1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_shared.h" 23 #include "xfs_format.h" 24 #include "xfs_log_format.h" 25 #include "xfs_trans_resv.h" 26 #include "xfs_sb.h" 27 #include "xfs_mount.h" 28 #include "xfs_inode.h" 29 #include "xfs_da_format.h" 30 #include "xfs_da_btree.h" 31 #include "xfs_dir2.h" 32 #include "xfs_attr_sf.h" 33 #include "xfs_attr.h" 34 #include "xfs_trans_space.h" 35 #include "xfs_trans.h" 36 #include "xfs_buf_item.h" 37 #include "xfs_inode_item.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_bmap.h" 40 #include "xfs_bmap_util.h" 41 #include "xfs_error.h" 42 #include "xfs_quota.h" 43 #include "xfs_filestream.h" 44 #include "xfs_cksum.h" 45 #include "xfs_trace.h" 46 #include "xfs_icache.h" 47 #include "xfs_symlink.h" 48 #include "xfs_trans_priv.h" 49 #include "xfs_log.h" 50 #include "xfs_bmap_btree.h" 51 52 kmem_zone_t *xfs_inode_zone; 53 54 /* 55 * Used in xfs_itruncate_extents(). This is the maximum number of extents 56 * freed from a file in a single transaction. 57 */ 58 #define XFS_ITRUNC_MAX_EXTENTS 2 59 60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 61 62 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *); 63 64 /* 65 * helper function to extract extent size hint from inode 66 */ 67 xfs_extlen_t 68 xfs_get_extsz_hint( 69 struct xfs_inode *ip) 70 { 71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 72 return ip->i_d.di_extsize; 73 if (XFS_IS_REALTIME_INODE(ip)) 74 return ip->i_mount->m_sb.sb_rextsize; 75 return 0; 76 } 77 78 /* 79 * These two are wrapper routines around the xfs_ilock() routine used to 80 * centralize some grungy code. They are used in places that wish to lock the 81 * inode solely for reading the extents. The reason these places can't just 82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 83 * bringing in of the extents from disk for a file in b-tree format. If the 84 * inode is in b-tree format, then we need to lock the inode exclusively until 85 * the extents are read in. Locking it exclusively all the time would limit 86 * our parallelism unnecessarily, though. What we do instead is check to see 87 * if the extents have been read in yet, and only lock the inode exclusively 88 * if they have not. 89 * 90 * The functions return a value which should be given to the corresponding 91 * xfs_iunlock() call. 92 */ 93 uint 94 xfs_ilock_data_map_shared( 95 struct xfs_inode *ip) 96 { 97 uint lock_mode = XFS_ILOCK_SHARED; 98 99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 101 lock_mode = XFS_ILOCK_EXCL; 102 xfs_ilock(ip, lock_mode); 103 return lock_mode; 104 } 105 106 uint 107 xfs_ilock_attr_map_shared( 108 struct xfs_inode *ip) 109 { 110 uint lock_mode = XFS_ILOCK_SHARED; 111 112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 114 lock_mode = XFS_ILOCK_EXCL; 115 xfs_ilock(ip, lock_mode); 116 return lock_mode; 117 } 118 119 /* 120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and 121 * the i_lock. This routine allows various combinations of the locks to be 122 * obtained. 123 * 124 * The 3 locks should always be ordered so that the IO lock is obtained first, 125 * the mmap lock second and the ilock last in order to prevent deadlock. 126 * 127 * Basic locking order: 128 * 129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock 130 * 131 * mmap_sem locking order: 132 * 133 * i_iolock -> page lock -> mmap_sem 134 * mmap_sem -> i_mmap_lock -> page_lock 135 * 136 * The difference in mmap_sem locking order mean that we cannot hold the 137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem 139 * in get_user_pages() to map the user pages into the kernel address space for 140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because 141 * page faults already hold the mmap_sem. 142 * 143 * Hence to serialise fully against both syscall and mmap based IO, we need to 144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both 145 * taken in places where we need to invalidate the page cache in a race 146 * free manner (e.g. truncate, hole punch and other extent manipulation 147 * functions). 148 */ 149 void 150 xfs_ilock( 151 xfs_inode_t *ip, 152 uint lock_flags) 153 { 154 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 155 156 /* 157 * You can't set both SHARED and EXCL for the same lock, 158 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 159 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 160 */ 161 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 162 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 163 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 164 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 165 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 166 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 167 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 168 169 if (lock_flags & XFS_IOLOCK_EXCL) 170 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 171 else if (lock_flags & XFS_IOLOCK_SHARED) 172 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 173 174 if (lock_flags & XFS_MMAPLOCK_EXCL) 175 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 176 else if (lock_flags & XFS_MMAPLOCK_SHARED) 177 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 178 179 if (lock_flags & XFS_ILOCK_EXCL) 180 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 181 else if (lock_flags & XFS_ILOCK_SHARED) 182 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 183 } 184 185 /* 186 * This is just like xfs_ilock(), except that the caller 187 * is guaranteed not to sleep. It returns 1 if it gets 188 * the requested locks and 0 otherwise. If the IO lock is 189 * obtained but the inode lock cannot be, then the IO lock 190 * is dropped before returning. 191 * 192 * ip -- the inode being locked 193 * lock_flags -- this parameter indicates the inode's locks to be 194 * to be locked. See the comment for xfs_ilock() for a list 195 * of valid values. 196 */ 197 int 198 xfs_ilock_nowait( 199 xfs_inode_t *ip, 200 uint lock_flags) 201 { 202 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 203 204 /* 205 * You can't set both SHARED and EXCL for the same lock, 206 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 207 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 208 */ 209 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 210 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 211 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 212 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 213 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 214 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 215 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 216 217 if (lock_flags & XFS_IOLOCK_EXCL) { 218 if (!mrtryupdate(&ip->i_iolock)) 219 goto out; 220 } else if (lock_flags & XFS_IOLOCK_SHARED) { 221 if (!mrtryaccess(&ip->i_iolock)) 222 goto out; 223 } 224 225 if (lock_flags & XFS_MMAPLOCK_EXCL) { 226 if (!mrtryupdate(&ip->i_mmaplock)) 227 goto out_undo_iolock; 228 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 229 if (!mrtryaccess(&ip->i_mmaplock)) 230 goto out_undo_iolock; 231 } 232 233 if (lock_flags & XFS_ILOCK_EXCL) { 234 if (!mrtryupdate(&ip->i_lock)) 235 goto out_undo_mmaplock; 236 } else if (lock_flags & XFS_ILOCK_SHARED) { 237 if (!mrtryaccess(&ip->i_lock)) 238 goto out_undo_mmaplock; 239 } 240 return 1; 241 242 out_undo_mmaplock: 243 if (lock_flags & XFS_MMAPLOCK_EXCL) 244 mrunlock_excl(&ip->i_mmaplock); 245 else if (lock_flags & XFS_MMAPLOCK_SHARED) 246 mrunlock_shared(&ip->i_mmaplock); 247 out_undo_iolock: 248 if (lock_flags & XFS_IOLOCK_EXCL) 249 mrunlock_excl(&ip->i_iolock); 250 else if (lock_flags & XFS_IOLOCK_SHARED) 251 mrunlock_shared(&ip->i_iolock); 252 out: 253 return 0; 254 } 255 256 /* 257 * xfs_iunlock() is used to drop the inode locks acquired with 258 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 260 * that we know which locks to drop. 261 * 262 * ip -- the inode being unlocked 263 * lock_flags -- this parameter indicates the inode's locks to be 264 * to be unlocked. See the comment for xfs_ilock() for a list 265 * of valid values for this parameter. 266 * 267 */ 268 void 269 xfs_iunlock( 270 xfs_inode_t *ip, 271 uint lock_flags) 272 { 273 /* 274 * You can't set both SHARED and EXCL for the same lock, 275 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 276 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 277 */ 278 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 279 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 280 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 281 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 282 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 283 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 284 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 285 ASSERT(lock_flags != 0); 286 287 if (lock_flags & XFS_IOLOCK_EXCL) 288 mrunlock_excl(&ip->i_iolock); 289 else if (lock_flags & XFS_IOLOCK_SHARED) 290 mrunlock_shared(&ip->i_iolock); 291 292 if (lock_flags & XFS_MMAPLOCK_EXCL) 293 mrunlock_excl(&ip->i_mmaplock); 294 else if (lock_flags & XFS_MMAPLOCK_SHARED) 295 mrunlock_shared(&ip->i_mmaplock); 296 297 if (lock_flags & XFS_ILOCK_EXCL) 298 mrunlock_excl(&ip->i_lock); 299 else if (lock_flags & XFS_ILOCK_SHARED) 300 mrunlock_shared(&ip->i_lock); 301 302 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 303 } 304 305 /* 306 * give up write locks. the i/o lock cannot be held nested 307 * if it is being demoted. 308 */ 309 void 310 xfs_ilock_demote( 311 xfs_inode_t *ip, 312 uint lock_flags) 313 { 314 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 315 ASSERT((lock_flags & 316 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 317 318 if (lock_flags & XFS_ILOCK_EXCL) 319 mrdemote(&ip->i_lock); 320 if (lock_flags & XFS_MMAPLOCK_EXCL) 321 mrdemote(&ip->i_mmaplock); 322 if (lock_flags & XFS_IOLOCK_EXCL) 323 mrdemote(&ip->i_iolock); 324 325 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 326 } 327 328 #if defined(DEBUG) || defined(XFS_WARN) 329 int 330 xfs_isilocked( 331 xfs_inode_t *ip, 332 uint lock_flags) 333 { 334 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 335 if (!(lock_flags & XFS_ILOCK_SHARED)) 336 return !!ip->i_lock.mr_writer; 337 return rwsem_is_locked(&ip->i_lock.mr_lock); 338 } 339 340 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 341 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 342 return !!ip->i_mmaplock.mr_writer; 343 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 344 } 345 346 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 347 if (!(lock_flags & XFS_IOLOCK_SHARED)) 348 return !!ip->i_iolock.mr_writer; 349 return rwsem_is_locked(&ip->i_iolock.mr_lock); 350 } 351 352 ASSERT(0); 353 return 0; 354 } 355 #endif 356 357 #ifdef DEBUG 358 int xfs_locked_n; 359 int xfs_small_retries; 360 int xfs_middle_retries; 361 int xfs_lots_retries; 362 int xfs_lock_delays; 363 #endif 364 365 /* 366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 369 * errors and warnings. 370 */ 371 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 372 static bool 373 xfs_lockdep_subclass_ok( 374 int subclass) 375 { 376 return subclass < MAX_LOCKDEP_SUBCLASSES; 377 } 378 #else 379 #define xfs_lockdep_subclass_ok(subclass) (true) 380 #endif 381 382 /* 383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 384 * value. This can be called for any type of inode lock combination, including 385 * parent locking. Care must be taken to ensure we don't overrun the subclass 386 * storage fields in the class mask we build. 387 */ 388 static inline int 389 xfs_lock_inumorder(int lock_mode, int subclass) 390 { 391 int class = 0; 392 393 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 394 XFS_ILOCK_RTSUM))); 395 ASSERT(xfs_lockdep_subclass_ok(subclass)); 396 397 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 398 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 399 ASSERT(xfs_lockdep_subclass_ok(subclass + 400 XFS_IOLOCK_PARENT_VAL)); 401 class += subclass << XFS_IOLOCK_SHIFT; 402 if (lock_mode & XFS_IOLOCK_PARENT) 403 class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT; 404 } 405 406 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 407 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 408 class += subclass << XFS_MMAPLOCK_SHIFT; 409 } 410 411 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 412 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 413 class += subclass << XFS_ILOCK_SHIFT; 414 } 415 416 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 417 } 418 419 /* 420 * The following routine will lock n inodes in exclusive mode. We assume the 421 * caller calls us with the inodes in i_ino order. 422 * 423 * We need to detect deadlock where an inode that we lock is in the AIL and we 424 * start waiting for another inode that is locked by a thread in a long running 425 * transaction (such as truncate). This can result in deadlock since the long 426 * running trans might need to wait for the inode we just locked in order to 427 * push the tail and free space in the log. 428 * 429 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 431 * lock more than one at a time, lockdep will report false positives saying we 432 * have violated locking orders. 433 */ 434 void 435 xfs_lock_inodes( 436 xfs_inode_t **ips, 437 int inodes, 438 uint lock_mode) 439 { 440 int attempts = 0, i, j, try_lock; 441 xfs_log_item_t *lp; 442 443 /* 444 * Currently supports between 2 and 5 inodes with exclusive locking. We 445 * support an arbitrary depth of locking here, but absolute limits on 446 * inodes depend on the the type of locking and the limits placed by 447 * lockdep annotations in xfs_lock_inumorder. These are all checked by 448 * the asserts. 449 */ 450 ASSERT(ips && inodes >= 2 && inodes <= 5); 451 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 452 XFS_ILOCK_EXCL)); 453 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 454 XFS_ILOCK_SHARED))); 455 ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) || 456 inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1); 457 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 458 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 459 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 460 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 461 462 if (lock_mode & XFS_IOLOCK_EXCL) { 463 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 464 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 466 467 try_lock = 0; 468 i = 0; 469 again: 470 for (; i < inodes; i++) { 471 ASSERT(ips[i]); 472 473 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 474 continue; 475 476 /* 477 * If try_lock is not set yet, make sure all locked inodes are 478 * not in the AIL. If any are, set try_lock to be used later. 479 */ 480 if (!try_lock) { 481 for (j = (i - 1); j >= 0 && !try_lock; j--) { 482 lp = (xfs_log_item_t *)ips[j]->i_itemp; 483 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) 484 try_lock++; 485 } 486 } 487 488 /* 489 * If any of the previous locks we have locked is in the AIL, 490 * we must TRY to get the second and subsequent locks. If 491 * we can't get any, we must release all we have 492 * and try again. 493 */ 494 if (!try_lock) { 495 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 496 continue; 497 } 498 499 /* try_lock means we have an inode locked that is in the AIL. */ 500 ASSERT(i != 0); 501 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 502 continue; 503 504 /* 505 * Unlock all previous guys and try again. xfs_iunlock will try 506 * to push the tail if the inode is in the AIL. 507 */ 508 attempts++; 509 for (j = i - 1; j >= 0; j--) { 510 /* 511 * Check to see if we've already unlocked this one. Not 512 * the first one going back, and the inode ptr is the 513 * same. 514 */ 515 if (j != (i - 1) && ips[j] == ips[j + 1]) 516 continue; 517 518 xfs_iunlock(ips[j], lock_mode); 519 } 520 521 if ((attempts % 5) == 0) { 522 delay(1); /* Don't just spin the CPU */ 523 #ifdef DEBUG 524 xfs_lock_delays++; 525 #endif 526 } 527 i = 0; 528 try_lock = 0; 529 goto again; 530 } 531 532 #ifdef DEBUG 533 if (attempts) { 534 if (attempts < 5) xfs_small_retries++; 535 else if (attempts < 100) xfs_middle_retries++; 536 else xfs_lots_retries++; 537 } else { 538 xfs_locked_n++; 539 } 540 #endif 541 } 542 543 /* 544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 546 * lock more than one at a time, lockdep will report false positives saying we 547 * have violated locking orders. 548 */ 549 void 550 xfs_lock_two_inodes( 551 xfs_inode_t *ip0, 552 xfs_inode_t *ip1, 553 uint lock_mode) 554 { 555 xfs_inode_t *temp; 556 int attempts = 0; 557 xfs_log_item_t *lp; 558 559 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 560 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 561 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 562 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) 563 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 564 565 ASSERT(ip0->i_ino != ip1->i_ino); 566 567 if (ip0->i_ino > ip1->i_ino) { 568 temp = ip0; 569 ip0 = ip1; 570 ip1 = temp; 571 } 572 573 again: 574 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0)); 575 576 /* 577 * If the first lock we have locked is in the AIL, we must TRY to get 578 * the second lock. If we can't get it, we must release the first one 579 * and try again. 580 */ 581 lp = (xfs_log_item_t *)ip0->i_itemp; 582 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 583 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) { 584 xfs_iunlock(ip0, lock_mode); 585 if ((++attempts % 5) == 0) 586 delay(1); /* Don't just spin the CPU */ 587 goto again; 588 } 589 } else { 590 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1)); 591 } 592 } 593 594 595 void 596 __xfs_iflock( 597 struct xfs_inode *ip) 598 { 599 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 600 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 601 602 do { 603 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 604 if (xfs_isiflocked(ip)) 605 io_schedule(); 606 } while (!xfs_iflock_nowait(ip)); 607 608 finish_wait(wq, &wait.wait); 609 } 610 611 STATIC uint 612 _xfs_dic2xflags( 613 __uint16_t di_flags) 614 { 615 uint flags = 0; 616 617 if (di_flags & XFS_DIFLAG_ANY) { 618 if (di_flags & XFS_DIFLAG_REALTIME) 619 flags |= XFS_XFLAG_REALTIME; 620 if (di_flags & XFS_DIFLAG_PREALLOC) 621 flags |= XFS_XFLAG_PREALLOC; 622 if (di_flags & XFS_DIFLAG_IMMUTABLE) 623 flags |= XFS_XFLAG_IMMUTABLE; 624 if (di_flags & XFS_DIFLAG_APPEND) 625 flags |= XFS_XFLAG_APPEND; 626 if (di_flags & XFS_DIFLAG_SYNC) 627 flags |= XFS_XFLAG_SYNC; 628 if (di_flags & XFS_DIFLAG_NOATIME) 629 flags |= XFS_XFLAG_NOATIME; 630 if (di_flags & XFS_DIFLAG_NODUMP) 631 flags |= XFS_XFLAG_NODUMP; 632 if (di_flags & XFS_DIFLAG_RTINHERIT) 633 flags |= XFS_XFLAG_RTINHERIT; 634 if (di_flags & XFS_DIFLAG_PROJINHERIT) 635 flags |= XFS_XFLAG_PROJINHERIT; 636 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 637 flags |= XFS_XFLAG_NOSYMLINKS; 638 if (di_flags & XFS_DIFLAG_EXTSIZE) 639 flags |= XFS_XFLAG_EXTSIZE; 640 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 641 flags |= XFS_XFLAG_EXTSZINHERIT; 642 if (di_flags & XFS_DIFLAG_NODEFRAG) 643 flags |= XFS_XFLAG_NODEFRAG; 644 if (di_flags & XFS_DIFLAG_FILESTREAM) 645 flags |= XFS_XFLAG_FILESTREAM; 646 } 647 648 return flags; 649 } 650 651 uint 652 xfs_ip2xflags( 653 xfs_inode_t *ip) 654 { 655 xfs_icdinode_t *dic = &ip->i_d; 656 657 return _xfs_dic2xflags(dic->di_flags) | 658 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 659 } 660 661 uint 662 xfs_dic2xflags( 663 xfs_dinode_t *dip) 664 { 665 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 666 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 667 } 668 669 /* 670 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 671 * is allowed, otherwise it has to be an exact match. If a CI match is found, 672 * ci_name->name will point to a the actual name (caller must free) or 673 * will be set to NULL if an exact match is found. 674 */ 675 int 676 xfs_lookup( 677 xfs_inode_t *dp, 678 struct xfs_name *name, 679 xfs_inode_t **ipp, 680 struct xfs_name *ci_name) 681 { 682 xfs_ino_t inum; 683 int error; 684 685 trace_xfs_lookup(dp, name); 686 687 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 688 return -EIO; 689 690 xfs_ilock(dp, XFS_IOLOCK_SHARED); 691 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 692 if (error) 693 goto out_unlock; 694 695 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 696 if (error) 697 goto out_free_name; 698 699 xfs_iunlock(dp, XFS_IOLOCK_SHARED); 700 return 0; 701 702 out_free_name: 703 if (ci_name) 704 kmem_free(ci_name->name); 705 out_unlock: 706 xfs_iunlock(dp, XFS_IOLOCK_SHARED); 707 *ipp = NULL; 708 return error; 709 } 710 711 /* 712 * Allocate an inode on disk and return a copy of its in-core version. 713 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 714 * appropriately within the inode. The uid and gid for the inode are 715 * set according to the contents of the given cred structure. 716 * 717 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 718 * has a free inode available, call xfs_iget() to obtain the in-core 719 * version of the allocated inode. Finally, fill in the inode and 720 * log its initial contents. In this case, ialloc_context would be 721 * set to NULL. 722 * 723 * If xfs_dialloc() does not have an available inode, it will replenish 724 * its supply by doing an allocation. Since we can only do one 725 * allocation within a transaction without deadlocks, we must commit 726 * the current transaction before returning the inode itself. 727 * In this case, therefore, we will set ialloc_context and return. 728 * The caller should then commit the current transaction, start a new 729 * transaction, and call xfs_ialloc() again to actually get the inode. 730 * 731 * To ensure that some other process does not grab the inode that 732 * was allocated during the first call to xfs_ialloc(), this routine 733 * also returns the [locked] bp pointing to the head of the freelist 734 * as ialloc_context. The caller should hold this buffer across 735 * the commit and pass it back into this routine on the second call. 736 * 737 * If we are allocating quota inodes, we do not have a parent inode 738 * to attach to or associate with (i.e. pip == NULL) because they 739 * are not linked into the directory structure - they are attached 740 * directly to the superblock - and so have no parent. 741 */ 742 int 743 xfs_ialloc( 744 xfs_trans_t *tp, 745 xfs_inode_t *pip, 746 umode_t mode, 747 xfs_nlink_t nlink, 748 xfs_dev_t rdev, 749 prid_t prid, 750 int okalloc, 751 xfs_buf_t **ialloc_context, 752 xfs_inode_t **ipp) 753 { 754 struct xfs_mount *mp = tp->t_mountp; 755 xfs_ino_t ino; 756 xfs_inode_t *ip; 757 uint flags; 758 int error; 759 struct timespec tv; 760 761 /* 762 * Call the space management code to pick 763 * the on-disk inode to be allocated. 764 */ 765 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 766 ialloc_context, &ino); 767 if (error) 768 return error; 769 if (*ialloc_context || ino == NULLFSINO) { 770 *ipp = NULL; 771 return 0; 772 } 773 ASSERT(*ialloc_context == NULL); 774 775 /* 776 * Get the in-core inode with the lock held exclusively. 777 * This is because we're setting fields here we need 778 * to prevent others from looking at until we're done. 779 */ 780 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 781 XFS_ILOCK_EXCL, &ip); 782 if (error) 783 return error; 784 ASSERT(ip != NULL); 785 786 /* 787 * We always convert v1 inodes to v2 now - we only support filesystems 788 * with >= v2 inode capability, so there is no reason for ever leaving 789 * an inode in v1 format. 790 */ 791 if (ip->i_d.di_version == 1) 792 ip->i_d.di_version = 2; 793 794 ip->i_d.di_mode = mode; 795 ip->i_d.di_onlink = 0; 796 ip->i_d.di_nlink = nlink; 797 ASSERT(ip->i_d.di_nlink == nlink); 798 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 799 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 800 xfs_set_projid(ip, prid); 801 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 802 803 if (pip && XFS_INHERIT_GID(pip)) { 804 ip->i_d.di_gid = pip->i_d.di_gid; 805 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) { 806 ip->i_d.di_mode |= S_ISGID; 807 } 808 } 809 810 /* 811 * If the group ID of the new file does not match the effective group 812 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 813 * (and only if the irix_sgid_inherit compatibility variable is set). 814 */ 815 if ((irix_sgid_inherit) && 816 (ip->i_d.di_mode & S_ISGID) && 817 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) { 818 ip->i_d.di_mode &= ~S_ISGID; 819 } 820 821 ip->i_d.di_size = 0; 822 ip->i_d.di_nextents = 0; 823 ASSERT(ip->i_d.di_nblocks == 0); 824 825 tv = current_fs_time(mp->m_super); 826 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 827 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 828 ip->i_d.di_atime = ip->i_d.di_mtime; 829 ip->i_d.di_ctime = ip->i_d.di_mtime; 830 831 /* 832 * di_gen will have been taken care of in xfs_iread. 833 */ 834 ip->i_d.di_extsize = 0; 835 ip->i_d.di_dmevmask = 0; 836 ip->i_d.di_dmstate = 0; 837 ip->i_d.di_flags = 0; 838 839 if (ip->i_d.di_version == 3) { 840 ASSERT(ip->i_d.di_ino == ino); 841 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_meta_uuid)); 842 ip->i_d.di_crc = 0; 843 ip->i_d.di_changecount = 1; 844 ip->i_d.di_lsn = 0; 845 ip->i_d.di_flags2 = 0; 846 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2)); 847 ip->i_d.di_crtime = ip->i_d.di_mtime; 848 } 849 850 851 flags = XFS_ILOG_CORE; 852 switch (mode & S_IFMT) { 853 case S_IFIFO: 854 case S_IFCHR: 855 case S_IFBLK: 856 case S_IFSOCK: 857 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 858 ip->i_df.if_u2.if_rdev = rdev; 859 ip->i_df.if_flags = 0; 860 flags |= XFS_ILOG_DEV; 861 break; 862 case S_IFREG: 863 case S_IFDIR: 864 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 865 uint di_flags = 0; 866 867 if (S_ISDIR(mode)) { 868 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 869 di_flags |= XFS_DIFLAG_RTINHERIT; 870 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 871 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 872 ip->i_d.di_extsize = pip->i_d.di_extsize; 873 } 874 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 875 di_flags |= XFS_DIFLAG_PROJINHERIT; 876 } else if (S_ISREG(mode)) { 877 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 878 di_flags |= XFS_DIFLAG_REALTIME; 879 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 880 di_flags |= XFS_DIFLAG_EXTSIZE; 881 ip->i_d.di_extsize = pip->i_d.di_extsize; 882 } 883 } 884 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 885 xfs_inherit_noatime) 886 di_flags |= XFS_DIFLAG_NOATIME; 887 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 888 xfs_inherit_nodump) 889 di_flags |= XFS_DIFLAG_NODUMP; 890 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 891 xfs_inherit_sync) 892 di_flags |= XFS_DIFLAG_SYNC; 893 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 894 xfs_inherit_nosymlinks) 895 di_flags |= XFS_DIFLAG_NOSYMLINKS; 896 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 897 xfs_inherit_nodefrag) 898 di_flags |= XFS_DIFLAG_NODEFRAG; 899 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 900 di_flags |= XFS_DIFLAG_FILESTREAM; 901 ip->i_d.di_flags |= di_flags; 902 } 903 /* FALLTHROUGH */ 904 case S_IFLNK: 905 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 906 ip->i_df.if_flags = XFS_IFEXTENTS; 907 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 908 ip->i_df.if_u1.if_extents = NULL; 909 break; 910 default: 911 ASSERT(0); 912 } 913 /* 914 * Attribute fork settings for new inode. 915 */ 916 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 917 ip->i_d.di_anextents = 0; 918 919 /* 920 * Log the new values stuffed into the inode. 921 */ 922 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 923 xfs_trans_log_inode(tp, ip, flags); 924 925 /* now that we have an i_mode we can setup the inode structure */ 926 xfs_setup_inode(ip); 927 928 *ipp = ip; 929 return 0; 930 } 931 932 /* 933 * Allocates a new inode from disk and return a pointer to the 934 * incore copy. This routine will internally commit the current 935 * transaction and allocate a new one if the Space Manager needed 936 * to do an allocation to replenish the inode free-list. 937 * 938 * This routine is designed to be called from xfs_create and 939 * xfs_create_dir. 940 * 941 */ 942 int 943 xfs_dir_ialloc( 944 xfs_trans_t **tpp, /* input: current transaction; 945 output: may be a new transaction. */ 946 xfs_inode_t *dp, /* directory within whose allocate 947 the inode. */ 948 umode_t mode, 949 xfs_nlink_t nlink, 950 xfs_dev_t rdev, 951 prid_t prid, /* project id */ 952 int okalloc, /* ok to allocate new space */ 953 xfs_inode_t **ipp, /* pointer to inode; it will be 954 locked. */ 955 int *committed) 956 957 { 958 xfs_trans_t *tp; 959 xfs_inode_t *ip; 960 xfs_buf_t *ialloc_context = NULL; 961 int code; 962 void *dqinfo; 963 uint tflags; 964 965 tp = *tpp; 966 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 967 968 /* 969 * xfs_ialloc will return a pointer to an incore inode if 970 * the Space Manager has an available inode on the free 971 * list. Otherwise, it will do an allocation and replenish 972 * the freelist. Since we can only do one allocation per 973 * transaction without deadlocks, we will need to commit the 974 * current transaction and start a new one. We will then 975 * need to call xfs_ialloc again to get the inode. 976 * 977 * If xfs_ialloc did an allocation to replenish the freelist, 978 * it returns the bp containing the head of the freelist as 979 * ialloc_context. We will hold a lock on it across the 980 * transaction commit so that no other process can steal 981 * the inode(s) that we've just allocated. 982 */ 983 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc, 984 &ialloc_context, &ip); 985 986 /* 987 * Return an error if we were unable to allocate a new inode. 988 * This should only happen if we run out of space on disk or 989 * encounter a disk error. 990 */ 991 if (code) { 992 *ipp = NULL; 993 return code; 994 } 995 if (!ialloc_context && !ip) { 996 *ipp = NULL; 997 return -ENOSPC; 998 } 999 1000 /* 1001 * If the AGI buffer is non-NULL, then we were unable to get an 1002 * inode in one operation. We need to commit the current 1003 * transaction and call xfs_ialloc() again. It is guaranteed 1004 * to succeed the second time. 1005 */ 1006 if (ialloc_context) { 1007 /* 1008 * Normally, xfs_trans_commit releases all the locks. 1009 * We call bhold to hang on to the ialloc_context across 1010 * the commit. Holding this buffer prevents any other 1011 * processes from doing any allocations in this 1012 * allocation group. 1013 */ 1014 xfs_trans_bhold(tp, ialloc_context); 1015 1016 /* 1017 * We want the quota changes to be associated with the next 1018 * transaction, NOT this one. So, detach the dqinfo from this 1019 * and attach it to the next transaction. 1020 */ 1021 dqinfo = NULL; 1022 tflags = 0; 1023 if (tp->t_dqinfo) { 1024 dqinfo = (void *)tp->t_dqinfo; 1025 tp->t_dqinfo = NULL; 1026 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1027 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1028 } 1029 1030 code = xfs_trans_roll(&tp, 0); 1031 if (committed != NULL) 1032 *committed = 1; 1033 1034 /* 1035 * Re-attach the quota info that we detached from prev trx. 1036 */ 1037 if (dqinfo) { 1038 tp->t_dqinfo = dqinfo; 1039 tp->t_flags |= tflags; 1040 } 1041 1042 if (code) { 1043 xfs_buf_relse(ialloc_context); 1044 *tpp = tp; 1045 *ipp = NULL; 1046 return code; 1047 } 1048 xfs_trans_bjoin(tp, ialloc_context); 1049 1050 /* 1051 * Call ialloc again. Since we've locked out all 1052 * other allocations in this allocation group, 1053 * this call should always succeed. 1054 */ 1055 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1056 okalloc, &ialloc_context, &ip); 1057 1058 /* 1059 * If we get an error at this point, return to the caller 1060 * so that the current transaction can be aborted. 1061 */ 1062 if (code) { 1063 *tpp = tp; 1064 *ipp = NULL; 1065 return code; 1066 } 1067 ASSERT(!ialloc_context && ip); 1068 1069 } else { 1070 if (committed != NULL) 1071 *committed = 0; 1072 } 1073 1074 *ipp = ip; 1075 *tpp = tp; 1076 1077 return 0; 1078 } 1079 1080 /* 1081 * Decrement the link count on an inode & log the change. 1082 * If this causes the link count to go to zero, initiate the 1083 * logging activity required to truncate a file. 1084 */ 1085 int /* error */ 1086 xfs_droplink( 1087 xfs_trans_t *tp, 1088 xfs_inode_t *ip) 1089 { 1090 int error; 1091 1092 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1093 1094 ASSERT (ip->i_d.di_nlink > 0); 1095 ip->i_d.di_nlink--; 1096 drop_nlink(VFS_I(ip)); 1097 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1098 1099 error = 0; 1100 if (ip->i_d.di_nlink == 0) { 1101 /* 1102 * We're dropping the last link to this file. 1103 * Move the on-disk inode to the AGI unlinked list. 1104 * From xfs_inactive() we will pull the inode from 1105 * the list and free it. 1106 */ 1107 error = xfs_iunlink(tp, ip); 1108 } 1109 return error; 1110 } 1111 1112 /* 1113 * Increment the link count on an inode & log the change. 1114 */ 1115 int 1116 xfs_bumplink( 1117 xfs_trans_t *tp, 1118 xfs_inode_t *ip) 1119 { 1120 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1121 1122 ASSERT(ip->i_d.di_version > 1); 1123 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE)); 1124 ip->i_d.di_nlink++; 1125 inc_nlink(VFS_I(ip)); 1126 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1127 return 0; 1128 } 1129 1130 int 1131 xfs_create( 1132 xfs_inode_t *dp, 1133 struct xfs_name *name, 1134 umode_t mode, 1135 xfs_dev_t rdev, 1136 xfs_inode_t **ipp) 1137 { 1138 int is_dir = S_ISDIR(mode); 1139 struct xfs_mount *mp = dp->i_mount; 1140 struct xfs_inode *ip = NULL; 1141 struct xfs_trans *tp = NULL; 1142 int error; 1143 xfs_bmap_free_t free_list; 1144 xfs_fsblock_t first_block; 1145 bool unlock_dp_on_error = false; 1146 int committed; 1147 prid_t prid; 1148 struct xfs_dquot *udqp = NULL; 1149 struct xfs_dquot *gdqp = NULL; 1150 struct xfs_dquot *pdqp = NULL; 1151 struct xfs_trans_res *tres; 1152 uint resblks; 1153 1154 trace_xfs_create(dp, name); 1155 1156 if (XFS_FORCED_SHUTDOWN(mp)) 1157 return -EIO; 1158 1159 prid = xfs_get_initial_prid(dp); 1160 1161 /* 1162 * Make sure that we have allocated dquot(s) on disk. 1163 */ 1164 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1165 xfs_kgid_to_gid(current_fsgid()), prid, 1166 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1167 &udqp, &gdqp, &pdqp); 1168 if (error) 1169 return error; 1170 1171 if (is_dir) { 1172 rdev = 0; 1173 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1174 tres = &M_RES(mp)->tr_mkdir; 1175 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR); 1176 } else { 1177 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1178 tres = &M_RES(mp)->tr_create; 1179 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE); 1180 } 1181 1182 /* 1183 * Initially assume that the file does not exist and 1184 * reserve the resources for that case. If that is not 1185 * the case we'll drop the one we have and get a more 1186 * appropriate transaction later. 1187 */ 1188 error = xfs_trans_reserve(tp, tres, resblks, 0); 1189 if (error == -ENOSPC) { 1190 /* flush outstanding delalloc blocks and retry */ 1191 xfs_flush_inodes(mp); 1192 error = xfs_trans_reserve(tp, tres, resblks, 0); 1193 } 1194 if (error == -ENOSPC) { 1195 /* No space at all so try a "no-allocation" reservation */ 1196 resblks = 0; 1197 error = xfs_trans_reserve(tp, tres, 0, 0); 1198 } 1199 if (error) 1200 goto out_trans_cancel; 1201 1202 1203 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL | 1204 XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT); 1205 unlock_dp_on_error = true; 1206 1207 xfs_bmap_init(&free_list, &first_block); 1208 1209 /* 1210 * Reserve disk quota and the inode. 1211 */ 1212 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1213 pdqp, resblks, 1, 0); 1214 if (error) 1215 goto out_trans_cancel; 1216 1217 if (!resblks) { 1218 error = xfs_dir_canenter(tp, dp, name); 1219 if (error) 1220 goto out_trans_cancel; 1221 } 1222 1223 /* 1224 * A newly created regular or special file just has one directory 1225 * entry pointing to them, but a directory also the "." entry 1226 * pointing to itself. 1227 */ 1228 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, 1229 prid, resblks > 0, &ip, &committed); 1230 if (error) 1231 goto out_trans_cancel; 1232 1233 /* 1234 * Now we join the directory inode to the transaction. We do not do it 1235 * earlier because xfs_dir_ialloc might commit the previous transaction 1236 * (and release all the locks). An error from here on will result in 1237 * the transaction cancel unlocking dp so don't do it explicitly in the 1238 * error path. 1239 */ 1240 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 1241 unlock_dp_on_error = false; 1242 1243 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1244 &first_block, &free_list, resblks ? 1245 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1246 if (error) { 1247 ASSERT(error != -ENOSPC); 1248 goto out_trans_cancel; 1249 } 1250 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1251 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1252 1253 if (is_dir) { 1254 error = xfs_dir_init(tp, ip, dp); 1255 if (error) 1256 goto out_bmap_cancel; 1257 1258 error = xfs_bumplink(tp, dp); 1259 if (error) 1260 goto out_bmap_cancel; 1261 } 1262 1263 /* 1264 * If this is a synchronous mount, make sure that the 1265 * create transaction goes to disk before returning to 1266 * the user. 1267 */ 1268 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1269 xfs_trans_set_sync(tp); 1270 1271 /* 1272 * Attach the dquot(s) to the inodes and modify them incore. 1273 * These ids of the inode couldn't have changed since the new 1274 * inode has been locked ever since it was created. 1275 */ 1276 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1277 1278 error = xfs_bmap_finish(&tp, &free_list, &committed); 1279 if (error) 1280 goto out_bmap_cancel; 1281 1282 error = xfs_trans_commit(tp); 1283 if (error) 1284 goto out_release_inode; 1285 1286 xfs_qm_dqrele(udqp); 1287 xfs_qm_dqrele(gdqp); 1288 xfs_qm_dqrele(pdqp); 1289 1290 *ipp = ip; 1291 return 0; 1292 1293 out_bmap_cancel: 1294 xfs_bmap_cancel(&free_list); 1295 out_trans_cancel: 1296 xfs_trans_cancel(tp); 1297 out_release_inode: 1298 /* 1299 * Wait until after the current transaction is aborted to finish the 1300 * setup of the inode and release the inode. This prevents recursive 1301 * transactions and deadlocks from xfs_inactive. 1302 */ 1303 if (ip) { 1304 xfs_finish_inode_setup(ip); 1305 IRELE(ip); 1306 } 1307 1308 xfs_qm_dqrele(udqp); 1309 xfs_qm_dqrele(gdqp); 1310 xfs_qm_dqrele(pdqp); 1311 1312 if (unlock_dp_on_error) 1313 xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 1314 return error; 1315 } 1316 1317 int 1318 xfs_create_tmpfile( 1319 struct xfs_inode *dp, 1320 struct dentry *dentry, 1321 umode_t mode, 1322 struct xfs_inode **ipp) 1323 { 1324 struct xfs_mount *mp = dp->i_mount; 1325 struct xfs_inode *ip = NULL; 1326 struct xfs_trans *tp = NULL; 1327 int error; 1328 prid_t prid; 1329 struct xfs_dquot *udqp = NULL; 1330 struct xfs_dquot *gdqp = NULL; 1331 struct xfs_dquot *pdqp = NULL; 1332 struct xfs_trans_res *tres; 1333 uint resblks; 1334 1335 if (XFS_FORCED_SHUTDOWN(mp)) 1336 return -EIO; 1337 1338 prid = xfs_get_initial_prid(dp); 1339 1340 /* 1341 * Make sure that we have allocated dquot(s) on disk. 1342 */ 1343 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1344 xfs_kgid_to_gid(current_fsgid()), prid, 1345 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1346 &udqp, &gdqp, &pdqp); 1347 if (error) 1348 return error; 1349 1350 resblks = XFS_IALLOC_SPACE_RES(mp); 1351 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE); 1352 1353 tres = &M_RES(mp)->tr_create_tmpfile; 1354 error = xfs_trans_reserve(tp, tres, resblks, 0); 1355 if (error == -ENOSPC) { 1356 /* No space at all so try a "no-allocation" reservation */ 1357 resblks = 0; 1358 error = xfs_trans_reserve(tp, tres, 0, 0); 1359 } 1360 if (error) 1361 goto out_trans_cancel; 1362 1363 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1364 pdqp, resblks, 1, 0); 1365 if (error) 1366 goto out_trans_cancel; 1367 1368 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, 1369 prid, resblks > 0, &ip, NULL); 1370 if (error) 1371 goto out_trans_cancel; 1372 1373 if (mp->m_flags & XFS_MOUNT_WSYNC) 1374 xfs_trans_set_sync(tp); 1375 1376 /* 1377 * Attach the dquot(s) to the inodes and modify them incore. 1378 * These ids of the inode couldn't have changed since the new 1379 * inode has been locked ever since it was created. 1380 */ 1381 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1382 1383 ip->i_d.di_nlink--; 1384 error = xfs_iunlink(tp, ip); 1385 if (error) 1386 goto out_trans_cancel; 1387 1388 error = xfs_trans_commit(tp); 1389 if (error) 1390 goto out_release_inode; 1391 1392 xfs_qm_dqrele(udqp); 1393 xfs_qm_dqrele(gdqp); 1394 xfs_qm_dqrele(pdqp); 1395 1396 *ipp = ip; 1397 return 0; 1398 1399 out_trans_cancel: 1400 xfs_trans_cancel(tp); 1401 out_release_inode: 1402 /* 1403 * Wait until after the current transaction is aborted to finish the 1404 * setup of the inode and release the inode. This prevents recursive 1405 * transactions and deadlocks from xfs_inactive. 1406 */ 1407 if (ip) { 1408 xfs_finish_inode_setup(ip); 1409 IRELE(ip); 1410 } 1411 1412 xfs_qm_dqrele(udqp); 1413 xfs_qm_dqrele(gdqp); 1414 xfs_qm_dqrele(pdqp); 1415 1416 return error; 1417 } 1418 1419 int 1420 xfs_link( 1421 xfs_inode_t *tdp, 1422 xfs_inode_t *sip, 1423 struct xfs_name *target_name) 1424 { 1425 xfs_mount_t *mp = tdp->i_mount; 1426 xfs_trans_t *tp; 1427 int error; 1428 xfs_bmap_free_t free_list; 1429 xfs_fsblock_t first_block; 1430 int committed; 1431 int resblks; 1432 1433 trace_xfs_link(tdp, target_name); 1434 1435 ASSERT(!S_ISDIR(sip->i_d.di_mode)); 1436 1437 if (XFS_FORCED_SHUTDOWN(mp)) 1438 return -EIO; 1439 1440 error = xfs_qm_dqattach(sip, 0); 1441 if (error) 1442 goto std_return; 1443 1444 error = xfs_qm_dqattach(tdp, 0); 1445 if (error) 1446 goto std_return; 1447 1448 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK); 1449 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1450 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0); 1451 if (error == -ENOSPC) { 1452 resblks = 0; 1453 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0); 1454 } 1455 if (error) 1456 goto error_return; 1457 1458 xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 1459 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL); 1460 1461 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1462 xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 1463 1464 /* 1465 * If we are using project inheritance, we only allow hard link 1466 * creation in our tree when the project IDs are the same; else 1467 * the tree quota mechanism could be circumvented. 1468 */ 1469 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1470 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1471 error = -EXDEV; 1472 goto error_return; 1473 } 1474 1475 if (!resblks) { 1476 error = xfs_dir_canenter(tp, tdp, target_name); 1477 if (error) 1478 goto error_return; 1479 } 1480 1481 xfs_bmap_init(&free_list, &first_block); 1482 1483 if (sip->i_d.di_nlink == 0) { 1484 error = xfs_iunlink_remove(tp, sip); 1485 if (error) 1486 goto error_return; 1487 } 1488 1489 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1490 &first_block, &free_list, resblks); 1491 if (error) 1492 goto error_return; 1493 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1494 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1495 1496 error = xfs_bumplink(tp, sip); 1497 if (error) 1498 goto error_return; 1499 1500 /* 1501 * If this is a synchronous mount, make sure that the 1502 * link transaction goes to disk before returning to 1503 * the user. 1504 */ 1505 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) { 1506 xfs_trans_set_sync(tp); 1507 } 1508 1509 error = xfs_bmap_finish (&tp, &free_list, &committed); 1510 if (error) { 1511 xfs_bmap_cancel(&free_list); 1512 goto error_return; 1513 } 1514 1515 return xfs_trans_commit(tp); 1516 1517 error_return: 1518 xfs_trans_cancel(tp); 1519 std_return: 1520 return error; 1521 } 1522 1523 /* 1524 * Free up the underlying blocks past new_size. The new size must be smaller 1525 * than the current size. This routine can be used both for the attribute and 1526 * data fork, and does not modify the inode size, which is left to the caller. 1527 * 1528 * The transaction passed to this routine must have made a permanent log 1529 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1530 * given transaction and start new ones, so make sure everything involved in 1531 * the transaction is tidy before calling here. Some transaction will be 1532 * returned to the caller to be committed. The incoming transaction must 1533 * already include the inode, and both inode locks must be held exclusively. 1534 * The inode must also be "held" within the transaction. On return the inode 1535 * will be "held" within the returned transaction. This routine does NOT 1536 * require any disk space to be reserved for it within the transaction. 1537 * 1538 * If we get an error, we must return with the inode locked and linked into the 1539 * current transaction. This keeps things simple for the higher level code, 1540 * because it always knows that the inode is locked and held in the transaction 1541 * that returns to it whether errors occur or not. We don't mark the inode 1542 * dirty on error so that transactions can be easily aborted if possible. 1543 */ 1544 int 1545 xfs_itruncate_extents( 1546 struct xfs_trans **tpp, 1547 struct xfs_inode *ip, 1548 int whichfork, 1549 xfs_fsize_t new_size) 1550 { 1551 struct xfs_mount *mp = ip->i_mount; 1552 struct xfs_trans *tp = *tpp; 1553 xfs_bmap_free_t free_list; 1554 xfs_fsblock_t first_block; 1555 xfs_fileoff_t first_unmap_block; 1556 xfs_fileoff_t last_block; 1557 xfs_filblks_t unmap_len; 1558 int committed; 1559 int error = 0; 1560 int done = 0; 1561 1562 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1563 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1564 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1565 ASSERT(new_size <= XFS_ISIZE(ip)); 1566 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1567 ASSERT(ip->i_itemp != NULL); 1568 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1569 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1570 1571 trace_xfs_itruncate_extents_start(ip, new_size); 1572 1573 /* 1574 * Since it is possible for space to become allocated beyond 1575 * the end of the file (in a crash where the space is allocated 1576 * but the inode size is not yet updated), simply remove any 1577 * blocks which show up between the new EOF and the maximum 1578 * possible file size. If the first block to be removed is 1579 * beyond the maximum file size (ie it is the same as last_block), 1580 * then there is nothing to do. 1581 */ 1582 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1583 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1584 if (first_unmap_block == last_block) 1585 return 0; 1586 1587 ASSERT(first_unmap_block < last_block); 1588 unmap_len = last_block - first_unmap_block + 1; 1589 while (!done) { 1590 xfs_bmap_init(&free_list, &first_block); 1591 error = xfs_bunmapi(tp, ip, 1592 first_unmap_block, unmap_len, 1593 xfs_bmapi_aflag(whichfork), 1594 XFS_ITRUNC_MAX_EXTENTS, 1595 &first_block, &free_list, 1596 &done); 1597 if (error) 1598 goto out_bmap_cancel; 1599 1600 /* 1601 * Duplicate the transaction that has the permanent 1602 * reservation and commit the old transaction. 1603 */ 1604 error = xfs_bmap_finish(&tp, &free_list, &committed); 1605 if (committed) 1606 xfs_trans_ijoin(tp, ip, 0); 1607 if (error) 1608 goto out_bmap_cancel; 1609 1610 error = xfs_trans_roll(&tp, ip); 1611 if (error) 1612 goto out; 1613 } 1614 1615 /* 1616 * Always re-log the inode so that our permanent transaction can keep 1617 * on rolling it forward in the log. 1618 */ 1619 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1620 1621 trace_xfs_itruncate_extents_end(ip, new_size); 1622 1623 out: 1624 *tpp = tp; 1625 return error; 1626 out_bmap_cancel: 1627 /* 1628 * If the bunmapi call encounters an error, return to the caller where 1629 * the transaction can be properly aborted. We just need to make sure 1630 * we're not holding any resources that we were not when we came in. 1631 */ 1632 xfs_bmap_cancel(&free_list); 1633 goto out; 1634 } 1635 1636 int 1637 xfs_release( 1638 xfs_inode_t *ip) 1639 { 1640 xfs_mount_t *mp = ip->i_mount; 1641 int error; 1642 1643 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0)) 1644 return 0; 1645 1646 /* If this is a read-only mount, don't do this (would generate I/O) */ 1647 if (mp->m_flags & XFS_MOUNT_RDONLY) 1648 return 0; 1649 1650 if (!XFS_FORCED_SHUTDOWN(mp)) { 1651 int truncated; 1652 1653 /* 1654 * If we previously truncated this file and removed old data 1655 * in the process, we want to initiate "early" writeout on 1656 * the last close. This is an attempt to combat the notorious 1657 * NULL files problem which is particularly noticeable from a 1658 * truncate down, buffered (re-)write (delalloc), followed by 1659 * a crash. What we are effectively doing here is 1660 * significantly reducing the time window where we'd otherwise 1661 * be exposed to that problem. 1662 */ 1663 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1664 if (truncated) { 1665 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1666 if (ip->i_delayed_blks > 0) { 1667 error = filemap_flush(VFS_I(ip)->i_mapping); 1668 if (error) 1669 return error; 1670 } 1671 } 1672 } 1673 1674 if (ip->i_d.di_nlink == 0) 1675 return 0; 1676 1677 if (xfs_can_free_eofblocks(ip, false)) { 1678 1679 /* 1680 * If we can't get the iolock just skip truncating the blocks 1681 * past EOF because we could deadlock with the mmap_sem 1682 * otherwise. We'll get another chance to drop them once the 1683 * last reference to the inode is dropped, so we'll never leak 1684 * blocks permanently. 1685 * 1686 * Further, check if the inode is being opened, written and 1687 * closed frequently and we have delayed allocation blocks 1688 * outstanding (e.g. streaming writes from the NFS server), 1689 * truncating the blocks past EOF will cause fragmentation to 1690 * occur. 1691 * 1692 * In this case don't do the truncation, either, but we have to 1693 * be careful how we detect this case. Blocks beyond EOF show 1694 * up as i_delayed_blks even when the inode is clean, so we 1695 * need to truncate them away first before checking for a dirty 1696 * release. Hence on the first dirty close we will still remove 1697 * the speculative allocation, but after that we will leave it 1698 * in place. 1699 */ 1700 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1701 return 0; 1702 1703 error = xfs_free_eofblocks(mp, ip, true); 1704 if (error && error != -EAGAIN) 1705 return error; 1706 1707 /* delalloc blocks after truncation means it really is dirty */ 1708 if (ip->i_delayed_blks) 1709 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1710 } 1711 return 0; 1712 } 1713 1714 /* 1715 * xfs_inactive_truncate 1716 * 1717 * Called to perform a truncate when an inode becomes unlinked. 1718 */ 1719 STATIC int 1720 xfs_inactive_truncate( 1721 struct xfs_inode *ip) 1722 { 1723 struct xfs_mount *mp = ip->i_mount; 1724 struct xfs_trans *tp; 1725 int error; 1726 1727 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1728 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 1729 if (error) { 1730 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1731 xfs_trans_cancel(tp); 1732 return error; 1733 } 1734 1735 xfs_ilock(ip, XFS_ILOCK_EXCL); 1736 xfs_trans_ijoin(tp, ip, 0); 1737 1738 /* 1739 * Log the inode size first to prevent stale data exposure in the event 1740 * of a system crash before the truncate completes. See the related 1741 * comment in xfs_setattr_size() for details. 1742 */ 1743 ip->i_d.di_size = 0; 1744 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1745 1746 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1747 if (error) 1748 goto error_trans_cancel; 1749 1750 ASSERT(ip->i_d.di_nextents == 0); 1751 1752 error = xfs_trans_commit(tp); 1753 if (error) 1754 goto error_unlock; 1755 1756 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1757 return 0; 1758 1759 error_trans_cancel: 1760 xfs_trans_cancel(tp); 1761 error_unlock: 1762 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1763 return error; 1764 } 1765 1766 /* 1767 * xfs_inactive_ifree() 1768 * 1769 * Perform the inode free when an inode is unlinked. 1770 */ 1771 STATIC int 1772 xfs_inactive_ifree( 1773 struct xfs_inode *ip) 1774 { 1775 xfs_bmap_free_t free_list; 1776 xfs_fsblock_t first_block; 1777 int committed; 1778 struct xfs_mount *mp = ip->i_mount; 1779 struct xfs_trans *tp; 1780 int error; 1781 1782 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1783 1784 /* 1785 * The ifree transaction might need to allocate blocks for record 1786 * insertion to the finobt. We don't want to fail here at ENOSPC, so 1787 * allow ifree to dip into the reserved block pool if necessary. 1788 * 1789 * Freeing large sets of inodes generally means freeing inode chunks, 1790 * directory and file data blocks, so this should be relatively safe. 1791 * Only under severe circumstances should it be possible to free enough 1792 * inodes to exhaust the reserve block pool via finobt expansion while 1793 * at the same time not creating free space in the filesystem. 1794 * 1795 * Send a warning if the reservation does happen to fail, as the inode 1796 * now remains allocated and sits on the unlinked list until the fs is 1797 * repaired. 1798 */ 1799 tp->t_flags |= XFS_TRANS_RESERVE; 1800 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 1801 XFS_IFREE_SPACE_RES(mp), 0); 1802 if (error) { 1803 if (error == -ENOSPC) { 1804 xfs_warn_ratelimited(mp, 1805 "Failed to remove inode(s) from unlinked list. " 1806 "Please free space, unmount and run xfs_repair."); 1807 } else { 1808 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1809 } 1810 xfs_trans_cancel(tp); 1811 return error; 1812 } 1813 1814 xfs_ilock(ip, XFS_ILOCK_EXCL); 1815 xfs_trans_ijoin(tp, ip, 0); 1816 1817 xfs_bmap_init(&free_list, &first_block); 1818 error = xfs_ifree(tp, ip, &free_list); 1819 if (error) { 1820 /* 1821 * If we fail to free the inode, shut down. The cancel 1822 * might do that, we need to make sure. Otherwise the 1823 * inode might be lost for a long time or forever. 1824 */ 1825 if (!XFS_FORCED_SHUTDOWN(mp)) { 1826 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1827 __func__, error); 1828 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1829 } 1830 xfs_trans_cancel(tp); 1831 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1832 return error; 1833 } 1834 1835 /* 1836 * Credit the quota account(s). The inode is gone. 1837 */ 1838 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1839 1840 /* 1841 * Just ignore errors at this point. There is nothing we can do except 1842 * to try to keep going. Make sure it's not a silent error. 1843 */ 1844 error = xfs_bmap_finish(&tp, &free_list, &committed); 1845 if (error) { 1846 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d", 1847 __func__, error); 1848 xfs_bmap_cancel(&free_list); 1849 } 1850 error = xfs_trans_commit(tp); 1851 if (error) 1852 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1853 __func__, error); 1854 1855 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1856 return 0; 1857 } 1858 1859 /* 1860 * xfs_inactive 1861 * 1862 * This is called when the vnode reference count for the vnode 1863 * goes to zero. If the file has been unlinked, then it must 1864 * now be truncated. Also, we clear all of the read-ahead state 1865 * kept for the inode here since the file is now closed. 1866 */ 1867 void 1868 xfs_inactive( 1869 xfs_inode_t *ip) 1870 { 1871 struct xfs_mount *mp; 1872 int error; 1873 int truncate = 0; 1874 1875 /* 1876 * If the inode is already free, then there can be nothing 1877 * to clean up here. 1878 */ 1879 if (ip->i_d.di_mode == 0) { 1880 ASSERT(ip->i_df.if_real_bytes == 0); 1881 ASSERT(ip->i_df.if_broot_bytes == 0); 1882 return; 1883 } 1884 1885 mp = ip->i_mount; 1886 1887 /* If this is a read-only mount, don't do this (would generate I/O) */ 1888 if (mp->m_flags & XFS_MOUNT_RDONLY) 1889 return; 1890 1891 if (ip->i_d.di_nlink != 0) { 1892 /* 1893 * force is true because we are evicting an inode from the 1894 * cache. Post-eof blocks must be freed, lest we end up with 1895 * broken free space accounting. 1896 */ 1897 if (xfs_can_free_eofblocks(ip, true)) 1898 xfs_free_eofblocks(mp, ip, false); 1899 1900 return; 1901 } 1902 1903 if (S_ISREG(ip->i_d.di_mode) && 1904 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1905 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1906 truncate = 1; 1907 1908 error = xfs_qm_dqattach(ip, 0); 1909 if (error) 1910 return; 1911 1912 if (S_ISLNK(ip->i_d.di_mode)) 1913 error = xfs_inactive_symlink(ip); 1914 else if (truncate) 1915 error = xfs_inactive_truncate(ip); 1916 if (error) 1917 return; 1918 1919 /* 1920 * If there are attributes associated with the file then blow them away 1921 * now. The code calls a routine that recursively deconstructs the 1922 * attribute fork. If also blows away the in-core attribute fork. 1923 */ 1924 if (XFS_IFORK_Q(ip)) { 1925 error = xfs_attr_inactive(ip); 1926 if (error) 1927 return; 1928 } 1929 1930 ASSERT(!ip->i_afp); 1931 ASSERT(ip->i_d.di_anextents == 0); 1932 ASSERT(ip->i_d.di_forkoff == 0); 1933 1934 /* 1935 * Free the inode. 1936 */ 1937 error = xfs_inactive_ifree(ip); 1938 if (error) 1939 return; 1940 1941 /* 1942 * Release the dquots held by inode, if any. 1943 */ 1944 xfs_qm_dqdetach(ip); 1945 } 1946 1947 /* 1948 * This is called when the inode's link count goes to 0. 1949 * We place the on-disk inode on a list in the AGI. It 1950 * will be pulled from this list when the inode is freed. 1951 */ 1952 int 1953 xfs_iunlink( 1954 xfs_trans_t *tp, 1955 xfs_inode_t *ip) 1956 { 1957 xfs_mount_t *mp; 1958 xfs_agi_t *agi; 1959 xfs_dinode_t *dip; 1960 xfs_buf_t *agibp; 1961 xfs_buf_t *ibp; 1962 xfs_agino_t agino; 1963 short bucket_index; 1964 int offset; 1965 int error; 1966 1967 ASSERT(ip->i_d.di_nlink == 0); 1968 ASSERT(ip->i_d.di_mode != 0); 1969 1970 mp = tp->t_mountp; 1971 1972 /* 1973 * Get the agi buffer first. It ensures lock ordering 1974 * on the list. 1975 */ 1976 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1977 if (error) 1978 return error; 1979 agi = XFS_BUF_TO_AGI(agibp); 1980 1981 /* 1982 * Get the index into the agi hash table for the 1983 * list this inode will go on. 1984 */ 1985 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1986 ASSERT(agino != 0); 1987 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1988 ASSERT(agi->agi_unlinked[bucket_index]); 1989 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1990 1991 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 1992 /* 1993 * There is already another inode in the bucket we need 1994 * to add ourselves to. Add us at the front of the list. 1995 * Here we put the head pointer into our next pointer, 1996 * and then we fall through to point the head at us. 1997 */ 1998 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 1999 0, 0); 2000 if (error) 2001 return error; 2002 2003 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 2004 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 2005 offset = ip->i_imap.im_boffset + 2006 offsetof(xfs_dinode_t, di_next_unlinked); 2007 2008 /* need to recalc the inode CRC if appropriate */ 2009 xfs_dinode_calc_crc(mp, dip); 2010 2011 xfs_trans_inode_buf(tp, ibp); 2012 xfs_trans_log_buf(tp, ibp, offset, 2013 (offset + sizeof(xfs_agino_t) - 1)); 2014 xfs_inobp_check(mp, ibp); 2015 } 2016 2017 /* 2018 * Point the bucket head pointer at the inode being inserted. 2019 */ 2020 ASSERT(agino != 0); 2021 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 2022 offset = offsetof(xfs_agi_t, agi_unlinked) + 2023 (sizeof(xfs_agino_t) * bucket_index); 2024 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF); 2025 xfs_trans_log_buf(tp, agibp, offset, 2026 (offset + sizeof(xfs_agino_t) - 1)); 2027 return 0; 2028 } 2029 2030 /* 2031 * Pull the on-disk inode from the AGI unlinked list. 2032 */ 2033 STATIC int 2034 xfs_iunlink_remove( 2035 xfs_trans_t *tp, 2036 xfs_inode_t *ip) 2037 { 2038 xfs_ino_t next_ino; 2039 xfs_mount_t *mp; 2040 xfs_agi_t *agi; 2041 xfs_dinode_t *dip; 2042 xfs_buf_t *agibp; 2043 xfs_buf_t *ibp; 2044 xfs_agnumber_t agno; 2045 xfs_agino_t agino; 2046 xfs_agino_t next_agino; 2047 xfs_buf_t *last_ibp; 2048 xfs_dinode_t *last_dip = NULL; 2049 short bucket_index; 2050 int offset, last_offset = 0; 2051 int error; 2052 2053 mp = tp->t_mountp; 2054 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2055 2056 /* 2057 * Get the agi buffer first. It ensures lock ordering 2058 * on the list. 2059 */ 2060 error = xfs_read_agi(mp, tp, agno, &agibp); 2061 if (error) 2062 return error; 2063 2064 agi = XFS_BUF_TO_AGI(agibp); 2065 2066 /* 2067 * Get the index into the agi hash table for the 2068 * list this inode will go on. 2069 */ 2070 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2071 ASSERT(agino != 0); 2072 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2073 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 2074 ASSERT(agi->agi_unlinked[bucket_index]); 2075 2076 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2077 /* 2078 * We're at the head of the list. Get the inode's on-disk 2079 * buffer to see if there is anyone after us on the list. 2080 * Only modify our next pointer if it is not already NULLAGINO. 2081 * This saves us the overhead of dealing with the buffer when 2082 * there is no need to change it. 2083 */ 2084 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2085 0, 0); 2086 if (error) { 2087 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2088 __func__, error); 2089 return error; 2090 } 2091 next_agino = be32_to_cpu(dip->di_next_unlinked); 2092 ASSERT(next_agino != 0); 2093 if (next_agino != NULLAGINO) { 2094 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2095 offset = ip->i_imap.im_boffset + 2096 offsetof(xfs_dinode_t, di_next_unlinked); 2097 2098 /* need to recalc the inode CRC if appropriate */ 2099 xfs_dinode_calc_crc(mp, dip); 2100 2101 xfs_trans_inode_buf(tp, ibp); 2102 xfs_trans_log_buf(tp, ibp, offset, 2103 (offset + sizeof(xfs_agino_t) - 1)); 2104 xfs_inobp_check(mp, ibp); 2105 } else { 2106 xfs_trans_brelse(tp, ibp); 2107 } 2108 /* 2109 * Point the bucket head pointer at the next inode. 2110 */ 2111 ASSERT(next_agino != 0); 2112 ASSERT(next_agino != agino); 2113 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2114 offset = offsetof(xfs_agi_t, agi_unlinked) + 2115 (sizeof(xfs_agino_t) * bucket_index); 2116 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF); 2117 xfs_trans_log_buf(tp, agibp, offset, 2118 (offset + sizeof(xfs_agino_t) - 1)); 2119 } else { 2120 /* 2121 * We need to search the list for the inode being freed. 2122 */ 2123 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2124 last_ibp = NULL; 2125 while (next_agino != agino) { 2126 struct xfs_imap imap; 2127 2128 if (last_ibp) 2129 xfs_trans_brelse(tp, last_ibp); 2130 2131 imap.im_blkno = 0; 2132 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2133 2134 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2135 if (error) { 2136 xfs_warn(mp, 2137 "%s: xfs_imap returned error %d.", 2138 __func__, error); 2139 return error; 2140 } 2141 2142 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2143 &last_ibp, 0, 0); 2144 if (error) { 2145 xfs_warn(mp, 2146 "%s: xfs_imap_to_bp returned error %d.", 2147 __func__, error); 2148 return error; 2149 } 2150 2151 last_offset = imap.im_boffset; 2152 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2153 ASSERT(next_agino != NULLAGINO); 2154 ASSERT(next_agino != 0); 2155 } 2156 2157 /* 2158 * Now last_ibp points to the buffer previous to us on the 2159 * unlinked list. Pull us from the list. 2160 */ 2161 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2162 0, 0); 2163 if (error) { 2164 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2165 __func__, error); 2166 return error; 2167 } 2168 next_agino = be32_to_cpu(dip->di_next_unlinked); 2169 ASSERT(next_agino != 0); 2170 ASSERT(next_agino != agino); 2171 if (next_agino != NULLAGINO) { 2172 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2173 offset = ip->i_imap.im_boffset + 2174 offsetof(xfs_dinode_t, di_next_unlinked); 2175 2176 /* need to recalc the inode CRC if appropriate */ 2177 xfs_dinode_calc_crc(mp, dip); 2178 2179 xfs_trans_inode_buf(tp, ibp); 2180 xfs_trans_log_buf(tp, ibp, offset, 2181 (offset + sizeof(xfs_agino_t) - 1)); 2182 xfs_inobp_check(mp, ibp); 2183 } else { 2184 xfs_trans_brelse(tp, ibp); 2185 } 2186 /* 2187 * Point the previous inode on the list to the next inode. 2188 */ 2189 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2190 ASSERT(next_agino != 0); 2191 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2192 2193 /* need to recalc the inode CRC if appropriate */ 2194 xfs_dinode_calc_crc(mp, last_dip); 2195 2196 xfs_trans_inode_buf(tp, last_ibp); 2197 xfs_trans_log_buf(tp, last_ibp, offset, 2198 (offset + sizeof(xfs_agino_t) - 1)); 2199 xfs_inobp_check(mp, last_ibp); 2200 } 2201 return 0; 2202 } 2203 2204 /* 2205 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2206 * inodes that are in memory - they all must be marked stale and attached to 2207 * the cluster buffer. 2208 */ 2209 STATIC int 2210 xfs_ifree_cluster( 2211 xfs_inode_t *free_ip, 2212 xfs_trans_t *tp, 2213 struct xfs_icluster *xic) 2214 { 2215 xfs_mount_t *mp = free_ip->i_mount; 2216 int blks_per_cluster; 2217 int inodes_per_cluster; 2218 int nbufs; 2219 int i, j; 2220 int ioffset; 2221 xfs_daddr_t blkno; 2222 xfs_buf_t *bp; 2223 xfs_inode_t *ip; 2224 xfs_inode_log_item_t *iip; 2225 xfs_log_item_t *lip; 2226 struct xfs_perag *pag; 2227 xfs_ino_t inum; 2228 2229 inum = xic->first_ino; 2230 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2231 blks_per_cluster = xfs_icluster_size_fsb(mp); 2232 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 2233 nbufs = mp->m_ialloc_blks / blks_per_cluster; 2234 2235 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { 2236 /* 2237 * The allocation bitmap tells us which inodes of the chunk were 2238 * physically allocated. Skip the cluster if an inode falls into 2239 * a sparse region. 2240 */ 2241 ioffset = inum - xic->first_ino; 2242 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2243 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0); 2244 continue; 2245 } 2246 2247 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2248 XFS_INO_TO_AGBNO(mp, inum)); 2249 2250 /* 2251 * We obtain and lock the backing buffer first in the process 2252 * here, as we have to ensure that any dirty inode that we 2253 * can't get the flush lock on is attached to the buffer. 2254 * If we scan the in-memory inodes first, then buffer IO can 2255 * complete before we get a lock on it, and hence we may fail 2256 * to mark all the active inodes on the buffer stale. 2257 */ 2258 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2259 mp->m_bsize * blks_per_cluster, 2260 XBF_UNMAPPED); 2261 2262 if (!bp) 2263 return -ENOMEM; 2264 2265 /* 2266 * This buffer may not have been correctly initialised as we 2267 * didn't read it from disk. That's not important because we are 2268 * only using to mark the buffer as stale in the log, and to 2269 * attach stale cached inodes on it. That means it will never be 2270 * dispatched for IO. If it is, we want to know about it, and we 2271 * want it to fail. We can acheive this by adding a write 2272 * verifier to the buffer. 2273 */ 2274 bp->b_ops = &xfs_inode_buf_ops; 2275 2276 /* 2277 * Walk the inodes already attached to the buffer and mark them 2278 * stale. These will all have the flush locks held, so an 2279 * in-memory inode walk can't lock them. By marking them all 2280 * stale first, we will not attempt to lock them in the loop 2281 * below as the XFS_ISTALE flag will be set. 2282 */ 2283 lip = bp->b_fspriv; 2284 while (lip) { 2285 if (lip->li_type == XFS_LI_INODE) { 2286 iip = (xfs_inode_log_item_t *)lip; 2287 ASSERT(iip->ili_logged == 1); 2288 lip->li_cb = xfs_istale_done; 2289 xfs_trans_ail_copy_lsn(mp->m_ail, 2290 &iip->ili_flush_lsn, 2291 &iip->ili_item.li_lsn); 2292 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2293 } 2294 lip = lip->li_bio_list; 2295 } 2296 2297 2298 /* 2299 * For each inode in memory attempt to add it to the inode 2300 * buffer and set it up for being staled on buffer IO 2301 * completion. This is safe as we've locked out tail pushing 2302 * and flushing by locking the buffer. 2303 * 2304 * We have already marked every inode that was part of a 2305 * transaction stale above, which means there is no point in 2306 * even trying to lock them. 2307 */ 2308 for (i = 0; i < inodes_per_cluster; i++) { 2309 retry: 2310 rcu_read_lock(); 2311 ip = radix_tree_lookup(&pag->pag_ici_root, 2312 XFS_INO_TO_AGINO(mp, (inum + i))); 2313 2314 /* Inode not in memory, nothing to do */ 2315 if (!ip) { 2316 rcu_read_unlock(); 2317 continue; 2318 } 2319 2320 /* 2321 * because this is an RCU protected lookup, we could 2322 * find a recently freed or even reallocated inode 2323 * during the lookup. We need to check under the 2324 * i_flags_lock for a valid inode here. Skip it if it 2325 * is not valid, the wrong inode or stale. 2326 */ 2327 spin_lock(&ip->i_flags_lock); 2328 if (ip->i_ino != inum + i || 2329 __xfs_iflags_test(ip, XFS_ISTALE)) { 2330 spin_unlock(&ip->i_flags_lock); 2331 rcu_read_unlock(); 2332 continue; 2333 } 2334 spin_unlock(&ip->i_flags_lock); 2335 2336 /* 2337 * Don't try to lock/unlock the current inode, but we 2338 * _cannot_ skip the other inodes that we did not find 2339 * in the list attached to the buffer and are not 2340 * already marked stale. If we can't lock it, back off 2341 * and retry. 2342 */ 2343 if (ip != free_ip && 2344 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2345 rcu_read_unlock(); 2346 delay(1); 2347 goto retry; 2348 } 2349 rcu_read_unlock(); 2350 2351 xfs_iflock(ip); 2352 xfs_iflags_set(ip, XFS_ISTALE); 2353 2354 /* 2355 * we don't need to attach clean inodes or those only 2356 * with unlogged changes (which we throw away, anyway). 2357 */ 2358 iip = ip->i_itemp; 2359 if (!iip || xfs_inode_clean(ip)) { 2360 ASSERT(ip != free_ip); 2361 xfs_ifunlock(ip); 2362 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2363 continue; 2364 } 2365 2366 iip->ili_last_fields = iip->ili_fields; 2367 iip->ili_fields = 0; 2368 iip->ili_fsync_fields = 0; 2369 iip->ili_logged = 1; 2370 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2371 &iip->ili_item.li_lsn); 2372 2373 xfs_buf_attach_iodone(bp, xfs_istale_done, 2374 &iip->ili_item); 2375 2376 if (ip != free_ip) 2377 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2378 } 2379 2380 xfs_trans_stale_inode_buf(tp, bp); 2381 xfs_trans_binval(tp, bp); 2382 } 2383 2384 xfs_perag_put(pag); 2385 return 0; 2386 } 2387 2388 /* 2389 * This is called to return an inode to the inode free list. 2390 * The inode should already be truncated to 0 length and have 2391 * no pages associated with it. This routine also assumes that 2392 * the inode is already a part of the transaction. 2393 * 2394 * The on-disk copy of the inode will have been added to the list 2395 * of unlinked inodes in the AGI. We need to remove the inode from 2396 * that list atomically with respect to freeing it here. 2397 */ 2398 int 2399 xfs_ifree( 2400 xfs_trans_t *tp, 2401 xfs_inode_t *ip, 2402 xfs_bmap_free_t *flist) 2403 { 2404 int error; 2405 struct xfs_icluster xic = { 0 }; 2406 2407 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2408 ASSERT(ip->i_d.di_nlink == 0); 2409 ASSERT(ip->i_d.di_nextents == 0); 2410 ASSERT(ip->i_d.di_anextents == 0); 2411 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode)); 2412 ASSERT(ip->i_d.di_nblocks == 0); 2413 2414 /* 2415 * Pull the on-disk inode from the AGI unlinked list. 2416 */ 2417 error = xfs_iunlink_remove(tp, ip); 2418 if (error) 2419 return error; 2420 2421 error = xfs_difree(tp, ip->i_ino, flist, &xic); 2422 if (error) 2423 return error; 2424 2425 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2426 ip->i_d.di_flags = 0; 2427 ip->i_d.di_dmevmask = 0; 2428 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2429 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2430 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2431 /* 2432 * Bump the generation count so no one will be confused 2433 * by reincarnations of this inode. 2434 */ 2435 ip->i_d.di_gen++; 2436 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2437 2438 if (xic.deleted) 2439 error = xfs_ifree_cluster(ip, tp, &xic); 2440 2441 return error; 2442 } 2443 2444 /* 2445 * This is called to unpin an inode. The caller must have the inode locked 2446 * in at least shared mode so that the buffer cannot be subsequently pinned 2447 * once someone is waiting for it to be unpinned. 2448 */ 2449 static void 2450 xfs_iunpin( 2451 struct xfs_inode *ip) 2452 { 2453 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2454 2455 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2456 2457 /* Give the log a push to start the unpinning I/O */ 2458 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2459 2460 } 2461 2462 static void 2463 __xfs_iunpin_wait( 2464 struct xfs_inode *ip) 2465 { 2466 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2467 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2468 2469 xfs_iunpin(ip); 2470 2471 do { 2472 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2473 if (xfs_ipincount(ip)) 2474 io_schedule(); 2475 } while (xfs_ipincount(ip)); 2476 finish_wait(wq, &wait.wait); 2477 } 2478 2479 void 2480 xfs_iunpin_wait( 2481 struct xfs_inode *ip) 2482 { 2483 if (xfs_ipincount(ip)) 2484 __xfs_iunpin_wait(ip); 2485 } 2486 2487 /* 2488 * Removing an inode from the namespace involves removing the directory entry 2489 * and dropping the link count on the inode. Removing the directory entry can 2490 * result in locking an AGF (directory blocks were freed) and removing a link 2491 * count can result in placing the inode on an unlinked list which results in 2492 * locking an AGI. 2493 * 2494 * The big problem here is that we have an ordering constraint on AGF and AGI 2495 * locking - inode allocation locks the AGI, then can allocate a new extent for 2496 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2497 * removes the inode from the unlinked list, requiring that we lock the AGI 2498 * first, and then freeing the inode can result in an inode chunk being freed 2499 * and hence freeing disk space requiring that we lock an AGF. 2500 * 2501 * Hence the ordering that is imposed by other parts of the code is AGI before 2502 * AGF. This means we cannot remove the directory entry before we drop the inode 2503 * reference count and put it on the unlinked list as this results in a lock 2504 * order of AGF then AGI, and this can deadlock against inode allocation and 2505 * freeing. Therefore we must drop the link counts before we remove the 2506 * directory entry. 2507 * 2508 * This is still safe from a transactional point of view - it is not until we 2509 * get to xfs_bmap_finish() that we have the possibility of multiple 2510 * transactions in this operation. Hence as long as we remove the directory 2511 * entry and drop the link count in the first transaction of the remove 2512 * operation, there are no transactional constraints on the ordering here. 2513 */ 2514 int 2515 xfs_remove( 2516 xfs_inode_t *dp, 2517 struct xfs_name *name, 2518 xfs_inode_t *ip) 2519 { 2520 xfs_mount_t *mp = dp->i_mount; 2521 xfs_trans_t *tp = NULL; 2522 int is_dir = S_ISDIR(ip->i_d.di_mode); 2523 int error = 0; 2524 xfs_bmap_free_t free_list; 2525 xfs_fsblock_t first_block; 2526 int committed; 2527 uint resblks; 2528 2529 trace_xfs_remove(dp, name); 2530 2531 if (XFS_FORCED_SHUTDOWN(mp)) 2532 return -EIO; 2533 2534 error = xfs_qm_dqattach(dp, 0); 2535 if (error) 2536 goto std_return; 2537 2538 error = xfs_qm_dqattach(ip, 0); 2539 if (error) 2540 goto std_return; 2541 2542 if (is_dir) 2543 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR); 2544 else 2545 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE); 2546 2547 /* 2548 * We try to get the real space reservation first, 2549 * allowing for directory btree deletion(s) implying 2550 * possible bmap insert(s). If we can't get the space 2551 * reservation then we use 0 instead, and avoid the bmap 2552 * btree insert(s) in the directory code by, if the bmap 2553 * insert tries to happen, instead trimming the LAST 2554 * block from the directory. 2555 */ 2556 resblks = XFS_REMOVE_SPACE_RES(mp); 2557 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0); 2558 if (error == -ENOSPC) { 2559 resblks = 0; 2560 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0); 2561 } 2562 if (error) { 2563 ASSERT(error != -ENOSPC); 2564 goto out_trans_cancel; 2565 } 2566 2567 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 2568 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL); 2569 2570 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 2571 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2572 2573 /* 2574 * If we're removing a directory perform some additional validation. 2575 */ 2576 if (is_dir) { 2577 ASSERT(ip->i_d.di_nlink >= 2); 2578 if (ip->i_d.di_nlink != 2) { 2579 error = -ENOTEMPTY; 2580 goto out_trans_cancel; 2581 } 2582 if (!xfs_dir_isempty(ip)) { 2583 error = -ENOTEMPTY; 2584 goto out_trans_cancel; 2585 } 2586 2587 /* Drop the link from ip's "..". */ 2588 error = xfs_droplink(tp, dp); 2589 if (error) 2590 goto out_trans_cancel; 2591 2592 /* Drop the "." link from ip to self. */ 2593 error = xfs_droplink(tp, ip); 2594 if (error) 2595 goto out_trans_cancel; 2596 } else { 2597 /* 2598 * When removing a non-directory we need to log the parent 2599 * inode here. For a directory this is done implicitly 2600 * by the xfs_droplink call for the ".." entry. 2601 */ 2602 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2603 } 2604 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2605 2606 /* Drop the link from dp to ip. */ 2607 error = xfs_droplink(tp, ip); 2608 if (error) 2609 goto out_trans_cancel; 2610 2611 xfs_bmap_init(&free_list, &first_block); 2612 error = xfs_dir_removename(tp, dp, name, ip->i_ino, 2613 &first_block, &free_list, resblks); 2614 if (error) { 2615 ASSERT(error != -ENOENT); 2616 goto out_bmap_cancel; 2617 } 2618 2619 /* 2620 * If this is a synchronous mount, make sure that the 2621 * remove transaction goes to disk before returning to 2622 * the user. 2623 */ 2624 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2625 xfs_trans_set_sync(tp); 2626 2627 error = xfs_bmap_finish(&tp, &free_list, &committed); 2628 if (error) 2629 goto out_bmap_cancel; 2630 2631 error = xfs_trans_commit(tp); 2632 if (error) 2633 goto std_return; 2634 2635 if (is_dir && xfs_inode_is_filestream(ip)) 2636 xfs_filestream_deassociate(ip); 2637 2638 return 0; 2639 2640 out_bmap_cancel: 2641 xfs_bmap_cancel(&free_list); 2642 out_trans_cancel: 2643 xfs_trans_cancel(tp); 2644 std_return: 2645 return error; 2646 } 2647 2648 /* 2649 * Enter all inodes for a rename transaction into a sorted array. 2650 */ 2651 #define __XFS_SORT_INODES 5 2652 STATIC void 2653 xfs_sort_for_rename( 2654 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2655 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2656 struct xfs_inode *ip1, /* in: inode of old entry */ 2657 struct xfs_inode *ip2, /* in: inode of new entry */ 2658 struct xfs_inode *wip, /* in: whiteout inode */ 2659 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2660 int *num_inodes) /* in/out: inodes in array */ 2661 { 2662 int i, j; 2663 2664 ASSERT(*num_inodes == __XFS_SORT_INODES); 2665 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2666 2667 /* 2668 * i_tab contains a list of pointers to inodes. We initialize 2669 * the table here & we'll sort it. We will then use it to 2670 * order the acquisition of the inode locks. 2671 * 2672 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2673 */ 2674 i = 0; 2675 i_tab[i++] = dp1; 2676 i_tab[i++] = dp2; 2677 i_tab[i++] = ip1; 2678 if (ip2) 2679 i_tab[i++] = ip2; 2680 if (wip) 2681 i_tab[i++] = wip; 2682 *num_inodes = i; 2683 2684 /* 2685 * Sort the elements via bubble sort. (Remember, there are at 2686 * most 5 elements to sort, so this is adequate.) 2687 */ 2688 for (i = 0; i < *num_inodes; i++) { 2689 for (j = 1; j < *num_inodes; j++) { 2690 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2691 struct xfs_inode *temp = i_tab[j]; 2692 i_tab[j] = i_tab[j-1]; 2693 i_tab[j-1] = temp; 2694 } 2695 } 2696 } 2697 } 2698 2699 static int 2700 xfs_finish_rename( 2701 struct xfs_trans *tp, 2702 struct xfs_bmap_free *free_list) 2703 { 2704 int committed = 0; 2705 int error; 2706 2707 /* 2708 * If this is a synchronous mount, make sure that the rename transaction 2709 * goes to disk before returning to the user. 2710 */ 2711 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2712 xfs_trans_set_sync(tp); 2713 2714 error = xfs_bmap_finish(&tp, free_list, &committed); 2715 if (error) { 2716 xfs_bmap_cancel(free_list); 2717 xfs_trans_cancel(tp); 2718 return error; 2719 } 2720 2721 return xfs_trans_commit(tp); 2722 } 2723 2724 /* 2725 * xfs_cross_rename() 2726 * 2727 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 2728 */ 2729 STATIC int 2730 xfs_cross_rename( 2731 struct xfs_trans *tp, 2732 struct xfs_inode *dp1, 2733 struct xfs_name *name1, 2734 struct xfs_inode *ip1, 2735 struct xfs_inode *dp2, 2736 struct xfs_name *name2, 2737 struct xfs_inode *ip2, 2738 struct xfs_bmap_free *free_list, 2739 xfs_fsblock_t *first_block, 2740 int spaceres) 2741 { 2742 int error = 0; 2743 int ip1_flags = 0; 2744 int ip2_flags = 0; 2745 int dp2_flags = 0; 2746 2747 /* Swap inode number for dirent in first parent */ 2748 error = xfs_dir_replace(tp, dp1, name1, 2749 ip2->i_ino, 2750 first_block, free_list, spaceres); 2751 if (error) 2752 goto out_trans_abort; 2753 2754 /* Swap inode number for dirent in second parent */ 2755 error = xfs_dir_replace(tp, dp2, name2, 2756 ip1->i_ino, 2757 first_block, free_list, spaceres); 2758 if (error) 2759 goto out_trans_abort; 2760 2761 /* 2762 * If we're renaming one or more directories across different parents, 2763 * update the respective ".." entries (and link counts) to match the new 2764 * parents. 2765 */ 2766 if (dp1 != dp2) { 2767 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2768 2769 if (S_ISDIR(ip2->i_d.di_mode)) { 2770 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2771 dp1->i_ino, first_block, 2772 free_list, spaceres); 2773 if (error) 2774 goto out_trans_abort; 2775 2776 /* transfer ip2 ".." reference to dp1 */ 2777 if (!S_ISDIR(ip1->i_d.di_mode)) { 2778 error = xfs_droplink(tp, dp2); 2779 if (error) 2780 goto out_trans_abort; 2781 error = xfs_bumplink(tp, dp1); 2782 if (error) 2783 goto out_trans_abort; 2784 } 2785 2786 /* 2787 * Although ip1 isn't changed here, userspace needs 2788 * to be warned about the change, so that applications 2789 * relying on it (like backup ones), will properly 2790 * notify the change 2791 */ 2792 ip1_flags |= XFS_ICHGTIME_CHG; 2793 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2794 } 2795 2796 if (S_ISDIR(ip1->i_d.di_mode)) { 2797 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2798 dp2->i_ino, first_block, 2799 free_list, spaceres); 2800 if (error) 2801 goto out_trans_abort; 2802 2803 /* transfer ip1 ".." reference to dp2 */ 2804 if (!S_ISDIR(ip2->i_d.di_mode)) { 2805 error = xfs_droplink(tp, dp1); 2806 if (error) 2807 goto out_trans_abort; 2808 error = xfs_bumplink(tp, dp2); 2809 if (error) 2810 goto out_trans_abort; 2811 } 2812 2813 /* 2814 * Although ip2 isn't changed here, userspace needs 2815 * to be warned about the change, so that applications 2816 * relying on it (like backup ones), will properly 2817 * notify the change 2818 */ 2819 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2820 ip2_flags |= XFS_ICHGTIME_CHG; 2821 } 2822 } 2823 2824 if (ip1_flags) { 2825 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2826 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2827 } 2828 if (ip2_flags) { 2829 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2830 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2831 } 2832 if (dp2_flags) { 2833 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2834 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2835 } 2836 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2837 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2838 return xfs_finish_rename(tp, free_list); 2839 2840 out_trans_abort: 2841 xfs_bmap_cancel(free_list); 2842 xfs_trans_cancel(tp); 2843 return error; 2844 } 2845 2846 /* 2847 * xfs_rename_alloc_whiteout() 2848 * 2849 * Return a referenced, unlinked, unlocked inode that that can be used as a 2850 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2851 * crash between allocating the inode and linking it into the rename transaction 2852 * recovery will free the inode and we won't leak it. 2853 */ 2854 static int 2855 xfs_rename_alloc_whiteout( 2856 struct xfs_inode *dp, 2857 struct xfs_inode **wip) 2858 { 2859 struct xfs_inode *tmpfile; 2860 int error; 2861 2862 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile); 2863 if (error) 2864 return error; 2865 2866 /* 2867 * Prepare the tmpfile inode as if it were created through the VFS. 2868 * Otherwise, the link increment paths will complain about nlink 0->1. 2869 * Drop the link count as done by d_tmpfile(), complete the inode setup 2870 * and flag it as linkable. 2871 */ 2872 drop_nlink(VFS_I(tmpfile)); 2873 xfs_finish_inode_setup(tmpfile); 2874 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2875 2876 *wip = tmpfile; 2877 return 0; 2878 } 2879 2880 /* 2881 * xfs_rename 2882 */ 2883 int 2884 xfs_rename( 2885 struct xfs_inode *src_dp, 2886 struct xfs_name *src_name, 2887 struct xfs_inode *src_ip, 2888 struct xfs_inode *target_dp, 2889 struct xfs_name *target_name, 2890 struct xfs_inode *target_ip, 2891 unsigned int flags) 2892 { 2893 struct xfs_mount *mp = src_dp->i_mount; 2894 struct xfs_trans *tp; 2895 struct xfs_bmap_free free_list; 2896 xfs_fsblock_t first_block; 2897 struct xfs_inode *wip = NULL; /* whiteout inode */ 2898 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2899 int num_inodes = __XFS_SORT_INODES; 2900 bool new_parent = (src_dp != target_dp); 2901 bool src_is_directory = S_ISDIR(src_ip->i_d.di_mode); 2902 int spaceres; 2903 int error; 2904 2905 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2906 2907 if ((flags & RENAME_EXCHANGE) && !target_ip) 2908 return -EINVAL; 2909 2910 /* 2911 * If we are doing a whiteout operation, allocate the whiteout inode 2912 * we will be placing at the target and ensure the type is set 2913 * appropriately. 2914 */ 2915 if (flags & RENAME_WHITEOUT) { 2916 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 2917 error = xfs_rename_alloc_whiteout(target_dp, &wip); 2918 if (error) 2919 return error; 2920 2921 /* setup target dirent info as whiteout */ 2922 src_name->type = XFS_DIR3_FT_CHRDEV; 2923 } 2924 2925 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 2926 inodes, &num_inodes); 2927 2928 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME); 2929 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2930 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0); 2931 if (error == -ENOSPC) { 2932 spaceres = 0; 2933 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0); 2934 } 2935 if (error) 2936 goto out_trans_cancel; 2937 2938 /* 2939 * Attach the dquots to the inodes 2940 */ 2941 error = xfs_qm_vop_rename_dqattach(inodes); 2942 if (error) 2943 goto out_trans_cancel; 2944 2945 /* 2946 * Lock all the participating inodes. Depending upon whether 2947 * the target_name exists in the target directory, and 2948 * whether the target directory is the same as the source 2949 * directory, we can lock from 2 to 4 inodes. 2950 */ 2951 if (!new_parent) 2952 xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 2953 else 2954 xfs_lock_two_inodes(src_dp, target_dp, 2955 XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 2956 2957 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2958 2959 /* 2960 * Join all the inodes to the transaction. From this point on, 2961 * we can rely on either trans_commit or trans_cancel to unlock 2962 * them. 2963 */ 2964 xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 2965 if (new_parent) 2966 xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 2967 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2968 if (target_ip) 2969 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2970 if (wip) 2971 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 2972 2973 /* 2974 * If we are using project inheritance, we only allow renames 2975 * into our tree when the project IDs are the same; else the 2976 * tree quota mechanism would be circumvented. 2977 */ 2978 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 2979 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 2980 error = -EXDEV; 2981 goto out_trans_cancel; 2982 } 2983 2984 xfs_bmap_init(&free_list, &first_block); 2985 2986 /* RENAME_EXCHANGE is unique from here on. */ 2987 if (flags & RENAME_EXCHANGE) 2988 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 2989 target_dp, target_name, target_ip, 2990 &free_list, &first_block, spaceres); 2991 2992 /* 2993 * Set up the target. 2994 */ 2995 if (target_ip == NULL) { 2996 /* 2997 * If there's no space reservation, check the entry will 2998 * fit before actually inserting it. 2999 */ 3000 if (!spaceres) { 3001 error = xfs_dir_canenter(tp, target_dp, target_name); 3002 if (error) 3003 goto out_trans_cancel; 3004 } 3005 /* 3006 * If target does not exist and the rename crosses 3007 * directories, adjust the target directory link count 3008 * to account for the ".." reference from the new entry. 3009 */ 3010 error = xfs_dir_createname(tp, target_dp, target_name, 3011 src_ip->i_ino, &first_block, 3012 &free_list, spaceres); 3013 if (error) 3014 goto out_bmap_cancel; 3015 3016 xfs_trans_ichgtime(tp, target_dp, 3017 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3018 3019 if (new_parent && src_is_directory) { 3020 error = xfs_bumplink(tp, target_dp); 3021 if (error) 3022 goto out_bmap_cancel; 3023 } 3024 } else { /* target_ip != NULL */ 3025 /* 3026 * If target exists and it's a directory, check that both 3027 * target and source are directories and that target can be 3028 * destroyed, or that neither is a directory. 3029 */ 3030 if (S_ISDIR(target_ip->i_d.di_mode)) { 3031 /* 3032 * Make sure target dir is empty. 3033 */ 3034 if (!(xfs_dir_isempty(target_ip)) || 3035 (target_ip->i_d.di_nlink > 2)) { 3036 error = -EEXIST; 3037 goto out_trans_cancel; 3038 } 3039 } 3040 3041 /* 3042 * Link the source inode under the target name. 3043 * If the source inode is a directory and we are moving 3044 * it across directories, its ".." entry will be 3045 * inconsistent until we replace that down below. 3046 * 3047 * In case there is already an entry with the same 3048 * name at the destination directory, remove it first. 3049 */ 3050 error = xfs_dir_replace(tp, target_dp, target_name, 3051 src_ip->i_ino, 3052 &first_block, &free_list, spaceres); 3053 if (error) 3054 goto out_bmap_cancel; 3055 3056 xfs_trans_ichgtime(tp, target_dp, 3057 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3058 3059 /* 3060 * Decrement the link count on the target since the target 3061 * dir no longer points to it. 3062 */ 3063 error = xfs_droplink(tp, target_ip); 3064 if (error) 3065 goto out_bmap_cancel; 3066 3067 if (src_is_directory) { 3068 /* 3069 * Drop the link from the old "." entry. 3070 */ 3071 error = xfs_droplink(tp, target_ip); 3072 if (error) 3073 goto out_bmap_cancel; 3074 } 3075 } /* target_ip != NULL */ 3076 3077 /* 3078 * Remove the source. 3079 */ 3080 if (new_parent && src_is_directory) { 3081 /* 3082 * Rewrite the ".." entry to point to the new 3083 * directory. 3084 */ 3085 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3086 target_dp->i_ino, 3087 &first_block, &free_list, spaceres); 3088 ASSERT(error != -EEXIST); 3089 if (error) 3090 goto out_bmap_cancel; 3091 } 3092 3093 /* 3094 * We always want to hit the ctime on the source inode. 3095 * 3096 * This isn't strictly required by the standards since the source 3097 * inode isn't really being changed, but old unix file systems did 3098 * it and some incremental backup programs won't work without it. 3099 */ 3100 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3101 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3102 3103 /* 3104 * Adjust the link count on src_dp. This is necessary when 3105 * renaming a directory, either within one parent when 3106 * the target existed, or across two parent directories. 3107 */ 3108 if (src_is_directory && (new_parent || target_ip != NULL)) { 3109 3110 /* 3111 * Decrement link count on src_directory since the 3112 * entry that's moved no longer points to it. 3113 */ 3114 error = xfs_droplink(tp, src_dp); 3115 if (error) 3116 goto out_bmap_cancel; 3117 } 3118 3119 /* 3120 * For whiteouts, we only need to update the source dirent with the 3121 * inode number of the whiteout inode rather than removing it 3122 * altogether. 3123 */ 3124 if (wip) { 3125 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3126 &first_block, &free_list, spaceres); 3127 } else 3128 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3129 &first_block, &free_list, spaceres); 3130 if (error) 3131 goto out_bmap_cancel; 3132 3133 /* 3134 * For whiteouts, we need to bump the link count on the whiteout inode. 3135 * This means that failures all the way up to this point leave the inode 3136 * on the unlinked list and so cleanup is a simple matter of dropping 3137 * the remaining reference to it. If we fail here after bumping the link 3138 * count, we're shutting down the filesystem so we'll never see the 3139 * intermediate state on disk. 3140 */ 3141 if (wip) { 3142 ASSERT(VFS_I(wip)->i_nlink == 0 && wip->i_d.di_nlink == 0); 3143 error = xfs_bumplink(tp, wip); 3144 if (error) 3145 goto out_bmap_cancel; 3146 error = xfs_iunlink_remove(tp, wip); 3147 if (error) 3148 goto out_bmap_cancel; 3149 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); 3150 3151 /* 3152 * Now we have a real link, clear the "I'm a tmpfile" state 3153 * flag from the inode so it doesn't accidentally get misused in 3154 * future. 3155 */ 3156 VFS_I(wip)->i_state &= ~I_LINKABLE; 3157 } 3158 3159 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3160 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3161 if (new_parent) 3162 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3163 3164 error = xfs_finish_rename(tp, &free_list); 3165 if (wip) 3166 IRELE(wip); 3167 return error; 3168 3169 out_bmap_cancel: 3170 xfs_bmap_cancel(&free_list); 3171 out_trans_cancel: 3172 xfs_trans_cancel(tp); 3173 if (wip) 3174 IRELE(wip); 3175 return error; 3176 } 3177 3178 STATIC int 3179 xfs_iflush_cluster( 3180 xfs_inode_t *ip, 3181 xfs_buf_t *bp) 3182 { 3183 xfs_mount_t *mp = ip->i_mount; 3184 struct xfs_perag *pag; 3185 unsigned long first_index, mask; 3186 unsigned long inodes_per_cluster; 3187 int ilist_size; 3188 xfs_inode_t **ilist; 3189 xfs_inode_t *iq; 3190 int nr_found; 3191 int clcount = 0; 3192 int bufwasdelwri; 3193 int i; 3194 3195 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3196 3197 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 3198 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 3199 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 3200 if (!ilist) 3201 goto out_put; 3202 3203 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 3204 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3205 rcu_read_lock(); 3206 /* really need a gang lookup range call here */ 3207 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 3208 first_index, inodes_per_cluster); 3209 if (nr_found == 0) 3210 goto out_free; 3211 3212 for (i = 0; i < nr_found; i++) { 3213 iq = ilist[i]; 3214 if (iq == ip) 3215 continue; 3216 3217 /* 3218 * because this is an RCU protected lookup, we could find a 3219 * recently freed or even reallocated inode during the lookup. 3220 * We need to check under the i_flags_lock for a valid inode 3221 * here. Skip it if it is not valid or the wrong inode. 3222 */ 3223 spin_lock(&ip->i_flags_lock); 3224 if (!ip->i_ino || 3225 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) { 3226 spin_unlock(&ip->i_flags_lock); 3227 continue; 3228 } 3229 spin_unlock(&ip->i_flags_lock); 3230 3231 /* 3232 * Do an un-protected check to see if the inode is dirty and 3233 * is a candidate for flushing. These checks will be repeated 3234 * later after the appropriate locks are acquired. 3235 */ 3236 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 3237 continue; 3238 3239 /* 3240 * Try to get locks. If any are unavailable or it is pinned, 3241 * then this inode cannot be flushed and is skipped. 3242 */ 3243 3244 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 3245 continue; 3246 if (!xfs_iflock_nowait(iq)) { 3247 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3248 continue; 3249 } 3250 if (xfs_ipincount(iq)) { 3251 xfs_ifunlock(iq); 3252 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3253 continue; 3254 } 3255 3256 /* 3257 * arriving here means that this inode can be flushed. First 3258 * re-check that it's dirty before flushing. 3259 */ 3260 if (!xfs_inode_clean(iq)) { 3261 int error; 3262 error = xfs_iflush_int(iq, bp); 3263 if (error) { 3264 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3265 goto cluster_corrupt_out; 3266 } 3267 clcount++; 3268 } else { 3269 xfs_ifunlock(iq); 3270 } 3271 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3272 } 3273 3274 if (clcount) { 3275 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3276 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3277 } 3278 3279 out_free: 3280 rcu_read_unlock(); 3281 kmem_free(ilist); 3282 out_put: 3283 xfs_perag_put(pag); 3284 return 0; 3285 3286 3287 cluster_corrupt_out: 3288 /* 3289 * Corruption detected in the clustering loop. Invalidate the 3290 * inode buffer and shut down the filesystem. 3291 */ 3292 rcu_read_unlock(); 3293 /* 3294 * Clean up the buffer. If it was delwri, just release it -- 3295 * brelse can handle it with no problems. If not, shut down the 3296 * filesystem before releasing the buffer. 3297 */ 3298 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 3299 if (bufwasdelwri) 3300 xfs_buf_relse(bp); 3301 3302 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3303 3304 if (!bufwasdelwri) { 3305 /* 3306 * Just like incore_relse: if we have b_iodone functions, 3307 * mark the buffer as an error and call them. Otherwise 3308 * mark it as stale and brelse. 3309 */ 3310 if (bp->b_iodone) { 3311 XFS_BUF_UNDONE(bp); 3312 xfs_buf_stale(bp); 3313 xfs_buf_ioerror(bp, -EIO); 3314 xfs_buf_ioend(bp); 3315 } else { 3316 xfs_buf_stale(bp); 3317 xfs_buf_relse(bp); 3318 } 3319 } 3320 3321 /* 3322 * Unlocks the flush lock 3323 */ 3324 xfs_iflush_abort(iq, false); 3325 kmem_free(ilist); 3326 xfs_perag_put(pag); 3327 return -EFSCORRUPTED; 3328 } 3329 3330 /* 3331 * Flush dirty inode metadata into the backing buffer. 3332 * 3333 * The caller must have the inode lock and the inode flush lock held. The 3334 * inode lock will still be held upon return to the caller, and the inode 3335 * flush lock will be released after the inode has reached the disk. 3336 * 3337 * The caller must write out the buffer returned in *bpp and release it. 3338 */ 3339 int 3340 xfs_iflush( 3341 struct xfs_inode *ip, 3342 struct xfs_buf **bpp) 3343 { 3344 struct xfs_mount *mp = ip->i_mount; 3345 struct xfs_buf *bp; 3346 struct xfs_dinode *dip; 3347 int error; 3348 3349 XFS_STATS_INC(mp, xs_iflush_count); 3350 3351 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3352 ASSERT(xfs_isiflocked(ip)); 3353 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3354 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3355 3356 *bpp = NULL; 3357 3358 xfs_iunpin_wait(ip); 3359 3360 /* 3361 * For stale inodes we cannot rely on the backing buffer remaining 3362 * stale in cache for the remaining life of the stale inode and so 3363 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3364 * inodes below. We have to check this after ensuring the inode is 3365 * unpinned so that it is safe to reclaim the stale inode after the 3366 * flush call. 3367 */ 3368 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3369 xfs_ifunlock(ip); 3370 return 0; 3371 } 3372 3373 /* 3374 * This may have been unpinned because the filesystem is shutting 3375 * down forcibly. If that's the case we must not write this inode 3376 * to disk, because the log record didn't make it to disk. 3377 * 3378 * We also have to remove the log item from the AIL in this case, 3379 * as we wait for an empty AIL as part of the unmount process. 3380 */ 3381 if (XFS_FORCED_SHUTDOWN(mp)) { 3382 error = -EIO; 3383 goto abort_out; 3384 } 3385 3386 /* 3387 * Get the buffer containing the on-disk inode. 3388 */ 3389 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3390 0); 3391 if (error || !bp) { 3392 xfs_ifunlock(ip); 3393 return error; 3394 } 3395 3396 /* 3397 * First flush out the inode that xfs_iflush was called with. 3398 */ 3399 error = xfs_iflush_int(ip, bp); 3400 if (error) 3401 goto corrupt_out; 3402 3403 /* 3404 * If the buffer is pinned then push on the log now so we won't 3405 * get stuck waiting in the write for too long. 3406 */ 3407 if (xfs_buf_ispinned(bp)) 3408 xfs_log_force(mp, 0); 3409 3410 /* 3411 * inode clustering: 3412 * see if other inodes can be gathered into this write 3413 */ 3414 error = xfs_iflush_cluster(ip, bp); 3415 if (error) 3416 goto cluster_corrupt_out; 3417 3418 *bpp = bp; 3419 return 0; 3420 3421 corrupt_out: 3422 xfs_buf_relse(bp); 3423 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3424 cluster_corrupt_out: 3425 error = -EFSCORRUPTED; 3426 abort_out: 3427 /* 3428 * Unlocks the flush lock 3429 */ 3430 xfs_iflush_abort(ip, false); 3431 return error; 3432 } 3433 3434 STATIC int 3435 xfs_iflush_int( 3436 struct xfs_inode *ip, 3437 struct xfs_buf *bp) 3438 { 3439 struct xfs_inode_log_item *iip = ip->i_itemp; 3440 struct xfs_dinode *dip; 3441 struct xfs_mount *mp = ip->i_mount; 3442 3443 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3444 ASSERT(xfs_isiflocked(ip)); 3445 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3446 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3447 ASSERT(iip != NULL && iip->ili_fields != 0); 3448 ASSERT(ip->i_d.di_version > 1); 3449 3450 /* set *dip = inode's place in the buffer */ 3451 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3452 3453 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3454 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3455 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3456 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3457 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3458 goto corrupt_out; 3459 } 3460 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3461 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3462 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3463 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3464 __func__, ip->i_ino, ip, ip->i_d.di_magic); 3465 goto corrupt_out; 3466 } 3467 if (S_ISREG(ip->i_d.di_mode)) { 3468 if (XFS_TEST_ERROR( 3469 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3470 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3471 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3472 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3473 "%s: Bad regular inode %Lu, ptr 0x%p", 3474 __func__, ip->i_ino, ip); 3475 goto corrupt_out; 3476 } 3477 } else if (S_ISDIR(ip->i_d.di_mode)) { 3478 if (XFS_TEST_ERROR( 3479 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3480 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3481 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3482 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3483 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3484 "%s: Bad directory inode %Lu, ptr 0x%p", 3485 __func__, ip->i_ino, ip); 3486 goto corrupt_out; 3487 } 3488 } 3489 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3490 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3491 XFS_RANDOM_IFLUSH_5)) { 3492 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3493 "%s: detected corrupt incore inode %Lu, " 3494 "total extents = %d, nblocks = %Ld, ptr 0x%p", 3495 __func__, ip->i_ino, 3496 ip->i_d.di_nextents + ip->i_d.di_anextents, 3497 ip->i_d.di_nblocks, ip); 3498 goto corrupt_out; 3499 } 3500 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3501 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3502 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3503 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3504 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3505 goto corrupt_out; 3506 } 3507 3508 /* 3509 * Inode item log recovery for v2 inodes are dependent on the 3510 * di_flushiter count for correct sequencing. We bump the flush 3511 * iteration count so we can detect flushes which postdate a log record 3512 * during recovery. This is redundant as we now log every change and 3513 * hence this can't happen but we need to still do it to ensure 3514 * backwards compatibility with old kernels that predate logging all 3515 * inode changes. 3516 */ 3517 if (ip->i_d.di_version < 3) 3518 ip->i_d.di_flushiter++; 3519 3520 /* 3521 * Copy the dirty parts of the inode into the on-disk 3522 * inode. We always copy out the core of the inode, 3523 * because if the inode is dirty at all the core must 3524 * be. 3525 */ 3526 xfs_dinode_to_disk(dip, &ip->i_d); 3527 3528 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3529 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3530 ip->i_d.di_flushiter = 0; 3531 3532 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3533 if (XFS_IFORK_Q(ip)) 3534 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3535 xfs_inobp_check(mp, bp); 3536 3537 /* 3538 * We've recorded everything logged in the inode, so we'd like to clear 3539 * the ili_fields bits so we don't log and flush things unnecessarily. 3540 * However, we can't stop logging all this information until the data 3541 * we've copied into the disk buffer is written to disk. If we did we 3542 * might overwrite the copy of the inode in the log with all the data 3543 * after re-logging only part of it, and in the face of a crash we 3544 * wouldn't have all the data we need to recover. 3545 * 3546 * What we do is move the bits to the ili_last_fields field. When 3547 * logging the inode, these bits are moved back to the ili_fields field. 3548 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3549 * know that the information those bits represent is permanently on 3550 * disk. As long as the flush completes before the inode is logged 3551 * again, then both ili_fields and ili_last_fields will be cleared. 3552 * 3553 * We can play with the ili_fields bits here, because the inode lock 3554 * must be held exclusively in order to set bits there and the flush 3555 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3556 * done routine can tell whether or not to look in the AIL. Also, store 3557 * the current LSN of the inode so that we can tell whether the item has 3558 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3559 * need the AIL lock, because it is a 64 bit value that cannot be read 3560 * atomically. 3561 */ 3562 iip->ili_last_fields = iip->ili_fields; 3563 iip->ili_fields = 0; 3564 iip->ili_fsync_fields = 0; 3565 iip->ili_logged = 1; 3566 3567 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3568 &iip->ili_item.li_lsn); 3569 3570 /* 3571 * Attach the function xfs_iflush_done to the inode's 3572 * buffer. This will remove the inode from the AIL 3573 * and unlock the inode's flush lock when the inode is 3574 * completely written to disk. 3575 */ 3576 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3577 3578 /* update the lsn in the on disk inode if required */ 3579 if (ip->i_d.di_version == 3) 3580 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn); 3581 3582 /* generate the checksum. */ 3583 xfs_dinode_calc_crc(mp, dip); 3584 3585 ASSERT(bp->b_fspriv != NULL); 3586 ASSERT(bp->b_iodone != NULL); 3587 return 0; 3588 3589 corrupt_out: 3590 return -EFSCORRUPTED; 3591 } 3592