(sip, XFS_ILOCK_EXCL); 1439 out_parent: 1440 xfs_parent_finish(mp, ppargs); 1441 std_return: 1442 if (error == -ENOSPC && nospace_error) 1443 error = nospace_error; 1444 return error; 1445 } 1446 1447 /* Clear the reflink flag and the cowblocks tag if possible. */ 1448 static void 1449 xfs_itruncate_clear_reflink_flags( 1450 struct xfs_inode *ip) 1451 { 1452 struct xfs_ifork *dfork; 1453 struct xfs_ifork *cfork; 1454 1455 if (!xfs_is_reflink_inode(ip)) 1456 return; 1457 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK); 1458 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK); 1459 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1460 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1461 if (cfork->if_bytes == 0) 1462 xfs_inode_clear_cowblocks_tag(ip); 1463 } 1464 1465 /* 1466 * Free up the underlying blocks past new_size. The new size must be smaller 1467 * than the current size. This routine can be used both for the attribute and 1468 * data fork, and does not modify the inode size, which is left to the caller. 1469 * 1470 * The transaction passed to this routine must have made a permanent log 1471 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1472 * given transaction and start new ones, so make sure everything involved in 1473 * the transaction is tidy before calling here. Some transaction will be 1474 * returned to the caller to be committed. The incoming transaction must 1475 * already include the inode, and both inode locks must be held exclusively. 1476 * The inode must also be "held" within the transaction. On return the inode 1477 * will be "held" within the returned transaction. This routine does NOT 1478 * require any disk space to be reserved for it within the transaction. 1479 * 1480 * If we get an error, we must return with the inode locked and linked into the 1481 * current transaction. This keeps things simple for the higher level code, 1482 * because it always knows that the inode is locked and held in the transaction 1483 * that returns to it whether errors occur or not. We don't mark the inode 1484 * dirty on error so that transactions can be easily aborted if possible. 1485 */ 1486 int 1487 xfs_itruncate_extents_flags( 1488 struct xfs_trans **tpp, 1489 struct xfs_inode *ip, 1490 int whichfork, 1491 xfs_fsize_t new_size, 1492 int flags) 1493 { 1494 struct xfs_mount *mp = ip->i_mount; 1495 struct xfs_trans *tp = *tpp; 1496 xfs_fileoff_t first_unmap_block; 1497 int error = 0; 1498 1499 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1500 if (atomic_read(&VFS_I(ip)->i_count)) 1501 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL); 1502 ASSERT(new_size <= XFS_ISIZE(ip)); 1503 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1504 ASSERT(ip->i_itemp != NULL); 1505 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1506 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1507 1508 trace_xfs_itruncate_extents_start(ip, new_size); 1509 1510 flags |= xfs_bmapi_aflag(whichfork); 1511 1512 /* 1513 * Since it is possible for space to become allocated beyond 1514 * the end of the file (in a crash where the space is allocated 1515 * but the inode size is not yet updated), simply remove any 1516 * blocks which show up between the new EOF and the maximum 1517 * possible file size. 1518 * 1519 * We have to free all the blocks to the bmbt maximum offset, even if 1520 * the page cache can't scale that far. 1521 */ 1522 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1523 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1524 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1525 return 0; 1526 } 1527 1528 error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block, 1529 XFS_MAX_FILEOFF); 1530 if (error) 1531 goto out; 1532 1533 if (whichfork == XFS_DATA_FORK) { 1534 /* Remove all pending CoW reservations. */ 1535 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1536 first_unmap_block, XFS_MAX_FILEOFF, true); 1537 if (error) 1538 goto out; 1539 1540 xfs_itruncate_clear_reflink_flags(ip); 1541 } 1542 1543 /* 1544 * Always re-log the inode so that our permanent transaction can keep 1545 * on rolling it forward in the log. 1546 */ 1547 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1548 1549 trace_xfs_itruncate_extents_end(ip, new_size); 1550 1551 out: 1552 *tpp = tp; 1553 return error; 1554 } 1555 1556 int 1557 xfs_release( 1558 xfs_inode_t *ip) 1559 { 1560 xfs_mount_t *mp = ip->i_mount; 1561 int error = 0; 1562 1563 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1564 return 0; 1565 1566 /* If this is a read-only mount, don't do this (would generate I/O) */ 1567 if (xfs_is_readonly(mp)) 1568 return 0; 1569 1570 if (!xfs_is_shutdown(mp)) { 1571 int truncated; 1572 1573 /* 1574 * If we previously truncated this file and removed old data 1575 * in the process, we want to initiate "early" writeout on 1576 * the last close. This is an attempt to combat the notorious 1577 * NULL files problem which is particularly noticeable from a 1578 * truncate down, buffered (re-)write (delalloc), followed by 1579 * a crash. What we are effectively doing here is 1580 * significantly reducing the time window where we'd otherwise 1581 * be exposed to that problem. 1582 */ 1583 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1584 if (truncated) { 1585 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1586 if (ip->i_delayed_blks > 0) { 1587 error = filemap_flush(VFS_I(ip)->i_mapping); 1588 if (error) 1589 return error; 1590 } 1591 } 1592 } 1593 1594 if (VFS_I(ip)->i_nlink == 0) 1595 return 0; 1596 1597 /* 1598 * If we can't get the iolock just skip truncating the blocks past EOF 1599 * because we could deadlock with the mmap_lock otherwise. We'll get 1600 * another chance to drop them once the last reference to the inode is 1601 * dropped, so we'll never leak blocks permanently. 1602 */ 1603 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) 1604 return 0; 1605 1606 if (xfs_can_free_eofblocks(ip)) { 1607 /* 1608 * Check if the inode is being opened, written and closed 1609 * frequently and we have delayed allocation blocks outstanding 1610 * (e.g. streaming writes from the NFS server), truncating the 1611 * blocks past EOF will cause fragmentation to occur. 1612 * 1613 * In this case don't do the truncation, but we have to be 1614 * careful how we detect this case. Blocks beyond EOF show up as 1615 * i_delayed_blks even when the inode is clean, so we need to 1616 * truncate them away first before checking for a dirty release. 1617 * Hence on the first dirty close we will still remove the 1618 * speculative allocation, but after that we will leave it in 1619 * place. 1620 */ 1621 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1622 goto out_unlock; 1623 1624 error = xfs_free_eofblocks(ip); 1625 if (error) 1626 goto out_unlock; 1627 1628 /* delalloc blocks after truncation means it really is dirty */ 1629 if (ip->i_delayed_blks) 1630 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1631 } 1632 1633 out_unlock: 1634 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1635 return error; 1636 } 1637 1638 /* 1639 * Mark all the buffers attached to this directory stale. In theory we should 1640 * never be freeing a directory with any blocks at all, but this covers the 1641 * case where we've recovered a directory swap with a "temporary" directory 1642 * created by online repair and now need to dump it. 1643 */ 1644 STATIC void 1645 xfs_inactive_dir( 1646 struct xfs_inode *dp) 1647 { 1648 struct xfs_iext_cursor icur; 1649 struct xfs_bmbt_irec got; 1650 struct xfs_mount *mp = dp->i_mount; 1651 struct xfs_da_geometry *geo = mp->m_dir_geo; 1652 struct xfs_ifork *ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK); 1653 xfs_fileoff_t off; 1654 1655 /* 1656 * Invalidate each directory block. All directory blocks are of 1657 * fsbcount length and alignment, so we only need to walk those same 1658 * offsets. We hold the only reference to this inode, so we must wait 1659 * for the buffer locks. 1660 */ 1661 for_each_xfs_iext(ifp, &icur, &got) { 1662 for (off = round_up(got.br_startoff, geo->fsbcount); 1663 off < got.br_startoff + got.br_blockcount; 1664 off += geo->fsbcount) { 1665 struct xfs_buf *bp = NULL; 1666 xfs_fsblock_t fsbno; 1667 int error; 1668 1669 fsbno = (off - got.br_startoff) + got.br_startblock; 1670 error = xfs_buf_incore(mp->m_ddev_targp, 1671 XFS_FSB_TO_DADDR(mp, fsbno), 1672 XFS_FSB_TO_BB(mp, geo->fsbcount), 1673 XBF_LIVESCAN, &bp); 1674 if (error) 1675 continue; 1676 1677 xfs_buf_stale(bp); 1678 xfs_buf_relse(bp); 1679 } 1680 } 1681 } 1682 1683 /* 1684 * xfs_inactive_truncate 1685 * 1686 * Called to perform a truncate when an inode becomes unlinked. 1687 */ 1688 STATIC int 1689 xfs_inactive_truncate( 1690 struct xfs_inode *ip) 1691 { 1692 struct xfs_mount *mp = ip->i_mount; 1693 struct xfs_trans *tp; 1694 int error; 1695 1696 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1697 if (error) { 1698 ASSERT(xfs_is_shutdown(mp)); 1699 return error; 1700 } 1701 xfs_ilock(ip, XFS_ILOCK_EXCL); 1702 xfs_trans_ijoin(tp, ip, 0); 1703 1704 /* 1705 * Log the inode size first to prevent stale data exposure in the event 1706 * of a system crash before the truncate completes. See the related 1707 * comment in xfs_vn_setattr_size() for details. 1708 */ 1709 ip->i_disk_size = 0; 1710 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1711 1712 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1713 if (error) 1714 goto error_trans_cancel; 1715 1716 ASSERT(ip->i_df.if_nextents == 0); 1717 1718 error = xfs_trans_commit(tp); 1719 if (error) 1720 goto error_unlock; 1721 1722 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1723 return 0; 1724 1725 error_trans_cancel: 1726 xfs_trans_cancel(tp); 1727 error_unlock: 1728 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1729 return error; 1730 } 1731 1732 /* 1733 * xfs_inactive_ifree() 1734 * 1735 * Perform the inode free when an inode is unlinked. 1736 */ 1737 STATIC int 1738 xfs_inactive_ifree( 1739 struct xfs_inode *ip) 1740 { 1741 struct xfs_mount *mp = ip->i_mount; 1742 struct xfs_trans *tp; 1743 int error; 1744 1745 /* 1746 * We try to use a per-AG reservation for any block needed by the finobt 1747 * tree, but as the finobt feature predates the per-AG reservation 1748 * support a degraded file system might not have enough space for the 1749 * reservation at mount time. In that case try to dip into the reserved 1750 * pool and pray. 1751 * 1752 * Send a warning if the reservation does happen to fail, as the inode 1753 * now remains allocated and sits on the unlinked list until the fs is 1754 * repaired. 1755 */ 1756 if (unlikely(mp->m_finobt_nores)) { 1757 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1758 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1759 &tp); 1760 } else { 1761 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1762 } 1763 if (error) { 1764 if (error == -ENOSPC) { 1765 xfs_warn_ratelimited(mp, 1766 "Failed to remove inode(s) from unlinked list. " 1767 "Please free space, unmount and run xfs_repair."); 1768 } else { 1769 ASSERT(xfs_is_shutdown(mp)); 1770 } 1771 return error; 1772 } 1773 1774 /* 1775 * We do not hold the inode locked across the entire rolling transaction 1776 * here. We only need to hold it for the first transaction that 1777 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1778 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1779 * here breaks the relationship between cluster buffer invalidation and 1780 * stale inode invalidation on cluster buffer item journal commit 1781 * completion, and can result in leaving dirty stale inodes hanging 1782 * around in memory. 1783 * 1784 * We have no need for serialising this inode operation against other 1785 * operations - we freed the inode and hence reallocation is required 1786 * and that will serialise on reallocating the space the deferops need 1787 * to free. Hence we can unlock the inode on the first commit of 1788 * the transaction rather than roll it right through the deferops. This 1789 * avoids relogging the XFS_ISTALE inode. 1790 * 1791 * We check that xfs_ifree() hasn't grown an internal transaction roll 1792 * by asserting that the inode is still locked when it returns. 1793 */ 1794 xfs_ilock(ip, XFS_ILOCK_EXCL); 1795 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1796 1797 error = xfs_ifree(tp, ip); 1798 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1799 if (error) { 1800 /* 1801 * If we fail to free the inode, shut down. The cancel 1802 * might do that, we need to make sure. Otherwise the 1803 * inode might be lost for a long time or forever. 1804 */ 1805 if (!xfs_is_shutdown(mp)) { 1806 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1807 __func__, error); 1808 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1809 } 1810 xfs_trans_cancel(tp); 1811 return error; 1812 } 1813 1814 /* 1815 * Credit the quota account(s). The inode is gone. 1816 */ 1817 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1818 1819 return xfs_trans_commit(tp); 1820 } 1821 1822 /* 1823 * Returns true if we need to update the on-disk metadata before we can free 1824 * the memory used by this inode. Updates include freeing post-eof 1825 * preallocations; freeing COW staging extents; and marking the inode free in 1826 * the inobt if it is on the unlinked list. 1827 */ 1828 bool 1829 xfs_inode_needs_inactive( 1830 struct xfs_inode *ip) 1831 { 1832 struct xfs_mount *mp = ip->i_mount; 1833 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 1834 1835 /* 1836 * If the inode is already free, then there can be nothing 1837 * to clean up here. 1838 */ 1839 if (VFS_I(ip)->i_mode == 0) 1840 return false; 1841 1842 /* 1843 * If this is a read-only mount, don't do this (would generate I/O) 1844 * unless we're in log recovery and cleaning the iunlinked list. 1845 */ 1846 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1847 return false; 1848 1849 /* If the log isn't running, push inodes straight to reclaim. */ 1850 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) 1851 return false; 1852 1853 /* Metadata inodes require explicit resource cleanup. */ 1854 if (xfs_is_metadata_inode(ip)) 1855 return false; 1856 1857 /* Want to clean out the cow blocks if there are any. */ 1858 if (cow_ifp && cow_ifp->if_bytes > 0) 1859 return true; 1860 1861 /* Unlinked files must be freed. */ 1862 if (VFS_I(ip)->i_nlink == 0) 1863 return true; 1864 1865 /* 1866 * This file isn't being freed, so check if there are post-eof blocks 1867 * to free. 1868 * 1869 * Note: don't bother with iolock here since lockdep complains about 1870 * acquiring it in reclaim context. We have the only reference to the 1871 * inode at this point anyways. 1872 */ 1873 return xfs_can_free_eofblocks(ip); 1874 } 1875 1876 /* 1877 * Save health status somewhere, if we're dumping an inode with uncorrected 1878 * errors and online repair isn't running. 1879 */ 1880 static inline void 1881 xfs_inactive_health( 1882 struct xfs_inode *ip) 1883 { 1884 struct xfs_mount *mp = ip->i_mount; 1885 struct xfs_perag *pag; 1886 unsigned int sick; 1887 unsigned int checked; 1888 1889 xfs_inode_measure_sickness(ip, &sick, &checked); 1890 if (!sick) 1891 return; 1892 1893 trace_xfs_inode_unfixed_corruption(ip, sick); 1894 1895 if (sick & XFS_SICK_INO_FORGET) 1896 return; 1897 1898 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1899 if (!pag) { 1900 /* There had better still be a perag structure! */ 1901 ASSERT(0); 1902 return; 1903 } 1904 1905 xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES); 1906 xfs_perag_put(pag); 1907 } 1908 1909 /* 1910 * xfs_inactive 1911 * 1912 * This is called when the vnode reference count for the vnode 1913 * goes to zero. If the file has been unlinked, then it must 1914 * now be truncated. Also, we clear all of the read-ahead state 1915 * kept for the inode here since the file is now closed. 1916 */ 1917 int 1918 xfs_inactive( 1919 xfs_inode_t *ip) 1920 { 1921 struct xfs_mount *mp; 1922 int error = 0; 1923 int truncate = 0; 1924 1925 /* 1926 * If the inode is already free, then there can be nothing 1927 * to clean up here. 1928 */ 1929 if (VFS_I(ip)->i_mode == 0) { 1930 ASSERT(ip->i_df.if_broot_bytes == 0); 1931 goto out; 1932 } 1933 1934 mp = ip->i_mount; 1935 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1936 1937 xfs_inactive_health(ip); 1938 1939 /* 1940 * If this is a read-only mount, don't do this (would generate I/O) 1941 * unless we're in log recovery and cleaning the iunlinked list. 1942 */ 1943 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1944 goto out; 1945 1946 /* Metadata inodes require explicit resource cleanup. */ 1947 if (xfs_is_metadata_inode(ip)) 1948 goto out; 1949 1950 /* Try to clean out the cow blocks if there are any. */ 1951 if (xfs_inode_has_cow_data(ip)) 1952 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1953 1954 if (VFS_I(ip)->i_nlink != 0) { 1955 /* 1956 * Note: don't bother with iolock here since lockdep complains 1957 * about acquiring it in reclaim context. We have the only 1958 * reference to the inode at this point anyways. 1959 */ 1960 if (xfs_can_free_eofblocks(ip)) 1961 error = xfs_free_eofblocks(ip); 1962 1963 goto out; 1964 } 1965 1966 if (S_ISREG(VFS_I(ip)->i_mode) && 1967 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || 1968 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1969 truncate = 1; 1970 1971 if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) { 1972 /* 1973 * If this inode is being inactivated during a quotacheck and 1974 * has not yet been scanned by quotacheck, we /must/ remove 1975 * the dquots from the inode before inactivation changes the 1976 * block and inode counts. Most probably this is a result of 1977 * reloading the incore iunlinked list to purge unrecovered 1978 * unlinked inodes. 1979 */ 1980 xfs_qm_dqdetach(ip); 1981 } else { 1982 error = xfs_qm_dqattach(ip); 1983 if (error) 1984 goto out; 1985 } 1986 1987 if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) { 1988 xfs_inactive_dir(ip); 1989 truncate = 1; 1990 } 1991 1992 if (S_ISLNK(VFS_I(ip)->i_mode)) 1993 error = xfs_inactive_symlink(ip); 1994 else if (truncate) 1995 error = xfs_inactive_truncate(ip); 1996 if (error) 1997 goto out; 1998 1999 /* 2000 * If there are attributes associated with the file then blow them away 2001 * now. The code calls a routine that recursively deconstructs the 2002 * attribute fork. If also blows away the in-core attribute fork. 2003 */ 2004 if (xfs_inode_has_attr_fork(ip)) { 2005 error = xfs_attr_inactive(ip); 2006 if (error) 2007 goto out; 2008 } 2009 2010 ASSERT(ip->i_forkoff == 0); 2011 2012 /* 2013 * Free the inode. 2014 */ 2015 error = xfs_inactive_ifree(ip); 2016 2017 out: 2018 /* 2019 * We're done making metadata updates for this inode, so we can release 2020 * the attached dquots. 2021 */ 2022 xfs_qm_dqdetach(ip); 2023 return error; 2024 } 2025 2026 /* 2027 * In-Core Unlinked List Lookups 2028 * ============================= 2029 * 2030 * Every inode is supposed to be reachable from some other piece of metadata 2031 * with the exception of the root directory. Inodes with a connection to a 2032 * file descriptor but not linked from anywhere in the on-disk directory tree 2033 * are collectively known as unlinked inodes, though the filesystem itself 2034 * maintains links to these inodes so that on-disk metadata are consistent. 2035 * 2036 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 2037 * header contains a number of buckets that point to an inode, and each inode 2038 * record has a pointer to the next inode in the hash chain. This 2039 * singly-linked list causes scaling problems in the iunlink remove function 2040 * because we must walk that list to find the inode that points to the inode 2041 * being removed from the unlinked hash bucket list. 2042 * 2043 * Hence we keep an in-memory double linked list to link each inode on an 2044 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer 2045 * based lists would require having 64 list heads in the perag, one for each 2046 * list. This is expensive in terms of memory (think millions of AGs) and cache 2047 * misses on lookups. Instead, use the fact that inodes on the unlinked list 2048 * must be referenced at the VFS level to keep them on the list and hence we 2049 * have an existence guarantee for inodes on the unlinked list. 2050 * 2051 * Given we have an existence guarantee, we can use lockless inode cache lookups 2052 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode 2053 * for the double linked unlinked list, and we don't need any extra locking to 2054 * keep the list safe as all manipulations are done under the AGI buffer lock. 2055 * Keeping the list up to date does not require memory allocation, just finding 2056 * the XFS inode and updating the next/prev unlinked list aginos. 2057 */ 2058 2059 /* 2060 * Find an inode on the unlinked list. This does not take references to the 2061 * inode as we have existence guarantees by holding the AGI buffer lock and that 2062 * only unlinked, referenced inodes can be on the unlinked inode list. If we 2063 * don't find the inode in cache, then let the caller handle the situation. 2064 */ 2065 struct xfs_inode * 2066 xfs_iunlink_lookup( 2067 struct xfs_perag *pag, 2068 xfs_agino_t agino) 2069 { 2070 struct xfs_inode *ip; 2071 2072 rcu_read_lock(); 2073 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 2074 if (!ip) { 2075 /* Caller can handle inode not being in memory. */ 2076 rcu_read_unlock(); 2077 return NULL; 2078 } 2079 2080 /* 2081 * Inode in RCU freeing limbo should not happen. Warn about this and 2082 * let the caller handle the failure. 2083 */ 2084 if (WARN_ON_ONCE(!ip->i_ino)) { 2085 rcu_read_unlock(); 2086 return NULL; 2087 } 2088 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)); 2089 rcu_read_unlock(); 2090 return ip; 2091 } 2092 2093 /* 2094 * Update the prev pointer of the next agino. Returns -ENOLINK if the inode 2095 * is not in cache. 2096 */ 2097 static int 2098 xfs_iunlink_update_backref( 2099 struct xfs_perag *pag, 2100 xfs_agino_t prev_agino, 2101 xfs_agino_t next_agino) 2102 { 2103 struct xfs_inode *ip; 2104 2105 /* No update necessary if we are at the end of the list. */ 2106 if (next_agino == NULLAGINO) 2107 return 0; 2108 2109 ip = xfs_iunlink_lookup(pag, next_agino); 2110 if (!ip) 2111 return -ENOLINK; 2112 2113 ip->i_prev_unlinked = prev_agino; 2114 return 0; 2115 } 2116 2117 /* 2118 * Point the AGI unlinked bucket at an inode and log the results. The caller 2119 * is responsible for validating the old value. 2120 */ 2121 STATIC int 2122 xfs_iunlink_update_bucket( 2123 struct xfs_trans *tp, 2124 struct xfs_perag *pag, 2125 struct xfs_buf *agibp, 2126 unsigned int bucket_index, 2127 xfs_agino_t new_agino) 2128 { 2129 struct xfs_agi *agi = agibp->b_addr; 2130 xfs_agino_t old_value; 2131 int offset; 2132 2133 ASSERT(xfs_verify_agino_or_null(pag, new_agino)); 2134 2135 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2136 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index, 2137 old_value, new_agino); 2138 2139 /* 2140 * We should never find the head of the list already set to the value 2141 * passed in because either we're adding or removing ourselves from the 2142 * head of the list. 2143 */ 2144 if (old_value == new_agino) { 2145 xfs_buf_mark_corrupt(agibp); 2146 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 2147 return -EFSCORRUPTED; 2148 } 2149 2150 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2151 offset = offsetof(struct xfs_agi, agi_unlinked) + 2152 (sizeof(xfs_agino_t) * bucket_index); 2153 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2154 return 0; 2155 } 2156 2157 /* 2158 * Load the inode @next_agino into the cache and set its prev_unlinked pointer 2159 * to @prev_agino. Caller must hold the AGI to synchronize with other changes 2160 * to the unlinked list. 2161 */ 2162 STATIC int 2163 xfs_iunlink_reload_next( 2164 struct xfs_trans *tp, 2165 struct xfs_buf *agibp, 2166 xfs_agino_t prev_agino, 2167 xfs_agino_t next_agino) 2168 { 2169 struct xfs_perag *pag = agibp->b_pag; 2170 struct xfs_mount *mp = pag->pag_mount; 2171 struct xfs_inode *next_ip = NULL; 2172 xfs_ino_t ino; 2173 int error; 2174 2175 ASSERT(next_agino != NULLAGINO); 2176 2177 #ifdef DEBUG 2178 rcu_read_lock(); 2179 next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino); 2180 ASSERT(next_ip == NULL); 2181 rcu_read_unlock(); 2182 #endif 2183 2184 xfs_info_ratelimited(mp, 2185 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.", 2186 next_agino, pag->pag_agno); 2187 2188 /* 2189 * Use an untrusted lookup just to be cautious in case the AGI has been 2190 * corrupted and now points at a free inode. That shouldn't happen, 2191 * but we'd rather shut down now since we're already running in a weird 2192 * situation. 2193 */ 2194 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino); 2195 error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip); 2196 if (error) { 2197 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 2198 return error; 2199 } 2200 2201 /* If this is not an unlinked inode, something is very wrong. */ 2202 if (VFS_I(next_ip)->i_nlink != 0) { 2203 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 2204 error = -EFSCORRUPTED; 2205 goto rele; 2206 } 2207 2208 next_ip->i_prev_unlinked = prev_agino; 2209 trace_xfs_iunlink_reload_next(next_ip); 2210 rele: 2211 ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE)); 2212 if (xfs_is_quotacheck_running(mp) && next_ip) 2213 xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED); 2214 xfs_irele(next_ip); 2215 return error; 2216 } 2217 2218 static int 2219 xfs_iunlink_insert_inode( 2220 struct xfs_trans *tp, 2221 struct xfs_perag *pag, 2222 struct xfs_buf *agibp, 2223 struct xfs_inode *ip) 2224 { 2225 struct xfs_mount *mp = tp->t_mountp; 2226 struct xfs_agi *agi = agibp->b_addr; 2227 xfs_agino_t next_agino; 2228 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2229 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2230 int error; 2231 2232 /* 2233 * Get the index into the agi hash table for the list this inode will 2234 * go on. Make sure the pointer isn't garbage and that this inode 2235 * isn't already on the list. 2236 */ 2237 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2238 if (next_agino == agino || 2239 !xfs_verify_agino_or_null(pag, next_agino)) { 2240 xfs_buf_mark_corrupt(agibp); 2241 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 2242 return -EFSCORRUPTED; 2243 } 2244 2245 /* 2246 * Update the prev pointer in the next inode to point back to this 2247 * inode. 2248 */ 2249 error = xfs_iunlink_update_backref(pag, agino, next_agino); 2250 if (error == -ENOLINK) 2251 error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino); 2252 if (error) 2253 return error; 2254 2255 if (next_agino != NULLAGINO) { 2256 /* 2257 * There is already another inode in the bucket, so point this 2258 * inode to the current head of the list. 2259 */ 2260 error = xfs_iunlink_log_inode(tp, ip, pag, next_agino); 2261 if (error) 2262 return error; 2263 ip->i_next_unlinked = next_agino; 2264 } 2265 2266 /* Point the head of the list to point to this inode. */ 2267 ip->i_prev_unlinked = NULLAGINO; 2268 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino); 2269 } 2270 2271 /* 2272 * This is called when the inode's link count has gone to 0 or we are creating 2273 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2274 * 2275 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2276 * list when the inode is freed. 2277 */ 2278 int 2279 xfs_iunlink( 2280 struct xfs_trans *tp, 2281 struct xfs_inode *ip) 2282 { 2283 struct xfs_mount *mp = tp->t_mountp; 2284 struct xfs_perag *pag; 2285 struct xfs_buf *agibp; 2286 int error; 2287 2288 ASSERT(VFS_I(ip)->i_nlink == 0); 2289 ASSERT(VFS_I(ip)->i_mode != 0); 2290 trace_xfs_iunlink(ip); 2291 2292 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2293 2294 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2295 error = xfs_read_agi(pag, tp, 0, &agibp); 2296 if (error) 2297 goto out; 2298 2299 error = xfs_iunlink_insert_inode(tp, pag, agibp, ip); 2300 out: 2301 xfs_perag_put(pag); 2302 return error; 2303 } 2304 2305 static int 2306 xfs_iunlink_remove_inode( 2307 struct xfs_trans *tp, 2308 struct xfs_perag *pag, 2309 struct xfs_buf *agibp, 2310 struct xfs_inode *ip) 2311 { 2312 struct xfs_mount *mp = tp->t_mountp; 2313 struct xfs_agi *agi = agibp->b_addr; 2314 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2315 xfs_agino_t head_agino; 2316 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2317 int error; 2318 2319 trace_xfs_iunlink_remove(ip); 2320 2321 /* 2322 * Get the index into the agi hash table for the list this inode will 2323 * go on. Make sure the head pointer isn't garbage. 2324 */ 2325 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2326 if (!xfs_verify_agino(pag, head_agino)) { 2327 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2328 agi, sizeof(*agi)); 2329 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 2330 return -EFSCORRUPTED; 2331 } 2332 2333 /* 2334 * Set our inode's next_unlinked pointer to NULL and then return 2335 * the old pointer value so that we can update whatever was previous 2336 * to us in the list to point to whatever was next in the list. 2337 */ 2338 error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO); 2339 if (error) 2340 return error; 2341 2342 /* 2343 * Update the prev pointer in the next inode to point back to previous 2344 * inode in the chain. 2345 */ 2346 error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked, 2347 ip->i_next_unlinked); 2348 if (error == -ENOLINK) 2349 error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked, 2350 ip->i_next_unlinked); 2351 if (error) 2352 return error; 2353 2354 if (head_agino != agino) { 2355 struct xfs_inode *prev_ip; 2356 2357 prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked); 2358 if (!prev_ip) { 2359 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 2360 return -EFSCORRUPTED; 2361 } 2362 2363 error = xfs_iunlink_log_inode(tp, prev_ip, pag, 2364 ip->i_next_unlinked); 2365 prev_ip->i_next_unlinked = ip->i_next_unlinked; 2366 } else { 2367 /* Point the head of the list to the next unlinked inode. */ 2368 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, 2369 ip->i_next_unlinked); 2370 } 2371 2372 ip->i_next_unlinked = NULLAGINO; 2373 ip->i_prev_unlinked = 0; 2374 return error; 2375 } 2376 2377 /* 2378 * Pull the on-disk inode from the AGI unlinked list. 2379 */ 2380 int 2381 xfs_iunlink_remove( 2382 struct xfs_trans *tp, 2383 struct xfs_perag *pag, 2384 struct xfs_inode *ip) 2385 { 2386 struct xfs_buf *agibp; 2387 int error; 2388 2389 trace_xfs_iunlink_remove(ip); 2390 2391 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2392 error = xfs_read_agi(pag, tp, 0, &agibp); 2393 if (error) 2394 return error; 2395 2396 return xfs_iunlink_remove_inode(tp, pag, agibp, ip); 2397 } 2398 2399 /* 2400 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2401 * mark it stale. We should only find clean inodes in this lookup that aren't 2402 * already stale. 2403 */ 2404 static void 2405 xfs_ifree_mark_inode_stale( 2406 struct xfs_perag *pag, 2407 struct xfs_inode *free_ip, 2408 xfs_ino_t inum) 2409 { 2410 struct xfs_mount *mp = pag->pag_mount; 2411 struct xfs_inode_log_item *iip; 2412 struct xfs_inode *ip; 2413 2414 retry: 2415 rcu_read_lock(); 2416 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2417 2418 /* Inode not in memory, nothing to do */ 2419 if (!ip) { 2420 rcu_read_unlock(); 2421 return; 2422 } 2423 2424 /* 2425 * because this is an RCU protected lookup, we could find a recently 2426 * freed or even reallocated inode during the lookup. We need to check 2427 * under the i_flags_lock for a valid inode here. Skip it if it is not 2428 * valid, the wrong inode or stale. 2429 */ 2430 spin_lock(&ip->i_flags_lock); 2431 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 2432 goto out_iflags_unlock; 2433 2434 /* 2435 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2436 * other inodes that we did not find in the list attached to the buffer 2437 * and are not already marked stale. If we can't lock it, back off and 2438 * retry. 2439 */ 2440 if (ip != free_ip) { 2441 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2442 spin_unlock(&ip->i_flags_lock); 2443 rcu_read_unlock(); 2444 delay(1); 2445 goto retry; 2446 } 2447 } 2448 ip->i_flags |= XFS_ISTALE; 2449 2450 /* 2451 * If the inode is flushing, it is already attached to the buffer. All 2452 * we needed to do here is mark the inode stale so buffer IO completion 2453 * will remove it from the AIL. 2454 */ 2455 iip = ip->i_itemp; 2456 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 2457 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2458 ASSERT(iip->ili_last_fields); 2459 goto out_iunlock; 2460 } 2461 2462 /* 2463 * Inodes not attached to the buffer can be released immediately. 2464 * Everything else has to go through xfs_iflush_abort() on journal 2465 * commit as the flock synchronises removal of the inode from the 2466 * cluster buffer against inode reclaim. 2467 */ 2468 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 2469 goto out_iunlock; 2470 2471 __xfs_iflags_set(ip, XFS_IFLUSHING); 2472 spin_unlock(&ip->i_flags_lock); 2473 rcu_read_unlock(); 2474 2475 /* we have a dirty inode in memory that has not yet been flushed. */ 2476 spin_lock(&iip->ili_lock); 2477 iip->ili_last_fields = iip->ili_fields; 2478 iip->ili_fields = 0; 2479 iip->ili_fsync_fields = 0; 2480 spin_unlock(&iip->ili_lock); 2481 ASSERT(iip->ili_last_fields); 2482 2483 if (ip != free_ip) 2484 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2485 return; 2486 2487 out_iunlock: 2488 if (ip != free_ip) 2489 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2490 out_iflags_unlock: 2491 spin_unlock(&ip->i_flags_lock); 2492 rcu_read_unlock(); 2493 } 2494 2495 /* 2496 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2497 * inodes that are in memory - they all must be marked stale and attached to 2498 * the cluster buffer. 2499 */ 2500 static int 2501 xfs_ifree_cluster( 2502 struct xfs_trans *tp, 2503 struct xfs_perag *pag, 2504 struct xfs_inode *free_ip, 2505 struct xfs_icluster *xic) 2506 { 2507 struct xfs_mount *mp = free_ip->i_mount; 2508 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2509 struct xfs_buf *bp; 2510 xfs_daddr_t blkno; 2511 xfs_ino_t inum = xic->first_ino; 2512 int nbufs; 2513 int i, j; 2514 int ioffset; 2515 int error; 2516 2517 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2518 2519 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2520 /* 2521 * The allocation bitmap tells us which inodes of the chunk were 2522 * physically allocated. Skip the cluster if an inode falls into 2523 * a sparse region. 2524 */ 2525 ioffset = inum - xic->first_ino; 2526 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2527 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2528 continue; 2529 } 2530 2531 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2532 XFS_INO_TO_AGBNO(mp, inum)); 2533 2534 /* 2535 * We obtain and lock the backing buffer first in the process 2536 * here to ensure dirty inodes attached to the buffer remain in 2537 * the flushing state while we mark them stale. 2538 * 2539 * If we scan the in-memory inodes first, then buffer IO can 2540 * complete before we get a lock on it, and hence we may fail 2541 * to mark all the active inodes on the buffer stale. 2542 */ 2543 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2544 mp->m_bsize * igeo->blocks_per_cluster, 2545 XBF_UNMAPPED, &bp); 2546 if (error) 2547 return error; 2548 2549 /* 2550 * This buffer may not have been correctly initialised as we 2551 * didn't read it from disk. That's not important because we are 2552 * only using to mark the buffer as stale in the log, and to 2553 * attach stale cached inodes on it. 2554 * 2555 * For the inode that triggered the cluster freeing, this 2556 * attachment may occur in xfs_inode_item_precommit() after we 2557 * have marked this buffer stale. If this buffer was not in 2558 * memory before xfs_ifree_cluster() started, it will not be 2559 * marked XBF_DONE and this will cause problems later in 2560 * xfs_inode_item_precommit() when we trip over a (stale, !done) 2561 * buffer to attached to the transaction. 2562 * 2563 * Hence we have to mark the buffer as XFS_DONE here. This is 2564 * safe because we are also marking the buffer as XBF_STALE and 2565 * XFS_BLI_STALE. That means it will never be dispatched for 2566 * IO and it won't be unlocked until the cluster freeing has 2567 * been committed to the journal and the buffer unpinned. If it 2568 * is written, we want to know about it, and we want it to 2569 * fail. We can acheive this by adding a write verifier to the 2570 * buffer. 2571 */ 2572 bp->b_flags |= XBF_DONE; 2573 bp->b_ops = &xfs_inode_buf_ops; 2574 2575 /* 2576 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2577 * too. This requires lookups, and will skip inodes that we've 2578 * already marked XFS_ISTALE. 2579 */ 2580 for (i = 0; i < igeo->inodes_per_cluster; i++) 2581 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); 2582 2583 xfs_trans_stale_inode_buf(tp, bp); 2584 xfs_trans_binval(tp, bp); 2585 } 2586 return 0; 2587 } 2588 2589 /* 2590 * This is called to return an inode to the inode free list. The inode should 2591 * already be truncated to 0 length and have no pages associated with it. This 2592 * routine also assumes that the inode is already a part of the transaction. 2593 * 2594 * The on-disk copy of the inode will have been added to the list of unlinked 2595 * inodes in the AGI. We need to remove the inode from that list atomically with 2596 * respect to freeing it here. 2597 */ 2598 int 2599 xfs_ifree( 2600 struct xfs_trans *tp, 2601 struct xfs_inode *ip) 2602 { 2603 struct xfs_mount *mp = ip->i_mount; 2604 struct xfs_perag *pag; 2605 struct xfs_icluster xic = { 0 }; 2606 struct xfs_inode_log_item *iip = ip->i_itemp; 2607 int error; 2608 2609 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 2610 ASSERT(VFS_I(ip)->i_nlink == 0); 2611 ASSERT(ip->i_df.if_nextents == 0); 2612 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2613 ASSERT(ip->i_nblocks == 0); 2614 2615 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2616 2617 /* 2618 * Free the inode first so that we guarantee that the AGI lock is going 2619 * to be taken before we remove the inode from the unlinked list. This 2620 * makes the AGI lock -> unlinked list modification order the same as 2621 * used in O_TMPFILE creation. 2622 */ 2623 error = xfs_difree(tp, pag, ip->i_ino, &xic); 2624 if (error) 2625 goto out; 2626 2627 error = xfs_iunlink_remove(tp, pag, ip); 2628 if (error) 2629 goto out; 2630 2631 /* 2632 * Free any local-format data sitting around before we reset the 2633 * data fork to extents format. Note that the attr fork data has 2634 * already been freed by xfs_attr_inactive. 2635 */ 2636 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2637 kfree(ip->i_df.if_data); 2638 ip->i_df.if_data = NULL; 2639 ip->i_df.if_bytes = 0; 2640 } 2641 2642 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2643 ip->i_diflags = 0; 2644 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 2645 ip->i_forkoff = 0; /* mark the attr fork not in use */ 2646 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2647 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) 2648 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); 2649 2650 /* Don't attempt to replay owner changes for a deleted inode */ 2651 spin_lock(&iip->ili_lock); 2652 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2653 spin_unlock(&iip->ili_lock); 2654 2655 /* 2656 * Bump the generation count so no one will be confused 2657 * by reincarnations of this inode. 2658 */ 2659 VFS_I(ip)->i_generation++; 2660 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2661 2662 if (xic.deleted) 2663 error = xfs_ifree_cluster(tp, pag, ip, &xic); 2664 out: 2665 xfs_perag_put(pag); 2666 return error; 2667 } 2668 2669 /* 2670 * This is called to unpin an inode. The caller must have the inode locked 2671 * in at least shared mode so that the buffer cannot be subsequently pinned 2672 * once someone is waiting for it to be unpinned. 2673 */ 2674 static void 2675 xfs_iunpin( 2676 struct xfs_inode *ip) 2677 { 2678 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); 2679 2680 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2681 2682 /* Give the log a push to start the unpinning I/O */ 2683 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); 2684 2685 } 2686 2687 static void 2688 __xfs_iunpin_wait( 2689 struct xfs_inode *ip) 2690 { 2691 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2692 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2693 2694 xfs_iunpin(ip); 2695 2696 do { 2697 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2698 if (xfs_ipincount(ip)) 2699 io_schedule(); 2700 } while (xfs_ipincount(ip)); 2701 finish_wait(wq, &wait.wq_entry); 2702 } 2703 2704 void 2705 xfs_iunpin_wait( 2706 struct xfs_inode *ip) 2707 { 2708 if (xfs_ipincount(ip)) 2709 __xfs_iunpin_wait(ip); 2710 } 2711 2712 /* 2713 * Removing an inode from the namespace involves removing the directory entry 2714 * and dropping the link count on the inode. Removing the directory entry can 2715 * result in locking an AGF (directory blocks were freed) and removing a link 2716 * count can result in placing the inode on an unlinked list which results in 2717 * locking an AGI. 2718 * 2719 * The big problem here is that we have an ordering constraint on AGF and AGI 2720 * locking - inode allocation locks the AGI, then can allocate a new extent for 2721 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2722 * removes the inode from the unlinked list, requiring that we lock the AGI 2723 * first, and then freeing the inode can result in an inode chunk being freed 2724 * and hence freeing disk space requiring that we lock an AGF. 2725 * 2726 * Hence the ordering that is imposed by other parts of the code is AGI before 2727 * AGF. This means we cannot remove the directory entry before we drop the inode 2728 * reference count and put it on the unlinked list as this results in a lock 2729 * order of AGF then AGI, and this can deadlock against inode allocation and 2730 * freeing. Therefore we must drop the link counts before we remove the 2731 * directory entry. 2732 * 2733 * This is still safe from a transactional point of view - it is not until we 2734 * get to xfs_defer_finish() that we have the possibility of multiple 2735 * transactions in this operation. Hence as long as we remove the directory 2736 * entry and drop the link count in the first transaction of the remove 2737 * operation, there are no transactional constraints on the ordering here. 2738 */ 2739 int 2740 xfs_remove( 2741 struct xfs_inode *dp, 2742 struct xfs_name *name, 2743 struct xfs_inode *ip) 2744 { 2745 struct xfs_mount *mp = dp->i_mount; 2746 struct xfs_trans *tp = NULL; 2747 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2748 int dontcare; 2749 int error = 0; 2750 uint resblks; 2751 struct xfs_parent_args *ppargs; 2752 2753 trace_xfs_remove(dp, name); 2754 2755 if (xfs_is_shutdown(mp)) 2756 return -EIO; 2757 if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) 2758 return -EIO; 2759 2760 error = xfs_qm_dqattach(dp); 2761 if (error) 2762 goto std_return; 2763 2764 error = xfs_qm_dqattach(ip); 2765 if (error) 2766 goto std_return; 2767 2768 error = xfs_parent_start(mp, &ppargs); 2769 if (error) 2770 goto std_return; 2771 2772 /* 2773 * We try to get the real space reservation first, allowing for 2774 * directory btree deletion(s) implying possible bmap insert(s). If we 2775 * can't get the space reservation then we use 0 instead, and avoid the 2776 * bmap btree insert(s) in the directory code by, if the bmap insert 2777 * tries to happen, instead trimming the LAST block from the directory. 2778 * 2779 * Ignore EDQUOT and ENOSPC being returned via nospace_error because 2780 * the directory code can handle a reservationless update and we don't 2781 * want to prevent a user from trying to free space by deleting things. 2782 */ 2783 resblks = xfs_remove_space_res(mp, name->len); 2784 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks, 2785 &tp, &dontcare); 2786 if (error) { 2787 ASSERT(error != -ENOSPC); 2788 goto out_parent; 2789 } 2790 2791 /* 2792 * If we're removing a directory perform some additional validation. 2793 */ 2794 if (is_dir) { 2795 ASSERT(VFS_I(ip)->i_nlink >= 2); 2796 if (VFS_I(ip)->i_nlink != 2) { 2797 error = -ENOTEMPTY; 2798 goto out_trans_cancel; 2799 } 2800 if (!xfs_dir_isempty(ip)) { 2801 error = -ENOTEMPTY; 2802 goto out_trans_cancel; 2803 } 2804 2805 /* Drop the link from ip's "..". */ 2806 error = xfs_droplink(tp, dp); 2807 if (error) 2808 goto out_trans_cancel; 2809 2810 /* Drop the "." link from ip to self. */ 2811 error = xfs_droplink(tp, ip); 2812 if (error) 2813 goto out_trans_cancel; 2814 2815 /* 2816 * Point the unlinked child directory's ".." entry to the root 2817 * directory to eliminate back-references to inodes that may 2818 * get freed before the child directory is closed. If the fs 2819 * gets shrunk, this can lead to dirent inode validation errors. 2820 */ 2821 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) { 2822 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot, 2823 tp->t_mountp->m_sb.sb_rootino, 0); 2824 if (error) 2825 goto out_trans_cancel; 2826 } 2827 } else { 2828 /* 2829 * When removing a non-directory we need to log the parent 2830 * inode here. For a directory this is done implicitly 2831 * by the xfs_droplink call for the ".." entry. 2832 */ 2833 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2834 } 2835 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2836 2837 /* Drop the link from dp to ip. */ 2838 error = xfs_droplink(tp, ip); 2839 if (error) 2840 goto out_trans_cancel; 2841 2842 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2843 if (error) { 2844 ASSERT(error != -ENOENT); 2845 goto out_trans_cancel; 2846 } 2847 2848 /* Remove parent pointer. */ 2849 if (ppargs) { 2850 error = xfs_parent_removename(tp, ppargs, dp, name, ip); 2851 if (error) 2852 goto out_trans_cancel; 2853 } 2854 2855 /* 2856 * Drop the link from dp to ip, and if ip was a directory, remove the 2857 * '.' and '..' references since we freed the directory. 2858 */ 2859 xfs_dir_update_hook(dp, ip, -1, name); 2860 2861 /* 2862 * If this is a synchronous mount, make sure that the 2863 * remove transaction goes to disk before returning to 2864 * the user. 2865 */ 2866 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 2867 xfs_trans_set_sync(tp); 2868 2869 error = xfs_trans_commit(tp); 2870 if (error) 2871 goto out_unlock; 2872 2873 if (is_dir && xfs_inode_is_filestream(ip)) 2874 xfs_filestream_deassociate(ip); 2875 2876 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2877 xfs_iunlock(dp, XFS_ILOCK_EXCL); 2878 xfs_parent_finish(mp, ppargs); 2879 return 0; 2880 2881 out_trans_cancel: 2882 xfs_trans_cancel(tp); 2883 out_unlock: 2884 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2885 xfs_iunlock(dp, XFS_ILOCK_EXCL); 2886 out_parent: 2887 xfs_parent_finish(mp, ppargs); 2888 std_return: 2889 return error; 2890 } 2891 2892 static inline void 2893 xfs_iunlock_rename( 2894 struct xfs_inode **i_tab, 2895 int num_inodes) 2896 { 2897 int i; 2898 2899 for (i = num_inodes - 1; i >= 0; i--) { 2900 /* Skip duplicate inodes if src and target dps are the same */ 2901 if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1])) 2902 continue; 2903 xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL); 2904 } 2905 } 2906 2907 /* 2908 * Enter all inodes for a rename transaction into a sorted array. 2909 */ 2910 #define __XFS_SORT_INODES 5 2911 STATIC void 2912 xfs_sort_for_rename( 2913 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2914 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2915 struct xfs_inode *ip1, /* in: inode of old entry */ 2916 struct xfs_inode *ip2, /* in: inode of new entry */ 2917 struct xfs_inode *wip, /* in: whiteout inode */ 2918 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2919 int *num_inodes) /* in/out: inodes in array */ 2920 { 2921 int i; 2922 2923 ASSERT(*num_inodes == __XFS_SORT_INODES); 2924 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2925 2926 /* 2927 * i_tab contains a list of pointers to inodes. We initialize 2928 * the table here & we'll sort it. We will then use it to 2929 * order the acquisition of the inode locks. 2930 * 2931 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2932 */ 2933 i = 0; 2934 i_tab[i++] = dp1; 2935 i_tab[i++] = dp2; 2936 i_tab[i++] = ip1; 2937 if (ip2) 2938 i_tab[i++] = ip2; 2939 if (wip) 2940 i_tab[i++] = wip; 2941 *num_inodes = i; 2942 2943 xfs_sort_inodes(i_tab, *num_inodes); 2944 } 2945 2946 void 2947 xfs_sort_inodes( 2948 struct xfs_inode **i_tab, 2949 unsigned int num_inodes) 2950 { 2951 int i, j; 2952 2953 ASSERT(num_inodes <= __XFS_SORT_INODES); 2954 2955 /* 2956 * Sort the elements via bubble sort. (Remember, there are at 2957 * most 5 elements to sort, so this is adequate.) 2958 */ 2959 for (i = 0; i < num_inodes; i++) { 2960 for (j = 1; j < num_inodes; j++) { 2961 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) 2962 swap(i_tab[j], i_tab[j - 1]); 2963 } 2964 } 2965 } 2966 2967 static int 2968 xfs_finish_rename( 2969 struct xfs_trans *tp) 2970 { 2971 /* 2972 * If this is a synchronous mount, make sure that the rename transaction 2973 * goes to disk before returning to the user. 2974 */ 2975 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) 2976 xfs_trans_set_sync(tp); 2977 2978 return xfs_trans_commit(tp); 2979 } 2980 2981 /* 2982 * xfs_cross_rename() 2983 * 2984 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall 2985 */ 2986 STATIC int 2987 xfs_cross_rename( 2988 struct xfs_trans *tp, 2989 struct xfs_inode *dp1, 2990 struct xfs_name *name1, 2991 struct xfs_inode *ip1, 2992 struct xfs_parent_args *ip1_ppargs, 2993 struct xfs_inode *dp2, 2994 struct xfs_name *name2, 2995 struct xfs_inode *ip2, 2996 struct xfs_parent_args *ip2_ppargs, 2997 int spaceres) 2998 { 2999 int error = 0; 3000 int ip1_flags = 0; 3001 int ip2_flags = 0; 3002 int dp2_flags = 0; 3003 3004 /* Swap inode number for dirent in first parent */ 3005 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 3006 if (error) 3007 goto out_trans_abort; 3008 3009 /* Swap inode number for dirent in second parent */ 3010 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 3011 if (error) 3012 goto out_trans_abort; 3013 3014 /* 3015 * If we're renaming one or more directories across different parents, 3016 * update the respective ".." entries (and link counts) to match the new 3017 * parents. 3018 */ 3019 if (dp1 != dp2) { 3020 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3021 3022 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 3023 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 3024 dp1->i_ino, spaceres); 3025 if (error) 3026 goto out_trans_abort; 3027 3028 /* transfer ip2 ".." reference to dp1 */ 3029 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 3030 error = xfs_droplink(tp, dp2); 3031 if (error) 3032 goto out_trans_abort; 3033 xfs_bumplink(tp, dp1); 3034 } 3035 3036 /* 3037 * Although ip1 isn't changed here, userspace needs 3038 * to be warned about the change, so that applications 3039 * relying on it (like backup ones), will properly 3040 * notify the change 3041 */ 3042 ip1_flags |= XFS_ICHGTIME_CHG; 3043 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3044 } 3045 3046 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 3047 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 3048 dp2->i_ino, spaceres); 3049 if (error) 3050 goto out_trans_abort; 3051 3052 /* transfer ip1 ".." reference to dp2 */ 3053 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 3054 error = xfs_droplink(tp, dp1); 3055 if (error) 3056 goto out_trans_abort; 3057 xfs_bumplink(tp, dp2); 3058 } 3059 3060 /* 3061 * Although ip2 isn't changed here, userspace needs 3062 * to be warned about the change, so that applications 3063 * relying on it (like backup ones), will properly 3064 * notify the change 3065 */ 3066 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3067 ip2_flags |= XFS_ICHGTIME_CHG; 3068 } 3069 } 3070 3071 /* Schedule parent pointer replacements */ 3072 if (ip1_ppargs) { 3073 error = xfs_parent_replacename(tp, ip1_ppargs, dp1, name1, dp2, 3074 name2, ip1); 3075 if (error) 3076 goto out_trans_abort; 3077 } 3078 3079 if (ip2_ppargs) { 3080 error = xfs_parent_replacename(tp, ip2_ppargs, dp2, name2, dp1, 3081 name1, ip2); 3082 if (error) 3083 goto out_trans_abort; 3084 } 3085 3086 if (ip1_flags) { 3087 xfs_trans_ichgtime(tp, ip1, ip1_flags); 3088 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 3089 } 3090 if (ip2_flags) { 3091 xfs_trans_ichgtime(tp, ip2, ip2_flags); 3092 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 3093 } 3094 if (dp2_flags) { 3095 xfs_trans_ichgtime(tp, dp2, dp2_flags); 3096 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 3097 } 3098 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3099 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 3100 3101 /* 3102 * Inform our hook clients that we've finished an exchange operation as 3103 * follows: removed the source and target files from their directories; 3104 * added the target to the source directory; and added the source to 3105 * the target directory. All inodes are locked, so it's ok to model a 3106 * rename this way so long as we say we deleted entries before we add 3107 * new ones. 3108 */ 3109 xfs_dir_update_hook(dp1, ip1, -1, name1); 3110 xfs_dir_update_hook(dp2, ip2, -1, name2); 3111 xfs_dir_update_hook(dp1, ip2, 1, name1); 3112 xfs_dir_update_hook(dp2, ip1, 1, name2); 3113 3114 return xfs_finish_rename(tp); 3115 3116 out_trans_abort: 3117 xfs_trans_cancel(tp); 3118 return error; 3119 } 3120 3121 /* 3122 * xfs_rename_alloc_whiteout() 3123 * 3124 * Return a referenced, unlinked, unlocked inode that can be used as a 3125 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 3126 * crash between allocating the inode and linking it into the rename transaction 3127 * recovery will free the inode and we won't leak it. 3128 */ 3129 static int 3130 xfs_rename_alloc_whiteout( 3131 struct mnt_idmap *idmap, 3132 struct xfs_name *src_name, 3133 struct xfs_inode *dp, 3134 struct xfs_inode **wip) 3135 { 3136 struct xfs_inode *tmpfile; 3137 struct qstr name; 3138 int error; 3139 3140 error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE, 3141 xfs_has_parent(dp->i_mount), &tmpfile); 3142 if (error) 3143 return error; 3144 3145 name.name = src_name->name; 3146 name.len = src_name->len; 3147 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name); 3148 if (error) { 3149 xfs_finish_inode_setup(tmpfile); 3150 xfs_irele(tmpfile); 3151 return error; 3152 } 3153 3154 /* 3155 * Prepare the tmpfile inode as if it were created through the VFS. 3156 * Complete the inode setup and flag it as linkable. nlink is already 3157 * zero, so we can skip the drop_nlink. 3158 */ 3159 xfs_setup_iops(tmpfile); 3160 xfs_finish_inode_setup(tmpfile); 3161 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3162 3163 *wip = tmpfile; 3164 return 0; 3165 } 3166 3167 /* 3168 * xfs_rename 3169 */ 3170 int 3171 xfs_rename( 3172 struct mnt_idmap *idmap, 3173 struct xfs_inode *src_dp, 3174 struct xfs_name *src_name, 3175 struct xfs_inode *src_ip, 3176 struct xfs_inode *target_dp, 3177 struct xfs_name *target_name, 3178 struct xfs_inode *target_ip, 3179 unsigned int flags) 3180 { 3181 struct xfs_mount *mp = src_dp->i_mount; 3182 struct xfs_trans *tp; 3183 struct xfs_inode *wip = NULL; /* whiteout inode */ 3184 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3185 struct xfs_parent_args *src_ppargs = NULL; 3186 struct xfs_parent_args *tgt_ppargs = NULL; 3187 struct xfs_parent_args *wip_ppargs = NULL; 3188 int i; 3189 int num_inodes = __XFS_SORT_INODES; 3190 bool new_parent = (src_dp != target_dp); 3191 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3192 int spaceres; 3193 bool retried = false; 3194 int error, nospace_error = 0; 3195 3196 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3197 3198 if ((flags & RENAME_EXCHANGE) && !target_ip) 3199 return -EINVAL; 3200 3201 /* 3202 * If we are doing a whiteout operation, allocate the whiteout inode 3203 * we will be placing at the target and ensure the type is set 3204 * appropriately. 3205 */ 3206 if (flags & RENAME_WHITEOUT) { 3207 error = xfs_rename_alloc_whiteout(idmap, src_name, 3208 target_dp, &wip); 3209 if (error) 3210 return error; 3211 3212 /* setup target dirent info as whiteout */ 3213 src_name->type = XFS_DIR3_FT_CHRDEV; 3214 } 3215 3216 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3217 inodes, &num_inodes); 3218 3219 error = xfs_parent_start(mp, &src_ppargs); 3220 if (error) 3221 goto out_release_wip; 3222 3223 if (wip) { 3224 error = xfs_parent_start(mp, &wip_ppargs); 3225 if (error) 3226 goto out_src_ppargs; 3227 } 3228 3229 if (target_ip) { 3230 error = xfs_parent_start(mp, &tgt_ppargs); 3231 if (error) 3232 goto out_wip_ppargs; 3233 } 3234 3235 retry: 3236 nospace_error = 0; 3237 spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL, 3238 target_name->len, wip != NULL); 3239 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3240 if (error == -ENOSPC) { 3241 nospace_error = error; 3242 spaceres = 0; 3243 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3244 &tp); 3245 } 3246 if (error) 3247 goto out_tgt_ppargs; 3248 3249 /* 3250 * We don't allow reservationless renaming when parent pointers are 3251 * enabled because we can't back out if the xattrs must grow. 3252 */ 3253 if (src_ppargs && nospace_error) { 3254 error = nospace_error; 3255 xfs_trans_cancel(tp); 3256 goto out_tgt_ppargs; 3257 } 3258 3259 /* 3260 * Attach the dquots to the inodes 3261 */ 3262 error = xfs_qm_vop_rename_dqattach(inodes); 3263 if (error) { 3264 xfs_trans_cancel(tp); 3265 goto out_tgt_ppargs; 3266 } 3267 3268 /* 3269 * Lock all the participating inodes. Depending upon whether 3270 * the target_name exists in the target directory, and 3271 * whether the target directory is the same as the source 3272 * directory, we can lock from 2 to 5 inodes. 3273 */ 3274 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3275 3276 /* 3277 * Join all the inodes to the transaction. 3278 */ 3279 xfs_trans_ijoin(tp, src_dp, 0); 3280 if (new_parent) 3281 xfs_trans_ijoin(tp, target_dp, 0); 3282 xfs_trans_ijoin(tp, src_ip, 0); 3283 if (target_ip) 3284 xfs_trans_ijoin(tp, target_ip, 0); 3285 if (wip) 3286 xfs_trans_ijoin(tp, wip, 0); 3287 3288 /* 3289 * If we are using project inheritance, we only allow renames 3290 * into our tree when the project IDs are the same; else the 3291 * tree quota mechanism would be circumvented. 3292 */ 3293 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 3294 target_dp->i_projid != src_ip->i_projid)) { 3295 error = -EXDEV; 3296 goto out_trans_cancel; 3297 } 3298 3299 /* RENAME_EXCHANGE is unique from here on. */ 3300 if (flags & RENAME_EXCHANGE) { 3301 error = xfs_cross_rename(tp, src_dp, src_name, src_ip, 3302 src_ppargs, target_dp, target_name, target_ip, 3303 tgt_ppargs, spaceres); 3304 nospace_error = 0; 3305 goto out_unlock; 3306 } 3307 3308 /* 3309 * Try to reserve quota to handle an expansion of the target directory. 3310 * We'll allow the rename to continue in reservationless mode if we hit 3311 * a space usage constraint. If we trigger reservationless mode, save 3312 * the errno if there isn't any free space in the target directory. 3313 */ 3314 if (spaceres != 0) { 3315 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres, 3316 0, false); 3317 if (error == -EDQUOT || error == -ENOSPC) { 3318 if (!retried) { 3319 xfs_trans_cancel(tp); 3320 xfs_iunlock_rename(inodes, num_inodes); 3321 xfs_blockgc_free_quota(target_dp, 0); 3322 retried = true; 3323 goto retry; 3324 } 3325 3326 nospace_error = error; 3327 spaceres = 0; 3328 error = 0; 3329 } 3330 if (error) 3331 goto out_trans_cancel; 3332 } 3333 3334 /* 3335 * We don't allow quotaless renaming when parent pointers are enabled 3336 * because we can't back out if the xattrs must grow. 3337 */ 3338 if (src_ppargs && nospace_error) { 3339 error = nospace_error; 3340 goto out_trans_cancel; 3341 } 3342 3343 /* 3344 * Check for expected errors before we dirty the transaction 3345 * so we can return an error without a transaction abort. 3346 */ 3347 if (target_ip == NULL) { 3348 /* 3349 * If there's no space reservation, check the entry will 3350 * fit before actually inserting it. 3351 */ 3352 if (!spaceres) { 3353 error = xfs_dir_canenter(tp, target_dp, target_name); 3354 if (error) 3355 goto out_trans_cancel; 3356 } 3357 } else { 3358 /* 3359 * If target exists and it's a directory, check that whether 3360 * it can be destroyed. 3361 */ 3362 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3363 (!xfs_dir_isempty(target_ip) || 3364 (VFS_I(target_ip)->i_nlink > 2))) { 3365 error = -EEXIST; 3366 goto out_trans_cancel; 3367 } 3368 } 3369 3370 /* 3371 * Lock the AGI buffers we need to handle bumping the nlink of the 3372 * whiteout inode off the unlinked list and to handle dropping the 3373 * nlink of the target inode. Per locking order rules, do this in 3374 * increasing AG order and before directory block allocation tries to 3375 * grab AGFs because we grab AGIs before AGFs. 3376 * 3377 * The (vfs) caller must ensure that if src is a directory then 3378 * target_ip is either null or an empty directory. 3379 */ 3380 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 3381 if (inodes[i] == wip || 3382 (inodes[i] == target_ip && 3383 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 3384 struct xfs_perag *pag; 3385 struct xfs_buf *bp; 3386 3387 pag = xfs_perag_get(mp, 3388 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino)); 3389 error = xfs_read_agi(pag, tp, 0, &bp); 3390 xfs_perag_put(pag); 3391 if (error) 3392 goto out_trans_cancel; 3393 } 3394 } 3395 3396 /* 3397 * Directory entry creation below may acquire the AGF. Remove 3398 * the whiteout from the unlinked list first to preserve correct 3399 * AGI/AGF locking order. This dirties the transaction so failures 3400 * after this point will abort and log recovery will clean up the 3401 * mess. 3402 * 3403 * For whiteouts, we need to bump the link count on the whiteout 3404 * inode. After this point, we have a real link, clear the tmpfile 3405 * state flag from the inode so it doesn't accidentally get misused 3406 * in future. 3407 */ 3408 if (wip) { 3409 struct xfs_perag *pag; 3410 3411 ASSERT(VFS_I(wip)->i_nlink == 0); 3412 3413 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino)); 3414 error = xfs_iunlink_remove(tp, pag, wip); 3415 xfs_perag_put(pag); 3416 if (error) 3417 goto out_trans_cancel; 3418 3419 xfs_bumplink(tp, wip); 3420 VFS_I(wip)->i_state &= ~I_LINKABLE; 3421 } 3422 3423 /* 3424 * Set up the target. 3425 */ 3426 if (target_ip == NULL) { 3427 /* 3428 * If target does not exist and the rename crosses 3429 * directories, adjust the target directory link count 3430 * to account for the ".." reference from the new entry. 3431 */ 3432 error = xfs_dir_createname(tp, target_dp, target_name, 3433 src_ip->i_ino, spaceres); 3434 if (error) 3435 goto out_trans_cancel; 3436 3437 xfs_trans_ichgtime(tp, target_dp, 3438 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3439 3440 if (new_parent && src_is_directory) { 3441 xfs_bumplink(tp, target_dp); 3442 } 3443 } else { /* target_ip != NULL */ 3444 /* 3445 * Link the source inode under the target name. 3446 * If the source inode is a directory and we are moving 3447 * it across directories, its ".." entry will be 3448 * inconsistent until we replace that down below. 3449 * 3450 * In case there is already an entry with the same 3451 * name at the destination directory, remove it first. 3452 */ 3453 error = xfs_dir_replace(tp, target_dp, target_name, 3454 src_ip->i_ino, spaceres); 3455 if (error) 3456 goto out_trans_cancel; 3457 3458 xfs_trans_ichgtime(tp, target_dp, 3459 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3460 3461 /* 3462 * Decrement the link count on the target since the target 3463 * dir no longer points to it. 3464 */ 3465 error = xfs_droplink(tp, target_ip); 3466 if (error) 3467 goto out_trans_cancel; 3468 3469 if (src_is_directory) { 3470 /* 3471 * Drop the link from the old "." entry. 3472 */ 3473 error = xfs_droplink(tp, target_ip); 3474 if (error) 3475 goto out_trans_cancel; 3476 } 3477 } /* target_ip != NULL */ 3478 3479 /* 3480 * Remove the source. 3481 */ 3482 if (new_parent && src_is_directory) { 3483 /* 3484 * Rewrite the ".." entry to point to the new 3485 * directory. 3486 */ 3487 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3488 target_dp->i_ino, spaceres); 3489 ASSERT(error != -EEXIST); 3490 if (error) 3491 goto out_trans_cancel; 3492 } 3493 3494 /* 3495 * We always want to hit the ctime on the source inode. 3496 * 3497 * This isn't strictly required by the standards since the source 3498 * inode isn't really being changed, but old unix file systems did 3499 * it and some incremental backup programs won't work without it. 3500 */ 3501 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3502 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3503 3504 /* 3505 * Adjust the link count on src_dp. This is necessary when 3506 * renaming a directory, either within one parent when 3507 * the target existed, or across two parent directories. 3508 */ 3509 if (src_is_directory && (new_parent || target_ip != NULL)) { 3510 3511 /* 3512 * Decrement link count on src_directory since the 3513 * entry that's moved no longer points to it. 3514 */ 3515 error = xfs_droplink(tp, src_dp); 3516 if (error) 3517 goto out_trans_cancel; 3518 } 3519 3520 /* 3521 * For whiteouts, we only need to update the source dirent with the 3522 * inode number of the whiteout inode rather than removing it 3523 * altogether. 3524 */ 3525 if (wip) 3526 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3527 spaceres); 3528 else 3529 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3530 spaceres); 3531 3532 if (error) 3533 goto out_trans_cancel; 3534 3535 /* Schedule parent pointer updates. */ 3536 if (wip_ppargs) { 3537 error = xfs_parent_addname(tp, wip_ppargs, src_dp, src_name, 3538 wip); 3539 if (error) 3540 goto out_trans_cancel; 3541 } 3542 3543 if (src_ppargs) { 3544 error = xfs_parent_replacename(tp, src_ppargs, src_dp, 3545 src_name, target_dp, target_name, src_ip); 3546 if (error) 3547 goto out_trans_cancel; 3548 } 3549 3550 if (tgt_ppargs) { 3551 error = xfs_parent_removename(tp, tgt_ppargs, target_dp, 3552 target_name, target_ip); 3553 if (error) 3554 goto out_trans_cancel; 3555 } 3556 3557 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3558 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3559 if (new_parent) 3560 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3561 3562 /* 3563 * Inform our hook clients that we've finished a rename operation as 3564 * follows: removed the source and target files from their directories; 3565 * that we've added the source to the target directory; and finally 3566 * that we've added the whiteout, if there was one. All inodes are 3567 * locked, so it's ok to model a rename this way so long as we say we 3568 * deleted entries before we add new ones. 3569 */ 3570 if (target_ip) 3571 xfs_dir_update_hook(target_dp, target_ip, -1, target_name); 3572 xfs_dir_update_hook(src_dp, src_ip, -1, src_name); 3573 xfs_dir_update_hook(target_dp, src_ip, 1, target_name); 3574 if (wip) 3575 xfs_dir_update_hook(src_dp, wip, 1, src_name); 3576 3577 error = xfs_finish_rename(tp); 3578 nospace_error = 0; 3579 goto out_unlock; 3580 3581 out_trans_cancel: 3582 xfs_trans_cancel(tp); 3583 out_unlock: 3584 xfs_iunlock_rename(inodes, num_inodes); 3585 out_tgt_ppargs: 3586 xfs_parent_finish(mp, tgt_ppargs); 3587 out_wip_ppargs: 3588 xfs_parent_finish(mp, wip_ppargs); 3589 out_src_ppargs: 3590 xfs_parent_finish(mp, src_ppargs); 3591 out_release_wip: 3592 if (wip) 3593 xfs_irele(wip); 3594 if (error == -ENOSPC && nospace_error) 3595 error = nospace_error; 3596 return error; 3597 } 3598 3599 static int 3600 xfs_iflush( 3601 struct xfs_inode *ip, 3602 struct xfs_buf *bp) 3603 { 3604 struct xfs_inode_log_item *iip = ip->i_itemp; 3605 struct xfs_dinode *dip; 3606 struct xfs_mount *mp = ip->i_mount; 3607 int error; 3608 3609 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); 3610 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 3611 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3612 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3613 ASSERT(iip->ili_item.li_buf == bp); 3614 3615 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3616 3617 /* 3618 * We don't flush the inode if any of the following checks fail, but we 3619 * do still update the log item and attach to the backing buffer as if 3620 * the flush happened. This is a formality to facilitate predictable 3621 * error handling as the caller will shutdown and fail the buffer. 3622 */ 3623 error = -EFSCORRUPTED; 3624 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3625 mp, XFS_ERRTAG_IFLUSH_1)) { 3626 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3627 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT, 3628 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3629 goto flush_out; 3630 } 3631 if (S_ISREG(VFS_I(ip)->i_mode)) { 3632 if (XFS_TEST_ERROR( 3633 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3634 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3635 mp, XFS_ERRTAG_IFLUSH_3)) { 3636 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3637 "%s: Bad regular inode %llu, ptr "PTR_FMT, 3638 __func__, ip->i_ino, ip); 3639 goto flush_out; 3640 } 3641 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3642 if (XFS_TEST_ERROR( 3643 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3644 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3645 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3646 mp, XFS_ERRTAG_IFLUSH_4)) { 3647 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3648 "%s: Bad directory inode %llu, ptr "PTR_FMT, 3649 __func__, ip->i_ino, ip); 3650 goto flush_out; 3651 } 3652 } 3653 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) > 3654 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3655 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3656 "%s: detected corrupt incore inode %llu, " 3657 "total extents = %llu nblocks = %lld, ptr "PTR_FMT, 3658 __func__, ip->i_ino, 3659 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af), 3660 ip->i_nblocks, ip); 3661 goto flush_out; 3662 } 3663 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, 3664 mp, XFS_ERRTAG_IFLUSH_6)) { 3665 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3666 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT, 3667 __func__, ip->i_ino, ip->i_forkoff, ip); 3668 goto flush_out; 3669 } 3670 3671 /* 3672 * Inode item log recovery for v2 inodes are dependent on the flushiter 3673 * count for correct sequencing. We bump the flush iteration count so 3674 * we can detect flushes which postdate a log record during recovery. 3675 * This is redundant as we now log every change and hence this can't 3676 * happen but we need to still do it to ensure backwards compatibility 3677 * with old kernels that predate logging all inode changes. 3678 */ 3679 if (!xfs_has_v3inodes(mp)) 3680 ip->i_flushiter++; 3681 3682 /* 3683 * If there are inline format data / attr forks attached to this inode, 3684 * make sure they are not corrupt. 3685 */ 3686 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3687 xfs_ifork_verify_local_data(ip)) 3688 goto flush_out; 3689 if (xfs_inode_has_attr_fork(ip) && 3690 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL && 3691 xfs_ifork_verify_local_attr(ip)) 3692 goto flush_out; 3693 3694 /* 3695 * Copy the dirty parts of the inode into the on-disk inode. We always 3696 * copy out the core of the inode, because if the inode is dirty at all 3697 * the core must be. 3698 */ 3699 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3700 3701 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3702 if (!xfs_has_v3inodes(mp)) { 3703 if (ip->i_flushiter == DI_MAX_FLUSH) 3704 ip->i_flushiter = 0; 3705 } 3706 3707 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3708 if (xfs_inode_has_attr_fork(ip)) 3709 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3710 3711 /* 3712 * We've recorded everything logged in the inode, so we'd like to clear 3713 * the ili_fields bits so we don't log and flush things unnecessarily. 3714 * However, we can't stop logging all this information until the data 3715 * we've copied into the disk buffer is written to disk. If we did we 3716 * might overwrite the copy of the inode in the log with all the data 3717 * after re-logging only part of it, and in the face of a crash we 3718 * wouldn't have all the data we need to recover. 3719 * 3720 * What we do is move the bits to the ili_last_fields field. When 3721 * logging the inode, these bits are moved back to the ili_fields field. 3722 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 3723 * we know that the information those bits represent is permanently on 3724 * disk. As long as the flush completes before the inode is logged 3725 * again, then both ili_fields and ili_last_fields will be cleared. 3726 */ 3727 error = 0; 3728 flush_out: 3729 spin_lock(&iip->ili_lock); 3730 iip->ili_last_fields = iip->ili_fields; 3731 iip->ili_fields = 0; 3732 iip->ili_fsync_fields = 0; 3733 spin_unlock(&iip->ili_lock); 3734 3735 /* 3736 * Store the current LSN of the inode so that we can tell whether the 3737 * item has moved in the AIL from xfs_buf_inode_iodone(). 3738 */ 3739 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3740 &iip->ili_item.li_lsn); 3741 3742 /* generate the checksum. */ 3743 xfs_dinode_calc_crc(mp, dip); 3744 if (error) 3745 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 3746 return error; 3747 } 3748 3749 /* 3750 * Non-blocking flush of dirty inode metadata into the backing buffer. 3751 * 3752 * The caller must have a reference to the inode and hold the cluster buffer 3753 * locked. The function will walk across all the inodes on the cluster buffer it 3754 * can find and lock without blocking, and flush them to the cluster buffer. 3755 * 3756 * On successful flushing of at least one inode, the caller must write out the 3757 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3758 * the caller needs to release the buffer. On failure, the filesystem will be 3759 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3760 * will be returned. 3761 */ 3762 int 3763 xfs_iflush_cluster( 3764 struct xfs_buf *bp) 3765 { 3766 struct xfs_mount *mp = bp->b_mount; 3767 struct xfs_log_item *lip, *n; 3768 struct xfs_inode *ip; 3769 struct xfs_inode_log_item *iip; 3770 int clcount = 0; 3771 int error = 0; 3772 3773 /* 3774 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3775 * will remove itself from the list. 3776 */ 3777 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3778 iip = (struct xfs_inode_log_item *)lip; 3779 ip = iip->ili_inode; 3780 3781 /* 3782 * Quick and dirty check to avoid locks if possible. 3783 */ 3784 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 3785 continue; 3786 if (xfs_ipincount(ip)) 3787 continue; 3788 3789 /* 3790 * The inode is still attached to the buffer, which means it is 3791 * dirty but reclaim might try to grab it. Check carefully for 3792 * that, and grab the ilock while still holding the i_flags_lock 3793 * to guarantee reclaim will not be able to reclaim this inode 3794 * once we drop the i_flags_lock. 3795 */ 3796 spin_lock(&ip->i_flags_lock); 3797 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3798 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 3799 spin_unlock(&ip->i_flags_lock); 3800 continue; 3801 } 3802 3803 /* 3804 * ILOCK will pin the inode against reclaim and prevent 3805 * concurrent transactions modifying the inode while we are 3806 * flushing the inode. If we get the lock, set the flushing 3807 * state before we drop the i_flags_lock. 3808 */ 3809 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3810 spin_unlock(&ip->i_flags_lock); 3811 continue; 3812 } 3813 __xfs_iflags_set(ip, XFS_IFLUSHING); 3814 spin_unlock(&ip->i_flags_lock); 3815 3816 /* 3817 * Abort flushing this inode if we are shut down because the 3818 * inode may not currently be in the AIL. This can occur when 3819 * log I/O failure unpins the inode without inserting into the 3820 * AIL, leaving a dirty/unpinned inode attached to the buffer 3821 * that otherwise looks like it should be flushed. 3822 */ 3823 if (xlog_is_shutdown(mp->m_log)) { 3824 xfs_iunpin_wait(ip); 3825 xfs_iflush_abort(ip); 3826 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3827 error = -EIO; 3828 continue; 3829 } 3830 3831 /* don't block waiting on a log force to unpin dirty inodes */ 3832 if (xfs_ipincount(ip)) { 3833 xfs_iflags_clear(ip, XFS_IFLUSHING); 3834 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3835 continue; 3836 } 3837 3838 if (!xfs_inode_clean(ip)) 3839 error = xfs_iflush(ip, bp); 3840 else 3841 xfs_iflags_clear(ip, XFS_IFLUSHING); 3842 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3843 if (error) 3844 break; 3845 clcount++; 3846 } 3847 3848 if (error) { 3849 /* 3850 * Shutdown first so we kill the log before we release this 3851 * buffer. If it is an INODE_ALLOC buffer and pins the tail 3852 * of the log, failing it before the _log_ is shut down can 3853 * result in the log tail being moved forward in the journal 3854 * on disk because log writes can still be taking place. Hence 3855 * unpinning the tail will allow the ICREATE intent to be 3856 * removed from the log an recovery will fail with uninitialised 3857 * inode cluster buffers. 3858 */ 3859 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3860 bp->b_flags |= XBF_ASYNC; 3861 xfs_buf_ioend_fail(bp); 3862 return error; 3863 } 3864 3865 if (!clcount) 3866 return -EAGAIN; 3867 3868 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3869 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3870 return 0; 3871 3872 } 3873 3874 /* Release an inode. */ 3875 void 3876 xfs_irele( 3877 struct xfs_inode *ip) 3878 { 3879 trace_xfs_irele(ip, _RET_IP_); 3880 iput(VFS_I(ip)); 3881 } 3882 3883 /* 3884 * Ensure all commited transactions touching the inode are written to the log. 3885 */ 3886 int 3887 xfs_log_force_inode( 3888 struct xfs_inode *ip) 3889 { 3890 xfs_csn_t seq = 0; 3891 3892 xfs_ilock(ip, XFS_ILOCK_SHARED); 3893 if (xfs_ipincount(ip)) 3894 seq = ip->i_itemp->ili_commit_seq; 3895 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3896 3897 if (!seq) 3898 return 0; 3899 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); 3900 } 3901 3902 /* 3903 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3904 * abide vfs locking order (lowest pointer value goes first) and breaking the 3905 * layout leases before proceeding. The loop is needed because we cannot call 3906 * the blocking break_layout() with the iolocks held, and therefore have to 3907 * back out both locks. 3908 */ 3909 static int 3910 xfs_iolock_two_inodes_and_break_layout( 3911 struct inode *src, 3912 struct inode *dest) 3913 { 3914 int error; 3915 3916 if (src > dest) 3917 swap(src, dest); 3918 3919 retry: 3920 /* Wait to break both inodes' layouts before we start locking. */ 3921 error = break_layout(src, true); 3922 if (error) 3923 return error; 3924 if (src != dest) { 3925 error = break_layout(dest, true); 3926 if (error) 3927 return error; 3928 } 3929 3930 /* Lock one inode and make sure nobody got in and leased it. */ 3931 inode_lock(src); 3932 error = break_layout(src, false); 3933 if (error) { 3934 inode_unlock(src); 3935 if (error == -EWOULDBLOCK) 3936 goto retry; 3937 return error; 3938 } 3939 3940 if (src == dest) 3941 return 0; 3942 3943 /* Lock the other inode and make sure nobody got in and leased it. */ 3944 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3945 error = break_layout(dest, false); 3946 if (error) { 3947 inode_unlock(src); 3948 inode_unlock(dest); 3949 if (error == -EWOULDBLOCK) 3950 goto retry; 3951 return error; 3952 } 3953 3954 return 0; 3955 } 3956 3957 static int 3958 xfs_mmaplock_two_inodes_and_break_dax_layout( 3959 struct xfs_inode *ip1, 3960 struct xfs_inode *ip2) 3961 { 3962 int error; 3963 bool retry; 3964 struct page *page; 3965 3966 if (ip1->i_ino > ip2->i_ino) 3967 swap(ip1, ip2); 3968 3969 again: 3970 retry = false; 3971 /* Lock the first inode */ 3972 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); 3973 error = xfs_break_dax_layouts(VFS_I(ip1), &retry); 3974 if (error || retry) { 3975 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3976 if (error == 0 && retry) 3977 goto again; 3978 return error; 3979 } 3980 3981 if (ip1 == ip2) 3982 return 0; 3983 3984 /* Nested lock the second inode */ 3985 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1)); 3986 /* 3987 * We cannot use xfs_break_dax_layouts() directly here because it may 3988 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable 3989 * for this nested lock case. 3990 */ 3991 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping); 3992 if (page && page_ref_count(page) != 1) { 3993 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3994 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3995 goto again; 3996 } 3997 3998 return 0; 3999 } 4000 4001 /* 4002 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 4003 * mmap activity. 4004 */ 4005 int 4006 xfs_ilock2_io_mmap( 4007 struct xfs_inode *ip1, 4008 struct xfs_inode *ip2) 4009 { 4010 int ret; 4011 4012 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 4013 if (ret) 4014 return ret; 4015 4016 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 4017 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2); 4018 if (ret) { 4019 inode_unlock(VFS_I(ip2)); 4020 if (ip1 != ip2) 4021 inode_unlock(VFS_I(ip1)); 4022 return ret; 4023 } 4024 } else 4025 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, 4026 VFS_I(ip2)->i_mapping); 4027 4028 return 0; 4029 } 4030 4031 /* Unlock both inodes to allow IO and mmap activity. */ 4032 void 4033 xfs_iunlock2_io_mmap( 4034 struct xfs_inode *ip1, 4035 struct xfs_inode *ip2) 4036 { 4037 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 4038 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 4039 if (ip1 != ip2) 4040 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 4041 } else 4042 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, 4043 VFS_I(ip2)->i_mapping); 4044 4045 inode_unlock(VFS_I(ip2)); 4046 if (ip1 != ip2) 4047 inode_unlock(VFS_I(ip1)); 4048 } 4049 4050 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */ 4051 void 4052 xfs_iunlock2_remapping( 4053 struct xfs_inode *ip1, 4054 struct xfs_inode *ip2) 4055 { 4056 xfs_iflags_clear(ip1, XFS_IREMAPPING); 4057 4058 if (ip1 != ip2) 4059 xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED); 4060 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 4061 4062 if (ip1 != ip2) 4063 inode_unlock_shared(VFS_I(ip1)); 4064 inode_unlock(VFS_I(ip2)); 4065 } 4066 4067 /* 4068 * Reload the incore inode list for this inode. Caller should ensure that 4069 * the link count cannot change, either by taking ILOCK_SHARED or otherwise 4070 * preventing other threads from executing. 4071 */ 4072 int 4073 xfs_inode_reload_unlinked_bucket( 4074 struct xfs_trans *tp, 4075 struct xfs_inode *ip) 4076 { 4077 struct xfs_mount *mp = tp->t_mountp; 4078 struct xfs_buf *agibp; 4079 struct xfs_agi *agi; 4080 struct xfs_perag *pag; 4081 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 4082 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 4083 xfs_agino_t prev_agino, next_agino; 4084 unsigned int bucket; 4085 bool foundit = false; 4086 int error; 4087 4088 /* Grab the first inode in the list */ 4089 pag = xfs_perag_get(mp, agno); 4090 error = xfs_ialloc_read_agi(pag, tp, 0, &agibp); 4091 xfs_perag_put(pag); 4092 if (error) 4093 return error; 4094 4095 /* 4096 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the 4097 * incore unlinked list pointers for this inode. Check once more to 4098 * see if we raced with anyone else to reload the unlinked list. 4099 */ 4100 if (!xfs_inode_unlinked_incomplete(ip)) { 4101 foundit = true; 4102 goto out_agibp; 4103 } 4104 4105 bucket = agino % XFS_AGI_UNLINKED_BUCKETS; 4106 agi = agibp->b_addr; 4107 4108 trace_xfs_inode_reload_unlinked_bucket(ip); 4109 4110 xfs_info_ratelimited(mp, 4111 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.", 4112 agino, agno); 4113 4114 prev_agino = NULLAGINO; 4115 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]); 4116 while (next_agino != NULLAGINO) { 4117 struct xfs_inode *next_ip = NULL; 4118 4119 /* Found this caller's inode, set its backlink. */ 4120 if (next_agino == agino) { 4121 next_ip = ip; 4122 next_ip->i_prev_unlinked = prev_agino; 4123 foundit = true; 4124 goto next_inode; 4125 } 4126 4127 /* Try in-memory lookup first. */ 4128 next_ip = xfs_iunlink_lookup(pag, next_agino); 4129 if (next_ip) 4130 goto next_inode; 4131 4132 /* Inode not in memory, try reloading it. */ 4133 error = xfs_iunlink_reload_next(tp, agibp, prev_agino, 4134 next_agino); 4135 if (error) 4136 break; 4137 4138 /* Grab the reloaded inode. */ 4139 next_ip = xfs_iunlink_lookup(pag, next_agino); 4140 if (!next_ip) { 4141 /* No incore inode at all? We reloaded it... */ 4142 ASSERT(next_ip != NULL); 4143 error = -EFSCORRUPTED; 4144 break; 4145 } 4146 4147 next_inode: 4148 prev_agino = next_agino; 4149 next_agino = next_ip->i_next_unlinked; 4150 } 4151 4152 out_agibp: 4153 xfs_trans_brelse(tp, agibp); 4154 /* Should have found this inode somewhere in the iunlinked bucket. */ 4155 if (!error && !foundit) 4156 error = -EFSCORRUPTED; 4157 return error; 4158 } 4159 4160 /* Decide if this inode is missing its unlinked list and reload it. */ 4161 int 4162 xfs_inode_reload_unlinked( 4163 struct xfs_inode *ip) 4164 { 4165 struct xfs_trans *tp; 4166 int error; 4167 4168 error = xfs_trans_alloc_empty(ip->i_mount, &tp); 4169 if (error) 4170 return error; 4171 4172 xfs_ilock(ip, XFS_ILOCK_SHARED); 4173 if (xfs_inode_unlinked_incomplete(ip)) 4174 error = xfs_inode_reload_unlinked_bucket(tp, ip); 4175 xfs_iunlock(ip, XFS_ILOCK_SHARED); 4176 xfs_trans_cancel(tp); 4177 4178 return error; 4179 } 4180 4181 /* Has this inode fork been zapped by repair? */ 4182 bool 4183 xfs_ifork_zapped( 4184 const struct xfs_inode *ip, 4185 int whichfork) 4186 { 4187 unsigned int datamask = 0; 4188 4189 switch (whichfork) { 4190 case XFS_DATA_FORK: 4191 switch (ip->i_vnode.i_mode & S_IFMT) { 4192 case S_IFDIR: 4193 datamask = XFS_SICK_INO_DIR_ZAPPED; 4194 break; 4195 case S_IFLNK: 4196 datamask = XFS_SICK_INO_SYMLINK_ZAPPED; 4197 break; 4198 } 4199 return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask); 4200 case XFS_ATTR_FORK: 4201 return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED; 4202 default: 4203 return false; 4204 } 4205 } 4206 4207 /* Compute the number of data and realtime blocks used by a file. */ 4208 void 4209 xfs_inode_count_blocks( 4210 struct xfs_trans *tp, 4211 struct xfs_inode *ip, 4212 xfs_filblks_t *dblocks, 4213 xfs_filblks_t *rblocks) 4214 { 4215 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 4216 4217 *rblocks = 0; 4218 if (XFS_IS_REALTIME_INODE(ip)) 4219 xfs_bmap_count_leaves(ifp, rblocks); 4220 *dblocks = ip->i_nblocks - *rblocks; 4221 } 4222 4223 static void 4224 xfs_wait_dax_page( 4225 struct inode *inode) 4226 { 4227 struct xfs_inode *ip = XFS_I(inode); 4228 4229 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 4230 schedule(); 4231 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 4232 } 4233 4234 int 4235 xfs_break_dax_layouts( 4236 struct inode *inode, 4237 bool *retry) 4238 { 4239 struct page *page; 4240 4241 xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL); 4242 4243 page = dax_layout_busy_page(inode->i_mapping); 4244 if (!page) 4245 return 0; 4246 4247 *retry = true; 4248 return ___wait_var_event(&page->_refcount, 4249 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 4250 0, 0, xfs_wait_dax_page(inode)); 4251 } 4252 4253 int 4254 xfs_break_layouts( 4255 struct inode *inode, 4256 uint *iolock, 4257 enum layout_break_reason reason) 4258 { 4259 bool retry; 4260 int error; 4261 4262 xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL); 4263 4264 do { 4265 retry = false; 4266 switch (reason) { 4267 case BREAK_UNMAP: 4268 error = xfs_break_dax_layouts(inode, &retry); 4269 if (error || retry) 4270 break; 4271 fallthrough; 4272 case BREAK_WRITE: 4273 error = xfs_break_leased_layouts(inode, iolock, &retry); 4274 break; 4275 default: 4276 WARN_ON_ONCE(1); 4277 error = -EINVAL; 4278 } 4279 } while (error == 0 && retry); 4280 4281 return error; 4282 } 4283 4284 /* Returns the size of fundamental allocation unit for a file, in bytes. */ 4285 unsigned int 4286 xfs_inode_alloc_unitsize( 4287 struct xfs_inode *ip) 4288 { 4289 unsigned int blocks = 1; 4290 4291 if (XFS_IS_REALTIME_INODE(ip)) 4292 blocks = ip->i_mount->m_sb.sb_rextsize; 4293 4294 return XFS_FSB_TO_B(ip->i_mount, blocks); 4295 } 4296