1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_shared.h" 23 #include "xfs_format.h" 24 #include "xfs_log_format.h" 25 #include "xfs_trans_resv.h" 26 #include "xfs_sb.h" 27 #include "xfs_mount.h" 28 #include "xfs_inode.h" 29 #include "xfs_da_format.h" 30 #include "xfs_da_btree.h" 31 #include "xfs_dir2.h" 32 #include "xfs_attr_sf.h" 33 #include "xfs_attr.h" 34 #include "xfs_trans_space.h" 35 #include "xfs_trans.h" 36 #include "xfs_buf_item.h" 37 #include "xfs_inode_item.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_bmap.h" 40 #include "xfs_bmap_util.h" 41 #include "xfs_error.h" 42 #include "xfs_quota.h" 43 #include "xfs_filestream.h" 44 #include "xfs_cksum.h" 45 #include "xfs_trace.h" 46 #include "xfs_icache.h" 47 #include "xfs_symlink.h" 48 #include "xfs_trans_priv.h" 49 #include "xfs_log.h" 50 #include "xfs_bmap_btree.h" 51 52 kmem_zone_t *xfs_inode_zone; 53 54 /* 55 * Used in xfs_itruncate_extents(). This is the maximum number of extents 56 * freed from a file in a single transaction. 57 */ 58 #define XFS_ITRUNC_MAX_EXTENTS 2 59 60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 61 62 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *); 63 64 /* 65 * helper function to extract extent size hint from inode 66 */ 67 xfs_extlen_t 68 xfs_get_extsz_hint( 69 struct xfs_inode *ip) 70 { 71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 72 return ip->i_d.di_extsize; 73 if (XFS_IS_REALTIME_INODE(ip)) 74 return ip->i_mount->m_sb.sb_rextsize; 75 return 0; 76 } 77 78 /* 79 * These two are wrapper routines around the xfs_ilock() routine used to 80 * centralize some grungy code. They are used in places that wish to lock the 81 * inode solely for reading the extents. The reason these places can't just 82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 83 * bringing in of the extents from disk for a file in b-tree format. If the 84 * inode is in b-tree format, then we need to lock the inode exclusively until 85 * the extents are read in. Locking it exclusively all the time would limit 86 * our parallelism unnecessarily, though. What we do instead is check to see 87 * if the extents have been read in yet, and only lock the inode exclusively 88 * if they have not. 89 * 90 * The functions return a value which should be given to the corresponding 91 * xfs_iunlock() call. 92 */ 93 uint 94 xfs_ilock_data_map_shared( 95 struct xfs_inode *ip) 96 { 97 uint lock_mode = XFS_ILOCK_SHARED; 98 99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 101 lock_mode = XFS_ILOCK_EXCL; 102 xfs_ilock(ip, lock_mode); 103 return lock_mode; 104 } 105 106 uint 107 xfs_ilock_attr_map_shared( 108 struct xfs_inode *ip) 109 { 110 uint lock_mode = XFS_ILOCK_SHARED; 111 112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 114 lock_mode = XFS_ILOCK_EXCL; 115 xfs_ilock(ip, lock_mode); 116 return lock_mode; 117 } 118 119 /* 120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and 121 * the i_lock. This routine allows various combinations of the locks to be 122 * obtained. 123 * 124 * The 3 locks should always be ordered so that the IO lock is obtained first, 125 * the mmap lock second and the ilock last in order to prevent deadlock. 126 * 127 * Basic locking order: 128 * 129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock 130 * 131 * mmap_sem locking order: 132 * 133 * i_iolock -> page lock -> mmap_sem 134 * mmap_sem -> i_mmap_lock -> page_lock 135 * 136 * The difference in mmap_sem locking order mean that we cannot hold the 137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem 139 * in get_user_pages() to map the user pages into the kernel address space for 140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because 141 * page faults already hold the mmap_sem. 142 * 143 * Hence to serialise fully against both syscall and mmap based IO, we need to 144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both 145 * taken in places where we need to invalidate the page cache in a race 146 * free manner (e.g. truncate, hole punch and other extent manipulation 147 * functions). 148 */ 149 void 150 xfs_ilock( 151 xfs_inode_t *ip, 152 uint lock_flags) 153 { 154 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 155 156 /* 157 * You can't set both SHARED and EXCL for the same lock, 158 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 159 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 160 */ 161 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 162 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 163 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 164 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 165 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 166 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 167 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 168 169 if (lock_flags & XFS_IOLOCK_EXCL) 170 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 171 else if (lock_flags & XFS_IOLOCK_SHARED) 172 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 173 174 if (lock_flags & XFS_MMAPLOCK_EXCL) 175 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 176 else if (lock_flags & XFS_MMAPLOCK_SHARED) 177 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 178 179 if (lock_flags & XFS_ILOCK_EXCL) 180 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 181 else if (lock_flags & XFS_ILOCK_SHARED) 182 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 183 } 184 185 /* 186 * This is just like xfs_ilock(), except that the caller 187 * is guaranteed not to sleep. It returns 1 if it gets 188 * the requested locks and 0 otherwise. If the IO lock is 189 * obtained but the inode lock cannot be, then the IO lock 190 * is dropped before returning. 191 * 192 * ip -- the inode being locked 193 * lock_flags -- this parameter indicates the inode's locks to be 194 * to be locked. See the comment for xfs_ilock() for a list 195 * of valid values. 196 */ 197 int 198 xfs_ilock_nowait( 199 xfs_inode_t *ip, 200 uint lock_flags) 201 { 202 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 203 204 /* 205 * You can't set both SHARED and EXCL for the same lock, 206 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 207 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 208 */ 209 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 210 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 211 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 212 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 213 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 214 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 215 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 216 217 if (lock_flags & XFS_IOLOCK_EXCL) { 218 if (!mrtryupdate(&ip->i_iolock)) 219 goto out; 220 } else if (lock_flags & XFS_IOLOCK_SHARED) { 221 if (!mrtryaccess(&ip->i_iolock)) 222 goto out; 223 } 224 225 if (lock_flags & XFS_MMAPLOCK_EXCL) { 226 if (!mrtryupdate(&ip->i_mmaplock)) 227 goto out_undo_iolock; 228 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 229 if (!mrtryaccess(&ip->i_mmaplock)) 230 goto out_undo_iolock; 231 } 232 233 if (lock_flags & XFS_ILOCK_EXCL) { 234 if (!mrtryupdate(&ip->i_lock)) 235 goto out_undo_mmaplock; 236 } else if (lock_flags & XFS_ILOCK_SHARED) { 237 if (!mrtryaccess(&ip->i_lock)) 238 goto out_undo_mmaplock; 239 } 240 return 1; 241 242 out_undo_mmaplock: 243 if (lock_flags & XFS_MMAPLOCK_EXCL) 244 mrunlock_excl(&ip->i_mmaplock); 245 else if (lock_flags & XFS_MMAPLOCK_SHARED) 246 mrunlock_shared(&ip->i_mmaplock); 247 out_undo_iolock: 248 if (lock_flags & XFS_IOLOCK_EXCL) 249 mrunlock_excl(&ip->i_iolock); 250 else if (lock_flags & XFS_IOLOCK_SHARED) 251 mrunlock_shared(&ip->i_iolock); 252 out: 253 return 0; 254 } 255 256 /* 257 * xfs_iunlock() is used to drop the inode locks acquired with 258 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 260 * that we know which locks to drop. 261 * 262 * ip -- the inode being unlocked 263 * lock_flags -- this parameter indicates the inode's locks to be 264 * to be unlocked. See the comment for xfs_ilock() for a list 265 * of valid values for this parameter. 266 * 267 */ 268 void 269 xfs_iunlock( 270 xfs_inode_t *ip, 271 uint lock_flags) 272 { 273 /* 274 * You can't set both SHARED and EXCL for the same lock, 275 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 276 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 277 */ 278 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 279 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 280 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 281 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 282 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 283 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 284 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 285 ASSERT(lock_flags != 0); 286 287 if (lock_flags & XFS_IOLOCK_EXCL) 288 mrunlock_excl(&ip->i_iolock); 289 else if (lock_flags & XFS_IOLOCK_SHARED) 290 mrunlock_shared(&ip->i_iolock); 291 292 if (lock_flags & XFS_MMAPLOCK_EXCL) 293 mrunlock_excl(&ip->i_mmaplock); 294 else if (lock_flags & XFS_MMAPLOCK_SHARED) 295 mrunlock_shared(&ip->i_mmaplock); 296 297 if (lock_flags & XFS_ILOCK_EXCL) 298 mrunlock_excl(&ip->i_lock); 299 else if (lock_flags & XFS_ILOCK_SHARED) 300 mrunlock_shared(&ip->i_lock); 301 302 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 303 } 304 305 /* 306 * give up write locks. the i/o lock cannot be held nested 307 * if it is being demoted. 308 */ 309 void 310 xfs_ilock_demote( 311 xfs_inode_t *ip, 312 uint lock_flags) 313 { 314 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 315 ASSERT((lock_flags & 316 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 317 318 if (lock_flags & XFS_ILOCK_EXCL) 319 mrdemote(&ip->i_lock); 320 if (lock_flags & XFS_MMAPLOCK_EXCL) 321 mrdemote(&ip->i_mmaplock); 322 if (lock_flags & XFS_IOLOCK_EXCL) 323 mrdemote(&ip->i_iolock); 324 325 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 326 } 327 328 #if defined(DEBUG) || defined(XFS_WARN) 329 int 330 xfs_isilocked( 331 xfs_inode_t *ip, 332 uint lock_flags) 333 { 334 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 335 if (!(lock_flags & XFS_ILOCK_SHARED)) 336 return !!ip->i_lock.mr_writer; 337 return rwsem_is_locked(&ip->i_lock.mr_lock); 338 } 339 340 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 341 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 342 return !!ip->i_mmaplock.mr_writer; 343 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 344 } 345 346 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 347 if (!(lock_flags & XFS_IOLOCK_SHARED)) 348 return !!ip->i_iolock.mr_writer; 349 return rwsem_is_locked(&ip->i_iolock.mr_lock); 350 } 351 352 ASSERT(0); 353 return 0; 354 } 355 #endif 356 357 #ifdef DEBUG 358 int xfs_locked_n; 359 int xfs_small_retries; 360 int xfs_middle_retries; 361 int xfs_lots_retries; 362 int xfs_lock_delays; 363 #endif 364 365 /* 366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 369 * errors and warnings. 370 */ 371 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 372 static bool 373 xfs_lockdep_subclass_ok( 374 int subclass) 375 { 376 return subclass < MAX_LOCKDEP_SUBCLASSES; 377 } 378 #else 379 #define xfs_lockdep_subclass_ok(subclass) (true) 380 #endif 381 382 /* 383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 384 * value. This can be called for any type of inode lock combination, including 385 * parent locking. Care must be taken to ensure we don't overrun the subclass 386 * storage fields in the class mask we build. 387 */ 388 static inline int 389 xfs_lock_inumorder(int lock_mode, int subclass) 390 { 391 int class = 0; 392 393 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 394 XFS_ILOCK_RTSUM))); 395 ASSERT(xfs_lockdep_subclass_ok(subclass)); 396 397 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 398 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 399 ASSERT(xfs_lockdep_subclass_ok(subclass + 400 XFS_IOLOCK_PARENT_VAL)); 401 class += subclass << XFS_IOLOCK_SHIFT; 402 if (lock_mode & XFS_IOLOCK_PARENT) 403 class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT; 404 } 405 406 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 407 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 408 class += subclass << XFS_MMAPLOCK_SHIFT; 409 } 410 411 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 412 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 413 class += subclass << XFS_ILOCK_SHIFT; 414 } 415 416 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 417 } 418 419 /* 420 * The following routine will lock n inodes in exclusive mode. We assume the 421 * caller calls us with the inodes in i_ino order. 422 * 423 * We need to detect deadlock where an inode that we lock is in the AIL and we 424 * start waiting for another inode that is locked by a thread in a long running 425 * transaction (such as truncate). This can result in deadlock since the long 426 * running trans might need to wait for the inode we just locked in order to 427 * push the tail and free space in the log. 428 * 429 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 431 * lock more than one at a time, lockdep will report false positives saying we 432 * have violated locking orders. 433 */ 434 void 435 xfs_lock_inodes( 436 xfs_inode_t **ips, 437 int inodes, 438 uint lock_mode) 439 { 440 int attempts = 0, i, j, try_lock; 441 xfs_log_item_t *lp; 442 443 /* 444 * Currently supports between 2 and 5 inodes with exclusive locking. We 445 * support an arbitrary depth of locking here, but absolute limits on 446 * inodes depend on the the type of locking and the limits placed by 447 * lockdep annotations in xfs_lock_inumorder. These are all checked by 448 * the asserts. 449 */ 450 ASSERT(ips && inodes >= 2 && inodes <= 5); 451 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 452 XFS_ILOCK_EXCL)); 453 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 454 XFS_ILOCK_SHARED))); 455 ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) || 456 inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1); 457 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 458 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 459 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 460 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 461 462 if (lock_mode & XFS_IOLOCK_EXCL) { 463 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 464 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 466 467 try_lock = 0; 468 i = 0; 469 again: 470 for (; i < inodes; i++) { 471 ASSERT(ips[i]); 472 473 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 474 continue; 475 476 /* 477 * If try_lock is not set yet, make sure all locked inodes are 478 * not in the AIL. If any are, set try_lock to be used later. 479 */ 480 if (!try_lock) { 481 for (j = (i - 1); j >= 0 && !try_lock; j--) { 482 lp = (xfs_log_item_t *)ips[j]->i_itemp; 483 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) 484 try_lock++; 485 } 486 } 487 488 /* 489 * If any of the previous locks we have locked is in the AIL, 490 * we must TRY to get the second and subsequent locks. If 491 * we can't get any, we must release all we have 492 * and try again. 493 */ 494 if (!try_lock) { 495 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 496 continue; 497 } 498 499 /* try_lock means we have an inode locked that is in the AIL. */ 500 ASSERT(i != 0); 501 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 502 continue; 503 504 /* 505 * Unlock all previous guys and try again. xfs_iunlock will try 506 * to push the tail if the inode is in the AIL. 507 */ 508 attempts++; 509 for (j = i - 1; j >= 0; j--) { 510 /* 511 * Check to see if we've already unlocked this one. Not 512 * the first one going back, and the inode ptr is the 513 * same. 514 */ 515 if (j != (i - 1) && ips[j] == ips[j + 1]) 516 continue; 517 518 xfs_iunlock(ips[j], lock_mode); 519 } 520 521 if ((attempts % 5) == 0) { 522 delay(1); /* Don't just spin the CPU */ 523 #ifdef DEBUG 524 xfs_lock_delays++; 525 #endif 526 } 527 i = 0; 528 try_lock = 0; 529 goto again; 530 } 531 532 #ifdef DEBUG 533 if (attempts) { 534 if (attempts < 5) xfs_small_retries++; 535 else if (attempts < 100) xfs_middle_retries++; 536 else xfs_lots_retries++; 537 } else { 538 xfs_locked_n++; 539 } 540 #endif 541 } 542 543 /* 544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 546 * lock more than one at a time, lockdep will report false positives saying we 547 * have violated locking orders. 548 */ 549 void 550 xfs_lock_two_inodes( 551 xfs_inode_t *ip0, 552 xfs_inode_t *ip1, 553 uint lock_mode) 554 { 555 xfs_inode_t *temp; 556 int attempts = 0; 557 xfs_log_item_t *lp; 558 559 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 560 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 561 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 562 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) 563 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 564 565 ASSERT(ip0->i_ino != ip1->i_ino); 566 567 if (ip0->i_ino > ip1->i_ino) { 568 temp = ip0; 569 ip0 = ip1; 570 ip1 = temp; 571 } 572 573 again: 574 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0)); 575 576 /* 577 * If the first lock we have locked is in the AIL, we must TRY to get 578 * the second lock. If we can't get it, we must release the first one 579 * and try again. 580 */ 581 lp = (xfs_log_item_t *)ip0->i_itemp; 582 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 583 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) { 584 xfs_iunlock(ip0, lock_mode); 585 if ((++attempts % 5) == 0) 586 delay(1); /* Don't just spin the CPU */ 587 goto again; 588 } 589 } else { 590 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1)); 591 } 592 } 593 594 595 void 596 __xfs_iflock( 597 struct xfs_inode *ip) 598 { 599 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 600 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 601 602 do { 603 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 604 if (xfs_isiflocked(ip)) 605 io_schedule(); 606 } while (!xfs_iflock_nowait(ip)); 607 608 finish_wait(wq, &wait.wait); 609 } 610 611 STATIC uint 612 _xfs_dic2xflags( 613 __uint16_t di_flags, 614 uint64_t di_flags2, 615 bool has_attr) 616 { 617 uint flags = 0; 618 619 if (di_flags & XFS_DIFLAG_ANY) { 620 if (di_flags & XFS_DIFLAG_REALTIME) 621 flags |= FS_XFLAG_REALTIME; 622 if (di_flags & XFS_DIFLAG_PREALLOC) 623 flags |= FS_XFLAG_PREALLOC; 624 if (di_flags & XFS_DIFLAG_IMMUTABLE) 625 flags |= FS_XFLAG_IMMUTABLE; 626 if (di_flags & XFS_DIFLAG_APPEND) 627 flags |= FS_XFLAG_APPEND; 628 if (di_flags & XFS_DIFLAG_SYNC) 629 flags |= FS_XFLAG_SYNC; 630 if (di_flags & XFS_DIFLAG_NOATIME) 631 flags |= FS_XFLAG_NOATIME; 632 if (di_flags & XFS_DIFLAG_NODUMP) 633 flags |= FS_XFLAG_NODUMP; 634 if (di_flags & XFS_DIFLAG_RTINHERIT) 635 flags |= FS_XFLAG_RTINHERIT; 636 if (di_flags & XFS_DIFLAG_PROJINHERIT) 637 flags |= FS_XFLAG_PROJINHERIT; 638 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 639 flags |= FS_XFLAG_NOSYMLINKS; 640 if (di_flags & XFS_DIFLAG_EXTSIZE) 641 flags |= FS_XFLAG_EXTSIZE; 642 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 643 flags |= FS_XFLAG_EXTSZINHERIT; 644 if (di_flags & XFS_DIFLAG_NODEFRAG) 645 flags |= FS_XFLAG_NODEFRAG; 646 if (di_flags & XFS_DIFLAG_FILESTREAM) 647 flags |= FS_XFLAG_FILESTREAM; 648 } 649 650 if (di_flags2 & XFS_DIFLAG2_ANY) { 651 if (di_flags2 & XFS_DIFLAG2_DAX) 652 flags |= FS_XFLAG_DAX; 653 } 654 655 if (has_attr) 656 flags |= FS_XFLAG_HASATTR; 657 658 return flags; 659 } 660 661 uint 662 xfs_ip2xflags( 663 struct xfs_inode *ip) 664 { 665 struct xfs_icdinode *dic = &ip->i_d; 666 667 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 668 } 669 670 uint 671 xfs_dic2xflags( 672 struct xfs_dinode *dip) 673 { 674 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags), 675 be64_to_cpu(dip->di_flags2), XFS_DFORK_Q(dip)); 676 } 677 678 /* 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 680 * is allowed, otherwise it has to be an exact match. If a CI match is found, 681 * ci_name->name will point to a the actual name (caller must free) or 682 * will be set to NULL if an exact match is found. 683 */ 684 int 685 xfs_lookup( 686 xfs_inode_t *dp, 687 struct xfs_name *name, 688 xfs_inode_t **ipp, 689 struct xfs_name *ci_name) 690 { 691 xfs_ino_t inum; 692 int error; 693 694 trace_xfs_lookup(dp, name); 695 696 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 697 return -EIO; 698 699 xfs_ilock(dp, XFS_IOLOCK_SHARED); 700 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 701 if (error) 702 goto out_unlock; 703 704 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 705 if (error) 706 goto out_free_name; 707 708 xfs_iunlock(dp, XFS_IOLOCK_SHARED); 709 return 0; 710 711 out_free_name: 712 if (ci_name) 713 kmem_free(ci_name->name); 714 out_unlock: 715 xfs_iunlock(dp, XFS_IOLOCK_SHARED); 716 *ipp = NULL; 717 return error; 718 } 719 720 /* 721 * Allocate an inode on disk and return a copy of its in-core version. 722 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 723 * appropriately within the inode. The uid and gid for the inode are 724 * set according to the contents of the given cred structure. 725 * 726 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 727 * has a free inode available, call xfs_iget() to obtain the in-core 728 * version of the allocated inode. Finally, fill in the inode and 729 * log its initial contents. In this case, ialloc_context would be 730 * set to NULL. 731 * 732 * If xfs_dialloc() does not have an available inode, it will replenish 733 * its supply by doing an allocation. Since we can only do one 734 * allocation within a transaction without deadlocks, we must commit 735 * the current transaction before returning the inode itself. 736 * In this case, therefore, we will set ialloc_context and return. 737 * The caller should then commit the current transaction, start a new 738 * transaction, and call xfs_ialloc() again to actually get the inode. 739 * 740 * To ensure that some other process does not grab the inode that 741 * was allocated during the first call to xfs_ialloc(), this routine 742 * also returns the [locked] bp pointing to the head of the freelist 743 * as ialloc_context. The caller should hold this buffer across 744 * the commit and pass it back into this routine on the second call. 745 * 746 * If we are allocating quota inodes, we do not have a parent inode 747 * to attach to or associate with (i.e. pip == NULL) because they 748 * are not linked into the directory structure - they are attached 749 * directly to the superblock - and so have no parent. 750 */ 751 int 752 xfs_ialloc( 753 xfs_trans_t *tp, 754 xfs_inode_t *pip, 755 umode_t mode, 756 xfs_nlink_t nlink, 757 xfs_dev_t rdev, 758 prid_t prid, 759 int okalloc, 760 xfs_buf_t **ialloc_context, 761 xfs_inode_t **ipp) 762 { 763 struct xfs_mount *mp = tp->t_mountp; 764 xfs_ino_t ino; 765 xfs_inode_t *ip; 766 uint flags; 767 int error; 768 struct timespec tv; 769 770 /* 771 * Call the space management code to pick 772 * the on-disk inode to be allocated. 773 */ 774 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 775 ialloc_context, &ino); 776 if (error) 777 return error; 778 if (*ialloc_context || ino == NULLFSINO) { 779 *ipp = NULL; 780 return 0; 781 } 782 ASSERT(*ialloc_context == NULL); 783 784 /* 785 * Get the in-core inode with the lock held exclusively. 786 * This is because we're setting fields here we need 787 * to prevent others from looking at until we're done. 788 */ 789 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 790 XFS_ILOCK_EXCL, &ip); 791 if (error) 792 return error; 793 ASSERT(ip != NULL); 794 795 /* 796 * We always convert v1 inodes to v2 now - we only support filesystems 797 * with >= v2 inode capability, so there is no reason for ever leaving 798 * an inode in v1 format. 799 */ 800 if (ip->i_d.di_version == 1) 801 ip->i_d.di_version = 2; 802 803 ip->i_d.di_mode = mode; 804 ip->i_d.di_onlink = 0; 805 ip->i_d.di_nlink = nlink; 806 ASSERT(ip->i_d.di_nlink == nlink); 807 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 808 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 809 xfs_set_projid(ip, prid); 810 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 811 812 if (pip && XFS_INHERIT_GID(pip)) { 813 ip->i_d.di_gid = pip->i_d.di_gid; 814 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) { 815 ip->i_d.di_mode |= S_ISGID; 816 } 817 } 818 819 /* 820 * If the group ID of the new file does not match the effective group 821 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 822 * (and only if the irix_sgid_inherit compatibility variable is set). 823 */ 824 if ((irix_sgid_inherit) && 825 (ip->i_d.di_mode & S_ISGID) && 826 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) { 827 ip->i_d.di_mode &= ~S_ISGID; 828 } 829 830 ip->i_d.di_size = 0; 831 ip->i_d.di_nextents = 0; 832 ASSERT(ip->i_d.di_nblocks == 0); 833 834 tv = current_fs_time(mp->m_super); 835 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 836 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 837 ip->i_d.di_atime = ip->i_d.di_mtime; 838 ip->i_d.di_ctime = ip->i_d.di_mtime; 839 840 /* 841 * di_gen will have been taken care of in xfs_iread. 842 */ 843 ip->i_d.di_extsize = 0; 844 ip->i_d.di_dmevmask = 0; 845 ip->i_d.di_dmstate = 0; 846 ip->i_d.di_flags = 0; 847 848 if (ip->i_d.di_version == 3) { 849 ASSERT(ip->i_d.di_ino == ino); 850 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_meta_uuid)); 851 ip->i_d.di_crc = 0; 852 ip->i_d.di_changecount = 1; 853 ip->i_d.di_lsn = 0; 854 ip->i_d.di_flags2 = 0; 855 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2)); 856 ip->i_d.di_crtime = ip->i_d.di_mtime; 857 } 858 859 860 flags = XFS_ILOG_CORE; 861 switch (mode & S_IFMT) { 862 case S_IFIFO: 863 case S_IFCHR: 864 case S_IFBLK: 865 case S_IFSOCK: 866 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 867 ip->i_df.if_u2.if_rdev = rdev; 868 ip->i_df.if_flags = 0; 869 flags |= XFS_ILOG_DEV; 870 break; 871 case S_IFREG: 872 case S_IFDIR: 873 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 874 uint64_t di_flags2 = 0; 875 uint di_flags = 0; 876 877 if (S_ISDIR(mode)) { 878 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 879 di_flags |= XFS_DIFLAG_RTINHERIT; 880 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 881 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 882 ip->i_d.di_extsize = pip->i_d.di_extsize; 883 } 884 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 885 di_flags |= XFS_DIFLAG_PROJINHERIT; 886 } else if (S_ISREG(mode)) { 887 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 888 di_flags |= XFS_DIFLAG_REALTIME; 889 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 890 di_flags |= XFS_DIFLAG_EXTSIZE; 891 ip->i_d.di_extsize = pip->i_d.di_extsize; 892 } 893 } 894 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 895 xfs_inherit_noatime) 896 di_flags |= XFS_DIFLAG_NOATIME; 897 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 898 xfs_inherit_nodump) 899 di_flags |= XFS_DIFLAG_NODUMP; 900 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 901 xfs_inherit_sync) 902 di_flags |= XFS_DIFLAG_SYNC; 903 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 904 xfs_inherit_nosymlinks) 905 di_flags |= XFS_DIFLAG_NOSYMLINKS; 906 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 907 xfs_inherit_nodefrag) 908 di_flags |= XFS_DIFLAG_NODEFRAG; 909 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 910 di_flags |= XFS_DIFLAG_FILESTREAM; 911 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 912 di_flags2 |= XFS_DIFLAG2_DAX; 913 914 ip->i_d.di_flags |= di_flags; 915 ip->i_d.di_flags2 |= di_flags2; 916 } 917 /* FALLTHROUGH */ 918 case S_IFLNK: 919 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 920 ip->i_df.if_flags = XFS_IFEXTENTS; 921 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 922 ip->i_df.if_u1.if_extents = NULL; 923 break; 924 default: 925 ASSERT(0); 926 } 927 /* 928 * Attribute fork settings for new inode. 929 */ 930 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 931 ip->i_d.di_anextents = 0; 932 933 /* 934 * Log the new values stuffed into the inode. 935 */ 936 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 937 xfs_trans_log_inode(tp, ip, flags); 938 939 /* now that we have an i_mode we can setup the inode structure */ 940 xfs_setup_inode(ip); 941 942 *ipp = ip; 943 return 0; 944 } 945 946 /* 947 * Allocates a new inode from disk and return a pointer to the 948 * incore copy. This routine will internally commit the current 949 * transaction and allocate a new one if the Space Manager needed 950 * to do an allocation to replenish the inode free-list. 951 * 952 * This routine is designed to be called from xfs_create and 953 * xfs_create_dir. 954 * 955 */ 956 int 957 xfs_dir_ialloc( 958 xfs_trans_t **tpp, /* input: current transaction; 959 output: may be a new transaction. */ 960 xfs_inode_t *dp, /* directory within whose allocate 961 the inode. */ 962 umode_t mode, 963 xfs_nlink_t nlink, 964 xfs_dev_t rdev, 965 prid_t prid, /* project id */ 966 int okalloc, /* ok to allocate new space */ 967 xfs_inode_t **ipp, /* pointer to inode; it will be 968 locked. */ 969 int *committed) 970 971 { 972 xfs_trans_t *tp; 973 xfs_inode_t *ip; 974 xfs_buf_t *ialloc_context = NULL; 975 int code; 976 void *dqinfo; 977 uint tflags; 978 979 tp = *tpp; 980 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 981 982 /* 983 * xfs_ialloc will return a pointer to an incore inode if 984 * the Space Manager has an available inode on the free 985 * list. Otherwise, it will do an allocation and replenish 986 * the freelist. Since we can only do one allocation per 987 * transaction without deadlocks, we will need to commit the 988 * current transaction and start a new one. We will then 989 * need to call xfs_ialloc again to get the inode. 990 * 991 * If xfs_ialloc did an allocation to replenish the freelist, 992 * it returns the bp containing the head of the freelist as 993 * ialloc_context. We will hold a lock on it across the 994 * transaction commit so that no other process can steal 995 * the inode(s) that we've just allocated. 996 */ 997 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc, 998 &ialloc_context, &ip); 999 1000 /* 1001 * Return an error if we were unable to allocate a new inode. 1002 * This should only happen if we run out of space on disk or 1003 * encounter a disk error. 1004 */ 1005 if (code) { 1006 *ipp = NULL; 1007 return code; 1008 } 1009 if (!ialloc_context && !ip) { 1010 *ipp = NULL; 1011 return -ENOSPC; 1012 } 1013 1014 /* 1015 * If the AGI buffer is non-NULL, then we were unable to get an 1016 * inode in one operation. We need to commit the current 1017 * transaction and call xfs_ialloc() again. It is guaranteed 1018 * to succeed the second time. 1019 */ 1020 if (ialloc_context) { 1021 /* 1022 * Normally, xfs_trans_commit releases all the locks. 1023 * We call bhold to hang on to the ialloc_context across 1024 * the commit. Holding this buffer prevents any other 1025 * processes from doing any allocations in this 1026 * allocation group. 1027 */ 1028 xfs_trans_bhold(tp, ialloc_context); 1029 1030 /* 1031 * We want the quota changes to be associated with the next 1032 * transaction, NOT this one. So, detach the dqinfo from this 1033 * and attach it to the next transaction. 1034 */ 1035 dqinfo = NULL; 1036 tflags = 0; 1037 if (tp->t_dqinfo) { 1038 dqinfo = (void *)tp->t_dqinfo; 1039 tp->t_dqinfo = NULL; 1040 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1041 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1042 } 1043 1044 code = xfs_trans_roll(&tp, 0); 1045 if (committed != NULL) 1046 *committed = 1; 1047 1048 /* 1049 * Re-attach the quota info that we detached from prev trx. 1050 */ 1051 if (dqinfo) { 1052 tp->t_dqinfo = dqinfo; 1053 tp->t_flags |= tflags; 1054 } 1055 1056 if (code) { 1057 xfs_buf_relse(ialloc_context); 1058 *tpp = tp; 1059 *ipp = NULL; 1060 return code; 1061 } 1062 xfs_trans_bjoin(tp, ialloc_context); 1063 1064 /* 1065 * Call ialloc again. Since we've locked out all 1066 * other allocations in this allocation group, 1067 * this call should always succeed. 1068 */ 1069 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1070 okalloc, &ialloc_context, &ip); 1071 1072 /* 1073 * If we get an error at this point, return to the caller 1074 * so that the current transaction can be aborted. 1075 */ 1076 if (code) { 1077 *tpp = tp; 1078 *ipp = NULL; 1079 return code; 1080 } 1081 ASSERT(!ialloc_context && ip); 1082 1083 } else { 1084 if (committed != NULL) 1085 *committed = 0; 1086 } 1087 1088 *ipp = ip; 1089 *tpp = tp; 1090 1091 return 0; 1092 } 1093 1094 /* 1095 * Decrement the link count on an inode & log the change. 1096 * If this causes the link count to go to zero, initiate the 1097 * logging activity required to truncate a file. 1098 */ 1099 int /* error */ 1100 xfs_droplink( 1101 xfs_trans_t *tp, 1102 xfs_inode_t *ip) 1103 { 1104 int error; 1105 1106 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1107 1108 ASSERT (ip->i_d.di_nlink > 0); 1109 ip->i_d.di_nlink--; 1110 drop_nlink(VFS_I(ip)); 1111 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1112 1113 error = 0; 1114 if (ip->i_d.di_nlink == 0) { 1115 /* 1116 * We're dropping the last link to this file. 1117 * Move the on-disk inode to the AGI unlinked list. 1118 * From xfs_inactive() we will pull the inode from 1119 * the list and free it. 1120 */ 1121 error = xfs_iunlink(tp, ip); 1122 } 1123 return error; 1124 } 1125 1126 /* 1127 * Increment the link count on an inode & log the change. 1128 */ 1129 int 1130 xfs_bumplink( 1131 xfs_trans_t *tp, 1132 xfs_inode_t *ip) 1133 { 1134 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1135 1136 ASSERT(ip->i_d.di_version > 1); 1137 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE)); 1138 ip->i_d.di_nlink++; 1139 inc_nlink(VFS_I(ip)); 1140 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1141 return 0; 1142 } 1143 1144 int 1145 xfs_create( 1146 xfs_inode_t *dp, 1147 struct xfs_name *name, 1148 umode_t mode, 1149 xfs_dev_t rdev, 1150 xfs_inode_t **ipp) 1151 { 1152 int is_dir = S_ISDIR(mode); 1153 struct xfs_mount *mp = dp->i_mount; 1154 struct xfs_inode *ip = NULL; 1155 struct xfs_trans *tp = NULL; 1156 int error; 1157 xfs_bmap_free_t free_list; 1158 xfs_fsblock_t first_block; 1159 bool unlock_dp_on_error = false; 1160 prid_t prid; 1161 struct xfs_dquot *udqp = NULL; 1162 struct xfs_dquot *gdqp = NULL; 1163 struct xfs_dquot *pdqp = NULL; 1164 struct xfs_trans_res *tres; 1165 uint resblks; 1166 1167 trace_xfs_create(dp, name); 1168 1169 if (XFS_FORCED_SHUTDOWN(mp)) 1170 return -EIO; 1171 1172 prid = xfs_get_initial_prid(dp); 1173 1174 /* 1175 * Make sure that we have allocated dquot(s) on disk. 1176 */ 1177 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1178 xfs_kgid_to_gid(current_fsgid()), prid, 1179 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1180 &udqp, &gdqp, &pdqp); 1181 if (error) 1182 return error; 1183 1184 if (is_dir) { 1185 rdev = 0; 1186 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1187 tres = &M_RES(mp)->tr_mkdir; 1188 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR); 1189 } else { 1190 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1191 tres = &M_RES(mp)->tr_create; 1192 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE); 1193 } 1194 1195 /* 1196 * Initially assume that the file does not exist and 1197 * reserve the resources for that case. If that is not 1198 * the case we'll drop the one we have and get a more 1199 * appropriate transaction later. 1200 */ 1201 error = xfs_trans_reserve(tp, tres, resblks, 0); 1202 if (error == -ENOSPC) { 1203 /* flush outstanding delalloc blocks and retry */ 1204 xfs_flush_inodes(mp); 1205 error = xfs_trans_reserve(tp, tres, resblks, 0); 1206 } 1207 if (error == -ENOSPC) { 1208 /* No space at all so try a "no-allocation" reservation */ 1209 resblks = 0; 1210 error = xfs_trans_reserve(tp, tres, 0, 0); 1211 } 1212 if (error) 1213 goto out_trans_cancel; 1214 1215 1216 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL | 1217 XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT); 1218 unlock_dp_on_error = true; 1219 1220 xfs_bmap_init(&free_list, &first_block); 1221 1222 /* 1223 * Reserve disk quota and the inode. 1224 */ 1225 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1226 pdqp, resblks, 1, 0); 1227 if (error) 1228 goto out_trans_cancel; 1229 1230 if (!resblks) { 1231 error = xfs_dir_canenter(tp, dp, name); 1232 if (error) 1233 goto out_trans_cancel; 1234 } 1235 1236 /* 1237 * A newly created regular or special file just has one directory 1238 * entry pointing to them, but a directory also the "." entry 1239 * pointing to itself. 1240 */ 1241 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, 1242 prid, resblks > 0, &ip, NULL); 1243 if (error) 1244 goto out_trans_cancel; 1245 1246 /* 1247 * Now we join the directory inode to the transaction. We do not do it 1248 * earlier because xfs_dir_ialloc might commit the previous transaction 1249 * (and release all the locks). An error from here on will result in 1250 * the transaction cancel unlocking dp so don't do it explicitly in the 1251 * error path. 1252 */ 1253 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 1254 unlock_dp_on_error = false; 1255 1256 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1257 &first_block, &free_list, resblks ? 1258 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1259 if (error) { 1260 ASSERT(error != -ENOSPC); 1261 goto out_trans_cancel; 1262 } 1263 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1264 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1265 1266 if (is_dir) { 1267 error = xfs_dir_init(tp, ip, dp); 1268 if (error) 1269 goto out_bmap_cancel; 1270 1271 error = xfs_bumplink(tp, dp); 1272 if (error) 1273 goto out_bmap_cancel; 1274 } 1275 1276 /* 1277 * If this is a synchronous mount, make sure that the 1278 * create transaction goes to disk before returning to 1279 * the user. 1280 */ 1281 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1282 xfs_trans_set_sync(tp); 1283 1284 /* 1285 * Attach the dquot(s) to the inodes and modify them incore. 1286 * These ids of the inode couldn't have changed since the new 1287 * inode has been locked ever since it was created. 1288 */ 1289 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1290 1291 error = xfs_bmap_finish(&tp, &free_list, NULL); 1292 if (error) 1293 goto out_bmap_cancel; 1294 1295 error = xfs_trans_commit(tp); 1296 if (error) 1297 goto out_release_inode; 1298 1299 xfs_qm_dqrele(udqp); 1300 xfs_qm_dqrele(gdqp); 1301 xfs_qm_dqrele(pdqp); 1302 1303 *ipp = ip; 1304 return 0; 1305 1306 out_bmap_cancel: 1307 xfs_bmap_cancel(&free_list); 1308 out_trans_cancel: 1309 xfs_trans_cancel(tp); 1310 out_release_inode: 1311 /* 1312 * Wait until after the current transaction is aborted to finish the 1313 * setup of the inode and release the inode. This prevents recursive 1314 * transactions and deadlocks from xfs_inactive. 1315 */ 1316 if (ip) { 1317 xfs_finish_inode_setup(ip); 1318 IRELE(ip); 1319 } 1320 1321 xfs_qm_dqrele(udqp); 1322 xfs_qm_dqrele(gdqp); 1323 xfs_qm_dqrele(pdqp); 1324 1325 if (unlock_dp_on_error) 1326 xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 1327 return error; 1328 } 1329 1330 int 1331 xfs_create_tmpfile( 1332 struct xfs_inode *dp, 1333 struct dentry *dentry, 1334 umode_t mode, 1335 struct xfs_inode **ipp) 1336 { 1337 struct xfs_mount *mp = dp->i_mount; 1338 struct xfs_inode *ip = NULL; 1339 struct xfs_trans *tp = NULL; 1340 int error; 1341 prid_t prid; 1342 struct xfs_dquot *udqp = NULL; 1343 struct xfs_dquot *gdqp = NULL; 1344 struct xfs_dquot *pdqp = NULL; 1345 struct xfs_trans_res *tres; 1346 uint resblks; 1347 1348 if (XFS_FORCED_SHUTDOWN(mp)) 1349 return -EIO; 1350 1351 prid = xfs_get_initial_prid(dp); 1352 1353 /* 1354 * Make sure that we have allocated dquot(s) on disk. 1355 */ 1356 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1357 xfs_kgid_to_gid(current_fsgid()), prid, 1358 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1359 &udqp, &gdqp, &pdqp); 1360 if (error) 1361 return error; 1362 1363 resblks = XFS_IALLOC_SPACE_RES(mp); 1364 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE); 1365 1366 tres = &M_RES(mp)->tr_create_tmpfile; 1367 error = xfs_trans_reserve(tp, tres, resblks, 0); 1368 if (error == -ENOSPC) { 1369 /* No space at all so try a "no-allocation" reservation */ 1370 resblks = 0; 1371 error = xfs_trans_reserve(tp, tres, 0, 0); 1372 } 1373 if (error) 1374 goto out_trans_cancel; 1375 1376 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1377 pdqp, resblks, 1, 0); 1378 if (error) 1379 goto out_trans_cancel; 1380 1381 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, 1382 prid, resblks > 0, &ip, NULL); 1383 if (error) 1384 goto out_trans_cancel; 1385 1386 if (mp->m_flags & XFS_MOUNT_WSYNC) 1387 xfs_trans_set_sync(tp); 1388 1389 /* 1390 * Attach the dquot(s) to the inodes and modify them incore. 1391 * These ids of the inode couldn't have changed since the new 1392 * inode has been locked ever since it was created. 1393 */ 1394 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1395 1396 ip->i_d.di_nlink--; 1397 error = xfs_iunlink(tp, ip); 1398 if (error) 1399 goto out_trans_cancel; 1400 1401 error = xfs_trans_commit(tp); 1402 if (error) 1403 goto out_release_inode; 1404 1405 xfs_qm_dqrele(udqp); 1406 xfs_qm_dqrele(gdqp); 1407 xfs_qm_dqrele(pdqp); 1408 1409 *ipp = ip; 1410 return 0; 1411 1412 out_trans_cancel: 1413 xfs_trans_cancel(tp); 1414 out_release_inode: 1415 /* 1416 * Wait until after the current transaction is aborted to finish the 1417 * setup of the inode and release the inode. This prevents recursive 1418 * transactions and deadlocks from xfs_inactive. 1419 */ 1420 if (ip) { 1421 xfs_finish_inode_setup(ip); 1422 IRELE(ip); 1423 } 1424 1425 xfs_qm_dqrele(udqp); 1426 xfs_qm_dqrele(gdqp); 1427 xfs_qm_dqrele(pdqp); 1428 1429 return error; 1430 } 1431 1432 int 1433 xfs_link( 1434 xfs_inode_t *tdp, 1435 xfs_inode_t *sip, 1436 struct xfs_name *target_name) 1437 { 1438 xfs_mount_t *mp = tdp->i_mount; 1439 xfs_trans_t *tp; 1440 int error; 1441 xfs_bmap_free_t free_list; 1442 xfs_fsblock_t first_block; 1443 int resblks; 1444 1445 trace_xfs_link(tdp, target_name); 1446 1447 ASSERT(!S_ISDIR(sip->i_d.di_mode)); 1448 1449 if (XFS_FORCED_SHUTDOWN(mp)) 1450 return -EIO; 1451 1452 error = xfs_qm_dqattach(sip, 0); 1453 if (error) 1454 goto std_return; 1455 1456 error = xfs_qm_dqattach(tdp, 0); 1457 if (error) 1458 goto std_return; 1459 1460 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK); 1461 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1462 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0); 1463 if (error == -ENOSPC) { 1464 resblks = 0; 1465 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0); 1466 } 1467 if (error) 1468 goto error_return; 1469 1470 xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 1471 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL); 1472 1473 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1474 xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 1475 1476 /* 1477 * If we are using project inheritance, we only allow hard link 1478 * creation in our tree when the project IDs are the same; else 1479 * the tree quota mechanism could be circumvented. 1480 */ 1481 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1482 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1483 error = -EXDEV; 1484 goto error_return; 1485 } 1486 1487 if (!resblks) { 1488 error = xfs_dir_canenter(tp, tdp, target_name); 1489 if (error) 1490 goto error_return; 1491 } 1492 1493 xfs_bmap_init(&free_list, &first_block); 1494 1495 if (sip->i_d.di_nlink == 0) { 1496 error = xfs_iunlink_remove(tp, sip); 1497 if (error) 1498 goto error_return; 1499 } 1500 1501 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1502 &first_block, &free_list, resblks); 1503 if (error) 1504 goto error_return; 1505 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1506 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1507 1508 error = xfs_bumplink(tp, sip); 1509 if (error) 1510 goto error_return; 1511 1512 /* 1513 * If this is a synchronous mount, make sure that the 1514 * link transaction goes to disk before returning to 1515 * the user. 1516 */ 1517 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1518 xfs_trans_set_sync(tp); 1519 1520 error = xfs_bmap_finish(&tp, &free_list, NULL); 1521 if (error) { 1522 xfs_bmap_cancel(&free_list); 1523 goto error_return; 1524 } 1525 1526 return xfs_trans_commit(tp); 1527 1528 error_return: 1529 xfs_trans_cancel(tp); 1530 std_return: 1531 return error; 1532 } 1533 1534 /* 1535 * Free up the underlying blocks past new_size. The new size must be smaller 1536 * than the current size. This routine can be used both for the attribute and 1537 * data fork, and does not modify the inode size, which is left to the caller. 1538 * 1539 * The transaction passed to this routine must have made a permanent log 1540 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1541 * given transaction and start new ones, so make sure everything involved in 1542 * the transaction is tidy before calling here. Some transaction will be 1543 * returned to the caller to be committed. The incoming transaction must 1544 * already include the inode, and both inode locks must be held exclusively. 1545 * The inode must also be "held" within the transaction. On return the inode 1546 * will be "held" within the returned transaction. This routine does NOT 1547 * require any disk space to be reserved for it within the transaction. 1548 * 1549 * If we get an error, we must return with the inode locked and linked into the 1550 * current transaction. This keeps things simple for the higher level code, 1551 * because it always knows that the inode is locked and held in the transaction 1552 * that returns to it whether errors occur or not. We don't mark the inode 1553 * dirty on error so that transactions can be easily aborted if possible. 1554 */ 1555 int 1556 xfs_itruncate_extents( 1557 struct xfs_trans **tpp, 1558 struct xfs_inode *ip, 1559 int whichfork, 1560 xfs_fsize_t new_size) 1561 { 1562 struct xfs_mount *mp = ip->i_mount; 1563 struct xfs_trans *tp = *tpp; 1564 xfs_bmap_free_t free_list; 1565 xfs_fsblock_t first_block; 1566 xfs_fileoff_t first_unmap_block; 1567 xfs_fileoff_t last_block; 1568 xfs_filblks_t unmap_len; 1569 int error = 0; 1570 int done = 0; 1571 1572 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1573 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1574 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1575 ASSERT(new_size <= XFS_ISIZE(ip)); 1576 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1577 ASSERT(ip->i_itemp != NULL); 1578 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1579 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1580 1581 trace_xfs_itruncate_extents_start(ip, new_size); 1582 1583 /* 1584 * Since it is possible for space to become allocated beyond 1585 * the end of the file (in a crash where the space is allocated 1586 * but the inode size is not yet updated), simply remove any 1587 * blocks which show up between the new EOF and the maximum 1588 * possible file size. If the first block to be removed is 1589 * beyond the maximum file size (ie it is the same as last_block), 1590 * then there is nothing to do. 1591 */ 1592 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1593 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1594 if (first_unmap_block == last_block) 1595 return 0; 1596 1597 ASSERT(first_unmap_block < last_block); 1598 unmap_len = last_block - first_unmap_block + 1; 1599 while (!done) { 1600 xfs_bmap_init(&free_list, &first_block); 1601 error = xfs_bunmapi(tp, ip, 1602 first_unmap_block, unmap_len, 1603 xfs_bmapi_aflag(whichfork), 1604 XFS_ITRUNC_MAX_EXTENTS, 1605 &first_block, &free_list, 1606 &done); 1607 if (error) 1608 goto out_bmap_cancel; 1609 1610 /* 1611 * Duplicate the transaction that has the permanent 1612 * reservation and commit the old transaction. 1613 */ 1614 error = xfs_bmap_finish(&tp, &free_list, ip); 1615 if (error) 1616 goto out_bmap_cancel; 1617 1618 error = xfs_trans_roll(&tp, ip); 1619 if (error) 1620 goto out; 1621 } 1622 1623 /* 1624 * Always re-log the inode so that our permanent transaction can keep 1625 * on rolling it forward in the log. 1626 */ 1627 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1628 1629 trace_xfs_itruncate_extents_end(ip, new_size); 1630 1631 out: 1632 *tpp = tp; 1633 return error; 1634 out_bmap_cancel: 1635 /* 1636 * If the bunmapi call encounters an error, return to the caller where 1637 * the transaction can be properly aborted. We just need to make sure 1638 * we're not holding any resources that we were not when we came in. 1639 */ 1640 xfs_bmap_cancel(&free_list); 1641 goto out; 1642 } 1643 1644 int 1645 xfs_release( 1646 xfs_inode_t *ip) 1647 { 1648 xfs_mount_t *mp = ip->i_mount; 1649 int error; 1650 1651 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0)) 1652 return 0; 1653 1654 /* If this is a read-only mount, don't do this (would generate I/O) */ 1655 if (mp->m_flags & XFS_MOUNT_RDONLY) 1656 return 0; 1657 1658 if (!XFS_FORCED_SHUTDOWN(mp)) { 1659 int truncated; 1660 1661 /* 1662 * If we previously truncated this file and removed old data 1663 * in the process, we want to initiate "early" writeout on 1664 * the last close. This is an attempt to combat the notorious 1665 * NULL files problem which is particularly noticeable from a 1666 * truncate down, buffered (re-)write (delalloc), followed by 1667 * a crash. What we are effectively doing here is 1668 * significantly reducing the time window where we'd otherwise 1669 * be exposed to that problem. 1670 */ 1671 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1672 if (truncated) { 1673 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1674 if (ip->i_delayed_blks > 0) { 1675 error = filemap_flush(VFS_I(ip)->i_mapping); 1676 if (error) 1677 return error; 1678 } 1679 } 1680 } 1681 1682 if (ip->i_d.di_nlink == 0) 1683 return 0; 1684 1685 if (xfs_can_free_eofblocks(ip, false)) { 1686 1687 /* 1688 * If we can't get the iolock just skip truncating the blocks 1689 * past EOF because we could deadlock with the mmap_sem 1690 * otherwise. We'll get another chance to drop them once the 1691 * last reference to the inode is dropped, so we'll never leak 1692 * blocks permanently. 1693 * 1694 * Further, check if the inode is being opened, written and 1695 * closed frequently and we have delayed allocation blocks 1696 * outstanding (e.g. streaming writes from the NFS server), 1697 * truncating the blocks past EOF will cause fragmentation to 1698 * occur. 1699 * 1700 * In this case don't do the truncation, either, but we have to 1701 * be careful how we detect this case. Blocks beyond EOF show 1702 * up as i_delayed_blks even when the inode is clean, so we 1703 * need to truncate them away first before checking for a dirty 1704 * release. Hence on the first dirty close we will still remove 1705 * the speculative allocation, but after that we will leave it 1706 * in place. 1707 */ 1708 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1709 return 0; 1710 1711 error = xfs_free_eofblocks(mp, ip, true); 1712 if (error && error != -EAGAIN) 1713 return error; 1714 1715 /* delalloc blocks after truncation means it really is dirty */ 1716 if (ip->i_delayed_blks) 1717 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1718 } 1719 return 0; 1720 } 1721 1722 /* 1723 * xfs_inactive_truncate 1724 * 1725 * Called to perform a truncate when an inode becomes unlinked. 1726 */ 1727 STATIC int 1728 xfs_inactive_truncate( 1729 struct xfs_inode *ip) 1730 { 1731 struct xfs_mount *mp = ip->i_mount; 1732 struct xfs_trans *tp; 1733 int error; 1734 1735 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1736 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 1737 if (error) { 1738 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1739 xfs_trans_cancel(tp); 1740 return error; 1741 } 1742 1743 xfs_ilock(ip, XFS_ILOCK_EXCL); 1744 xfs_trans_ijoin(tp, ip, 0); 1745 1746 /* 1747 * Log the inode size first to prevent stale data exposure in the event 1748 * of a system crash before the truncate completes. See the related 1749 * comment in xfs_setattr_size() for details. 1750 */ 1751 ip->i_d.di_size = 0; 1752 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1753 1754 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1755 if (error) 1756 goto error_trans_cancel; 1757 1758 ASSERT(ip->i_d.di_nextents == 0); 1759 1760 error = xfs_trans_commit(tp); 1761 if (error) 1762 goto error_unlock; 1763 1764 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1765 return 0; 1766 1767 error_trans_cancel: 1768 xfs_trans_cancel(tp); 1769 error_unlock: 1770 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1771 return error; 1772 } 1773 1774 /* 1775 * xfs_inactive_ifree() 1776 * 1777 * Perform the inode free when an inode is unlinked. 1778 */ 1779 STATIC int 1780 xfs_inactive_ifree( 1781 struct xfs_inode *ip) 1782 { 1783 xfs_bmap_free_t free_list; 1784 xfs_fsblock_t first_block; 1785 struct xfs_mount *mp = ip->i_mount; 1786 struct xfs_trans *tp; 1787 int error; 1788 1789 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1790 1791 /* 1792 * The ifree transaction might need to allocate blocks for record 1793 * insertion to the finobt. We don't want to fail here at ENOSPC, so 1794 * allow ifree to dip into the reserved block pool if necessary. 1795 * 1796 * Freeing large sets of inodes generally means freeing inode chunks, 1797 * directory and file data blocks, so this should be relatively safe. 1798 * Only under severe circumstances should it be possible to free enough 1799 * inodes to exhaust the reserve block pool via finobt expansion while 1800 * at the same time not creating free space in the filesystem. 1801 * 1802 * Send a warning if the reservation does happen to fail, as the inode 1803 * now remains allocated and sits on the unlinked list until the fs is 1804 * repaired. 1805 */ 1806 tp->t_flags |= XFS_TRANS_RESERVE; 1807 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 1808 XFS_IFREE_SPACE_RES(mp), 0); 1809 if (error) { 1810 if (error == -ENOSPC) { 1811 xfs_warn_ratelimited(mp, 1812 "Failed to remove inode(s) from unlinked list. " 1813 "Please free space, unmount and run xfs_repair."); 1814 } else { 1815 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1816 } 1817 xfs_trans_cancel(tp); 1818 return error; 1819 } 1820 1821 xfs_ilock(ip, XFS_ILOCK_EXCL); 1822 xfs_trans_ijoin(tp, ip, 0); 1823 1824 xfs_bmap_init(&free_list, &first_block); 1825 error = xfs_ifree(tp, ip, &free_list); 1826 if (error) { 1827 /* 1828 * If we fail to free the inode, shut down. The cancel 1829 * might do that, we need to make sure. Otherwise the 1830 * inode might be lost for a long time or forever. 1831 */ 1832 if (!XFS_FORCED_SHUTDOWN(mp)) { 1833 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1834 __func__, error); 1835 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1836 } 1837 xfs_trans_cancel(tp); 1838 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1839 return error; 1840 } 1841 1842 /* 1843 * Credit the quota account(s). The inode is gone. 1844 */ 1845 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1846 1847 /* 1848 * Just ignore errors at this point. There is nothing we can do except 1849 * to try to keep going. Make sure it's not a silent error. 1850 */ 1851 error = xfs_bmap_finish(&tp, &free_list, NULL); 1852 if (error) { 1853 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d", 1854 __func__, error); 1855 xfs_bmap_cancel(&free_list); 1856 } 1857 error = xfs_trans_commit(tp); 1858 if (error) 1859 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1860 __func__, error); 1861 1862 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1863 return 0; 1864 } 1865 1866 /* 1867 * xfs_inactive 1868 * 1869 * This is called when the vnode reference count for the vnode 1870 * goes to zero. If the file has been unlinked, then it must 1871 * now be truncated. Also, we clear all of the read-ahead state 1872 * kept for the inode here since the file is now closed. 1873 */ 1874 void 1875 xfs_inactive( 1876 xfs_inode_t *ip) 1877 { 1878 struct xfs_mount *mp; 1879 int error; 1880 int truncate = 0; 1881 1882 /* 1883 * If the inode is already free, then there can be nothing 1884 * to clean up here. 1885 */ 1886 if (ip->i_d.di_mode == 0) { 1887 ASSERT(ip->i_df.if_real_bytes == 0); 1888 ASSERT(ip->i_df.if_broot_bytes == 0); 1889 return; 1890 } 1891 1892 mp = ip->i_mount; 1893 1894 /* If this is a read-only mount, don't do this (would generate I/O) */ 1895 if (mp->m_flags & XFS_MOUNT_RDONLY) 1896 return; 1897 1898 if (ip->i_d.di_nlink != 0) { 1899 /* 1900 * force is true because we are evicting an inode from the 1901 * cache. Post-eof blocks must be freed, lest we end up with 1902 * broken free space accounting. 1903 */ 1904 if (xfs_can_free_eofblocks(ip, true)) 1905 xfs_free_eofblocks(mp, ip, false); 1906 1907 return; 1908 } 1909 1910 if (S_ISREG(ip->i_d.di_mode) && 1911 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1912 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1913 truncate = 1; 1914 1915 error = xfs_qm_dqattach(ip, 0); 1916 if (error) 1917 return; 1918 1919 if (S_ISLNK(ip->i_d.di_mode)) 1920 error = xfs_inactive_symlink(ip); 1921 else if (truncate) 1922 error = xfs_inactive_truncate(ip); 1923 if (error) 1924 return; 1925 1926 /* 1927 * If there are attributes associated with the file then blow them away 1928 * now. The code calls a routine that recursively deconstructs the 1929 * attribute fork. If also blows away the in-core attribute fork. 1930 */ 1931 if (XFS_IFORK_Q(ip)) { 1932 error = xfs_attr_inactive(ip); 1933 if (error) 1934 return; 1935 } 1936 1937 ASSERT(!ip->i_afp); 1938 ASSERT(ip->i_d.di_anextents == 0); 1939 ASSERT(ip->i_d.di_forkoff == 0); 1940 1941 /* 1942 * Free the inode. 1943 */ 1944 error = xfs_inactive_ifree(ip); 1945 if (error) 1946 return; 1947 1948 /* 1949 * Release the dquots held by inode, if any. 1950 */ 1951 xfs_qm_dqdetach(ip); 1952 } 1953 1954 /* 1955 * This is called when the inode's link count goes to 0. 1956 * We place the on-disk inode on a list in the AGI. It 1957 * will be pulled from this list when the inode is freed. 1958 */ 1959 int 1960 xfs_iunlink( 1961 xfs_trans_t *tp, 1962 xfs_inode_t *ip) 1963 { 1964 xfs_mount_t *mp; 1965 xfs_agi_t *agi; 1966 xfs_dinode_t *dip; 1967 xfs_buf_t *agibp; 1968 xfs_buf_t *ibp; 1969 xfs_agino_t agino; 1970 short bucket_index; 1971 int offset; 1972 int error; 1973 1974 ASSERT(ip->i_d.di_nlink == 0); 1975 ASSERT(ip->i_d.di_mode != 0); 1976 1977 mp = tp->t_mountp; 1978 1979 /* 1980 * Get the agi buffer first. It ensures lock ordering 1981 * on the list. 1982 */ 1983 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1984 if (error) 1985 return error; 1986 agi = XFS_BUF_TO_AGI(agibp); 1987 1988 /* 1989 * Get the index into the agi hash table for the 1990 * list this inode will go on. 1991 */ 1992 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1993 ASSERT(agino != 0); 1994 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1995 ASSERT(agi->agi_unlinked[bucket_index]); 1996 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1997 1998 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 1999 /* 2000 * There is already another inode in the bucket we need 2001 * to add ourselves to. Add us at the front of the list. 2002 * Here we put the head pointer into our next pointer, 2003 * and then we fall through to point the head at us. 2004 */ 2005 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2006 0, 0); 2007 if (error) 2008 return error; 2009 2010 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 2011 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 2012 offset = ip->i_imap.im_boffset + 2013 offsetof(xfs_dinode_t, di_next_unlinked); 2014 2015 /* need to recalc the inode CRC if appropriate */ 2016 xfs_dinode_calc_crc(mp, dip); 2017 2018 xfs_trans_inode_buf(tp, ibp); 2019 xfs_trans_log_buf(tp, ibp, offset, 2020 (offset + sizeof(xfs_agino_t) - 1)); 2021 xfs_inobp_check(mp, ibp); 2022 } 2023 2024 /* 2025 * Point the bucket head pointer at the inode being inserted. 2026 */ 2027 ASSERT(agino != 0); 2028 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 2029 offset = offsetof(xfs_agi_t, agi_unlinked) + 2030 (sizeof(xfs_agino_t) * bucket_index); 2031 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF); 2032 xfs_trans_log_buf(tp, agibp, offset, 2033 (offset + sizeof(xfs_agino_t) - 1)); 2034 return 0; 2035 } 2036 2037 /* 2038 * Pull the on-disk inode from the AGI unlinked list. 2039 */ 2040 STATIC int 2041 xfs_iunlink_remove( 2042 xfs_trans_t *tp, 2043 xfs_inode_t *ip) 2044 { 2045 xfs_ino_t next_ino; 2046 xfs_mount_t *mp; 2047 xfs_agi_t *agi; 2048 xfs_dinode_t *dip; 2049 xfs_buf_t *agibp; 2050 xfs_buf_t *ibp; 2051 xfs_agnumber_t agno; 2052 xfs_agino_t agino; 2053 xfs_agino_t next_agino; 2054 xfs_buf_t *last_ibp; 2055 xfs_dinode_t *last_dip = NULL; 2056 short bucket_index; 2057 int offset, last_offset = 0; 2058 int error; 2059 2060 mp = tp->t_mountp; 2061 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2062 2063 /* 2064 * Get the agi buffer first. It ensures lock ordering 2065 * on the list. 2066 */ 2067 error = xfs_read_agi(mp, tp, agno, &agibp); 2068 if (error) 2069 return error; 2070 2071 agi = XFS_BUF_TO_AGI(agibp); 2072 2073 /* 2074 * Get the index into the agi hash table for the 2075 * list this inode will go on. 2076 */ 2077 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2078 ASSERT(agino != 0); 2079 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2080 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 2081 ASSERT(agi->agi_unlinked[bucket_index]); 2082 2083 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2084 /* 2085 * We're at the head of the list. Get the inode's on-disk 2086 * buffer to see if there is anyone after us on the list. 2087 * Only modify our next pointer if it is not already NULLAGINO. 2088 * This saves us the overhead of dealing with the buffer when 2089 * there is no need to change it. 2090 */ 2091 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2092 0, 0); 2093 if (error) { 2094 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2095 __func__, error); 2096 return error; 2097 } 2098 next_agino = be32_to_cpu(dip->di_next_unlinked); 2099 ASSERT(next_agino != 0); 2100 if (next_agino != NULLAGINO) { 2101 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2102 offset = ip->i_imap.im_boffset + 2103 offsetof(xfs_dinode_t, di_next_unlinked); 2104 2105 /* need to recalc the inode CRC if appropriate */ 2106 xfs_dinode_calc_crc(mp, dip); 2107 2108 xfs_trans_inode_buf(tp, ibp); 2109 xfs_trans_log_buf(tp, ibp, offset, 2110 (offset + sizeof(xfs_agino_t) - 1)); 2111 xfs_inobp_check(mp, ibp); 2112 } else { 2113 xfs_trans_brelse(tp, ibp); 2114 } 2115 /* 2116 * Point the bucket head pointer at the next inode. 2117 */ 2118 ASSERT(next_agino != 0); 2119 ASSERT(next_agino != agino); 2120 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2121 offset = offsetof(xfs_agi_t, agi_unlinked) + 2122 (sizeof(xfs_agino_t) * bucket_index); 2123 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF); 2124 xfs_trans_log_buf(tp, agibp, offset, 2125 (offset + sizeof(xfs_agino_t) - 1)); 2126 } else { 2127 /* 2128 * We need to search the list for the inode being freed. 2129 */ 2130 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2131 last_ibp = NULL; 2132 while (next_agino != agino) { 2133 struct xfs_imap imap; 2134 2135 if (last_ibp) 2136 xfs_trans_brelse(tp, last_ibp); 2137 2138 imap.im_blkno = 0; 2139 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2140 2141 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2142 if (error) { 2143 xfs_warn(mp, 2144 "%s: xfs_imap returned error %d.", 2145 __func__, error); 2146 return error; 2147 } 2148 2149 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2150 &last_ibp, 0, 0); 2151 if (error) { 2152 xfs_warn(mp, 2153 "%s: xfs_imap_to_bp returned error %d.", 2154 __func__, error); 2155 return error; 2156 } 2157 2158 last_offset = imap.im_boffset; 2159 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2160 ASSERT(next_agino != NULLAGINO); 2161 ASSERT(next_agino != 0); 2162 } 2163 2164 /* 2165 * Now last_ibp points to the buffer previous to us on the 2166 * unlinked list. Pull us from the list. 2167 */ 2168 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2169 0, 0); 2170 if (error) { 2171 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2172 __func__, error); 2173 return error; 2174 } 2175 next_agino = be32_to_cpu(dip->di_next_unlinked); 2176 ASSERT(next_agino != 0); 2177 ASSERT(next_agino != agino); 2178 if (next_agino != NULLAGINO) { 2179 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2180 offset = ip->i_imap.im_boffset + 2181 offsetof(xfs_dinode_t, di_next_unlinked); 2182 2183 /* need to recalc the inode CRC if appropriate */ 2184 xfs_dinode_calc_crc(mp, dip); 2185 2186 xfs_trans_inode_buf(tp, ibp); 2187 xfs_trans_log_buf(tp, ibp, offset, 2188 (offset + sizeof(xfs_agino_t) - 1)); 2189 xfs_inobp_check(mp, ibp); 2190 } else { 2191 xfs_trans_brelse(tp, ibp); 2192 } 2193 /* 2194 * Point the previous inode on the list to the next inode. 2195 */ 2196 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2197 ASSERT(next_agino != 0); 2198 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2199 2200 /* need to recalc the inode CRC if appropriate */ 2201 xfs_dinode_calc_crc(mp, last_dip); 2202 2203 xfs_trans_inode_buf(tp, last_ibp); 2204 xfs_trans_log_buf(tp, last_ibp, offset, 2205 (offset + sizeof(xfs_agino_t) - 1)); 2206 xfs_inobp_check(mp, last_ibp); 2207 } 2208 return 0; 2209 } 2210 2211 /* 2212 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2213 * inodes that are in memory - they all must be marked stale and attached to 2214 * the cluster buffer. 2215 */ 2216 STATIC int 2217 xfs_ifree_cluster( 2218 xfs_inode_t *free_ip, 2219 xfs_trans_t *tp, 2220 struct xfs_icluster *xic) 2221 { 2222 xfs_mount_t *mp = free_ip->i_mount; 2223 int blks_per_cluster; 2224 int inodes_per_cluster; 2225 int nbufs; 2226 int i, j; 2227 int ioffset; 2228 xfs_daddr_t blkno; 2229 xfs_buf_t *bp; 2230 xfs_inode_t *ip; 2231 xfs_inode_log_item_t *iip; 2232 xfs_log_item_t *lip; 2233 struct xfs_perag *pag; 2234 xfs_ino_t inum; 2235 2236 inum = xic->first_ino; 2237 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2238 blks_per_cluster = xfs_icluster_size_fsb(mp); 2239 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 2240 nbufs = mp->m_ialloc_blks / blks_per_cluster; 2241 2242 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { 2243 /* 2244 * The allocation bitmap tells us which inodes of the chunk were 2245 * physically allocated. Skip the cluster if an inode falls into 2246 * a sparse region. 2247 */ 2248 ioffset = inum - xic->first_ino; 2249 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2250 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0); 2251 continue; 2252 } 2253 2254 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2255 XFS_INO_TO_AGBNO(mp, inum)); 2256 2257 /* 2258 * We obtain and lock the backing buffer first in the process 2259 * here, as we have to ensure that any dirty inode that we 2260 * can't get the flush lock on is attached to the buffer. 2261 * If we scan the in-memory inodes first, then buffer IO can 2262 * complete before we get a lock on it, and hence we may fail 2263 * to mark all the active inodes on the buffer stale. 2264 */ 2265 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2266 mp->m_bsize * blks_per_cluster, 2267 XBF_UNMAPPED); 2268 2269 if (!bp) 2270 return -ENOMEM; 2271 2272 /* 2273 * This buffer may not have been correctly initialised as we 2274 * didn't read it from disk. That's not important because we are 2275 * only using to mark the buffer as stale in the log, and to 2276 * attach stale cached inodes on it. That means it will never be 2277 * dispatched for IO. If it is, we want to know about it, and we 2278 * want it to fail. We can acheive this by adding a write 2279 * verifier to the buffer. 2280 */ 2281 bp->b_ops = &xfs_inode_buf_ops; 2282 2283 /* 2284 * Walk the inodes already attached to the buffer and mark them 2285 * stale. These will all have the flush locks held, so an 2286 * in-memory inode walk can't lock them. By marking them all 2287 * stale first, we will not attempt to lock them in the loop 2288 * below as the XFS_ISTALE flag will be set. 2289 */ 2290 lip = bp->b_fspriv; 2291 while (lip) { 2292 if (lip->li_type == XFS_LI_INODE) { 2293 iip = (xfs_inode_log_item_t *)lip; 2294 ASSERT(iip->ili_logged == 1); 2295 lip->li_cb = xfs_istale_done; 2296 xfs_trans_ail_copy_lsn(mp->m_ail, 2297 &iip->ili_flush_lsn, 2298 &iip->ili_item.li_lsn); 2299 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2300 } 2301 lip = lip->li_bio_list; 2302 } 2303 2304 2305 /* 2306 * For each inode in memory attempt to add it to the inode 2307 * buffer and set it up for being staled on buffer IO 2308 * completion. This is safe as we've locked out tail pushing 2309 * and flushing by locking the buffer. 2310 * 2311 * We have already marked every inode that was part of a 2312 * transaction stale above, which means there is no point in 2313 * even trying to lock them. 2314 */ 2315 for (i = 0; i < inodes_per_cluster; i++) { 2316 retry: 2317 rcu_read_lock(); 2318 ip = radix_tree_lookup(&pag->pag_ici_root, 2319 XFS_INO_TO_AGINO(mp, (inum + i))); 2320 2321 /* Inode not in memory, nothing to do */ 2322 if (!ip) { 2323 rcu_read_unlock(); 2324 continue; 2325 } 2326 2327 /* 2328 * because this is an RCU protected lookup, we could 2329 * find a recently freed or even reallocated inode 2330 * during the lookup. We need to check under the 2331 * i_flags_lock for a valid inode here. Skip it if it 2332 * is not valid, the wrong inode or stale. 2333 */ 2334 spin_lock(&ip->i_flags_lock); 2335 if (ip->i_ino != inum + i || 2336 __xfs_iflags_test(ip, XFS_ISTALE)) { 2337 spin_unlock(&ip->i_flags_lock); 2338 rcu_read_unlock(); 2339 continue; 2340 } 2341 spin_unlock(&ip->i_flags_lock); 2342 2343 /* 2344 * Don't try to lock/unlock the current inode, but we 2345 * _cannot_ skip the other inodes that we did not find 2346 * in the list attached to the buffer and are not 2347 * already marked stale. If we can't lock it, back off 2348 * and retry. 2349 */ 2350 if (ip != free_ip && 2351 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2352 rcu_read_unlock(); 2353 delay(1); 2354 goto retry; 2355 } 2356 rcu_read_unlock(); 2357 2358 xfs_iflock(ip); 2359 xfs_iflags_set(ip, XFS_ISTALE); 2360 2361 /* 2362 * we don't need to attach clean inodes or those only 2363 * with unlogged changes (which we throw away, anyway). 2364 */ 2365 iip = ip->i_itemp; 2366 if (!iip || xfs_inode_clean(ip)) { 2367 ASSERT(ip != free_ip); 2368 xfs_ifunlock(ip); 2369 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2370 continue; 2371 } 2372 2373 iip->ili_last_fields = iip->ili_fields; 2374 iip->ili_fields = 0; 2375 iip->ili_fsync_fields = 0; 2376 iip->ili_logged = 1; 2377 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2378 &iip->ili_item.li_lsn); 2379 2380 xfs_buf_attach_iodone(bp, xfs_istale_done, 2381 &iip->ili_item); 2382 2383 if (ip != free_ip) 2384 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2385 } 2386 2387 xfs_trans_stale_inode_buf(tp, bp); 2388 xfs_trans_binval(tp, bp); 2389 } 2390 2391 xfs_perag_put(pag); 2392 return 0; 2393 } 2394 2395 /* 2396 * This is called to return an inode to the inode free list. 2397 * The inode should already be truncated to 0 length and have 2398 * no pages associated with it. This routine also assumes that 2399 * the inode is already a part of the transaction. 2400 * 2401 * The on-disk copy of the inode will have been added to the list 2402 * of unlinked inodes in the AGI. We need to remove the inode from 2403 * that list atomically with respect to freeing it here. 2404 */ 2405 int 2406 xfs_ifree( 2407 xfs_trans_t *tp, 2408 xfs_inode_t *ip, 2409 xfs_bmap_free_t *flist) 2410 { 2411 int error; 2412 struct xfs_icluster xic = { 0 }; 2413 2414 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2415 ASSERT(ip->i_d.di_nlink == 0); 2416 ASSERT(ip->i_d.di_nextents == 0); 2417 ASSERT(ip->i_d.di_anextents == 0); 2418 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode)); 2419 ASSERT(ip->i_d.di_nblocks == 0); 2420 2421 /* 2422 * Pull the on-disk inode from the AGI unlinked list. 2423 */ 2424 error = xfs_iunlink_remove(tp, ip); 2425 if (error) 2426 return error; 2427 2428 error = xfs_difree(tp, ip->i_ino, flist, &xic); 2429 if (error) 2430 return error; 2431 2432 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2433 ip->i_d.di_flags = 0; 2434 ip->i_d.di_dmevmask = 0; 2435 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2436 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2437 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2438 /* 2439 * Bump the generation count so no one will be confused 2440 * by reincarnations of this inode. 2441 */ 2442 ip->i_d.di_gen++; 2443 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2444 2445 if (xic.deleted) 2446 error = xfs_ifree_cluster(ip, tp, &xic); 2447 2448 return error; 2449 } 2450 2451 /* 2452 * This is called to unpin an inode. The caller must have the inode locked 2453 * in at least shared mode so that the buffer cannot be subsequently pinned 2454 * once someone is waiting for it to be unpinned. 2455 */ 2456 static void 2457 xfs_iunpin( 2458 struct xfs_inode *ip) 2459 { 2460 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2461 2462 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2463 2464 /* Give the log a push to start the unpinning I/O */ 2465 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2466 2467 } 2468 2469 static void 2470 __xfs_iunpin_wait( 2471 struct xfs_inode *ip) 2472 { 2473 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2474 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2475 2476 xfs_iunpin(ip); 2477 2478 do { 2479 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2480 if (xfs_ipincount(ip)) 2481 io_schedule(); 2482 } while (xfs_ipincount(ip)); 2483 finish_wait(wq, &wait.wait); 2484 } 2485 2486 void 2487 xfs_iunpin_wait( 2488 struct xfs_inode *ip) 2489 { 2490 if (xfs_ipincount(ip)) 2491 __xfs_iunpin_wait(ip); 2492 } 2493 2494 /* 2495 * Removing an inode from the namespace involves removing the directory entry 2496 * and dropping the link count on the inode. Removing the directory entry can 2497 * result in locking an AGF (directory blocks were freed) and removing a link 2498 * count can result in placing the inode on an unlinked list which results in 2499 * locking an AGI. 2500 * 2501 * The big problem here is that we have an ordering constraint on AGF and AGI 2502 * locking - inode allocation locks the AGI, then can allocate a new extent for 2503 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2504 * removes the inode from the unlinked list, requiring that we lock the AGI 2505 * first, and then freeing the inode can result in an inode chunk being freed 2506 * and hence freeing disk space requiring that we lock an AGF. 2507 * 2508 * Hence the ordering that is imposed by other parts of the code is AGI before 2509 * AGF. This means we cannot remove the directory entry before we drop the inode 2510 * reference count and put it on the unlinked list as this results in a lock 2511 * order of AGF then AGI, and this can deadlock against inode allocation and 2512 * freeing. Therefore we must drop the link counts before we remove the 2513 * directory entry. 2514 * 2515 * This is still safe from a transactional point of view - it is not until we 2516 * get to xfs_bmap_finish() that we have the possibility of multiple 2517 * transactions in this operation. Hence as long as we remove the directory 2518 * entry and drop the link count in the first transaction of the remove 2519 * operation, there are no transactional constraints on the ordering here. 2520 */ 2521 int 2522 xfs_remove( 2523 xfs_inode_t *dp, 2524 struct xfs_name *name, 2525 xfs_inode_t *ip) 2526 { 2527 xfs_mount_t *mp = dp->i_mount; 2528 xfs_trans_t *tp = NULL; 2529 int is_dir = S_ISDIR(ip->i_d.di_mode); 2530 int error = 0; 2531 xfs_bmap_free_t free_list; 2532 xfs_fsblock_t first_block; 2533 uint resblks; 2534 2535 trace_xfs_remove(dp, name); 2536 2537 if (XFS_FORCED_SHUTDOWN(mp)) 2538 return -EIO; 2539 2540 error = xfs_qm_dqattach(dp, 0); 2541 if (error) 2542 goto std_return; 2543 2544 error = xfs_qm_dqattach(ip, 0); 2545 if (error) 2546 goto std_return; 2547 2548 if (is_dir) 2549 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR); 2550 else 2551 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE); 2552 2553 /* 2554 * We try to get the real space reservation first, 2555 * allowing for directory btree deletion(s) implying 2556 * possible bmap insert(s). If we can't get the space 2557 * reservation then we use 0 instead, and avoid the bmap 2558 * btree insert(s) in the directory code by, if the bmap 2559 * insert tries to happen, instead trimming the LAST 2560 * block from the directory. 2561 */ 2562 resblks = XFS_REMOVE_SPACE_RES(mp); 2563 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0); 2564 if (error == -ENOSPC) { 2565 resblks = 0; 2566 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0); 2567 } 2568 if (error) { 2569 ASSERT(error != -ENOSPC); 2570 goto out_trans_cancel; 2571 } 2572 2573 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 2574 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL); 2575 2576 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 2577 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2578 2579 /* 2580 * If we're removing a directory perform some additional validation. 2581 */ 2582 if (is_dir) { 2583 ASSERT(ip->i_d.di_nlink >= 2); 2584 if (ip->i_d.di_nlink != 2) { 2585 error = -ENOTEMPTY; 2586 goto out_trans_cancel; 2587 } 2588 if (!xfs_dir_isempty(ip)) { 2589 error = -ENOTEMPTY; 2590 goto out_trans_cancel; 2591 } 2592 2593 /* Drop the link from ip's "..". */ 2594 error = xfs_droplink(tp, dp); 2595 if (error) 2596 goto out_trans_cancel; 2597 2598 /* Drop the "." link from ip to self. */ 2599 error = xfs_droplink(tp, ip); 2600 if (error) 2601 goto out_trans_cancel; 2602 } else { 2603 /* 2604 * When removing a non-directory we need to log the parent 2605 * inode here. For a directory this is done implicitly 2606 * by the xfs_droplink call for the ".." entry. 2607 */ 2608 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2609 } 2610 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2611 2612 /* Drop the link from dp to ip. */ 2613 error = xfs_droplink(tp, ip); 2614 if (error) 2615 goto out_trans_cancel; 2616 2617 xfs_bmap_init(&free_list, &first_block); 2618 error = xfs_dir_removename(tp, dp, name, ip->i_ino, 2619 &first_block, &free_list, resblks); 2620 if (error) { 2621 ASSERT(error != -ENOENT); 2622 goto out_bmap_cancel; 2623 } 2624 2625 /* 2626 * If this is a synchronous mount, make sure that the 2627 * remove transaction goes to disk before returning to 2628 * the user. 2629 */ 2630 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2631 xfs_trans_set_sync(tp); 2632 2633 error = xfs_bmap_finish(&tp, &free_list, NULL); 2634 if (error) 2635 goto out_bmap_cancel; 2636 2637 error = xfs_trans_commit(tp); 2638 if (error) 2639 goto std_return; 2640 2641 if (is_dir && xfs_inode_is_filestream(ip)) 2642 xfs_filestream_deassociate(ip); 2643 2644 return 0; 2645 2646 out_bmap_cancel: 2647 xfs_bmap_cancel(&free_list); 2648 out_trans_cancel: 2649 xfs_trans_cancel(tp); 2650 std_return: 2651 return error; 2652 } 2653 2654 /* 2655 * Enter all inodes for a rename transaction into a sorted array. 2656 */ 2657 #define __XFS_SORT_INODES 5 2658 STATIC void 2659 xfs_sort_for_rename( 2660 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2661 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2662 struct xfs_inode *ip1, /* in: inode of old entry */ 2663 struct xfs_inode *ip2, /* in: inode of new entry */ 2664 struct xfs_inode *wip, /* in: whiteout inode */ 2665 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2666 int *num_inodes) /* in/out: inodes in array */ 2667 { 2668 int i, j; 2669 2670 ASSERT(*num_inodes == __XFS_SORT_INODES); 2671 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2672 2673 /* 2674 * i_tab contains a list of pointers to inodes. We initialize 2675 * the table here & we'll sort it. We will then use it to 2676 * order the acquisition of the inode locks. 2677 * 2678 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2679 */ 2680 i = 0; 2681 i_tab[i++] = dp1; 2682 i_tab[i++] = dp2; 2683 i_tab[i++] = ip1; 2684 if (ip2) 2685 i_tab[i++] = ip2; 2686 if (wip) 2687 i_tab[i++] = wip; 2688 *num_inodes = i; 2689 2690 /* 2691 * Sort the elements via bubble sort. (Remember, there are at 2692 * most 5 elements to sort, so this is adequate.) 2693 */ 2694 for (i = 0; i < *num_inodes; i++) { 2695 for (j = 1; j < *num_inodes; j++) { 2696 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2697 struct xfs_inode *temp = i_tab[j]; 2698 i_tab[j] = i_tab[j-1]; 2699 i_tab[j-1] = temp; 2700 } 2701 } 2702 } 2703 } 2704 2705 static int 2706 xfs_finish_rename( 2707 struct xfs_trans *tp, 2708 struct xfs_bmap_free *free_list) 2709 { 2710 int error; 2711 2712 /* 2713 * If this is a synchronous mount, make sure that the rename transaction 2714 * goes to disk before returning to the user. 2715 */ 2716 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2717 xfs_trans_set_sync(tp); 2718 2719 error = xfs_bmap_finish(&tp, free_list, NULL); 2720 if (error) { 2721 xfs_bmap_cancel(free_list); 2722 xfs_trans_cancel(tp); 2723 return error; 2724 } 2725 2726 return xfs_trans_commit(tp); 2727 } 2728 2729 /* 2730 * xfs_cross_rename() 2731 * 2732 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 2733 */ 2734 STATIC int 2735 xfs_cross_rename( 2736 struct xfs_trans *tp, 2737 struct xfs_inode *dp1, 2738 struct xfs_name *name1, 2739 struct xfs_inode *ip1, 2740 struct xfs_inode *dp2, 2741 struct xfs_name *name2, 2742 struct xfs_inode *ip2, 2743 struct xfs_bmap_free *free_list, 2744 xfs_fsblock_t *first_block, 2745 int spaceres) 2746 { 2747 int error = 0; 2748 int ip1_flags = 0; 2749 int ip2_flags = 0; 2750 int dp2_flags = 0; 2751 2752 /* Swap inode number for dirent in first parent */ 2753 error = xfs_dir_replace(tp, dp1, name1, 2754 ip2->i_ino, 2755 first_block, free_list, spaceres); 2756 if (error) 2757 goto out_trans_abort; 2758 2759 /* Swap inode number for dirent in second parent */ 2760 error = xfs_dir_replace(tp, dp2, name2, 2761 ip1->i_ino, 2762 first_block, free_list, spaceres); 2763 if (error) 2764 goto out_trans_abort; 2765 2766 /* 2767 * If we're renaming one or more directories across different parents, 2768 * update the respective ".." entries (and link counts) to match the new 2769 * parents. 2770 */ 2771 if (dp1 != dp2) { 2772 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2773 2774 if (S_ISDIR(ip2->i_d.di_mode)) { 2775 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2776 dp1->i_ino, first_block, 2777 free_list, spaceres); 2778 if (error) 2779 goto out_trans_abort; 2780 2781 /* transfer ip2 ".." reference to dp1 */ 2782 if (!S_ISDIR(ip1->i_d.di_mode)) { 2783 error = xfs_droplink(tp, dp2); 2784 if (error) 2785 goto out_trans_abort; 2786 error = xfs_bumplink(tp, dp1); 2787 if (error) 2788 goto out_trans_abort; 2789 } 2790 2791 /* 2792 * Although ip1 isn't changed here, userspace needs 2793 * to be warned about the change, so that applications 2794 * relying on it (like backup ones), will properly 2795 * notify the change 2796 */ 2797 ip1_flags |= XFS_ICHGTIME_CHG; 2798 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2799 } 2800 2801 if (S_ISDIR(ip1->i_d.di_mode)) { 2802 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2803 dp2->i_ino, first_block, 2804 free_list, spaceres); 2805 if (error) 2806 goto out_trans_abort; 2807 2808 /* transfer ip1 ".." reference to dp2 */ 2809 if (!S_ISDIR(ip2->i_d.di_mode)) { 2810 error = xfs_droplink(tp, dp1); 2811 if (error) 2812 goto out_trans_abort; 2813 error = xfs_bumplink(tp, dp2); 2814 if (error) 2815 goto out_trans_abort; 2816 } 2817 2818 /* 2819 * Although ip2 isn't changed here, userspace needs 2820 * to be warned about the change, so that applications 2821 * relying on it (like backup ones), will properly 2822 * notify the change 2823 */ 2824 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2825 ip2_flags |= XFS_ICHGTIME_CHG; 2826 } 2827 } 2828 2829 if (ip1_flags) { 2830 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2831 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2832 } 2833 if (ip2_flags) { 2834 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2835 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2836 } 2837 if (dp2_flags) { 2838 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2839 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2840 } 2841 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2842 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2843 return xfs_finish_rename(tp, free_list); 2844 2845 out_trans_abort: 2846 xfs_bmap_cancel(free_list); 2847 xfs_trans_cancel(tp); 2848 return error; 2849 } 2850 2851 /* 2852 * xfs_rename_alloc_whiteout() 2853 * 2854 * Return a referenced, unlinked, unlocked inode that that can be used as a 2855 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2856 * crash between allocating the inode and linking it into the rename transaction 2857 * recovery will free the inode and we won't leak it. 2858 */ 2859 static int 2860 xfs_rename_alloc_whiteout( 2861 struct xfs_inode *dp, 2862 struct xfs_inode **wip) 2863 { 2864 struct xfs_inode *tmpfile; 2865 int error; 2866 2867 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile); 2868 if (error) 2869 return error; 2870 2871 /* 2872 * Prepare the tmpfile inode as if it were created through the VFS. 2873 * Otherwise, the link increment paths will complain about nlink 0->1. 2874 * Drop the link count as done by d_tmpfile(), complete the inode setup 2875 * and flag it as linkable. 2876 */ 2877 drop_nlink(VFS_I(tmpfile)); 2878 xfs_finish_inode_setup(tmpfile); 2879 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2880 2881 *wip = tmpfile; 2882 return 0; 2883 } 2884 2885 /* 2886 * xfs_rename 2887 */ 2888 int 2889 xfs_rename( 2890 struct xfs_inode *src_dp, 2891 struct xfs_name *src_name, 2892 struct xfs_inode *src_ip, 2893 struct xfs_inode *target_dp, 2894 struct xfs_name *target_name, 2895 struct xfs_inode *target_ip, 2896 unsigned int flags) 2897 { 2898 struct xfs_mount *mp = src_dp->i_mount; 2899 struct xfs_trans *tp; 2900 struct xfs_bmap_free free_list; 2901 xfs_fsblock_t first_block; 2902 struct xfs_inode *wip = NULL; /* whiteout inode */ 2903 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2904 int num_inodes = __XFS_SORT_INODES; 2905 bool new_parent = (src_dp != target_dp); 2906 bool src_is_directory = S_ISDIR(src_ip->i_d.di_mode); 2907 int spaceres; 2908 int error; 2909 2910 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2911 2912 if ((flags & RENAME_EXCHANGE) && !target_ip) 2913 return -EINVAL; 2914 2915 /* 2916 * If we are doing a whiteout operation, allocate the whiteout inode 2917 * we will be placing at the target and ensure the type is set 2918 * appropriately. 2919 */ 2920 if (flags & RENAME_WHITEOUT) { 2921 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 2922 error = xfs_rename_alloc_whiteout(target_dp, &wip); 2923 if (error) 2924 return error; 2925 2926 /* setup target dirent info as whiteout */ 2927 src_name->type = XFS_DIR3_FT_CHRDEV; 2928 } 2929 2930 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 2931 inodes, &num_inodes); 2932 2933 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME); 2934 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2935 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0); 2936 if (error == -ENOSPC) { 2937 spaceres = 0; 2938 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0); 2939 } 2940 if (error) 2941 goto out_trans_cancel; 2942 2943 /* 2944 * Attach the dquots to the inodes 2945 */ 2946 error = xfs_qm_vop_rename_dqattach(inodes); 2947 if (error) 2948 goto out_trans_cancel; 2949 2950 /* 2951 * Lock all the participating inodes. Depending upon whether 2952 * the target_name exists in the target directory, and 2953 * whether the target directory is the same as the source 2954 * directory, we can lock from 2 to 4 inodes. 2955 */ 2956 if (!new_parent) 2957 xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 2958 else 2959 xfs_lock_two_inodes(src_dp, target_dp, 2960 XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 2961 2962 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2963 2964 /* 2965 * Join all the inodes to the transaction. From this point on, 2966 * we can rely on either trans_commit or trans_cancel to unlock 2967 * them. 2968 */ 2969 xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 2970 if (new_parent) 2971 xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 2972 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2973 if (target_ip) 2974 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2975 if (wip) 2976 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 2977 2978 /* 2979 * If we are using project inheritance, we only allow renames 2980 * into our tree when the project IDs are the same; else the 2981 * tree quota mechanism would be circumvented. 2982 */ 2983 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 2984 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 2985 error = -EXDEV; 2986 goto out_trans_cancel; 2987 } 2988 2989 xfs_bmap_init(&free_list, &first_block); 2990 2991 /* RENAME_EXCHANGE is unique from here on. */ 2992 if (flags & RENAME_EXCHANGE) 2993 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 2994 target_dp, target_name, target_ip, 2995 &free_list, &first_block, spaceres); 2996 2997 /* 2998 * Set up the target. 2999 */ 3000 if (target_ip == NULL) { 3001 /* 3002 * If there's no space reservation, check the entry will 3003 * fit before actually inserting it. 3004 */ 3005 if (!spaceres) { 3006 error = xfs_dir_canenter(tp, target_dp, target_name); 3007 if (error) 3008 goto out_trans_cancel; 3009 } 3010 /* 3011 * If target does not exist and the rename crosses 3012 * directories, adjust the target directory link count 3013 * to account for the ".." reference from the new entry. 3014 */ 3015 error = xfs_dir_createname(tp, target_dp, target_name, 3016 src_ip->i_ino, &first_block, 3017 &free_list, spaceres); 3018 if (error) 3019 goto out_bmap_cancel; 3020 3021 xfs_trans_ichgtime(tp, target_dp, 3022 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3023 3024 if (new_parent && src_is_directory) { 3025 error = xfs_bumplink(tp, target_dp); 3026 if (error) 3027 goto out_bmap_cancel; 3028 } 3029 } else { /* target_ip != NULL */ 3030 /* 3031 * If target exists and it's a directory, check that both 3032 * target and source are directories and that target can be 3033 * destroyed, or that neither is a directory. 3034 */ 3035 if (S_ISDIR(target_ip->i_d.di_mode)) { 3036 /* 3037 * Make sure target dir is empty. 3038 */ 3039 if (!(xfs_dir_isempty(target_ip)) || 3040 (target_ip->i_d.di_nlink > 2)) { 3041 error = -EEXIST; 3042 goto out_trans_cancel; 3043 } 3044 } 3045 3046 /* 3047 * Link the source inode under the target name. 3048 * If the source inode is a directory and we are moving 3049 * it across directories, its ".." entry will be 3050 * inconsistent until we replace that down below. 3051 * 3052 * In case there is already an entry with the same 3053 * name at the destination directory, remove it first. 3054 */ 3055 error = xfs_dir_replace(tp, target_dp, target_name, 3056 src_ip->i_ino, 3057 &first_block, &free_list, spaceres); 3058 if (error) 3059 goto out_bmap_cancel; 3060 3061 xfs_trans_ichgtime(tp, target_dp, 3062 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3063 3064 /* 3065 * Decrement the link count on the target since the target 3066 * dir no longer points to it. 3067 */ 3068 error = xfs_droplink(tp, target_ip); 3069 if (error) 3070 goto out_bmap_cancel; 3071 3072 if (src_is_directory) { 3073 /* 3074 * Drop the link from the old "." entry. 3075 */ 3076 error = xfs_droplink(tp, target_ip); 3077 if (error) 3078 goto out_bmap_cancel; 3079 } 3080 } /* target_ip != NULL */ 3081 3082 /* 3083 * Remove the source. 3084 */ 3085 if (new_parent && src_is_directory) { 3086 /* 3087 * Rewrite the ".." entry to point to the new 3088 * directory. 3089 */ 3090 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3091 target_dp->i_ino, 3092 &first_block, &free_list, spaceres); 3093 ASSERT(error != -EEXIST); 3094 if (error) 3095 goto out_bmap_cancel; 3096 } 3097 3098 /* 3099 * We always want to hit the ctime on the source inode. 3100 * 3101 * This isn't strictly required by the standards since the source 3102 * inode isn't really being changed, but old unix file systems did 3103 * it and some incremental backup programs won't work without it. 3104 */ 3105 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3106 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3107 3108 /* 3109 * Adjust the link count on src_dp. This is necessary when 3110 * renaming a directory, either within one parent when 3111 * the target existed, or across two parent directories. 3112 */ 3113 if (src_is_directory && (new_parent || target_ip != NULL)) { 3114 3115 /* 3116 * Decrement link count on src_directory since the 3117 * entry that's moved no longer points to it. 3118 */ 3119 error = xfs_droplink(tp, src_dp); 3120 if (error) 3121 goto out_bmap_cancel; 3122 } 3123 3124 /* 3125 * For whiteouts, we only need to update the source dirent with the 3126 * inode number of the whiteout inode rather than removing it 3127 * altogether. 3128 */ 3129 if (wip) { 3130 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3131 &first_block, &free_list, spaceres); 3132 } else 3133 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3134 &first_block, &free_list, spaceres); 3135 if (error) 3136 goto out_bmap_cancel; 3137 3138 /* 3139 * For whiteouts, we need to bump the link count on the whiteout inode. 3140 * This means that failures all the way up to this point leave the inode 3141 * on the unlinked list and so cleanup is a simple matter of dropping 3142 * the remaining reference to it. If we fail here after bumping the link 3143 * count, we're shutting down the filesystem so we'll never see the 3144 * intermediate state on disk. 3145 */ 3146 if (wip) { 3147 ASSERT(VFS_I(wip)->i_nlink == 0 && wip->i_d.di_nlink == 0); 3148 error = xfs_bumplink(tp, wip); 3149 if (error) 3150 goto out_bmap_cancel; 3151 error = xfs_iunlink_remove(tp, wip); 3152 if (error) 3153 goto out_bmap_cancel; 3154 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); 3155 3156 /* 3157 * Now we have a real link, clear the "I'm a tmpfile" state 3158 * flag from the inode so it doesn't accidentally get misused in 3159 * future. 3160 */ 3161 VFS_I(wip)->i_state &= ~I_LINKABLE; 3162 } 3163 3164 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3165 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3166 if (new_parent) 3167 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3168 3169 error = xfs_finish_rename(tp, &free_list); 3170 if (wip) 3171 IRELE(wip); 3172 return error; 3173 3174 out_bmap_cancel: 3175 xfs_bmap_cancel(&free_list); 3176 out_trans_cancel: 3177 xfs_trans_cancel(tp); 3178 if (wip) 3179 IRELE(wip); 3180 return error; 3181 } 3182 3183 STATIC int 3184 xfs_iflush_cluster( 3185 xfs_inode_t *ip, 3186 xfs_buf_t *bp) 3187 { 3188 xfs_mount_t *mp = ip->i_mount; 3189 struct xfs_perag *pag; 3190 unsigned long first_index, mask; 3191 unsigned long inodes_per_cluster; 3192 int ilist_size; 3193 xfs_inode_t **ilist; 3194 xfs_inode_t *iq; 3195 int nr_found; 3196 int clcount = 0; 3197 int bufwasdelwri; 3198 int i; 3199 3200 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3201 3202 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 3203 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 3204 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 3205 if (!ilist) 3206 goto out_put; 3207 3208 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 3209 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3210 rcu_read_lock(); 3211 /* really need a gang lookup range call here */ 3212 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 3213 first_index, inodes_per_cluster); 3214 if (nr_found == 0) 3215 goto out_free; 3216 3217 for (i = 0; i < nr_found; i++) { 3218 iq = ilist[i]; 3219 if (iq == ip) 3220 continue; 3221 3222 /* 3223 * because this is an RCU protected lookup, we could find a 3224 * recently freed or even reallocated inode during the lookup. 3225 * We need to check under the i_flags_lock for a valid inode 3226 * here. Skip it if it is not valid or the wrong inode. 3227 */ 3228 spin_lock(&ip->i_flags_lock); 3229 if (!ip->i_ino || 3230 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) { 3231 spin_unlock(&ip->i_flags_lock); 3232 continue; 3233 } 3234 spin_unlock(&ip->i_flags_lock); 3235 3236 /* 3237 * Do an un-protected check to see if the inode is dirty and 3238 * is a candidate for flushing. These checks will be repeated 3239 * later after the appropriate locks are acquired. 3240 */ 3241 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 3242 continue; 3243 3244 /* 3245 * Try to get locks. If any are unavailable or it is pinned, 3246 * then this inode cannot be flushed and is skipped. 3247 */ 3248 3249 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 3250 continue; 3251 if (!xfs_iflock_nowait(iq)) { 3252 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3253 continue; 3254 } 3255 if (xfs_ipincount(iq)) { 3256 xfs_ifunlock(iq); 3257 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3258 continue; 3259 } 3260 3261 /* 3262 * arriving here means that this inode can be flushed. First 3263 * re-check that it's dirty before flushing. 3264 */ 3265 if (!xfs_inode_clean(iq)) { 3266 int error; 3267 error = xfs_iflush_int(iq, bp); 3268 if (error) { 3269 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3270 goto cluster_corrupt_out; 3271 } 3272 clcount++; 3273 } else { 3274 xfs_ifunlock(iq); 3275 } 3276 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3277 } 3278 3279 if (clcount) { 3280 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3281 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3282 } 3283 3284 out_free: 3285 rcu_read_unlock(); 3286 kmem_free(ilist); 3287 out_put: 3288 xfs_perag_put(pag); 3289 return 0; 3290 3291 3292 cluster_corrupt_out: 3293 /* 3294 * Corruption detected in the clustering loop. Invalidate the 3295 * inode buffer and shut down the filesystem. 3296 */ 3297 rcu_read_unlock(); 3298 /* 3299 * Clean up the buffer. If it was delwri, just release it -- 3300 * brelse can handle it with no problems. If not, shut down the 3301 * filesystem before releasing the buffer. 3302 */ 3303 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 3304 if (bufwasdelwri) 3305 xfs_buf_relse(bp); 3306 3307 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3308 3309 if (!bufwasdelwri) { 3310 /* 3311 * Just like incore_relse: if we have b_iodone functions, 3312 * mark the buffer as an error and call them. Otherwise 3313 * mark it as stale and brelse. 3314 */ 3315 if (bp->b_iodone) { 3316 XFS_BUF_UNDONE(bp); 3317 xfs_buf_stale(bp); 3318 xfs_buf_ioerror(bp, -EIO); 3319 xfs_buf_ioend(bp); 3320 } else { 3321 xfs_buf_stale(bp); 3322 xfs_buf_relse(bp); 3323 } 3324 } 3325 3326 /* 3327 * Unlocks the flush lock 3328 */ 3329 xfs_iflush_abort(iq, false); 3330 kmem_free(ilist); 3331 xfs_perag_put(pag); 3332 return -EFSCORRUPTED; 3333 } 3334 3335 /* 3336 * Flush dirty inode metadata into the backing buffer. 3337 * 3338 * The caller must have the inode lock and the inode flush lock held. The 3339 * inode lock will still be held upon return to the caller, and the inode 3340 * flush lock will be released after the inode has reached the disk. 3341 * 3342 * The caller must write out the buffer returned in *bpp and release it. 3343 */ 3344 int 3345 xfs_iflush( 3346 struct xfs_inode *ip, 3347 struct xfs_buf **bpp) 3348 { 3349 struct xfs_mount *mp = ip->i_mount; 3350 struct xfs_buf *bp; 3351 struct xfs_dinode *dip; 3352 int error; 3353 3354 XFS_STATS_INC(mp, xs_iflush_count); 3355 3356 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3357 ASSERT(xfs_isiflocked(ip)); 3358 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3359 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3360 3361 *bpp = NULL; 3362 3363 xfs_iunpin_wait(ip); 3364 3365 /* 3366 * For stale inodes we cannot rely on the backing buffer remaining 3367 * stale in cache for the remaining life of the stale inode and so 3368 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3369 * inodes below. We have to check this after ensuring the inode is 3370 * unpinned so that it is safe to reclaim the stale inode after the 3371 * flush call. 3372 */ 3373 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3374 xfs_ifunlock(ip); 3375 return 0; 3376 } 3377 3378 /* 3379 * This may have been unpinned because the filesystem is shutting 3380 * down forcibly. If that's the case we must not write this inode 3381 * to disk, because the log record didn't make it to disk. 3382 * 3383 * We also have to remove the log item from the AIL in this case, 3384 * as we wait for an empty AIL as part of the unmount process. 3385 */ 3386 if (XFS_FORCED_SHUTDOWN(mp)) { 3387 error = -EIO; 3388 goto abort_out; 3389 } 3390 3391 /* 3392 * Get the buffer containing the on-disk inode. 3393 */ 3394 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3395 0); 3396 if (error || !bp) { 3397 xfs_ifunlock(ip); 3398 return error; 3399 } 3400 3401 /* 3402 * First flush out the inode that xfs_iflush was called with. 3403 */ 3404 error = xfs_iflush_int(ip, bp); 3405 if (error) 3406 goto corrupt_out; 3407 3408 /* 3409 * If the buffer is pinned then push on the log now so we won't 3410 * get stuck waiting in the write for too long. 3411 */ 3412 if (xfs_buf_ispinned(bp)) 3413 xfs_log_force(mp, 0); 3414 3415 /* 3416 * inode clustering: 3417 * see if other inodes can be gathered into this write 3418 */ 3419 error = xfs_iflush_cluster(ip, bp); 3420 if (error) 3421 goto cluster_corrupt_out; 3422 3423 *bpp = bp; 3424 return 0; 3425 3426 corrupt_out: 3427 xfs_buf_relse(bp); 3428 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3429 cluster_corrupt_out: 3430 error = -EFSCORRUPTED; 3431 abort_out: 3432 /* 3433 * Unlocks the flush lock 3434 */ 3435 xfs_iflush_abort(ip, false); 3436 return error; 3437 } 3438 3439 STATIC int 3440 xfs_iflush_int( 3441 struct xfs_inode *ip, 3442 struct xfs_buf *bp) 3443 { 3444 struct xfs_inode_log_item *iip = ip->i_itemp; 3445 struct xfs_dinode *dip; 3446 struct xfs_mount *mp = ip->i_mount; 3447 3448 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3449 ASSERT(xfs_isiflocked(ip)); 3450 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3451 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3452 ASSERT(iip != NULL && iip->ili_fields != 0); 3453 ASSERT(ip->i_d.di_version > 1); 3454 3455 /* set *dip = inode's place in the buffer */ 3456 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3457 3458 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3459 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3460 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3461 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3462 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3463 goto corrupt_out; 3464 } 3465 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3466 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3467 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3468 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3469 __func__, ip->i_ino, ip, ip->i_d.di_magic); 3470 goto corrupt_out; 3471 } 3472 if (S_ISREG(ip->i_d.di_mode)) { 3473 if (XFS_TEST_ERROR( 3474 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3475 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3476 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3477 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3478 "%s: Bad regular inode %Lu, ptr 0x%p", 3479 __func__, ip->i_ino, ip); 3480 goto corrupt_out; 3481 } 3482 } else if (S_ISDIR(ip->i_d.di_mode)) { 3483 if (XFS_TEST_ERROR( 3484 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3485 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3486 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3487 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3488 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3489 "%s: Bad directory inode %Lu, ptr 0x%p", 3490 __func__, ip->i_ino, ip); 3491 goto corrupt_out; 3492 } 3493 } 3494 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3495 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3496 XFS_RANDOM_IFLUSH_5)) { 3497 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3498 "%s: detected corrupt incore inode %Lu, " 3499 "total extents = %d, nblocks = %Ld, ptr 0x%p", 3500 __func__, ip->i_ino, 3501 ip->i_d.di_nextents + ip->i_d.di_anextents, 3502 ip->i_d.di_nblocks, ip); 3503 goto corrupt_out; 3504 } 3505 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3506 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3507 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3508 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3509 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3510 goto corrupt_out; 3511 } 3512 3513 /* 3514 * Inode item log recovery for v2 inodes are dependent on the 3515 * di_flushiter count for correct sequencing. We bump the flush 3516 * iteration count so we can detect flushes which postdate a log record 3517 * during recovery. This is redundant as we now log every change and 3518 * hence this can't happen but we need to still do it to ensure 3519 * backwards compatibility with old kernels that predate logging all 3520 * inode changes. 3521 */ 3522 if (ip->i_d.di_version < 3) 3523 ip->i_d.di_flushiter++; 3524 3525 /* 3526 * Copy the dirty parts of the inode into the on-disk 3527 * inode. We always copy out the core of the inode, 3528 * because if the inode is dirty at all the core must 3529 * be. 3530 */ 3531 xfs_dinode_to_disk(dip, &ip->i_d); 3532 3533 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3534 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3535 ip->i_d.di_flushiter = 0; 3536 3537 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3538 if (XFS_IFORK_Q(ip)) 3539 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3540 xfs_inobp_check(mp, bp); 3541 3542 /* 3543 * We've recorded everything logged in the inode, so we'd like to clear 3544 * the ili_fields bits so we don't log and flush things unnecessarily. 3545 * However, we can't stop logging all this information until the data 3546 * we've copied into the disk buffer is written to disk. If we did we 3547 * might overwrite the copy of the inode in the log with all the data 3548 * after re-logging only part of it, and in the face of a crash we 3549 * wouldn't have all the data we need to recover. 3550 * 3551 * What we do is move the bits to the ili_last_fields field. When 3552 * logging the inode, these bits are moved back to the ili_fields field. 3553 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3554 * know that the information those bits represent is permanently on 3555 * disk. As long as the flush completes before the inode is logged 3556 * again, then both ili_fields and ili_last_fields will be cleared. 3557 * 3558 * We can play with the ili_fields bits here, because the inode lock 3559 * must be held exclusively in order to set bits there and the flush 3560 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3561 * done routine can tell whether or not to look in the AIL. Also, store 3562 * the current LSN of the inode so that we can tell whether the item has 3563 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3564 * need the AIL lock, because it is a 64 bit value that cannot be read 3565 * atomically. 3566 */ 3567 iip->ili_last_fields = iip->ili_fields; 3568 iip->ili_fields = 0; 3569 iip->ili_fsync_fields = 0; 3570 iip->ili_logged = 1; 3571 3572 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3573 &iip->ili_item.li_lsn); 3574 3575 /* 3576 * Attach the function xfs_iflush_done to the inode's 3577 * buffer. This will remove the inode from the AIL 3578 * and unlock the inode's flush lock when the inode is 3579 * completely written to disk. 3580 */ 3581 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3582 3583 /* update the lsn in the on disk inode if required */ 3584 if (ip->i_d.di_version == 3) 3585 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn); 3586 3587 /* generate the checksum. */ 3588 xfs_dinode_calc_crc(mp, dip); 3589 3590 ASSERT(bp->b_fspriv != NULL); 3591 ASSERT(bp->b_iodone != NULL); 3592 return 0; 3593 3594 corrupt_out: 3595 return -EFSCORRUPTED; 3596 } 3597